1
|
Øvreås L, Kallscheuer N, Calisto R, Bordin N, Storesund JE, Jogler C, Devos D, Lage O. Comparative genomic analyses of aerobic planctomycetes isolated from the deep sea and the ocean surface. Antonie Van Leeuwenhoek 2024; 118:33. [PMID: 39585435 PMCID: PMC11588811 DOI: 10.1007/s10482-024-02041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
On the deep and dark seafloor, a cryptic and yet untapped microbial diversity flourishes around hydrothermal vent systems. This remote environment of difficult accessibility exhibits extreme conditions, including high pressure, steep temperature- and redox gradients, limited availability of oxygen and complete darkness. In this study, we analysed the genomes of three aerobic strains belonging to the phylum Planctomycetota that were isolated from two deep-sea iron- rich hydroxide deposits with low temperature diffusive vents. The vents are located in the Arctic and Pacific Ocean at a depth of 600 and 1,734 m below sea level, respectively. The isolated strains Pr1dT, K2D and TBK1r were analyzed with a focus on genome-encoded features that allow phenotypical adaptations to the low temperature iron-rich deep-sea environment. The comparison with genomes of closely related surface-inhabiting counterparts indicates that the deep-sea isolates do not differ significantly from members of the phylum Planctomycetota inhabiting other habitats, such as macroalgae biofilms and the ocean surface waters. Despite inhabiting extreme environments, our "deep and dark"-strains revealed a mostly non-extreme genome biology.
Collapse
Affiliation(s)
- Lise Øvreås
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Rita Calisto
- Department of Biology, Faculty of Sciences and CIIMAR, University of Porto, Porto, Portugal
| | - Nicola Bordin
- Institute of Structural and Molecular Biology, University College London, London, UK
| | | | - Christian Jogler
- Department of Microbial Interactions, Friedrich Schiller University, Jena, Germany
| | - Damien Devos
- CABD, Universidad Pablo de Olavidade, Seville, Spain
- Centre d'Infection Et d'Immunité de Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Olga Lage
- Department of Biology, Faculty of Sciences and CIIMAR, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Yuan B, Guo M, Zhou X, Li M, Xie S. Spatiotemporal patterns and co-occurrence patterns of dissimilatory nitrate reduction to ammonium community in sediments of the Lancang River cascade reservoirs. Front Microbiol 2024; 15:1411753. [PMID: 38962138 PMCID: PMC11219630 DOI: 10.3389/fmicb.2024.1411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate reduction pathway in freshwater sediments. Many studies have focused on the DNRA process in various natural habitats. However, the joint operation of cascade reservoirs will affect the physical and chemical properties of sediments, which may change the DNRA process and bacterial community pattern in the surface sediments of cascade reservoirs. Our study was the first to investigate the spatiotemporal distribution patterns of potential DNRA rate, nrfA gene abundances, and DNRA bacterial community diversity in surface sediments of the Lancang River cascade reservoirs. The results of slurry incubation experiments combined with the 15N isotope tracer experiment ascertained that the potential rates of DNRA were 0.01-0.15 nmol-N cm-3 h-1, and qPCR results indicated that the abundance range of nrfA was 1.08 × 105-2.51 × 106 copies g-1 dry weight. High throughput sequencing of the nrfA gene revealed that the relative abundance of Anaeromyxobacter (4.52% on average), Polyangium (4.09%), Archangium (1.86%), Geobacter (1.34%), and Lacunisphaera (1.32%) were high. Pearson and RDA correlation analysis exhibited that nrfA gene abundance was positively correlated with altitude, pH, OC, and sand concentration. Anaeromyxobacter was positively correlated with reservoir age and DNRA potential rate. The deterministic environmental selection process plays a crucial role in the formation of the DNRA bacterial community. Network analysis displayed that the dominant DNRA genus was the key population of the DNRA microbial community in the sediments of Lancang River cascade reservoirs. This study reveals that the variation of DNRA bacterial activity and community structure is largely driven by the construction of cascade reservoirs, and provides a new idea for further understanding the characteristics of the DNRA community in the cascade reservoir ecosystem.
Collapse
Affiliation(s)
- Bo Yuan
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Mengjing Guo
- Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Xiaode Zhou
- Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Miaojie Li
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
3
|
Quiñonero-Coronel MDM, Devos DP, Garcillán-Barcia MP. Specificities and commonalities of the Planctomycetes plasmidome. Environ Microbiol 2024; 26:e16638. [PMID: 38733104 DOI: 10.1111/1462-2920.16638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Plasmids, despite their critical role in antibiotic resistance and modern biotechnology, are understood in only a few bacterial groups in terms of their natural ecological dynamics. The bacterial phylum Planctomycetes, known for its unique molecular and cellular biology, has a largely unexplored plasmidome. This study offers a thorough exploration of the diversity of natural plasmids within Planctomycetes, which could serve as a foundation for developing various genetic research tools for this phylum. Planctomycetes plasmids encode a broad range of biological functions and appear to have coevolved significantly with their host chromosomes, sharing many homologues. Recent transfer events of insertion sequences between cohabiting chromosomes and plasmids were also observed. Interestingly, 64% of plasmid genes are distantly related to either chromosomally encoded genes or have homologues in plasmids from other bacterial groups. The planctomycetal plasmidome is composed of 36% exclusive proteins. Most planctomycetal plasmids encode a replication initiation protein from the Replication Protein A family near a putative iteron-containing replication origin, as well as active type I partition systems. The identification of one conjugative and three mobilizable plasmids suggests the occurrence of horizontal gene transfer via conjugation within this phylum. This comprehensive description enhances our understanding of the plasmidome of Planctomycetes and its potential implications in antibiotic resistance and biotechnology.
Collapse
Affiliation(s)
| | - Damien Paul Devos
- Centro Andaluz de Biología del Desarrollo (CABD, CSIC-Universidad Pablo de Olavide), Sevilla, Spain
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, CSIC-Universidad de Cantabria), Cantabria, Spain
| |
Collapse
|
4
|
Wurzbacher CE, Haufschild T, Hammer J, van Teeseling MCF, Kallscheuer N, Jogler C. Planctoellipticum variicoloris gen. nov., sp. nov., a novel member of the family Planctomycetaceae isolated from wastewater of the aeration lagoon of a sugar processing plant in Northern Germany. Sci Rep 2024; 14:5741. [PMID: 38459238 PMCID: PMC10923784 DOI: 10.1038/s41598-024-56373-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
In the present study, we characterise a strain isolated from the wastewater aeration lagoon of a sugar processing plant in Schleswig (Northern Germany) by Heinz Schlesner. As a pioneer in planctomycetal research, he isolated numerous strains belonging to the phylum Planctomycetota from aquatic habitats around the world. Phylogenetic analyses show that strain SH412T belongs to the family Planctomycetaceae and shares with 91.6% the highest 16S rRNA gene sequence similarity with Planctopirus limnophila DSM 3776T. Its genome has a length of 7.3 Mb and a G + C content of 63.6%. Optimal growth of strain SH412T occurs at pH 7.0-7.5 and 28 °C with its pigmentation depending on sunlight exposure. Strain SH412T reproduces by polar asymmetric division ("budding") and forms ovoid cells. The cell size determination was performed using a semi-automatic pipeline, which we first evaluated with the model species P. limnophila and then applied to strain SH412T. Furthermore, the data acquired during time-lapse analyses suggests a lifestyle switch from flagellated daughter cells to non-flagellated mother cells in the subsequent cycle. Based on our data, we suggest that strain SH412T represents a novel species within a novel genus, for which we propose the name Planctoellipticum variicoloris gen. nov., sp. nov., with strain SH412T (= CECT 30430T = STH00996T, the STH number refers to the Jena Microbial Resource Collection JMRC) as the type strain of the new species.
Collapse
Affiliation(s)
- Carmen E Wurzbacher
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Muriel C F van Teeseling
- Junior Research Group "Prokaryotic Cell Biology", Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
5
|
Kallscheuer N, Wurzbacher CE, Schmitz RA, Jogler C. In the footsteps of Heinz Schlesner and Peter Hirsch: Exploring the untapped diversity of the phylum Planctomycetota in isolates from the 1980s to the early 2000s. Syst Appl Microbiol 2024; 47:126486. [PMID: 38104493 DOI: 10.1016/j.syapm.2023.126486] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Recent sampling and strain isolation campaigns have accelerated research on the bacterial phylum Planctomycetota. The contribution of more than 100 novel isolates to the open collection of currently 123 described planctomycetal species in the last decade benefited greatly from pioneering work conducted in the second half of the last century. One of those pioneers was Heinz Schlesner, who investigated budding and prosthecate bacteria from habitats world-wide during his time at Christian-Albrechts-University Kiel. An outcome of his research was a strain collection with more than 500 isolates belonging to different bacterial phyla, many of which are uncharacterised members of the phylum Planctomycetota. Due to the lack of affordable genome sequencing techniques at the time of their isolation, most of them were characterised based on phenotypic features and DNA-DNA hybridisation experiments. After the retirement of Heinz Schlesner in 2002, the collection was stored for several years and transferred to Jena in 2019. To get a glimpse on the diversity of members from the phylum Planctomycetota in Schlesner's collection, we here summarised from his records and publications all available information about the collection regarding sampling habitat and phylogeny. Furthermore, we conducted an updated phylogenetic analysis for a representative excerpt of the collection based on the 16S rRNA gene sequence of 59 strains Schlesner deposited in the NCBI database during strain characterisation studies published in the 1980s until the early 2000s. The results support that strains from his collection are still a valuable contribution to expand the cultivated diversity of the understudied phylum Planctomycetota.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Carmen E Wurzbacher
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, Christian-Albrechts-University, Kiel, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
6
|
Chen C, Chen S, Wang B. A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Front Microbiol 2023; 14:1035944. [PMID: 37125200 PMCID: PMC10140447 DOI: 10.3389/fmicb.2023.1035944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose.
Collapse
Affiliation(s)
- Chuizhe Chen
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shu Chen
- Medical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Wang
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Bo Wang,
| |
Collapse
|
7
|
Anatilimnocola floriformis sp. nov., a novel member of the family Pirellulaceae from a boreal lake, and emended description of the genus Anatilimnocola. Antonie Van Leeuwenhoek 2022; 115:1253-1264. [DOI: 10.1007/s10482-022-01769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
8
|
Antiscalants Used in Seawater Desalination: Biodegradability and Effects on Microbial Diversity. Microorganisms 2022; 10:microorganisms10081580. [PMID: 36013998 PMCID: PMC9414044 DOI: 10.3390/microorganisms10081580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Antiscalants are organic polymers widely used for scale inhibition in seawater desalination. While they are susceptible to biodegradation, they provide nutrients for bacterial cell growth and energy for the microbes that assimilate and degrade them. This paper shows the biodegradability of three commercial antiscalants (polyacrylate—CA, polyphosphonate—PP, and carboxylated dendrimers—DN) applied in seawater reverse osmosis desalination (SWRO) as well as analyzing the antiscalant’s effects on microbial diversity using microbial cultures grown in seawater, under semi-continuous batch conditions. Nutritional uptake and contribution of the antiscalants to microbial growth were investigated by measuring DOC, TDN, NO3−, NO2−, PO4−, NH4+, and TP of the filtered samples of the incubated batch, twice a month, for twelve months. The microbial community was estimated by 16S rRNA sequencing. The main changes in the microbial communities were determined by the incubation period. However, bacterial orders of the antiscalant treatments differed significantly from the control treatment, namely Planctomycetales, Clostridiales, Sphingobacteriales, Rhodobacterales, and Flavobacteriales, and other unclassified bacterial orders, which were found in various relative abundances dependent on incubation times. The results showed the PP antiscalant to be the least biodegradable and to have the least effect on the bacterial community composition compared to the control. This result emphasizes the need to reassess the suitability criteria of antiscalants, and to further monitor their long-term environmental effects.
Collapse
|
9
|
Vitorino IR, Lobo-da-Cunha A, Vasconcelos V, Vicente F, Lage OM. Isolation, diversity and antimicrobial activity of planctomycetes from the Tejo river estuary (Portugal). FEMS Microbiol Ecol 2022; 98:6609431. [PMID: 35709427 DOI: 10.1093/femsec/fiac066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
The discovery of new bioactive compounds is an invaluable aid to the development of new drugs. Strategies for finding novel molecules can focus on the exploitation of less studied organisms and ecosystems such as planctomycetes and brackish habitats. The unique cell biology of the underexplored Planctomycetota mean it is of particular interest. In this study, we aimed to isolate planctomycetes from the estuary of the Tejo river (Portugal). To reach this goal, macroalgae, water and sediments were sampled and diverse media and isolation techniques applied. Sixty-nine planctomycetal strains were brought into pure culture. An analysis of the 16S rRNA genes found that the majority of the isolates were affiliated to the genus Rhodopirellula. Putative novel taxa belonging to genera Stieleria and Rhodopirellula were also isolated and characterized morphologically. Enterobacterial Repetitive Intergenic Consensus fingerprinting analyses showed higher diversity and different genotypes within close strains. Relevant biosynthetic gene clusters were found in most isolates and acetone extracts from representative strains exhibited mild antimicrobial activities against Escherichia coli and Staphylococcus aureus. Our work has not only enlarged the number and diversity of cultured planctomycetes but also shown the potential for the discovery of bioactive compounds from the novel taxa.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Alexandre Lobo-da-Cunha
- Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar, ICBAS, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n°, 4169-007 Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
10
|
Vitorino IR, Lage OM. The Planctomycetia: an overview of the currently largest class within the phylum Planctomycetes. Antonie van Leeuwenhoek 2022; 115:169-201. [PMID: 35037113 DOI: 10.1007/s10482-021-01699-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 01/21/2023]
Abstract
The phylum Planctomycetes comprises bacteria with uncommon features among prokaryotes, such as cell division by budding, absence of the bacterial tubulin-homolog cell division protein FtsZ and complex cell plans with invaginations of the cytoplasmic membrane. Although planctomycetes are ubiquitous, the number of described species and isolated strains available as axenic cultures is still low compared to the diversity observed in metagenomes or environmental studies. An increasing interest in planctomycetes is reflected by the recent description of a large number of new species and their increasing accessibility in terms of pure cultures. In this review, data from all taxonomically described species belonging to Planctomycetia, the class with the currently highest number of characterized members within the phylum Planctomycetes, is summarized. Phylogeny, morphology, physiology, ecology and genomic traits of its members are discussed. This comprehensive overview will help to acknowledge several aspects of the biology of these fascinating bacteria.
Collapse
Affiliation(s)
- Inês Rosado Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| |
Collapse
|
11
|
Pollution impact on microbial communities composition in natural and anthropogenically modified soils of Southern Russia. Microbiol Res 2021; 254:126913. [PMID: 34798540 DOI: 10.1016/j.micres.2021.126913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 01/24/2023]
Abstract
Metagenomic studies of soil microbocenoses are extremely relevant nowadays. The study of pollution impact on soil microbiomes is of particular interest. The structure of microbial communities in soils with different levels of pollution by polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) was studied. High bacterial biodiversity was found in all the studied soil samples, but its lowest values are found in soil samples taken on the territory of technogenically polluted Lake Atamanskoye. Assessment of soil pollution showed the highest content of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs) for the soils Lake Atamanskoye. The high content of pollutants negatively affects the abundance of representatives of the phyla Actinobacteria, Planctomycetes, Verrucomicrobia, and Nitrospirae. Such phyla as Proteobacteria, Candidate Divisions TM7, OD1, WPS-2, Chlamydiae, Cyanobacteria are characterized by positive direct correlation with the content of pollutants, especially with PAHs. A cooperative effect of decrease in the number of Actinobacteria and Proteobacteria with an increase in Armatimonadetes probably corresponds to PTEs contamination. The proportion of Candidate Division OD1, Chlamydiae, Cyanobacteria, and Candidate Division WPS-2 was increased in the soil microbiome under the influence of severe combined pollution. Pollutants negatively affect the abundance of dominant unclassified_o__Gaiellales and unclassified_o__WD2101 genera. Iamia, Salinibacterium, Arthrobacter, Kaistobacter, Thiobacillus genera are characterized by a low abundance, but they are presumably the most resistant to soil pollution. It was revealed that the level of soil pollution largely determines the composition and diversity of bacterial communities in the soils of the studied territories. Operating taxonomic units have been established that have prognostic value for assessing the state, level of soil pollution, and their biological safety.
Collapse
|
12
|
Comparison of Gut Microbiota between Gentoo and Adélie Penguins Breeding Sympatrically on Antarctic Ardley Island as Revealed by Fecal DNA Sequencing. DIVERSITY 2021. [DOI: 10.3390/d13100500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are two pygoscelid penguins, the Gentoo (Pygoscelis papua Forster, 1781) and Adélie (P. adeliae Hombron and Jacquinot, 1841) penguins, breeding sympatrically on Ardley Island, Fildes Peninsula region, South Shetlands, Antarctica. Whether the two closely related penguin species with similar dietary habits possess compositional similarity in gut microbiota remains unknown. DNA barcoding of feces is an emerging approach for gut microbiota analysis of protected animals. In the present study, the 16S rRNA gene from penguin feces was sequenced using the Illumina MiSeq platform to investigate the gut microbiota of the two pygoscelid penguin species. The fecal community of Gentoo penguins has higher diversity indices and OTU (operational taxonomic unit) richness compared to Adélie penguins. Besides unclassified bacteria, sequences fell into 22 major lineages of the domain Bacteria: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chlamydiae, Chloroflexi, Cloacimonetes, Cyanobacteria, Deinococcus-Thermus, Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Ignavibacteriae, Planctomycetes, Proteobacteria, Tenericutes, Verrucomicrobia, and candidate divisions BRC1, SR1, WPS-2, and Saccharibacteria. Among these, Firmicutes (37.7%), Proteobacteria (23.1%, mainly Gamma- and Betaproteobacteria), Fusobacteria (14.3%), Bacteroidetes (7.9%), and Actinobacteria (6.6%) were dominant in the fecal microbiota of the two penguin species. At the same time, significantly higher abundances of Actinobacteria and Cyanobacteria were detected in Gentoo penguins than in Adélie penguins (p < 0.05). Overall, there was a clear difference in the composition of gut microbiota between the Adélie and Gentoo penguins. The results suggested that both the phylogeny of penguin species and the diet could be responsible for the differences in the gut microbiota of the two pygoscelid penguins breeding in the same area.
Collapse
|
13
|
Vitorino I, Santos JDN, Godinho O, Vicente F, Vasconcelos V, Lage OM. Novel and Conventional Isolation Techniques to Obtain Planctomycetes from Marine Environments. Microorganisms 2021; 9:2078. [PMID: 34683399 PMCID: PMC8541047 DOI: 10.3390/microorganisms9102078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria from the distinctive Planctomycetes phylum are well spread around the globe; they are capable of colonizing many habitats, including marine, freshwater, terrestrial, and even extreme habitats such as hydrothermal vents and hot springs. They can also be found living in association with other organisms, such as macroalgae, plants, and invertebrates. While ubiquitous, only a small fraction of the known diversity includes axenic cultures. In this study, we aimed to apply conventional techniques to isolate, in diverse culture media, planctomycetes from two beaches of the Portuguese north-coast by using sediments, red, green, and brown macroalgae, the shell of the mussel Mytilus edulis, an anemone belonging to the species Actinia equina, and seawater as sources. With this approach, thirty-seven isolates closely related to seven species from the families Planctomycetaceae and Pirellulaceae (class Planctomycetia) were brought into pure culture. Moreover, we applied an iChip inspired in-situ culturing technique to successfully retrieve planctomycetes from marine sediments, which resulted in the isolation of three additional strains, two affiliated to the species Novipirellula caenicola and one to a putative novel Rubinisphaera. This work enlarges the number of isolated planctomycetal strains and shows the adequacy of a novel methodology for planctomycetes isolation.
Collapse
Affiliation(s)
- Inês Vitorino
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - José Diogo Neves Santos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Ofélia Godinho
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain;
| | - Vítor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| | - Olga Maria Lage
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (J.D.N.S.); (O.G.); (V.V.); (O.M.L.)
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
14
|
Bali R, Pineault J, Chagnon PL, Hijri M. Fresh Compost Tea Application Does Not Change Rhizosphere Soil Bacterial Community Structure, and Has No Effects on Soybean Growth or Yield. PLANTS (BASEL, SWITZERLAND) 2021; 10:1638. [PMID: 34451683 PMCID: PMC8399032 DOI: 10.3390/plants10081638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023]
Abstract
Soil bacteria drive key ecosystem functions, including nutrient mobilization, soil aggregation and crop bioprotection against pathogens. Bacterial diversity is thus considered a key component of soil health. Conventional agriculture reduces bacterial diversity in many ways. Compost tea has been suggested as a bioinoculant that may restore bacterial community diversity and promote crop performance under conventional agriculture. Here, we conducted a field experiment to test this hypothesis in a soybean-maize rotation. Compost tea application had no influence on bacterial diversity or community structure. Plant growth and yield were also unresponsive to compost tea application. Combined, our results suggest that our compost tea bacteria did not thrive in the soil, and that the positive impacts of compost tea applications reported elsewhere may be caused by different microbial groups (e.g., fungi, protists and nematodes) or by abiotic effects on soil (e.g., contribution of nutrients and dissolved organic matter). Further investigations are needed to elucidate the mechanisms through which compost tea influences crop performance.
Collapse
Affiliation(s)
- Rana Bali
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada;
| | - Jonathan Pineault
- Écomestible Inc., 470 Rue Constable, McMasterVille, QC J3G 1N6, Canada;
| | - Pierre-Luc Chagnon
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada;
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV), Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2, Canada;
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| |
Collapse
|
15
|
Competitive Exclusion and Metabolic Dependency among Microorganisms Structure the Cellulose Economy of an Agricultural Soil. mBio 2021; 12:mBio.03099-20. [PMID: 33402535 PMCID: PMC8545098 DOI: 10.1128/mbio.03099-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms that degrade cellulose utilize extracellular reactions that yield free by-products which can promote interactions with noncellulolytic organisms. We hypothesized that these interactions determine the ecological and physiological traits governing the fate of cellulosic carbon (C) in soil. We performed comparative genomics with genome bins from a shotgun metagenomic-stable isotope probing experiment to characterize the attributes of cellulolytic and noncellulolytic taxa accessing 13C from cellulose. We hypothesized that cellulolytic taxa would exhibit competitive traits that limit access, while noncellulolytic taxa would display greater metabolic dependency, such as signatures of adaptive gene loss. We tested our hypotheses by evaluating genomic traits indicative of competitive exclusion or metabolic dependency, such as antibiotic production, growth rate, surface attachment, biomass degrading potential, and auxotrophy. The most 13C-enriched taxa were cellulolytic Cellvibrio (Gammaproteobacteria) and Chaetomium (Ascomycota), which exhibited a strategy of self-sufficiency (prototrophy), rapid growth, and competitive exclusion via antibiotic production. Auxotrophy was more prevalent in cellulolytic Actinobacteria than in cellulolytic Proteobacteria, demonstrating differences in dependency among cellulose degraders. Noncellulolytic taxa that accessed 13C from cellulose (Planctomycetales, Verrucomicrobia, and Vampirovibrionales) were also more dependent, as indicated by patterns of auxotrophy and 13C labeling (i.e., partial labeling or labeling at later stages). Major 13C-labeled cellulolytic microbes (e.g., Sorangium, Actinomycetales, Rhizobiales, and Caulobacteraceae) possessed adaptations for surface colonization (e.g., gliding motility, hyphae, attachment structures) signifying the importance of surface ecology in decomposing particulate organic matter. Our results demonstrated that access to cellulosic C was accompanied by ecological trade-offs characterized by differing degrees of metabolic dependency and competitive exclusion.
Collapse
|
16
|
Exploring microbial consortia from various environments for plastic degradation. Methods Enzymol 2020; 648:47-69. [PMID: 33579417 DOI: 10.1016/bs.mie.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many complex natural and synthetic compounds are degraded by microbial assemblages rather than single strains, due to usually limited metabolic capacities of single organisms. It can therefore be assumed that plastics can be more efficiently degraded by microbial consortia, although this field has not been as widely explored as plastic degradation by individual strains. In this chapter, we present some of the current studies on this topic and methods to enrich and cultivate plastic-degrading microbial consortia from aquatic and terrestrial ecosystems, including substrate preparation and biodegradation assessment. We focus on both conventional and biodegradable plastics as potential growth substrates. Cultivation methods for both aerobic and anaerobic microorganisms are presented.
Collapse
|
17
|
Dedysh SN, Beletsky AV, Ivanova AA, Kulichevskaya IS, Suzina NE, Philippov DA, Rakitin AL, Mardanov AV, Ravin NV. Wide distribution of Phycisphaera-like planctomycetes from WD2101 soil group in peatlands and genome analysis of the first cultivated representative. Environ Microbiol 2020; 23:1510-1526. [PMID: 33325093 DOI: 10.1111/1462-2920.15360] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022]
Abstract
Phycisphaera-like WD2101 'soil group' is one of the as-yet-uncultivated phylogenetic clades within the phylum Planctomycetes. Members of this clade are commonly detected in various terrestrial habitats. This study shows that WD2101 represented one of the major planctomycete groups in 10 boreal peatlands, comprising up to 76% and 36% of all Planctomycetes-affiliated 16S rRNA gene reads in raised bogs and eutrophic fens respectively. These types of peatlands displayed clearly distinct intra-group diversity of WD2101-affiliated planctomycetes. The first isolate of this enigmatic planctomycete group, strain M1803, was obtained from a humic lake surrounded by Sphagnum peat bogs. Strain M1803 displayed 89.2% 16S rRNA gene similarity to Tepidisphaera mucosa and was represented by motile cocci that divided by binary fission and grew under micro-oxic conditions. The complete 7.19 Mb genome of strain M1803 contained an array of genes encoding Planctomycetal type bacterial microcompartment organelle likely involved in l-rhamnose metabolism, suggesting participation of M1803-like planctomycetes in polysaccharide degradation in peatlands. The corresponding cellular microcompartments were revealed in ultrathin cell sections. Strain M1803 was classified as a novel genus and species, Humisphaera borealis gen. nov., sp. nov., affiliated with the formerly recognized WD2101 'soil group'.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Anastasia A Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina S Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Natalia E Suzina
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitriy A Philippov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Andrey L Rakitin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as Host-Associated Bacteria: A Perspective That Holds Promise for Their Future Isolations, by Mimicking Their Native Environmental Niches in Clinical Microbiology Laboratories. Front Cell Infect Microbiol 2020; 10:519301. [PMID: 33330115 PMCID: PMC7734314 DOI: 10.3389/fcimb.2020.519301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 01/22/2023] Open
Abstract
Traditionally recognized as environmental bacteria, Planctomycetes have just been linked recently to human pathology as opportunistic pathogens, arousing a great interest for clinical microbiologists. However, the lack of appropriate culture media limits our future investigations as no Planctomycetes have ever been isolated from patients' specimens despite several attempts. Several Planctomycetes have no cultivable members and are only recognized by 16S rRNA gene sequence detection and analysis. The cultured representatives are slow-growing fastidious bacteria and mostly difficult to culture on synthetic media. Accordingly, the provision of environmental and nutritional conditions like those existing in the natural habitat where yet uncultured/refractory bacteria can be detected might be an option for their potential isolation. Hence, we systematically reviewed the various natural habitats of Planctomycetes, to review their nutritional requirements, the physicochemical characteristics of their natural ecological niches, current methods of cultivation of the Planctomycetes and gaps, from a perspective of collecting data in order to optimize conditions and the protocols of cultivation of these fastidious bacteria. Planctomycetes are widespread in freshwater, seawater, and terrestrial environments, essentially associated to particles or organisms like macroalgae, marine sponges, and lichens, depending on the species and metabolizable polysaccharides by their sulfatases. Most Planctomycetes grow in nutrient-poor oligotrophic environments with pH ranging from 3.4 to 11, but a few strains can also grow in quite nutrient rich media like M600/M14. Also, a seasonality variation of abundance is observed, and bloom occurs in summer-early autumn, correlating with the strong growth of algae in the marine environments. Most Planctomycetes are mesophilic, but with a few Planctomycetes being thermophilic (50°C to 60°C). Commonly added nutrients are N-acetyl-glucosamine, yeast-extracts, peptone, and some oligo and macro-elements. A biphasic host-associated extract (macroalgae, sponge extract) conjugated with a diluted basal medium should provide favorable results for the success of isolation in pure culture.
Collapse
Affiliation(s)
- Odilon D. Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
19
|
Mahajan M, Seeger C, Yee B, Andersson SGE. Evolutionary Remodeling of the Cell Envelope in Bacteria of the Planctomycetes Phylum. Genome Biol Evol 2020; 12:1528-1548. [PMID: 32761170 DOI: 10.1093/gbe/evaa159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 01/09/2023] Open
Abstract
Bacteria of the Planctomycetes phylum have many unique cellular features, such as extensive membrane invaginations and the ability to import macromolecules. These features raise intriguing questions about the composition of their cell envelopes. In this study, we have used microscopy, phylogenomics, and proteomics to examine the composition and evolution of cell envelope proteins in Tuwongella immobilis and other members of the Planctomycetes. Cryo-electron tomography data indicated a distance of 45 nm between the inner and outer membranes in T. immobilis. Consistent with the wide periplasmic space, our bioinformatics studies showed that the periplasmic segments of outer-membrane proteins in type II secretion systems are extended in bacteria of the order Planctomycetales. Homologs of two highly abundant cysteine-rich cell wall proteins in T. immobilis were identified in all members of the Planctomycetales, whereas genes for peptidoglycan biosynthesis and cell elongation have been lost in many members of this bacterial group. The cell wall proteins contain multiple copies of the YTV motif, which is the only domain that is conserved and unique to the Planctomycetales. Earlier diverging taxa in the Planctomycetes phylum contain genes for peptidoglycan biosynthesis but no homologs to the YTV cell wall proteins. The major remodeling of the cell envelope in the ancestor of the Planctomycetales coincided with the emergence of budding and other unique cellular phenotypes. The results have implications for hypotheses about the process whereby complex cellular features evolve in bacteria.
Collapse
Affiliation(s)
- Mayank Mahajan
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Christian Seeger
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Benjamin Yee
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Sweden
| |
Collapse
|
20
|
de Souza Valente C, Rodiles A, Freire Marques MR, Merrifield DL. White spot syndrome virus (WSSV) disturbs the intestinal microbiota of shrimp (Penaeus vannamei) reared in biofloc and clear seawater. Appl Microbiol Biotechnol 2020; 104:8007-8023. [PMID: 32789745 DOI: 10.1007/s00253-020-10816-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 01/18/2023]
Abstract
White spot syndrome virus (WSSV) is one of the most virulent pathogens afflicting shrimp farming. Understanding its influence on shrimp intestinal microbiota is paramount for the advancement of aquaculture, since gut dysbiosis can negatively impact shrimp development, physiology, and immunological response. Thereupon, the data presented herein assesses the influence of WSSV infection and different rearing systems on the intestinal microbiota of Penaeus vannamei. Our study aimed to describe and correlate the composition of shrimp (Penaeus vannamei) gut microbiota, when reared in biofloc and clear seawater, before and (48 h) after WSSV experimental infection. Shrimp were kept in two different systems (biofloc and clear seawater) and experimentally infected with WSSV. Intestine and water samples were characterized by 16S rRNA gene sequencing, before and after viral infection. We observed (i) WSSV induced higher mortality among shrimp reared in biofloc; (ii) WSSV led to a loss of intestinal microbiota heterogeneity, at the genus level, in shrimp kept in clear seawater; (iii) there was a prevalence of Cetobacterium and Bacillus in the intestine of shrimp from both systems; (iv) WSSV did not cause significant changes in intestinal microbiota diversity or richness; (v) regardless of the type of system and time of infection, intestinal microbiota was dissimilar to that of the surrounding water, despite being influenced by the type of system. Therefore, WSSV infection leads to punctual dysbiotic changes in shrimp microbiota, although the virus is sufficiently virulent to cause high mortalities even in well-managed systems, such as a balanced experimental biofloc system. KEY POINTS: • WSSV infection leads to a perturbed gut microbiota in shrimp. • WSSV infection greater impacts microbiota of shrimp reared in CSW than those in BFT. • WSSV infection caused higher mortality levels in shrimp reared in BFT than in CSW. • Rearing system influences shrimp gut microbiota composition. Graphical abstract.
Collapse
Affiliation(s)
- Cecília de Souza Valente
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | - Ana Rodiles
- School of Biological & Marine Sciences, Faculty of Science & Engineering, University of Plymouth, Plymouth, UK.,Lallemand Animal Nutrition, Lallemand SAS, 31702, Blagnac, France
| | - Maria Risoleta Freire Marques
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Daniel Lee Merrifield
- School of Biological & Marine Sciences, Faculty of Science & Engineering, University of Plymouth, Plymouth, UK
| |
Collapse
|
21
|
Planctomycetes as a Vital Constituent of the Microbial Communities Inhabiting Different Layers of the Meromictic Lake Sælenvannet (Norway). Microorganisms 2020; 8:microorganisms8081150. [PMID: 32751313 PMCID: PMC7464441 DOI: 10.3390/microorganisms8081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/17/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
Meromictic lakes are permanently stratified lakes that display steep gradients in salinity, oxygen and sulphur compounds tightly linked to bacterial community structure and diversity. Lake Sælenvannet is a meromictic lake located south of Bergen, Norway. The 26 m deep lake is connected to the open sea and permanently stratified into two layers separated by a chemocline. The upper water layer is brackish with major input from water runoff from the surroundings. The bottom layer consists of old saline water with low or no oxygen concentrations. Bacteria from phylum Planctomycetes are reported to be ubiquitous in lake environments. They are involved in the degradation of complex carbon sources in aquatic environments and are also linked to anaerobic processes such as fermentation and sulphur reduction. To study Planctomycete distribution along a chemical gradient, we sampled the water column throughout Lake Sælenvannet in 2012 and profiled the microbial community using 16S rRNA amplicon sequencing (metabarcoding) with 454 pyrosequencing. Planctomycetes related 16S rRNA gene sequences were found to be present both in the oxic and anoxic parts of the lake and showed an uneven distribution throughout the water column, with the highest relative abundance of 10% found in the saline anoxic layer at 15 m depth. In a follow-up study in 2014, samples from eight different depths were collected for enrichment and isolation of novel Planctomycetes. This study resulted in successful isolation in pure culture of 10 isolates affiliated to four different genera from the family Planctomycetaceae. One strain closely related to Blastopirellula cremea was isolated from 9 m depth, and two novel strains affiliated to the genera Stieleria and Gimesia were isolated at 7 and 9 m depths, respectively. Furthermore, seven isolates with identical 16S rRNA gene sequences were retrieved from seven different depths which varied greatly in salinity and chemical composition. These isolates likely represent a new species affiliated to Rubinisphaera. The adaptation of this novel Planctomycete to water depths spanning the entire chemical gradient could indicate a high phenotypic plasticity and/or a very efficient survival strategy. Overall, our results show the presence of a diverse group of Planctomycetes in Lake Sælenvannet, with a strong potential for novel adaptations to chemical stress factors.
Collapse
|
22
|
Zhao Y, Bu C, Yang H, Qiao Z, Ding S, Ni SQ. Survey of dissimilatory nitrate reduction to ammonium microbial community at national wetland of Shanghai, China. CHEMOSPHERE 2020; 250:126195. [PMID: 32092567 DOI: 10.1016/j.chemosphere.2020.126195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Dissimilatory nitrate reduction to ammonia (DNRA) process is an important nitrate reduction pathway in the environment. Numerous studies focused on the DNRA, especially in various natural habitats. However, little is known about the envrionmental parameters driving the DNRA process in anthropogenic ecosystem. Human activities put forward significant influence on nitrogen cycle and bacterial communities of sediment. This study aimed to assess the DNRA potential rates, nrfA gene abundance, DNRA bacterial community's diversity and influencing factors in a national wetland park near the Yangtze River estuary, Shanghai. The results of 15N isotope tracer experiments showed that DNRA potential rates from 0.13 to 0.44 μmol N/kg/h and contribution of nitrate reduction varied from 1.56% to 7.47%. The quantitative real-time PCR results showed that DNRA functional gene nrfA abundances ranged from 9.87E+10 to 1.98E+11 copies/g dry weight. The results of nrfA gene pyrosequencing analysis showed that Lacunisphaera (10.4-13.4%), Sorangium (7.1-10.7%), Aeromonas (4.2-6.8%), Corallococcus (1.8-6.9%), and Geobacter (3.3-6.6%) showed higher relative abundances in their genus levels. Combined with environmental parameters of sediments, redundancy analysis indicated that the nrfA functional gene was positively correlated with moisture content, the concentration of NO2--N and NO3-N; the DNRA rates was positively correlated with sediment organic carbon (SOC), C/NO3- ratio and salinity (ranked by explains %). This study is the first simultaneous determination of nitrate reduction pathways including denitrification, anammox and DNRA rates to assess the role of DNRA in a national wetland park and revealed the community abundance, diversity of DNRA bacteria and its relationship with environmental factors.
Collapse
Affiliation(s)
- Yiyi Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China; State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China
| | - Cuina Bu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | | | - Zhuangming Qiao
- Shandong Meiquan Environmental Protection Technology Co., Ltd., Jinan, China
| | - Shaowu Ding
- Shandong Wanhao Fertilizer Co., Ltd., Jinan, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China; State Key Laboratory of Estuarine and Coastal Research, Shanghai, 200241, China; State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China.
| |
Collapse
|
23
|
Kivistik C, Knobloch J, Käiro K, Tammert H, Kisand V, Hildebrandt JP, Herlemann DPR. Impact of Salinity on the Gastrointestinal Bacterial Community of Theodoxus fluviatilis. Front Microbiol 2020; 11:683. [PMID: 32457702 PMCID: PMC7225522 DOI: 10.3389/fmicb.2020.00683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Differences in salinity are boundaries that act as barriers for the dispersal of most aquatic organisms. This creates distinctive biota in freshwater and brackish water (mesohaline) environments. To test how saline boundaries influence the diversity and composition of host-associated microbiota, we analyzed the microbiome within the digestive tract of Theodoxus fluviatilis, an organism able to cross the freshwater and mesohaline boundary. Alpha-diversity measures of the microbiome in freshwater and brackish water were not significantly different. However, the composition of the bacterial community within freshwater T. fluviatilis differed significantly compared with mesohaline T. fluviatilis and typical bacteria could be determined for the freshwater and the mesohaline digestive tract microbiome. An artificial increase in salinity surrounding these freshwater snails resulted in a strong change in the bacterial community and typical marine bacteria became more pronounced in the digestive tract microbiome of freshwater T. fluviatilis. However, the composition of the digestive tract microbiome in freshwater snails did not converge to that found within mesohaline snails. Within mesohaline snails, no cardinal change was found after either an increase or decrease in salinity. In all samples, Pseudomonas, Pirellula, Flavobacterium, Limnohabitans, and Acinetobacter were among the most abundant bacteria. These bacterial genera were largely unaffected by changes in environmental conditions. As permanent residents in T. fluviatilis, they may support the digestion of the algal food in the digestive tract. Our results show that freshwater and mesohaline water host-associated microbiomes respond differently to changes in salinity. Therefore, the salinization of coastal freshwater environments due to a rise in sea level can influence the gut microbiome and its functions with currently unknown consequences for, e.g., nutritional physiology of the host.
Collapse
Affiliation(s)
- Carmen Kivistik
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Jan Knobloch
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Kairi Käiro
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Helen Tammert
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
| | - Veljo Kisand
- Centre for Limnology, Estonian University of Life Sciences, Tartu, Estonia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | |
Collapse
|
24
|
Dedysh SN, Ivanova AA. Planctomycetes in boreal and subarctic wetlands: diversity patterns and potential ecological functions. FEMS Microbiol Ecol 2019; 95:5195516. [PMID: 30476049 DOI: 10.1093/femsec/fiy227] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022] Open
Abstract
Members of the phylum Planctomycetes are common inhabitants of boreal Sphagnum peat bogs and lichen-dominated tundra wetlands. These bacteria colonize both oxic and anoxic peat layers and reach the population size of 107 cells per gram of wet peat. The 16S rRNA gene sequences from planctomycetes comprise 5%-22% of total 16S rRNA gene reads retrieved from peat samples. Most abundant peat-inhabiting planctomycetes affiliate with the families Isosphaeraceae and Gemmataceae, and with as-yet-uncultured Phycisphaera-related group WD2101. The use of metatranscriptomics to assess the functional role of planctomycetes in peatlands suggested the presence of versatile hydrolytic capabilities in these bacteria. This evidence was further confirmed by the analysis of genome-encoded capabilities of isolates from wetlands. Large (up to 12 Mbp) genomes of planctomycetes encode wide repertoires of carbohydrate-active enzymes including many unclassified putative glycoside hydrolases, which suggests the presence of extremely high glycolytic potential in these bacteria. Experimental tests confirmed their ability to grow on xylan, pectin, starch, lichenan, cellulose, chitin and polysaccharides of microbial origin. These results provide an insight into the ecological roles of peat-inhabiting planctomycetes and suggest their participation in degradation of plant-derived polymers, exoskeletons of peat-inhabiting arthropods as well as exopolysaccharides produced by other bacteria.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Leninsky prospect 33-2, Russia
| | - Anastasia A Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Leninsky prospect 33-2, Russia
| |
Collapse
|
25
|
Dedysh SN, Kulichevskaya IS, Beletsky AV, Ivanova AA, Rijpstra WIC, Damsté JSS, Mardanov AV, Ravin NV. Lacipirellula parvula gen. nov., sp. nov., representing a lineage of planctomycetes widespread in low-oxygen habitats, description of the family Lacipirellulaceae fam. nov. and proposal of the orders Pirellulales ord. nov., Gemmatales ord. nov. and Isosphaerales ord. nov. Syst Appl Microbiol 2019; 43:126050. [PMID: 31882205 PMCID: PMC6995999 DOI: 10.1016/j.syapm.2019.126050] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/07/2022]
Abstract
Pirellula-like planctomycetes are ubiquitous aquatic bacteria, which are often detected in anoxic or micro-oxic habitats. By contrast, the taxonomically described representatives of these bacteria, with very few exceptions, are strict aerobes. Here, we report the isolation and characterization of the facultatively anaerobic planctomycete, strain PX69T, which was isolated from a boreal lake. Its 16S rRNA gene sequence is affiliated with the Pirellula-related Pir4 clade, which is dominated by environmental sequences retrieved from a variety of low-oxygen habitats. Strain PX69T was represented by ellipsoidal cells that multiplied by budding and grew on sugars, some polysaccharides and glycerol. Anaerobic growth occurred by means of fermentation. Strain PX69T grew at pH 5.5–7.5 and at temperatures between 10 and 30 °C. The major fatty acids were C18:1ω9c, C16:0 and C16:1ω7c; the major intact polar lipid was dimethylphosphatidylethanolamine. The complete genome of strain PX69T was 6.92 Mb in size; DNA G + C content was 61.7 mol%. Among characterized planctomycetes, the highest 16S rRNA gene similarity (90.4%) was observed with ‘Bythopirellula goksoyri’ Pr1d, a planctomycete from deep-sea sediments. We propose to classify PX69T as a novel genus and species, Lacipirellula parvula gen. nov., sp. nov.; the type strain is strain PX69T (=KCTC 72398T = CECT 9826T = VKM B-3335T). This genus is placed in a novel family, Lacipirellulaceae fam. nov., which belongs to the order Pirellulales ord. nov. Based on the results of comparative genome analysis, we also suggest establishment of the orders Gemmatales ord. nov. and Isosphaerales ord. nov. as well as an emendation of the order Planctomycetales.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Irina S Kulichevskaya
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anastasia A Ivanova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - W Irene C Rijpstra
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands
| | - Jaap S Sinninghe Damsté
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, 1790 AB Den Burg, The Netherlands; Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Geochemistry, Utrecht, The Netherlands
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
26
|
Mahajan M, Yee B, Hägglund E, Guy L, Fuerst JA, Andersson SGE. Paralogization and New Protein Architectures in Planctomycetes Bacteria with Complex Cell Structures. Mol Biol Evol 2019; 37:1020-1040. [DOI: 10.1093/molbev/msz287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Bacteria of the phylum Planctomycetes have a unique cell plan with an elaborate intracellular membrane system, thereby resembling eukaryotic cells. The origin and evolution of these remarkable features is debated. To study the evolutionary genomics of bacteria with complex cell architectures, we have resequenced the 9.2-Mb genome of the model organism Gemmata obscuriglobus and sequenced the 10-Mb genome of G. massiliana Soil9, the 7.9-Mb genome of CJuql4, and the 6.7-Mb genome of Tuwongella immobilis, all of which belong to the family Gemmataceae. A gene flux analysis of the Planctomycetes revealed a massive emergence of novel protein families at multiple nodes within the Gemmataceae. The expanded protein families have unique multidomain architectures composed of domains that are characteristic of prokaryotes, such as the sigma factor domain of extracytoplasmic sigma factors, and domains that have proliferated in eukaryotes, such as the WD40, leucine-rich repeat, tetratricopeptide repeat and Ser/Thr kinase domains. Proteins with identifiable domains in the Gemmataceae have longer lengths and linkers than proteins in most other bacteria, and the analyses suggest that these traits were ancestrally present in the Planctomycetales. A broad comparison of protein length distribution profiles revealed an overlap between the longest proteins in prokaryotes and the shortest proteins in eukaryotes. We conclude that the many similarities between proteins in the Planctomycetales and the eukaryotes are due to convergent evolution and that there is no strict boundary between prokaryotes and eukaryotes with regard to features such as gene paralogy, protein length, and protein domain composition patterns.
Collapse
Affiliation(s)
- Mayank Mahajan
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Benjamin Yee
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Emil Hägglund
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Lionel Guy
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Siv G E Andersson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
27
|
Wiegand S, Jogler M, Boedeker C, Pinto D, Vollmers J, Rivas-Marín E, Kohn T, Peeters SH, Heuer A, Rast P, Oberbeckmann S, Bunk B, Jeske O, Meyerdierks A, Storesund JE, Kallscheuer N, Lücker S, Lage OM, Pohl T, Merkel BJ, Hornburger P, Müller RW, Brümmer F, Labrenz M, Spormann AM, Op den Camp HJM, Overmann J, Amann R, Jetten MSM, Mascher T, Medema MH, Devos DP, Kaster AK, Øvreås L, Rohde M, Galperin MY, Jogler C. Cultivation and functional characterization of 79 planctomycetes uncovers their unique biology. Nat Microbiol 2019; 5:126-140. [PMID: 31740763 DOI: 10.1038/s41564-019-0588-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
When it comes to the discovery and analysis of yet uncharted bacterial traits, pure cultures are essential as only these allow detailed morphological and physiological characterization as well as genetic manipulation. However, microbiologists are struggling to isolate and maintain the majority of bacterial strains, as mimicking their native environmental niches adequately can be a challenging task. Here, we report the diversity-driven cultivation, characterization and genome sequencing of 79 bacterial strains from all major taxonomic clades of the conspicuous bacterial phylum Planctomycetes. The samples were derived from different aquatic environments but close relatives could be isolated from geographically distinct regions and structurally diverse habitats, implying that 'everything is everywhere'. With the discovery of lateral budding in 'Kolteria novifilia' and the capability of the members of the Saltatorellus clade to divide by binary fission as well as budding, we identified previously unknown modes of bacterial cell division. Alongside unobserved aspects of cell signalling and small-molecule production, our findings demonstrate that exploration beyond the well-established model organisms has the potential to increase our knowledge of bacterial diversity. We illustrate how 'microbial dark matter' can be accessed by cultivation techniques, expanding the organismic background for small-molecule research and drug-target detection.
Collapse
Affiliation(s)
| | | | | | | | - John Vollmers
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Elena Rivas-Marín
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Timo Kohn
- Radboud University, Nijmegen, The Netherlands
| | | | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | - Sonja Oberbeckmann
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Olga Jeske
- Leibniz Institute DSMZ, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | - Matthias Labrenz
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Rostock, Germany
| | | | | | | | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | | | | | | | | | - Christian Jogler
- Radboud University, Nijmegen, The Netherlands. .,Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
28
|
Dedysh SN, Henke P, Ivanova AA, Kulichevskaya IS, Philippov DA, Meier‐Kolthoff JP, Göker M, Huang S, Overmann J. 100‐year‐old enigma solved: identification, genomic characterization and biogeography of the yet uncultured
Planctomyces bekefii. Environ Microbiol 2019; 22:198-211. [DOI: 10.1111/1462-2920.14838] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Svetlana N. Dedysh
- Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Petra Henke
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
| | - Anastasia A. Ivanova
- Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Irina S. Kulichevskaya
- Winogradsky Institute of MicrobiologyResearch Center of Biotechnology of the Russian Academy of Sciences Moscow 119071 Russia
| | - Dmitriy A. Philippov
- Papanin Institute for Biology of Inland WatersRussian Academy of Sciences Borok 152742 Russia
| | - Jan P. Meier‐Kolthoff
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
| | - Markus Göker
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
| | - Sixing Huang
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
| | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz Institute DSMZ‐GermanCollection of Microorganisms and Cell Cultures Braunschweig Germany
- Braunschweig University of Technology Braunschweig Germany
| |
Collapse
|
29
|
Kaboré OD, Aghnatios R, Godreuil S, Drancourt M. Escherichia coli Culture Filtrate Enhances the Growth of Gemmata spp. Front Microbiol 2019; 10:2552. [PMID: 31781064 PMCID: PMC6851166 DOI: 10.3389/fmicb.2019.02552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/22/2019] [Indexed: 12/05/2022] Open
Abstract
Background Planctomycetes bacteria are known to be difficult to isolate, we hypothesized this may be due to missing iron compounds known to be important for other bacteria. We tested the growth-enhancement effect of complementing two standard media with Escherichia coli culture filtrate on two cultured strains of Gemmata spp. Also, the acquisition of iron by Gemmata spp. was evaluated by measuring various molecules involved in iron metabolism. Materials and Methods Gemmata obscuriglobus and Gemmata massiliana were cultured in Caulobacter and Staley’s medium supplemented or not with E. coli culture filtrate, likely containing siderophores and extracellular ferrireductases. We performed iron metabolism studies with FeSO4, FeCl3 and deferoxamine in the cultures with the E. coli filtrate and the controls. Results and Discussion The numbers of G. obscuriglobus and G. massiliana colonies on Caulobacter medium or Staley’s medium supplemented with E. coli culture filtrate were significantly higher than those on the standard medium (p < 0.0001). Agar plate assays revealed that the Gemmata colonies near E. coli colonies were larger than the more distant colonies, suggesting the diffusion of unknown growth promoting molecules. The inclusion of 10–4 to 10–3 M FeSO4 resulted in rapid Gemmata spp. growth (4–5 days compared with 8–9 days for the controls), suggesting that both species can utilize FeSO4 to boost their growth. In contrast, deferoxamine slowed down and prevented Gemmata spp. growth. Further studies revealed that the complementation of Caulobacter medium with E. coli culture filtrate and 10–4 M FeSO4 exerted a significant growth-enhancement effect compared with that obtained with Caulobacter medium supplemented with E. coli culture filtrate alone (p < 0.0122). Moreover, the intracellular iron concentrations in G. obscuriglobus and G. massiliana cultures in iron-depleted broth supplemented with the E. coli filtrate were 0.63 ± 0.16 and 0.78 ± 0.12 μmol/L, respectively, whereas concentrations of 1.72 ± 0.13 and 1.56± 0.11 μmol/L were found in the G. obscuriglobus and G. massiliana cultures grown in broth supplemented with the E. coli filtrate and FeSO4. The data reported here indicated that both E. coli culture filtrate and FeSO4 act as growth factors for Gemmata spp. via a potentiation mechanism.
Collapse
Affiliation(s)
- Odilon D Kaboré
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rita Aghnatios
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Département de Bactériologie-Virologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Michel Drancourt
- Aix-Marseille Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
30
|
Kaboré OD, Godreuil S, Drancourt M. Improved culture of fastidious Gemmata spp. bacteria using marine sponge skeletons. Sci Rep 2019; 9:11707. [PMID: 31406238 PMCID: PMC6690866 DOI: 10.1038/s41598-019-48293-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/02/2019] [Indexed: 02/02/2023] Open
Abstract
Gemmata are Planctomycetes bacteria recalcitrant to traditional cultivation in the clinical microbiology laboratory and they have been seldom documented in patients. Based on previously known relationships of Planctomycetes with marine sponges, we designed a new culture medium A incorporating marine sponge skeleton of Spongia sp. to the standard culture medium; and culture medium B incorporating Spongia sp. skeleton heat aqueous filtrate into medium A; and inoculating the three culture media (standard, A and B) with Gemmata obscuriglobus DSM 5831T and Gemmata massiliana DSM 26013T in the presence of negative controls. Cultures were observed by naked eyes for 7 days and bacterial growth was quantified by microscopic observations and culture-based enumerations. Macroscopic observations at day-3 revealed a pink bacterial pellet in medium B tubes while standard medium tubes remained limpid until day-8. Growing Gemmata spp. bacteria in medium A yielded air bubbles released by bacterial respiration, whereas control tubes remained bubble-free. The number of colonies in standard medium (1.363 ± 115 for G. obscuriglobus, 1.288 ± 83 for G. massiliana) was significantly lower than those counted from medium B (2.552 ± 128 for G. obscuriglobus, 1.870 ± 112 for G. massiliana) and from medium A (2.851 ± 137 for G. obscuriglobus, 2.035 ± 163 for G. massiliana) (p < 0.10-4) at day-2 incubation. At day-3 incubation, the number of colonies counted from supplemented media A and B increased up to one log than those counted from the control medium (p < 0.10-4). Along the following day-4-7 incubation, the number of colonies counted from media A and B remained significantly higher compared to standard medium (p < 0.10-4). These data indicate that incorporation of spongin-based marine sponge skeleton and heat aqueous filtrate of sponge skeleton significantly improved growth of Gemmata spp. bacteria. These observations pave the way towards improved isolation and culture of Gemmata spp. from environmental and clinical specimens.
Collapse
Affiliation(s)
- Odilon D Kaboré
- IHU Méditerranée Infection, Marseille, France.,Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm 1058, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
31
|
Antibiotic susceptibility of marine Planctomycetes. Antonie van Leeuwenhoek 2019; 112:1273-1280. [DOI: 10.1007/s10482-019-01259-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
32
|
Kaboré OD, Loukil A, Godreuil S, Drancourt M. Co-culture models illustrate the digestion of Gemmata spp. by phagocytes. Sci Rep 2018; 8:13311. [PMID: 30190504 PMCID: PMC6127157 DOI: 10.1038/s41598-018-31667-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 08/10/2018] [Indexed: 11/25/2022] Open
Abstract
Gemmata spp. bacteria thrive in the same aquatic environments as free-living amoebae. DNA-based detection of Gemmata spp. sequences in the microbiota of the human digestive tract and blood further questioned the susceptibility of Gemmata spp. to phagocytes. Here, Gemmata obscuriglobus and Gemmata massiliana were co-cultured with the amoebae Acanthamoeba polyphaga, Acanthamoeba castellanii, Acanthamoeba griffini and THP-1 macrophage-like phagocytes. All experiments were performed in five independant replicates. The ratio amoeba/bacteria was 1:20 and the ratio THP-1/bacteria was 1:10. After a 2-hour co-culture, extracellular bacteria were killed by kanamycin or amikacin and eliminated. The intracellular location of Gemmata bacteria was specified by confocal microscopy. Microscopic enumerations and culture-based enumerations of colony-forming units were performed at T = 0, 1, 2, 3, 4, 8, 16, 24, 48 and 72 hours post-infection. Then, Gemmata bacteria were engulfed into the phagocytes’ cytoplasmic vacuoles, more than (98 ± 2)% of Gemmata bacteria, compared to controls, were destroyed by phagocytic cells after a 48-h co-culture according to microscopy and culture results, and no positive culture was observed at T = 72-hours. Under our co-culture conditions, Gemmata bacteria were therefore susceptible to the environmental and host phagocytes here investigated. These data suggest that these Acanthamoeba species and THP-1 cells cannot be used to isolate G. massiliana and G. obscuriglobus under the co-culture conditions applied in this study. Although the THP-1 response can point towards potential responses that might occur in vivo, these responses should first bevalidated by in vivo studies to draw definite conclusions.
Collapse
Affiliation(s)
- Odilon D Kaboré
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Ahmed Loukil
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Sylvain Godreuil
- Université de Montpellier UMR 1058 UMR MIVEGEC, UMR IRD 224-CNRS Inserm, 1058, Montpellier, France
| | - Michel Drancourt
- Aix Marseille Univ., IRD, MEPHI, IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
33
|
Storesund JE, Lanzèn A, García-Moyano A, Reysenbach AL, Øvreås L. Diversity patterns and isolation of Planctomycetes associated with metalliferous deposits from hydrothermal vent fields along the Valu Fa Ridge (SW Pacific). Antonie van Leeuwenhoek 2018; 111:841-858. [PMID: 29423768 DOI: 10.1007/s10482-018-1026-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 01/25/2018] [Indexed: 02/06/2023]
Abstract
The microbial diversity associated with diffuse venting deep-sea hydrothermal deposits is tightly coupled to the geochemistry of the hydrothermal fluids. Previous 16S rRNA gene amplicon sequencing (metabarcoding) of marine iron-hydroxide deposits along the Arctic Mid Ocean Ridge, revealed the presence of diverse bacterial communities associated with these deposits (Storesund and Øvreås in Antonie van Leeuwenhoek 104:569-584, 2013). One of the most abundant and diverse phyla detected was the enigmatic Planctomycetes. Here we report on the comparative analyses of the diversity and distribution patterns of Planctomycetes associated with metalliferous deposits from two diffuse-flow hydrothermal vent fields (Mariner and Vai Lili) from the Valu Fa Ridge in the Southwestern Pacific. Metabarcoding of 16S rRNA genes showed that the major prokaryotic phyla were Proteobacteria (51-73% of all 16S rRNA gene reads), Epsilonbacteraeota (0.5-19%), Bacteriodetes (5-17%), Planctomycetes (0.4-11%), Candidatus Latescibacteria (0-5%) and Marine Benthic Group E (Hydrothermarchaeota) (0-5%). The two different sampling sites differed considerably in overall community composition. The abundance of Planctomycetes also varied substantially between the samples and the sites, with the majority of the sequences affiliated with uncultivated members of the classes Planctomycetacia and Phycisphaerae, and other deep branching lineages. Seven different strains affiliated with the order Planctomycetales were isolated, mostly from the Vai Lili samples, where also the highest Planctomycetales diversity was seen. Most of the isolates were affiliated with the genera Gimesia, Rhodopirellula and Blastopirellula. One isolate was only distantly related to known cultured, but uncharacterized species within the Pir4 group. This study shows that the deep-sea Planctomycetes represent a very heterogeneous group with a high phylogenetic diversity and a substantial potential for novel organism discovery in these deep ocean environments.
Collapse
Affiliation(s)
- Julia Endresen Storesund
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53B, Postboks 7803, 5006, Bergen, Norway
| | - Anders Lanzèn
- AZTI, Marine Research Division, Herrera Kaia, Portualdea s/n, 20110, Pasaia, Spain.,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Antonio García-Moyano
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53B, Postboks 7803, 5006, Bergen, Norway
| | | | - Lise Øvreås
- Department of Biological Sciences, University of Bergen, Thormøhlensgate 53B, Postboks 7803, 5006, Bergen, Norway.
| |
Collapse
|
34
|
Lavergne C, Hugoni M, Hubas C, Debroas D, Dupuy C, Agogué H. Diel Rhythm Does Not Shape the Vertical Distribution of Bacterial and Archaeal 16S rRNA Transcript Diversity in Intertidal Sediments: a Mesocosm Study. MICROBIAL ECOLOGY 2018; 75:364-374. [PMID: 28779296 DOI: 10.1007/s00248-017-1048-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
In intertidal sediments, circadian oscillations (i.e., tidal and diel rhythms) and/or depth may affect prokaryotic activity. However, it is difficult to distinguish the effect of each single force on active community changes in these natural and complex intertidal ecosystems. Therefore, we developed a tidal mesocosm to control the tidal rhythm and test whether diel fluctuation or sediment depth influence active prokaryotes in the top 10 cm of sediment. Day- and nighttime emersions were compared as they are expected to display contrasting conditions through microphytobenthic activity in five different sediment layers. A multiple factor analysis revealed that bacterial and archaeal 16S ribosomal RNA (rRNA) transcript diversity assessed by pyrosequencing was similar between day and night emersions. Potentially active benthic Bacteria were highly diverse and influenced by chlorophyll a and phosphate concentrations. While in oxic and suboxic sediments, Thaumarchaeota Marine Group I (MGI) was the most active archaeal phylum, suggesting the importance of the nitrogen cycle in muddy sediments, in anoxic sediments, the mysterious archaeal C3 group dominated the community. This work highlighted that active prokaryotes organize themselves vertically within sediments independently of diel fluctuations suggesting adaptation to physicochemical-specific conditions associated with sediment depth.
Collapse
Affiliation(s)
- C Lavergne
- Université de La Rochelle - CNRS, UMR 7266, LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
- School of Biochemical Engineering, Pontificia Universidad Católica Valparaíso, Avenida Brasil, 2085, Valparaíso, Chile.
| | - M Hugoni
- CNRS, UMR5557 Ecologie Microbienne, Université Lyon 1, INRA, UMR1418, 69220, Villeurbanne Cedex, France
| | - C Hubas
- Muséum National d'Histoire Naturelle, UMR BOREA, Sorbonne Universités, UPMC Univ Paris 6, CNRS 7208, IRD 207, UCN, UA, Station de Biologie Marine, 29900, Concarneau, France
| | - D Debroas
- Clermont Université, Université Blaise Pascal, LMGE, BP 10448, 63000, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, 63171, Aubière, France
| | - C Dupuy
- Université de La Rochelle - CNRS, UMR 7266, LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - H Agogué
- Université de La Rochelle - CNRS, UMR 7266, LIENSs, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
35
|
Chen L, Li C, Feng Q, Wei Y, Zheng H, Zhao Y, Feng Y, Li H. Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:64-70. [PMID: 28437772 DOI: 10.1016/j.scitotenv.2017.04.105] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Saline water irrigation can change soil environment, which thereby influence soil microbial process. Based on a field experiment, the shifts in soil microbial metabolic activities and community structures under five irrigation salinities were studied using Biolog and metagenomic methods in this study. The results demonstrated that microbial metabolic activities were greatly restrained in saline water irrigated soils, as average well color development (AWCD) reduced under all saline water irrigation treatments. Although no significant difference in carbon substrate utilization of all six categories was observed among Mild, Medium, High and Severe treatments, the consumption of sole carbon source was significantly varied. Especially, asparagine, galacturonic, putrescine and 4-benzoic acid played a decisive role in dominating the differences. Soil bacterial richness and diversity increased with irrigation salinity while the number of bacterial phyla decreased. Three significantly increased (Proteobacteria, Actinobacteria and Chloroflexi), two decreased (Planctomycetes, Bacteroidetes) and two irresponsive (Gemmatimonadetes and Acidobacteria) phyla were observed as the dominant groups in saline water irrigated soils. The results presented here could improve the understanding of the soil biological process under saline circumstance.
Collapse
Affiliation(s)
- Lijuan Chen
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; School of Earth and Environmental Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Changsheng Li
- Plant Protection and Quarantine Station of Gansu Province, Lanzhou 730020, China
| | - Qi Feng
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yongping Wei
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Hang Zheng
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523106, China; School of Earth and Environmental Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Yan Zhao
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane 4072, Australia
| | - Yongjiu Feng
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Huiya Li
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
36
|
Metatranscriptomics reveals the hydrolytic potential of peat-inhabiting Planctomycetes. Antonie van Leeuwenhoek 2017; 111:801-809. [PMID: 29134393 DOI: 10.1007/s10482-017-0973-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
Members of the phylum Planctomycetes are common inhabitants of northern Sphagnum-dominated wetlands. Evidence is accumulating that, in these environments, some planctomycetes may be involved in degrading polymeric organic matter. The experimental data, however, remain scarce due to the low number of characterized representatives of this phylum. In a previous study, we used metatranscriptomics to assess the activity response of peat-inhabiting microorganisms to biopolymers abundantly present in native peat. The community responses to cellulose, xylan, pectin, and chitin availability were analysed relative to unamended controls. Here, we re-analysed these metatranscriptomes and retrieved a total of 1,602,783 rRNA and 35,522 mRNA sequences affiliated with the Planctomycetes. Each of the four polymers induced specific planctomycete responses. These were most pronounced on chitin. The two groups with increased 16S rRNA transcript pools were Gemmata- and Phycisphaera-like planctomycetes. Among uncultivated members of the Planctomycetaceae, two increased transcript pools were detected in pectin-amended samples and belonged to Pirellula-like bacteria. The analysis of taxonomically assigned mRNA reads confirmed the specific response of Gemmata-related planctomycetes to chitin amendment suggesting the presence of chitinolytic capabilities in these bacteria.
Collapse
|
37
|
Seeger C, Butler MK, Yee B, Mahajan M, Fuerst JA, Andersson SGE. Tuwongella immobilis gen. nov., sp. nov., a novel non-motile bacterium within the phylum Planctomycetes. Int J Syst Evol Microbiol 2017; 67:4923-4929. [PMID: 29087267 PMCID: PMC5845749 DOI: 10.1099/ijsem.0.002271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A gram-negative, budding, catalase negative, oxidase positive and non-motile bacterium (MBLW1T) with a complex endomembrane system has been isolated from a freshwater lake in southeast Queensland, Australia. Phylogeny based on 16S rRNA gene sequence analysis places the strain within the family Planctomycetaceae, related to Zavarzinella formosa (93.3 %), Telmatocola sphagniphila (93.3 %) and Gemmata obscuriglobus (91.9 %). Phenotypic and chemotaxonomic analysis demonstrates considerable differences to the type strains of the related genera. MBLW1T displays modest salt tolerance and grows optimally at pH values of 7.5–8.0 and at temperatures of 32–36 °C. Transmission electron microscopy analysis demonstrates the presence of a complex endomembrane system, however, without the typically condensed nucleoid structure found in related genera. The major fatty acids are 16 : 1 ω5c, 16 : 0 and 18 : 0. Based on discriminatory results from 16S rRNA gene sequence analysis, phenotypic, biochemical and chemotaxonomic analysis, MBLW1T should be considered as a new genus and species, for which the name Tuwongella immobilis gen. nov., sp. nov. is proposed. The type strain is MBLW1T (=CCUG 69661T=DSM 105045T).
Collapse
Affiliation(s)
- Christian Seeger
- Department of Cell and Molecular Biology, Molecular Evolution, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | - Margaret K Butler
- Australian Center for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin Yee
- Department of Cell and Molecular Biology, Molecular Evolution, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | - Mayank Mahajan
- Department of Cell and Molecular Biology, Molecular Evolution, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | - John A Fuerst
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siv G E Andersson
- Department of Cell and Molecular Biology, Molecular Evolution, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| |
Collapse
|
38
|
Affiliation(s)
- Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Birte Abt
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| |
Collapse
|
39
|
Yang L, Tang L, Liu L, Salam N, Li WJ, Zhang Y. Aquichromatium aeriopus gen. nov., sp. nov., A Non-phototrophic Aerobic Chemoheterotrophic Bacterium, and Proposal of Aquichromatiaceae fam. nov. in the Order Chromatiales. Curr Microbiol 2017; 74:972-978. [PMID: 28585047 DOI: 10.1007/s00284-017-1275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
A gram-staining negative, non-motile, aerobic chemoheterotrophic, ovoid or short rod-shaped bacterium, designated as J89T, was isolated from a seawater sample collected from the coast of Yellow Sea in Qingdao, China. The strain grew at salinities of 1.0-6.0% (w/v) NaCl (optimum, 3.0%). Growth occurred at pH 6.0-9.0 (optimum, pH 7.0) and at 10-35 °C (optimum, 25-30 °C). The genomic DNA G+C content was determined to be 59.3 mol%. Q-8 was detected as the respiratory quinone. The major fatty acids (>10%) were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), and C16:0. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified phospholipids, and an unidentified polar lipid. Comparison of the 16S rRNA gene sequence indicated that the strain was most closely related (<91%) to members of the order Chromatiales in the class Gammaproteobacteria. Phylogenetic analyses showed that this strain represented a distinct phylogenetic lineage in the order Chromatiales and could not be assigned to any of the defined families in the order. On the basis of low sequence similarities and differential characteristics of strain J89T from the genera of neighboring families, the strain is proposed to be a representative of a novel genus Aquichromatium gen. nov. A new family Aquichromatiaceae with the type genus Aquichromatium is proposed. Strain J89T (=MCCC 1K03281T=CMRC C2017206T) is the type strain of the type species Aquichromatium aeriopus sp. nov.
Collapse
Affiliation(s)
- Liqiang Yang
- Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Lili Tang
- Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lan Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| | - Yongyu Zhang
- Research Center for Marine Biology and Carbon Sequestration, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
40
|
Kwon M, Kim M, Takacs-Vesbach C, Lee J, Hong SG, Kim SJ, Priscu JC, Kim OS. Niche specialization of bacteria in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Environ Microbiol 2017; 19:2258-2271. [PMID: 28276129 DOI: 10.1111/1462-2920.13721] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022]
Abstract
Perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica, are chemically stratified with depth and have distinct biological gradients. Despite long-term research on these unique environments, data on the structure of the microbial communities in the water columns of these lakes are scarce. Here, we examined bacterial diversity in five ice-covered Antarctic lakes by 16S rRNA gene-based pyrosequencing. Distinct communities were present in each lake, reflecting the unique biogeochemical characteristics of these environments. Further, certain bacterial lineages were confined exclusively to specific depths within each lake. For example, candidate division WM88 occurred solely at a depth of 15 m in Lake Fryxell, whereas unknown lineages of Chlorobi were found only at a depth of 18 m in Lake Miers, and two distinct classes of Firmicutes inhabited East and West Lobe Bonney at depths of 30 m. Redundancy analysis revealed that community variation of bacterioplankton could be explained by the distinct conditions of each lake and depth; in particular, assemblages from layers beneath the chemocline had biogeochemical associations that differed from those in the upper layers. These patterns of community composition may represent bacterial adaptations to the extreme and unique biogeochemical gradients of ice-covered lakes in the McMurdo Dry Valleys.
Collapse
Affiliation(s)
- Miye Kwon
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mincheol Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | | | - Jaejin Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Soon Gyu Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sang Jong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - John C Priscu
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Ok-Sun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| |
Collapse
|
41
|
Guo M, Yang R, Huang C, Liao Q, Fan G, Sun C, Lee SMY. Evolutionary gradient of predicted nuclear localization signals (NLS)-bearing proteins in genomes of family Planctomycetaceae. BMC Microbiol 2017; 17:86. [PMID: 28376722 PMCID: PMC5381049 DOI: 10.1186/s12866-017-0981-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 03/11/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear envelope is considered a key classification marker that distinguishes prokaryotes from eukaryotes. However, this marker does not apply to the family Planctomycetaceae, which has intracellular spaces divided by lipidic intracytoplasmic membranes (ICMs). Nuclear localization signal (NLS), a short stretch of amino acid sequence, destines to transport proteins from cytoplasm into nucleus, and is also associated with the development of nuclear envelope. We attempted to investigate the NLS motifs in Planctomycetaceae genomes to demonstrate the potential molecular transition in the development of intracellular membrane system. RESULTS In this study, we identified NLS-like motifs that have the same amino acid compositions as experimentally identified NLSs in genomes of 11 representative species of family Planctomycetaceae. A total of 15 NLS types and 170 NLS-bearing proteins were detected in the 11 strains. To determine the molecular transformation, we compared NLS-bearing protein abundances in the 11 representative Planctomycetaceae genomes with them in genomes of 16 taxonomically varied microorganisms: nine bacteria, two archaea and five fungi. In the 27 strains, 29 NLS types and 1101 NLS-bearing proteins were identified, principal component analysis showed a significant transitional gradient from bacteria to Planctomycetaceae to fungi on their NLS-bearing protein abundance profiles. Then, we clustered the 993 non-redundant NLS-bearing proteins into 181 families and annotated their involved metabolic pathways. Afterwards, we aligned the ten types of NLS motifs from the 13 families containing NLS-bearing proteins among bacteria, Planctomycetaceae or fungi, considering their diversity, length and origin. A transition towards increased complexity from non-planctomycete bacteria to Planctomycetaceae to archaea and fungi was detected based on the complexity of the 10 types of NLS-like motifs in the 13 NLS-bearing proteins families. CONCLUSION The results of this study reveal that Planctomycetaceae separates slightly from the members of non-planctomycete bacteria but still has substantial differences from fungi, based on the NLS-like motifs and NLS-bearing protein analysis.
Collapse
Affiliation(s)
- Min Guo
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chen Huang
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qiwen Liao
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guangyi Fan
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chenghang Sun
- Department of Microbial Chemistry, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
42
|
Tian JH, Pourcher AM, Bureau C, Peu P. Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw. BIORESOURCE TECHNOLOGY 2017; 223:192-201. [PMID: 27792929 DOI: 10.1016/j.biortech.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/29/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Solid state anaerobic digestion (SSAD) with leachate recirculation is an appropriate method for the valorization of agriculture residues. Rape straw is a massively produced residue with considerable biochemical methane potential, but its degradation in SSAD remains poorly understood. A thorough study was conducted to understand the performance of rape straw as feedstock for laboratory solid state anaerobic digesters. We investigated the methane production kinetics of rape straw in relation to cellulose accessibility to cellulase and the microbial community. Improving cellulose accessibility through milling had a positive influence on both the methane production rate and methane yield. The SSAD of rape straw reached 60% of its BMP in a 40-day pilot-scale test. Distinct bacterial communities were observed in digested rape straw and leachate, with Bacteroidales and Sphingobacteriales as the most abundant orders, respectively. Archaeal populations showed no phase preference and increased chronologically.
Collapse
Affiliation(s)
- Jiang-Hao Tian
- IRSTEA, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Bretagne Loire, France
| | - Anne-Marie Pourcher
- IRSTEA, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Bretagne Loire, France
| | - Chrystelle Bureau
- IRSTEA, Hydrosystems and Bioprocesses Research Unit, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony Cedex, France
| | - Pascal Peu
- IRSTEA, UR OPAALE, 17 Avenue de Cucillé, CS 64427, F-35044 Rennes, France; Université Bretagne Loire, France.
| |
Collapse
|
43
|
Geographic distribution at subspecies resolution level: closely related Rhodopirellula species in European coastal sediments. ISME JOURNAL 2016; 11:478-489. [PMID: 27801907 DOI: 10.1038/ismej.2016.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/19/2016] [Accepted: 08/05/2016] [Indexed: 11/08/2022]
Abstract
Members of the marine genus Rhodopirellula are attached living bacteria and studies based on cultured Rhodopirellula strains suggested that three closely related species R. baltica, 'R. europaea' and 'R. islandica' have a limited geographic distribution in Europe. To address this hypothesis, we developed a nested PCR for a single gene copy detection of a partial acetyl CoA synthetase (acsA) from intertidal sediments collected all around Europe. Furthermore, we performed growth experiments in a range of temperature, salinity and light conditions. A combination of Basic Local Alignment Search Tool (BLAST) and Minimum Entropy Decomposition (MED) was used to analyze the sequences with the aim to explore the geographical distribution of the species and subspecies. MED has been mainly used for the analysis of the 16S rRNA gene and here we propose a protocol for the analysis of protein-coding genes taking into account the degeneracy of the codons and a possible overestimation of functional diversity. The high-resolution analysis revealed differences in the intraspecies community structure in different geographic regions. However, we found all three species present in all regions sampled and in agreement with growth experiments we demonstrated that Rhodopirellula species do not have a limited geographic distribution in Europe.
Collapse
|
44
|
Ahn JH, Lee SA, Kim JM, Kim MS, Song J, Weon HY. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. J Microbiol 2016; 54:724-731. [PMID: 27796926 DOI: 10.1007/s12275-016-6463-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022]
Abstract
Fertilization and the response of the soil microbial community to the process significantly affect crop yield and the environment. In this study, the seasonal variation in the bacterial communities in rice field soil subjected to different fertilization treatments for more than 50 years was investigated using 16S rRNA sequencing. The simultaneous application of inorganic fertilizers and rice straw compost (CAPK) maintained the species richness of the bacterial communities at levels higher than that in the case of non-fertilization (NF) and application of inorganic fertilizers only (APK) in the initial period of rice growth. The seasonal variation in the bacterial community structure in the NF and APK plots showed cyclic behavior, suggesting that the effect of season was important; however, no such trend was observed in the CAPK plot. In the CAPK plot, the relative abundances of putative copiotrophs such as Bacteroidetes, Firmicutes, and Proteobacteria were higher and those of putative oligotrophs such as Acidobacteria and Plactomycetes were lower than those in the other plots. The relative abundances of organotrophs with respiratory metabolism, such as Actinobacteria, were lower and those of chemoautotrophs that oxidize reduced iron and sulfur compounds were higher in the CAPK plot, suggesting greater carbon storage in this plot. Increased methane emission and nitrogen deficiency, which were inferred from the higher abundances of Methylocystis and Bradyrhizobium in the CAPK plot, may be a negative effect of rice straw application; thus, a solution for these should be considered to increase the use of renewable resources in agricultural lands.
Collapse
Affiliation(s)
- Jae-Hyung Ahn
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Shin Ae Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Jeong Myeong Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Myung-Sook Kim
- Soil and Ferilization Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jaekyeong Song
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea
| | - Hang-Yeon Weon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration (RDA), Wanju, 55365, Republic of Korea.
| |
Collapse
|
45
|
Abstract
The Planctomycetes genus Gemmata is represented by both uncultured organisms and cultured Gemmata obscuriglobus and 'Gemmata massiliana' organisms. Their plasmidless 9.2 Mb genomes encode a complex cell plan, cell signaling capacities, antibiotic and trace metal resistance and multidrug resistance efflux pumps. As they lack iron metabolism pathways, they are fastidious. Gemmata spp. are mainly found in aquatic and soil environments but have also been found in hospital water networks in close proximity to patients, in animals, on human skin, the gut microbiota and in the blood of aplastic leukemic patients. Due to their panoply of attack and defense mechanisms and their recently demonstrated association with humans, the potential of Gemmata organisms to behave as opportunistic pathogens should be more widely recognized.
Collapse
Affiliation(s)
- Rita Aghnatios
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| | - Michel Drancourt
- Aix Marseille Université, URMITE, UMR CNRS 7278, IRD 198, INSERM 1095. Faculté de Médecine, Marseille 13005, France
| |
Collapse
|
46
|
Wang X, Sharp CE, Jones GM, Grasby SE, Brady AL, Dunfield PF. Stable-Isotope Probing Identifies Uncultured Planctomycetes as Primary Degraders of a Complex Heteropolysaccharide in Soil. Appl Environ Microbiol 2015; 81:4607-15. [PMID: 25934620 PMCID: PMC4551180 DOI: 10.1128/aem.00055-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022] Open
Abstract
The exopolysaccharides (EPSs) produced by some bacteria are potential growth substrates for other bacteria in soil. We used stable-isotope probing (SIP) to identify aerobic soil bacteria that assimilated the cellulose produced by Gluconacetobacter xylinus or the EPS produced by Beijerinckia indica. The latter is a heteropolysaccharide comprised primarily of l-guluronic acid, d-glucose, and d-glycero-d-mannoheptose. (13)C-labeled EPS and (13)C-labeled cellulose were purified from bacterial cultures grown on [(13)C]glucose. Two soils were incubated with these substrates, and bacteria actively assimilating them were identified via pyrosequencing of 16S rRNA genes recovered from (13)C-labeled DNA. Cellulose C was assimilated primarily by soil bacteria closely related (93 to 100% 16S rRNA gene sequence identities) to known cellulose-degrading bacteria. However, B. indica EPS was assimilated primarily by bacteria with low identities (80 to 95%) to known species, particularly by different members of the phylum Planctomycetes. In one incubation, members of the Planctomycetes made up >60% of all reads in the labeled DNA and were only distantly related (<85% identity) to any described species. Although it is impossible with SIP to completely distinguish primary polysaccharide hydrolyzers from bacteria growing on produced oligo- or monosaccharides, the predominance of Planctomycetes suggested that they were primary degraders of EPS. Other bacteria assimilating B. indica EPS included members of the Verrucomicrobia, candidate division OD1, and the Armatimonadetes. The results indicate that some uncultured bacteria in soils may be adapted to using complex heteropolysaccharides for growth and suggest that the use of these substrates may provide a means for culturing new species.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Christine E Sharp
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Gareth M Jones
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Allyson L Brady
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
47
|
The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 2015; 28:237-64. [PMID: 25567229 DOI: 10.1128/cmr.00014-14] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial culture was the first method used to describe the human microbiota, but this method is considered outdated by many researchers. Metagenomics studies have since been applied to clinical microbiology; however, a "dark matter" of prokaryotes, which corresponds to a hole in our knowledge and includes minority bacterial populations, is not elucidated by these studies. By replicating the natural environment, environmental microbiologists were the first to reduce the "great plate count anomaly," which corresponds to the difference between microscopic and culture counts. The revolution in bacterial identification also allowed rapid progress. 16S rRNA bacterial identification allowed the accurate identification of new species. Mass spectrometry allowed the high-throughput identification of rare species and the detection of new species. By using these methods and by increasing the number of culture conditions, culturomics allowed the extension of the known human gut repertoire to levels equivalent to those of pyrosequencing. Finally, taxonogenomics strategies became an emerging method for describing new species, associating the genome sequence of the bacteria systematically. We provide a comprehensive review on these topics, demonstrating that both empirical and hypothesis-driven approaches will enable a rapid increase in the identification of the human prokaryote repertoire.
Collapse
|
48
|
Aghnatios R, Drancourt M. Colonization of Hospital Water Networks by Gemmata massiliana, a New Planctomycetes Bacterium. Curr Microbiol 2015; 71:317-20. [PMID: 26050252 DOI: 10.1007/s00284-015-0845-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/24/2015] [Indexed: 11/29/2022]
Abstract
Planctomycetes have been isolated from various hydric environments. These fastidious bacteria are overlooked by routine 16S rRNA gene-based PCR detection in hospital laboratories, and their presence has not been documented in the health-care environment. Using a specific culture protocol, we recently isolated a new, non-filterable Planctomycetes species, Gemmata massiliana, from one hospital water network. The goal of the study was to monitor the presence of G. massiliana in two hospital water networks. We developed a G. massiliana-specific real-time PCR system and monitored the presence of the Planctomycetes for 12 months in two hospital water networks, in filtered water collected at the intensive care unit and in non-filtered water collected from dental chairs, tanks, and usage points. Four of 180 (2.2%) filtered water samples tested positive versus 23 of 204 (11.3%) non-filtered points (p < 0.05), including 18 of 128 (14.1%) dental chairs, 3 of 51 (5.9%) usage points, and two of 25 (8%) tank specimens. There was no significant difference in the prevalence of G. massiliana between the two hospitals (p > 0.05). However, this organism was detected significantly more frequently during April and September than the 10 other months. Because G. massiliana is deeply entrenched in the hospitalized patient's environment, evaluating this organism as a new opportunistic, health-care-associated pathogen is warranted.
Collapse
Affiliation(s)
- R Aghnatios
- Aix Marseille Université, URMITE, UM 63 UMR_S1095 UMR 7278, Méditerranée Infection, 13385, Marseille, France
| | | |
Collapse
|
49
|
Flores C, Catita JAM, Lage OM. Assessment of planctomycetes cell viability after pollutants exposure. Antonie van Leeuwenhoek 2014; 106:399-411. [PMID: 24903954 DOI: 10.1007/s10482-014-0206-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
In this study, the growth of six different planctomycetes, a particular ubiquitous bacterial phylum, was assessed after exposure to pollutants. In addition and for comparative purposes, Pseudomonas putida, Escherichia coli and Vibrio anguillarum were tested. Each microorganism was exposed to several concentrations of 21 different pollutants. After exposure, bacteria were cultivated using the drop plate method. In general, the strains exhibited a great variation of sensitivity to pollutants in the order: V. anguillarum > planctomycetes > P. putida > E. coli. E. coli showed resistance to all pollutants tested, with the exception of phenol and sodium azide. Copper, Ridomil® (fungicide), hydrazine and phenol were the most toxic pollutants. Planctomycetes were resistant to extremely high concentrations of nitrate, nitrite and ammonium but they were the only bacteria sensitive to Previcur N® (fungicide). Sodium azide affected the growth on plates of E. coli, P. putida and V. anguillarum, but not of planctomycetes. However, this compound affected planctomycetes cell respiration but with less impact than in the aforementioned bacteria. Our results provide evidence for a diverse response of bacteria towards pollutants, which may influence the structuring of microbial communities in ecosystems under stress, and provide new insights on the ecophysiology of planctomycetes.
Collapse
Affiliation(s)
- Carlos Flores
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, FC4 Rua do Campo Alegre s/nº, 4169-007, Porto, Portugal
| | | | | |
Collapse
|
50
|
Lage OM, Bondoso J. Planctomycetes and macroalgae, a striking association. Front Microbiol 2014; 5:267. [PMID: 24917860 PMCID: PMC4042473 DOI: 10.3389/fmicb.2014.00267] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/15/2014] [Indexed: 12/31/2022] Open
Abstract
Planctomycetes are part of the complex microbial biofilm community of a wide range of macroalgae. Recently, some studies began to unveil the great diversity of Planctomycetes present in this microenvironment and the interactions between the two organisms. Culture dependent and independent methods revealed the existence of a great number of species but, so far, only less than 10 species have been isolated. Planctomycetes comprise the genera Rhodopirellula, Blastopirellula, and Planctomyces, Phycisphaera and the uncultured class OM190 and some other taxa have only been found in this association. Several factors favor the colonization of macroalgal surfaces by planctomycetes. Many species possess holdfasts for attachment. The macroalgae secrete various sulfated polysaccharides that are the substrate for the abundant sulfatases produced by planctomycetes. Specificity between planctomycetes and macroalgae seem to exist which may be related to the chemical nature of the polysaccharides produced by each macroalga. Furthermore, the peptidoglycan-free cell wall of planctomycetes allows them to resist the action of several antimicrobial compounds produced by the macroalgae or other bacteria in the biofilm community that are effective against biofouling by other microorganisms. Despite the increase in our knowledge on the successful planctomycetes-macroalgae association, a great effort to fully understand this interaction is needed.
Collapse
Affiliation(s)
- Olga M Lage
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto Porto, Portugal
| | - Joana Bondoso
- Department of Biology, Faculty of Sciences, University of Porto Porto, Portugal ; CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, University of Porto Porto, Portugal
| |
Collapse
|