1
|
Zeng T, Chen Y, Huang H, Li S, Huang J, Xie H, Lin S, Chen S, Chen G, Yang D. Neuronal Intranuclear Inclusion Disease with NOTCH2NLC GGC Repeat Expansion: A Systematic Review and Challenges of Phenotypic Characterization. Aging Dis 2024:AD.2024.0131-1. [PMID: 38377026 DOI: 10.14336/ad.2024.0131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a highly clinically heterogeneous neurodegenerative disorder primarily attributed to abnormal GGC repeat expansions in the NOTCH2NLC gene. This study aims to comprehensively explore its phenotypic characteristics and genotype-phenotype correlation. A literature search was conducted in PubMed, Embase, and the Cochrane Library from September 1, 2019, to December 31, 2022, encompassing reported NIID cases confirmed by pathogenic NOTCH2NLC mutations. Linear regressions and trend analyses were performed. Analyzing 635 cases from 85 included studies revealed that familial cases exhibited significantly larger GGC repeat expansions than sporadic cases (p < 0.001), and this frequency significantly increased with expanding GGC repeats (p trend < 0.001). Age at onset (AAO) showed a negative correlation with GGC repeat expansions (p < 0.001). The predominant initial symptoms included tremor (31.70%), cognitive impairment (14.12%), and muscle weakness (10.66%). The decreased or absent tendon reflex (DTR/ATR) emerged as a notable clinical indicator of NIID due to its high prevalence. U-fiber was observed in 79.11% of patients, particularly prominent in paroxysmal disease-dominant (87.50%) and dementia-dominant cases (81.08%). Peripheral neuropathy-dominant cases exhibited larger GGC repeat expansions (median = 123.00) and an earlier AAO (median = 33.00) than other phenotypes. Moreover, a significant genetic anticipation of 3.5 years was observed (p = 0.039). This study provides a comprehensive and up-to-date compilation of genotypic and phenotypic information on NIID since the identification of the causative gene NOTCH2NLC. We contribute a novel diagnostic framework for NIID to support clinical practice.
Collapse
Affiliation(s)
- Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Huang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shenyi Lin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Siyao Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Kumar M, Tyagi N, Faruq M. The molecular mechanisms of spinocerebellar ataxias for DNA repeat expansion in disease. Emerg Top Life Sci 2023; 7:289-312. [PMID: 37668011 DOI: 10.1042/etls20230013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of neurodegenerative disorders which commonly inherited in an autosomal dominant manner. They cause muscle incoordination due to degeneration of the cerebellum and other parts of nervous system. Out of all the characterized (>50) SCAs, 14 SCAs are caused due to microsatellite repeat expansion mutations. Repeat expansions can result in toxic protein gain-of-function, protein loss-of-function, and/or RNA gain-of-function effects. The location and the nature of mutation modulate the underlying disease pathophysiology resulting in varying disease manifestations. Potential toxic effects of these mutations likely affect key major cellular processes such as transcriptional regulation, mitochondrial functioning, ion channel dysfunction and synaptic transmission. Involvement of several common pathways suggests interlinked function of genes implicated in the disease pathogenesis. A better understanding of the shared and distinct molecular pathogenic mechanisms in these diseases is required to develop targeted therapeutic tools and interventions for disease management. The prime focus of this review is to elaborate on how expanded 'CAG' repeats contribute to the common modes of neurotoxicity and their possible therapeutic targets in management of such devastating disorders.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Nishu Tyagi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
3
|
Panoyan MA, Wendt FR. The role of tandem repeat expansions in brain disorders. Emerg Top Life Sci 2023; 7:249-263. [PMID: 37401564 DOI: 10.1042/etls20230022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
The human genome contains numerous genetic polymorphisms contributing to different health and disease outcomes. Tandem repeat (TR) loci are highly polymorphic yet under-investigated in large genomic studies, which has prompted research efforts to identify novel variations and gain a deeper understanding of their role in human biology and disease outcomes. We summarize the current understanding of TRs and their implications for human health and disease, including an overview of the challenges encountered when conducting TR analyses and potential solutions to overcome these challenges. By shedding light on these issues, this article aims to contribute to a better understanding of the impact of TRs on the development of new disease treatments.
Collapse
Affiliation(s)
- Mary Anne Panoyan
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
| | - Frank R Wendt
- Department of Anthropology, University of Toronto, Mississauga, ON, Canada
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Forensic Science Program, University of Toronto, Mississauga, ON, Canada
| |
Collapse
|
4
|
Zou J, Wang F, Gong Z, Wang R, Chen S, Zhang H, Sun R, Gao C, Li W, Shang J, Zhang J. A Chinese SCA36 pedigree analysis of NOP56 expansion region based on long-read sequencing. Front Genet 2023; 14:1110307. [PMID: 37051597 PMCID: PMC10083286 DOI: 10.3389/fgene.2023.1110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Introduction: Spinocerebellar ataxias 36 (SCA36) is the neurodegenerative disease caused by the GGCCTG Hexanucleotide repeat expansions in NOP56, which is too long to sequence using short-read sequencing. Single molecule real time (SMRT) sequencing can sequence across disease-causing repeat expansion. We report the first long-read sequencing data across the expansion region in SCA36.Methods: We collected and described the clinical manifestations and imaging features of Han Chinese pedigree with three generations of SCA36. Also, we focused on structural variation analysis for intron 1 of the NOP56 gene by SMRT sequencing in the assembled genome.Results: The main clinical features of this pedigree are late-onset ataxia symptoms, with a presymptomatic presence of affective and sleep disorders. In addition, the results of SMRT sequencing showed the specific repeat expansion region and demonstrated that the region was not composed of single GGCCTG hexanucleotides and there were random interruptions.Discussion: We extended the phenotypic spectrum of SCA36. We applied SMRT sequencing to reveal the correlation between genotype and phenotype of SCA36. Our findings indicated that long-read sequencing is well suited to characterize known repeat expansion.
Collapse
Affiliation(s)
- Jinlong Zou
- Department of Neurology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Fengyu Wang
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhenping Gong
- Department of Neurology, Xinxiang Medical University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Runrun Wang
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Shuai Chen
- Department of Neurology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Haohan Zhang
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruihua Sun
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chenhao Gao
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Wei Li
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Junkui Shang
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
- Department of Neurology, Xinxiang Medical University, Henan Provincial People’s Hospital, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- *Correspondence: Jiewen Zhang,
| |
Collapse
|
5
|
Satir-Basaran G, Kianmehr L, Mehmetbeyoglu E, Korkmaz Bayram K, Memis M, Yilmaz Z, Tufan E, Taheri S, Kelestimur F, Rassoulzadegan M. Mouse Paternal RNAs Initiate a Pattern of Metabolic Disorders in a Line-Dependent Manner. Front Genet 2022; 13:839841. [PMID: 35419033 PMCID: PMC8996111 DOI: 10.3389/fgene.2022.839841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
A wide range of diseases result from environmental effects, and the levels of many native transcripts are altered. The alteration of non-coding RNAs (ncRNAs) and transmission of the variation to the next generation is increasingly recognized as a marker of disease. However, the determining signals and mechanisms of RNA-induced heritability remain unclear. We performed functional tests with four different genotypes of mice maintained on a high-fat diet to trace the transfer of the obesity/diabetes phenotype to the next generation in order to detect common signals. Two founders of four mouse lines (B6/D2 hybrid and Dnmt2 -/-C57BL/6 ) resist and do not change their phenotype while their sperm RNAs after microinjection into fertilized mouse eggs transfer the newly acquired phenotypes in a susceptible inbred line (C57BL/6 or Balb/c). Unexpectedly, in the same line of experiments, sperm RNA from animals raised on a normal diet when mixed with the sperm RNA from animals raised on a diet high in fat or synthetic miR-19b (inducer of obesity) affects or prevents the development of obesity and diabetes. However, it remains unclear what happens to ncRNA signaling under diet. With a comprehensive new analysis of the transcripts maintained as an RNA/DNA hybrid in sperm, we suggest that a fraction of the RNAs are stably attached to the genome. Thus, we propose that changes in the dynamics of ncRNA retention on DNA by factors such as transcriptional variations or lack of adequate methylation could serve as molecular markers to trace these epigenetics events.
Collapse
Affiliation(s)
- Guzide Satir-Basaran
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,Department of Biochemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Leila Kianmehr
- Departement of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ecmel Mehmetbeyoglu
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,Department of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Kezban Korkmaz Bayram
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,Department of Medical Genetics, Medical Faculty, Yıldırım Beyazıt University, 06800 Ankara, Turkey
| | - Mehmet Memis
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zeynep Yilmaz
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Esra Tufan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Serpil Taheri
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,Department of Medical Biology, Erciyes University Medical School, Kayseri, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Yeditepe University Medical School, Istanbul, Turkey
| | - Minoo Rassoulzadegan
- Betul Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.,INSERM-CNRS, Université de Nice, Nice, France
| |
Collapse
|
6
|
Lopez S, He F. Spinocerebellar Ataxia 36: From Mutations Toward Therapies. Front Genet 2022; 13:837690. [PMID: 35309140 PMCID: PMC8931325 DOI: 10.3389/fgene.2022.837690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia 36 (SCA36) is a type of repeat expansion-related neurodegenerative disorder identified a decade ago. Like other SCAs, the symptoms of SCA36 include the loss of coordination like gait ataxia and eye movement problems, but motor neuron-related symptoms like muscular atrophy are also present in those patients. The disease is caused by a GGCCTG hexanucleotide repeat expansion in the gene Nop56, and the demographic incidence map showed that this disease was more common among the ethnic groups of Japanese and Spanish descendants. Although the exact mechanisms are still under investigation, the present evidence supports that the expanded repeats may undergo repeat expansion-related non-AUG-initiated translation, and these dipeptide repeat products could be one of the important ways to lead to pathogenesis. Such studies may help develop potential treatments for this disease.
Collapse
|
7
|
Paz-Tamayo A, Perez-Carpena P, Lopez-Escamez JA. Systematic Review of Prevalence Studies and Familial Aggregation in Vestibular Migraine. Front Genet 2020; 11:954. [PMID: 33110417 PMCID: PMC7489493 DOI: 10.3389/fgene.2020.00954] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Vestibular migraine (VM) is complex disorder consisting of episodes of migraine and vertigo with an estimated prevalence of 1–3%. As migraine, it is considered that VM has genetic predisposition; however, evidence to support a genetic contribution has not been critically appraised. Objective: The aim of this systematic review is to assess available evidence in scientific publications to determine the role of inheritance in VM. Methods: After performing the quality assessment of the retrieved records, 31 studies were included (24 epidemiological reports and 7 genetic association studies in families or case-control in candidate genes). We gathered data about prevalence of VM in different populations and in families, and also about the genetic findings reported. In addition, other variables were considered to assess the heritability of VM, such as the ancestry, the age of onset or the familial history of vertigo and migraine. Results: The estimated prevalence of VM was different between black (3.13%), white (2.64%) and Asian (1.07%) ethnicities. The reported prevalence of VM in migraine patients is higher in European countries (21%) than in Asian countries (10%). Moreover, the prevalence of the migraine-vertigo association in families is 4–10 times higher than the prevalence reported in the general population (sibling recurrence risk ratio λs = 4.31–10.42). We also found that the age of onset is lower in patients with simultaneous onset of symptoms and in those who have familial history for migraine and/or vertigo, suggesting anticipation. Although some genetic studies have reported few allelic variants associated to MV, replication studies are needed to validate these results. Conclusions: The available evidence to support heritability in VM is limited. Variability in prevalence depending on ethnicity and geographic location suggests a combined genetic and environmental contribution to VM. However, the familial aggregation observed in VM support genetic and shared familial environmental effects that remarks the necessity of twins and adoptees-based epidemiological studies to estimate its heritability.
Collapse
Affiliation(s)
- Ana Paz-Tamayo
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain
| | - Patricia Perez-Carpena
- Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario San Cecilio, Granada, Spain.,Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada, Spain
| | - Jose A Lopez-Escamez
- Division of Otolaryngology, Department of Surgery, Universidad de Granada, Granada, Spain.,Otology & Neurotology Group CTS495, Department of Genomic Medicine, GENYO - Centre for Genomics and Oncological Research - Pfizer/University of Granada/Junta de Andalucía, PTS, Granada, Spain.,Department of Otolaryngology, Instituto de Investigación Biosanitaria ibs.GRANADA, Hospital Universitario Virgen de las Nieves, Granada, Spain
| |
Collapse
|
8
|
Intrinsic Disorder in Proteins with Pathogenic Repeat Expansions. Molecules 2017; 22:molecules22122027. [PMID: 29186753 PMCID: PMC6149999 DOI: 10.3390/molecules22122027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/18/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Intrinsically disordered proteins and proteins with intrinsically disordered regions have been shown to be highly prevalent in disease. Furthermore, disease-causing expansions of the regions containing tandem amino acid repeats often push repetitive proteins towards formation of irreversible aggregates. In fact, in disease-relevant proteins, the increased repeat length often positively correlates with the increased aggregation efficiency and the increased disease severity and penetrance, being negatively correlated with the age of disease onset. The major categories of repeat extensions involved in disease include poly-glutamine and poly-alanine homorepeats, which are often times located in the intrinsically disordered regions, as well as repeats in non-coding regions of genes typically encoding proteins with ordered structures. Repeats in such non-coding regions of genes can be expressed at the mRNA level. Although they can affect the expression levels of encoded proteins, they are not translated as parts of an affected protein and have no effect on its structure. However, in some cases, the repetitive mRNAs can be translated in a non-canonical manner, generating highly repetitive peptides of different length and amino acid composition. The repeat extension-caused aggregation of a repetitive protein may represent a pivotal step for its transformation into a proteotoxic entity that can lead to pathology. The goals of this article are to systematically analyze molecular mechanisms of the proteinopathies caused by the poly-glutamine and poly-alanine homorepeat expansion, as well as by the polypeptides generated as a result of the microsatellite expansions in non-coding gene regions and to examine the related proteins. We also present results of the analysis of the prevalence and functional roles of intrinsic disorder in proteins associated with pathological repeat expansions.
Collapse
|
9
|
Polak U, McIvor E, Dent SY, Wells RD, Napierala M. Expanded complexity of unstable repeat diseases. Biofactors 2013; 39:164-75. [PMID: 23233240 PMCID: PMC4648362 DOI: 10.1002/biof.1060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 11/05/2022]
Abstract
Unstable repeat diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly, expansion of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequences of the repeat expansions is critical to developing successful therapies for these diseases. Recent technological breakthroughs in whole genome, transcriptome and proteome analyses will almost certainly lead to new discoveries regarding the mechanisms of repeat instability, the pathogenesis of URDs, and will facilitate development of novel therapeutic approaches. The aim of this review is to give a general overview of unstable repeats diseases, highlight the complexities of these diseases, and feature the emerging discoveries in the field.
Collapse
Affiliation(s)
- Urszula Polak
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
- Poznan University of Medical Sciences, Department of Cell Biology, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Elizabeth McIvor
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
| | - Sharon Y.R. Dent
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
| | - Robert D. Wells
- Institute of Biosciences and Technology, assing the University Health Science Center, Center for Genome Research, 2121 West Holcombe Boulevard, Houston, TX 77030, USA
| | - Marek Napierala
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
- Correspondence should be addressed to: Dr. Marek Napierala, University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, SRD 1.134, 1808 Park Road 1C, Smithville, TX 78957, tel. 512-237-6690,
| |
Collapse
|
10
|
Zafeiriou DI, Ververi A, Vargiami E. Childhood autism and associated comorbidities. Brain Dev 2007; 29:257-72. [PMID: 17084999 DOI: 10.1016/j.braindev.2006.09.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 08/25/2006] [Accepted: 09/06/2006] [Indexed: 12/11/2022]
Abstract
Autism is a heterogeneous neurodevelopmental disorder with a variety of different etiologies, but with a heritability estimate of more than 90%. Although the strong correlation between autism and genetic factors has been long established, the exact genetic background of autism is still unclear. This review refers to all the genetic syndromes that have been described in children with pervasive developmental disorders (tuberous sclerosis, fragile X, Down, neurofibromatosis, Angelman, Prader-Willi, Gilles de la Tourette, Williams, etc.). Issues covered include prevalence and main characteristics of each syndrome, as well as the possible base of its association with autism in terms of contribution to the current knowledge on the etiology and genetic base of pervasive developmental disorders.
Collapse
Affiliation(s)
- Dimitrios I Zafeiriou
- 1st Department of Pediatrics, Aristotle University of Thessaloniki, Egnatia St. 106, 54622 Thessaloniki, Greece.
| | | | | |
Collapse
|
11
|
Stodgell CJ, Ingram JL, Hyman SL. The role of candidate genes in unraveling the genetics of autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2000. [DOI: 10.1016/s0074-7750(00)80006-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Affiliation(s)
- M Karayiorgou
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
13
|
Wille RT, Krishnan K, Cooney KA, Bach DS, Martinez F. Familial association of primary pulmonary hypertension and a new low-oxygen affinity beta-chain hemoglobinopathy, Hb Washtenaw. Chest 1996; 109:848-50. [PMID: 8617104 DOI: 10.1378/chest.109.3.848] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A Hungarian-American kindred with familial primary pulmonary hypertension (PPH) and a new, low-oxygen affinity beta-chain variant hemoglobin, Hb Washtenaw, is described. The index case presented with severe PPH and was found to have the abnormal hemoglobin. Two siblings with the abnormal hemoglobin also demonstrated increased pulmonary artery pressures on exercise echocardiography suggestive of early PPH. The occurrence of PPH and the abnormal hemoglobin could be due to genetic or biochemical factors or simply coincidental. A previous study had described a possible association of an abnormal beta-chain variant hemoglobin, Hb Warsaw, and PPH. It was suggested that the putative gene for familial PPH may be located near the beta-globin gene on chromosome 11. The association of PPH and the beta-chain variant hemoglobin in this kindred adds further support to this hypothesis.
Collapse
Affiliation(s)
- R T Wille
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
The prevalence of dementia is expected to increase markedly as our population ages. Although only a minority of cases currently are found to have treatable causes, the personal and financial costs of misdiagnosis are great. Furthermore, progress in developing effective therapy hinges on accurate diagnosis. This article reviews the current state of diagnostic testing in the diagnosis of dementia.
Collapse
Affiliation(s)
- T A Sandson
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|