1
|
McEvoy E, Deshpande VS, McGarry P. Transient active force generation and stress fibre remodelling in cells under cyclic loading. Biomech Model Mechanobiol 2019; 18:921-937. [PMID: 30783833 DOI: 10.1007/s10237-019-01121-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022]
Abstract
The active cytoskeleton is known to play an important mechanistic role in cellular structure, spreading, and contractility. Contractility is actively generated by stress fibres (SF), which continuously remodel in response to physiological dynamic loading conditions. The influence of actin-myosin cross-bridge cycling on SF remodelling under dynamic loading conditions has not previously been uncovered. In this study, a novel SF cross-bridge cycling model is developed to predict transient active force generation in cells subjected to dynamic loading. Rates of formation of cross-bridges within SFs are governed by the chemical potentials of attached and unattached myosin heads. This transient cross-bridge cycling model is coupled with a thermodynamically motivated framework for SF remodelling to analyse the influence of transient force generation on cytoskeletal evolution. A 1D implementation of the model is shown to correctly predict complex patterns of active cell force generation under a range of dynamic loading conditions, as reported in previous experimental studies.
Collapse
Affiliation(s)
- Eoin McEvoy
- Discipline of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland
| | | | - Patrick McGarry
- Discipline of Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
2
|
Yu HS, Kim JJ, Kim HW, Lewis MP, Wall I. Impact of mechanical stretch on the cell behaviors of bone and surrounding tissues. J Tissue Eng 2016; 7:2041731415618342. [PMID: 26977284 PMCID: PMC4765821 DOI: 10.1177/2041731415618342] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 12/27/2022] Open
Abstract
Mechanical loading is recognized to play an important role in regulating the behaviors of cells in bone and surrounding tissues in vivo. Many in vitro studies have been conducted to determine the effects of mechanical loading on individual cell types of the tissues. In this review, we focus specifically on the use of the Flexercell system as a tool for studying cellular responses to mechanical stretch. We assess the literature describing the impact of mechanical stretch on different cell types from bone, muscle, tendon, ligament, and cartilage, describing individual cell phenotype responses. In addition, we review evidence regarding the mechanotransduction pathways that are activated to potentiate these phenotype responses in different cell populations.
Collapse
Affiliation(s)
- Hye-Sun Yu
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Jung-Ju Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea; Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
| | - Mark P Lewis
- Musculo-Skeletal Biology Research Group, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, London, UK; Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University Graduate School, Cheonan, South Korea
| |
Collapse
|
3
|
Single cell active force generation under dynamic loading - Part I: AFM experiments. Acta Biomater 2015; 27:236-250. [PMID: 26360596 DOI: 10.1016/j.actbio.2015.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/14/2015] [Accepted: 09/06/2015] [Indexed: 12/27/2022]
Abstract
A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Measured forces for the untreated cells are dramatically different to cytochalasin-D (cyto-D) treated cells, indicating that the contractile actin cytoskeleton plays a critical role in the response of cells to dynamic loading. Following a change in applied strain magnitude, while maintaining a constant applied strain rate, the compression force for contractile cells recovers to 88.9±7.8% of the steady state force. In contrast, cyto-D cell compression forces recover to only 38.0±6.7% of the steady state force. Additionally, untreated cells exhibit strongly negative (pulling) forces during unloading half-cycles when the probe is retracted. In comparison, negligible pulling forces are measured for cyto-D cells during probe retraction. The current study demonstrates that active contractile forces, generated by actin-myosin cross-bridge cycling, dominate the response of single cells to dynamic loading. Such active force generation is shown to be independent of applied strain magnitude. Passive forces generated by the applied deformation are shown to be of secondary importance, exhibiting a high dependence on applied strain magnitude, in contrast to the active forces in untreated cells. STATEMENT OF SIGNIFICANCE A novel series of experiments are performed on single cells using a bespoke AFM system where the response of cells to dynamic loading at physiologically relevant frequencies is uncovered. Contractile cells, which contain the active force generation machinery of the actin cytoskeleton, are shown to be insensitive to applied strain magnitude, exhibiting high resistance to dynamic compression and stretching. Such trends are not observed for cells in which the actin cytoskeleton has been chemically disrupted. These biomechanical insights have not been previously reported. This detailed characterisation of single cell active and passive stress during dynamic loading has important implications for tissue engineering strategies, where applied deformation has been reported to significantly affect cell mechanotransduction and matrix synthesis.
Collapse
|
4
|
Compressive stress induces dephosphorylation of the myosin regulatory light chain via RhoA phosphorylation by the adenylyl cyclase/protein kinase A signaling pathway. PLoS One 2015; 10:e0117937. [PMID: 25734240 PMCID: PMC4348516 DOI: 10.1371/journal.pone.0117937] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 01/05/2015] [Indexed: 01/22/2023] Open
Abstract
Mechanical stress that arises due to deformation of the extracellular matrix (ECM) either stretches or compresses cells. The cellular response to stretching has been actively studied. For example, stretching induces phosphorylation of the myosin regulatory light chain (MRLC) via the RhoA/RhoA-associated protein kinase (ROCK) pathway, resulting in increased cellular tension. In contrast, the effects of compressive stress on cellular functions are not fully resolved. The mechanisms for sensing and differentially responding to stretching and compressive stress are not known. To address these questions, we investigated whether phosphorylation levels of MRLC were affected by compressive stress. Contrary to the response in stretching cells, MRLC was dephosphorylated 5 min after cells were subjected to compressive stress. Compressive loading induced activation of myosin phosphatase mediated via the dephosphorylation of myosin phosphatase targeting subunit 1 (Thr853). Because myosin phosphatase targeting subunit 1 (Thr853) is phosphorylated only by ROCK, compressive loading may have induced inactivation of ROCK. However, GTP-bound RhoA (active form) increased in response to compressive stress. The compression-induced activation of RhoA and inactivation of its effector ROCK are contradictory. This inconsistency was due to phosphorylation of RhoA (Ser188) that reduced affinity of RhoA to ROCK. Treatment with the inhibitor of protein kinase A that phosphorylates RhoA (Ser188) induced suppression of compression-stimulated MRLC dephosphorylation. Incidentally, stretching induced phosphorylation of MRLC, but did not affect phosphorylation levels of RhoA (Ser188). Together, our results suggest that RhoA phosphorylation is an important process for MRLC dephosphorylation by compressive loading, and for distinguishing between stretching and compressing cells.
Collapse
|
5
|
The primary cilium as a dual sensor of mechanochemical signals in chondrocytes. Cell Mol Life Sci 2012; 69:2101-7. [PMID: 22241332 PMCID: PMC3375420 DOI: 10.1007/s00018-011-0911-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/18/2011] [Accepted: 12/21/2011] [Indexed: 01/17/2023]
Abstract
The primary cilium is an immotile, solitary, and microtubule-based structure that projects from cell surfaces into the extracellular environment. The primary cilium functions as a dual sensor, as mechanosensors and chemosensors. The primary cilia coordinate several essential cell signaling pathways that are mainly involved in cell division and differentiation. A primary cilium malfunction can result in several human diseases. Mechanical loading is sense by mechanosensitive cells in nearly all tissues and organs. With this sensation, the mechanical signal is further transduced into biochemical signals involving pathways such as Akt, PKA, FAK, ERK, and MAPK. In this review, we focus on the fundamental functional and structural features of primary cilia in chondrocytes and chondrogenic cells.
Collapse
|
6
|
Lu H, Qin L, Lee K, Cheung W, Chan K, Leung K. Identification of genes responsive to low-intensity pulsed ultrasound stimulations. Biochem Biophys Res Commun 2008; 378:569-73. [PMID: 19056340 DOI: 10.1016/j.bbrc.2008.11.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 11/18/2008] [Indexed: 11/24/2022]
Abstract
This study was designed to compare the temporal changes of gene expression profile in osteoblastic cell lines (SaOS-2) treated with low-intensity pulsed ultrasound stimulation (LIPUS) using complementary DNA (cDNA) microarrays. SaOS-2 cells were treated with LIPUS for 20min. Thereafter, cells were harvested and RNA was extracted twice at 4 and 24h, respectively. Using cDNA microarrays, 7488 genes with changes in expression in SaOS-2 cells were identified for comparison. Microarray analysis revealed a total of 165 genes in SaOS-2 cells were regulated at 4 and 24h after LIPUS treatment. Except for 30 known LIPUS-regulated genes, our study demonstrated for the first time that over 100 genes were related to the underlying molecular mechanism of LIPUS and suggested that LIPUS might regulate a transient expression of numerous critical genes in osteoblastic cells. These results provide further understanding of the role of LIPUS in the regulation of osteoblastic gene expression potentially involved in the molecular mechanism of osteogenesis in fracture repair.
Collapse
Affiliation(s)
- Hongbin Lu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | | | | | | | | | | |
Collapse
|
7
|
Chao PHG, West AC, Hung CT. Chondrocyte intracellular calcium, cytoskeletal organization, and gene expression responses to dynamic osmotic loading. Am J Physiol Cell Physiol 2006; 291:C718-25. [PMID: 16928775 DOI: 10.1152/ajpcell.00127.2005] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While chondrocytes in articular cartilage experience dynamic stimuli from joint loading activities, few studies have examined the effects of dynamic osmotic loading on their signaling and biosynthetic activities. We hypothesize that dynamic osmotic loading modulates chondrocyte signaling and gene expression differently than static osmotic loading. With the use of a novel microfluidic device developed in our laboratory, dynamic hypotonic loading (−200 mosM) was applied up to 0.1 Hz and chondrocyte calcium signaling, cytoskeleton organization, and gene expression responses were examined. Chondrocytes exhibited decreasing volume and calcium responses with increasing loading frequency. Phalloidin staining showed osmotic loading-induced changes to the actin cytoskeleton in chondrocytes. Real-time PCR analysis revealed a stimulatory effect of dynamic osmotic loading compared with static osmotic loading. These studies illustrate the utility of the microfluidic device in cell signaling investigations, and their potential role in helping to elucidate mechanisms that mediate chondrocyte mechanotransduction to dynamic stimuli.
Collapse
Affiliation(s)
- Pen-Hsiu Grace Chao
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
8
|
Liedert A, Kaspar D, Claes L, Ignatius A. Signal transduction pathways involved in mechanical regulation of HB-GAM expression in osteoblastic cells. Biochem Biophys Res Commun 2006; 342:1070-6. [PMID: 16513091 DOI: 10.1016/j.bbrc.2006.02.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 02/13/2006] [Indexed: 11/25/2022]
Abstract
Protein kinase C (PKC), protein kinase A (PKA), prostaglandin synthesis, and various mitogen-activated protein kinases (MAPKs) have been reported to be activated in bone cells by mechanical loading. We studied the involvement of these signal transduction pathways in the downregulation of HB-GAM expression in osteoblastic cells after cyclic stretching. Specific antagonists and agonists of these signal transduction pathways were added to cells before loading and to non-loaded control cells. Quantitative RT-PCR was used to evaluate gene expression. The data demonstrated that the extracellular signal-regulated kinase (ERK) 1/2 pathway, PKC, PKA, p38, and c-Jun N-terminal kinase MAPK participated in the mechanical downregulation of HB-GAM expression, whereas prostaglandin synthesis did not seem to be involved.
Collapse
Affiliation(s)
- Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Germany.
| | | | | | | |
Collapse
|
9
|
Yamamoto N, Fukuda K, Matsushita T, Matsukawa M, Hara F, Hamanishi C. Cyclic tensile stretch stimulates the release of reactive oxygen species from osteoblast-like cells. Calcif Tissue Int 2005; 76:433-8. [PMID: 15895284 DOI: 10.1007/s00223-004-1188-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 01/05/2004] [Indexed: 01/12/2023]
Abstract
It is known that the excessive generation of reactive oxygen species (ROS) is a significant factor in tissue injury observed in many disease states. To determine whether extreme levels of mechanical stress applied to osteoblasts enhances ROS synthesis, we loaded cyclic tensile stretch on osteoblast-like HT-3 cells. Cyclic tensile stretch loaded on these cells clearly enhanced ROS synthesis in a time- and magnitude-dependent fashion. Cyclic tensile stretch also enhanced superoxide dismutase (SOD) activity. The disruption of microfilaments with cytochalasin D abolished the stress-induced ROS synthesis. Rotenone, an inhibitor of the mitochondrial electron transport chain, enhanced stress-induced ROS synthesis. These data suggest that actin filament and mitochondria are involved in this action.
Collapse
Affiliation(s)
- N Yamamoto
- Department of Orthopaedic Surgery, Kinki University School of Medicine, Ohnohigashi 377-2, Osaka-sayama, Osaka, 589-8511, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Bone undergoes a constant process of remodeling in which mass is retained or lost in response to the relative activity of osteoblasts and osteoclasts. Weight-bearing exercise-which is critical for retaining skeletal integrity-promotes osteoblast function, whereas a lack of mechanical stimulation, as seen during spaceflight or prolonged bed rest, can lead to osteoporosis. Thus, understanding mechanotransduction at the cellular level is key to understanding basic bone biology and devising new treatments for osteoporosis. Various mechanical stimuli have been studied as in vitro model systems and have been shown to act through numerous signaling pathways to promote osteoblast activity. Here, we examine the various types of stress and the sequential response of transduction pathways that result in changes in gene expression and the ensuing proliferation of osteoblasts.
Collapse
Affiliation(s)
- Millie Hughes-Fulford
- Laboratory of Cell Growth, Department of Medicine, Veterans Affairs Medical Center, University of California, and Northern California Institute for Research and Education, San Francisco, CA 94121, USA.
| |
Collapse
|
11
|
Chen YJ, Kuo YR, Yang KD, Wang CJ, Huang HC, Wang FS. Shock wave application enhances pertussis toxin protein-sensitive bone formation of segmental femoral defect in rats. J Bone Miner Res 2003; 18:2169-79. [PMID: 14672352 DOI: 10.1359/jbmr.2003.18.12.2169] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Extracorporeal shock waves (ESWs) elicit a dose-dependent effect on the healing of segmental femoral defects in rats. After ESW treatment, the segmental defect underwent progressive mesenchymal aggregation, endochondral ossification, and hard callus formation. Along with the intensive bone formation, there was a persistent increase in TGF-beta1 and BMP-2 expression. Pretreatment with pertussis toxin reduced ESW-promoted callus formation and gap healing, which presumably suggests that Gi proteins mediate osteogenic signaling. INTRODUCTION Extracorporeal shock waves (ESWs) have previously been used to promote bone repair. In our previous report, we found that ESWs promoted osteogenic differentiation of mesenchymal cells through membrane perturbation and activation of Ras protein. In this report, we show that ESWs elicit a dose-dependent effect on the healing of segmental defects and that Gi proteins play an important role in mediating ESW stimulation. MATERIALS AND METHODS Rats with segmental femoral defects were subjected to ESW treatment at different energy flux densities (EFD) and impulses. Bone mass (mineral density and calcium content), osteogenic activities (bone alkaline phosphatase activity and osteocalcin content), and immunohistochemistry were assessed. RESULTS An optimal ESW energy (500 impulses at 0.16 mJ/mm2 EFD) stimulated complete bone healing without complications. ESW-augmented healing was characterized by significant increases (p < 0.01) in callus size, bone mineral density, and bone tissue formation. With exposure to ESW, alkaline phosphatase activity and osteocalcin production in calluses were found to be significantly enhanced (p < 0.05). After ESW treatment, the histological changes we noted included progressive mesenchymal aggregation, endochondral ossification, and hard callus formation. Intensive bone formation was associated with a persistent increase in transforming growth factor-beta 1 (TGF-beta1) and bone morphogenetic protein-2 (BMP-2) expression, suggesting both growth factors were active in ESW-promoted bone formation. We also found that pertussis toxin, an inhibitor of membrane-bound Gi proteins, significantly reduced (p < 0.01) ESW promotion of callus formation and fracture healing. CONCLUSION ESW treatments enhanced bone formation and the healing of segmental femoral defects in rats. It also seems likely that TGF-beta1 and BMP-2 are important osteogenic factors for ESW promotion of fracture healing, presumably through Gi protein-mediated osteogenic signaling.
Collapse
Affiliation(s)
- Yeung-Jen Chen
- Department of Orthopedic Trauma, Chang Gung University, Linkou, Taiwan
| | | | | | | | | | | |
Collapse
|
12
|
Chen YJ, Wang CJ, Yang KD, Chang PR, Huang HC, Huang YT, Sun YC, Wang FS. Pertussis toxin-sensitive Gαi protein and ERK-dependent pathways mediate ultrasound promotion of osteogenic transcription in human osteoblasts1. FEBS Lett 2003; 554:154-8. [PMID: 14596931 DOI: 10.1016/s0014-5793(03)01157-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone cells respond to mechanical stimulation via mechanoreceptors and convert biophysical stimulation into biochemical signals that alter gene expression and cellular adaptation. Pulsed acoustic energy treatment raises membrane potential and induces osteogenic activity. How membrane-bound osteoblast mechanoreceptors convert physical ultrasound (US) stimuli into osteogenic responses is not fully understood. We demonstrated that low-intensity pulsed US treatment (200-micros pulse, 1 kHz, 30 mW/cm2) elevated Cbfa1/Runx2 mRNA expression and progressively promoted osteocalcin mRNA expression in human osteoblasts. Pretreatment with pertussis toxin (PTX), but not with cholera toxin, suppressed US-augmented osteogenic transcription. This indicated that Gi proteins, but not Gs proteins, were involved in US promotion of osteogenic transcription. Further studies demonstrated US treatment could rapidly increase PTX-sensitive Galphai protein levels and subsequently enhanced phosphorylation of extracellular signal-regulated kinase (ERK). PTX pretreatment significantly reduced US promotion of ERK activation. Moreover, inhibition of ERK activity by PD98059 suppressed US augmentation of Cbfa1/Runx2 and osteocalcin mRNA expression. Membranous Galphai proteins and cytosolic ERK pathways acted as potent mechanosensitive signals in the response of osteoblasts to pulsed US stimulation.
Collapse
Affiliation(s)
- Yeung-Jen Chen
- Department of Orthopedic Surgery, Chang Gung University, Linkou, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Behnam K, Murray SS, Whitelegge JP, Brochmann EJ. Identification of the molecular chaperone alpha B-crystallin in demineralized bone powder and osteoblast-like cells. J Orthop Res 2002; 20:1190-6. [PMID: 12472228 DOI: 10.1016/s0736-0266(02)00071-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone is subjected to a variety of physiological, as well as cell-deforming biomechanical stresses, including hydrostatic compression and fluid flow. However, little is known about the molecular mechanisms that protect bone cells from mechanical, ischemic, or oxidative damage. Crystallins are 20 kD heat shock proteins that function as molecular chaperones. We tested the hypothesis that alpha B-crystallin (alphaB-crystallin), the most widely expressed vertebrate crystallin, is present in bone and osteoblast-like cells. Noncollagenous proteins (NCPs) were extracted from human demineralized bone matrix with 4 M guanidine HCI containing 0.5 M CaCl2 and protease inhibitors, defatted, dialyzed against 0.2% (v/v) Triton X-100 in 100 mM Tris-HCI (pH 7.2) and water, centrifuged, and lyophilized. The NCPs were separated by 2D IEF/SDS-PAGE. The two most abundant 20 kD spots, with apparent pIs of 7.85 and 7.42 in urea gels, were excised, subjected to matrix-assisted laser desorption ionization/time-of-flight mass spectrometry, and identified as alphaB-crystallins. Indirect immunofluorescence localized alphaB-crystallin to the interphase nucleus, cytoskeleton and cytoplasm of proliferating MC3T3-E1 mouse osteoblast-like cells, as well as the cytoskeleton and cytoplasm of confluent cells. In conclusion, alphaB-crystallin is present in bone and osteoblast-like cells. We hypothesize that alphaB-crystallin may play a role in protecting the osteoblast cytoskeleton from mechanical stress and may be important in modulating nuclear or cellular functions, such as transcription or apoptosis, as observed in other tissues.
Collapse
Affiliation(s)
- Keyvan Behnam
- Department of Physiological Sciences, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | | | | | | |
Collapse
|
14
|
Wei W, Wang X, Kusiak JW. Signaling events in amyloid beta-peptide-induced neuronal death and insulin-like growth factor I protection. J Biol Chem 2002; 277:17649-56. [PMID: 11882652 DOI: 10.1074/jbc.m111704200] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid beta-peptide (Abeta) is implicated as the toxic agent in Alzheimer's disease and is the major component of brain amyloid plaques. In vitro, Abeta causes cell death, but the molecular mechanisms are unclear. We analyzed the early signaling mechanisms involved in Abeta toxicity using the SH-SY5Y neuroblastoma cell line. Abeta caused cell death and induced a 2- to 3-fold activation of JNK. JNK activation and cell death were inhibited by overexpression of a dominant-negative SEK1 (SEK1-AL) construct. Butyrolactone I, a cdk5 inhibitor, had an additional protective effect against Abeta toxicity in these SEK1-AL-expressing cells suggesting that cdk5 and JNK activation independently contributed to this toxicity. Abeta also weakly activated ERK and Akt but had no effect on p38 kinase. Inhibitors of ERK and phosphoinositide 3-kinase (PI3K) pathways did not affect Abeta-induced cell death, suggesting that these pathways were not important in Abeta toxicity. Insulin-like growth factor I protected against Abeta toxicity by strongly activating ERK and Akt and blocking JNK activation in a PI3K-dependent manner. Pertussis toxin also blocked Abeta-induced cell death and JNK activation suggesting that G(i/o) proteins were upstream activators of JNK. The results suggest that activation of the JNK pathway and cdk5 may be initial signaling cascades in Abeta-induced cell death.
Collapse
Affiliation(s)
- Wanli Wei
- Molecular Neurobiology Unit, Laboratory of Cellular and Molecular Biology, NIA, Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | | | |
Collapse
|