1
|
Değirmenci MD, Çalışkan H, Güneş E. Effects of chronic intermittent cold stress on anxiety-depression-like behaviors in adolescent rats. Behav Brain Res 2024; 472:115130. [PMID: 38936426 DOI: 10.1016/j.bbr.2024.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Stress, which triggers numerous physiological and behavioral responses in the organism, is a significant risk factor that contributes to the development of psychiatric disorders such as depression and anxiety. This study aimed to investigate the inflammation, oxidative stress status, anxiety, and depression-like behaviors of adolescent rodents exposed to chronic intermittent cold stress. Adolescent male rats were subjected to a modified chronic intermittent cold stress model (21 days, 1 hour/day, 4 °C). Depression-like behaviors were evaluated using the sucrose preference and forced swimming tests, while anxiety-like behaviors were assessed using the open field, elevated plus maze, and light-dark box tests. We measured levels of cortisol, tumor necrosis factor-α, interleukin-1β, brain-derived natriuretic factor, reactive oxygen species, malondialdehyde, total oxidants and antioxidants, and other chemicals in the prefrontal cortex, thalamus, striatum, and hippocampus brain regions of rats using ELISA and colorimetric methods. Data were analyzed using Student's t-test and Pearson correlation analysis. After the cold stress treatment, both anxiety and depression-like behaviors increased remarkably in the subjects. Our study revealed significant changes in various brain regions among the stress-exposed subjects. Cold stress resulted in decreased BDNF levels in the prefrontal cortex and striatum (p < 0.05), increased cortisol levels in the prefrontal cortex (p < 0.05), increased IL-1β levels in the hippocampus and thalamus (p < 0.05), increased protein carbonyl levels in the striatum (p < 0.05), and decreased TAS in the prefrontal cortex and thalamus (p < 0.05). Adolescent rats exposed to cold exhibit both anxiety- and depression-like behaviors. This study observed an increase in inflammation in various brain regions, yet the responses to stress varied. Our findings suggest that adolescence is a period of heightened sensitivity to stress, which can lead to dramatic consequences.
Collapse
Affiliation(s)
| | - Hasan Çalışkan
- Balıkesir University Medicine Faculty, Physiology Department, Balıkesir, Turkey
| | - Emel Güneş
- Ankara University Medicine Faculty, Physiology Department, Ankara, Turkey
| |
Collapse
|
2
|
Balthazar L, Lages YVM, Romano VC, Landeira-Fernandez J, Krahe TE. The association between the renin-angiotensin system and the hypothalamic-pituitary-adrenal axis in anxiety disorders: A systematic review of animal studies. Psychoneuroendocrinology 2021; 132:105354. [PMID: 34329905 DOI: 10.1016/j.psyneuen.2021.105354] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 12/30/2022]
Abstract
Anxiety is characterized as the emotional response in anticipation of a future threat. This hypervigilant state comprehends a cascade of neuroendocrine and physiological processes, involving the renin-angiotensin system (RAS) and hypothalamic-pituitary-adrenal axis (HPA). Excessive and chronic anxiety may ultimately lead to the development of anxiety disorders. This systematic review aimed to investigate experimental studies using animal models that explored the relationship between RAS and the HPA axis in anxiety disorders. A systematic search was conducted in MEDLINE/PubMed, Embase and Web of Science, and was performed according to PRISMA guidelines. The inclusion criteria was mainly the mention of RAS, HPA axis, and an anxiety disorder in the same study. Quality of studies was evaluated according to the table of risk of bias from SYRCLE. From 12 eligible studies, 7 were included. Research in rats and mice shows that the overactivation of the RAS and HPA axis triggers several neuroendocrine reactions, mainly mediated by AT1 receptors, which promote anxiety-like behaviors and positive feedback for its hyperactivation. On the contrary, the administration of antihypertensive drugs, such as angiotensin AT1 receptor blocker, propitiated the regulation of the RAS and HPA axis, maintaining homeostasis even amid aversive situations. Assessment of risk of bias revealed a pronounced unclear to high risk in several categories, which thus jeopardize the comparability and reproducibility of the results. Nonetheless, the preclinical evidence indicates that the hyperactivation of both RAS and HPA axis during stress exerts deleterious consequences, inducing anxiogenic responses. Moreover, the compiled results show that the modulation of both systems by the administration of AT1 receptor blockers produce anxiolytic effects in animal models and may constitute a new venue for the treatment of anxiety-like disorders.
Collapse
Affiliation(s)
- L Balthazar
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Y V M Lages
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - V C Romano
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - J Landeira-Fernandez
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - T E Krahe
- Laboratório de Eletrofisiologia, Neuroplasticidade e Comportamento (LENC), Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Saavedra JM. Angiotensin Receptor Blockers Are Not Just for Hypertension Anymore. Physiology (Bethesda) 2021; 36:160-173. [PMID: 33904788 DOI: 10.1152/physiol.00036.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beyond blood pressure control, angiotensin receptor blockers reduce common injury mechanisms, decreasing excessive inflammation and protecting endothelial and mitochondrial function, insulin sensitivity, the coagulation cascade, immune responses, cerebrovascular flow, and cognition, properties useful to treat inflammatory, age-related, neurodegenerative, and metabolic disorders of many organs including brain and lung.
Collapse
Affiliation(s)
- Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
4
|
McHale TS, Gray PB, Hodges-Simeon CR, Zava DT, Albert G, Chan KC, Chee WC. Juvenile Children’s Salivary Aldosterone and Cortisone Decrease during Informal Math and Table-Tennis Competitions. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2020. [DOI: 10.1007/s40750-020-00146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Šída P, Koupilová M, Hynie S, Klenerová V. Effects of Two Types of Restraint Stress on the Learned Behaviour in Rats. ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2019.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To study the effects of stress on cognitive functions, Wistar and Lewis rats were exposed to restraint (immobilization stressor) (IMO) or restraint combined with partial immersion into water (IMO+C). Learned discriminatory avoidance response in Y-maze, with foot-shock as an unconditioned stimulus, was used as a memory test. The latency to enter the correct arm and number of wrong entries were daily recorded during the training period (20 days) until the criterion was reached, which was set at 90 % avoidances (choosing the correct arm). After exposure of rats to one of the stressors for 60 min, the rats were returned to the home cage; the latency to enter the safe arm was recorded in 6 daily trials that started 1 h after application of stressor. Both stressors significantly prolonged the avoidance latencies for 2 or 3 days in Wistar and Lewis rats, respectively; then the latencies returned to the values obtained before the stress exposure. In Lewis rats, the latencies more increased after IMO+C than after IMO stressor, and the maximal increase in latencies was higher in Lewis rats than in Wistar rats. The latency did not reach the time limit for foot-shock delivery, and the number of correct choices remained unchanged in both strains. The results indicate that the used restraint stressors did not affect the long-term memory; rather a transient impairment of retrieval can be considered. Further, differences in response of Lewis and Wistar rats may be interpreted by different activity of hypothalamic-pituitary-adrenal axis activity in used strains.
Collapse
|
6
|
Nandam LS, Brazel M, Zhou M, Jhaveri DJ. Cortisol and Major Depressive Disorder-Translating Findings From Humans to Animal Models and Back. Front Psychiatry 2019; 10:974. [PMID: 32038323 PMCID: PMC6987444 DOI: 10.3389/fpsyt.2019.00974] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a global problem for which current pharmacotherapies are not completely effective. Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has long been associated with MDD; however, the value of assessing cortisol as a biological benchmark of the pathophysiology or treatment of MDD is still debated. In this review, we critically evaluate the relationship between HPA axis dysfunction and cortisol level in relation to MDD subtype, stress, gender and treatment regime, as well as in rodent models. We find that an elevated cortisol response to stress is associated with acute and severe, but not mild or atypical, forms of MDD. Furthermore, the increased incidence of MDD in females is associated with greater cortisol response variability rather than higher baseline levels of cortisol. Despite almost all current MDD treatments influencing cortisol levels, we could find no convincing relationship between cortisol level and therapeutic response in either a clinical or preclinical setting. Thus, we argue that the absolute level of cortisol is unreliable for predicting the efficacy of antidepressant treatment. We propose that future preclinical models should reliably produce exaggerated HPA axis responses to acute or chronic stress a priori, which may, or may not, alter baseline cortisol levels, while also modelling the core symptoms of MDD that can be targeted for reversal. Combining genetic and environmental risk factors in such a model, together with the interrogation of the resultant molecular, cellular, and behavioral changes, promises a new mechanistic understanding of MDD and focused therapeutic strategies.
Collapse
Affiliation(s)
- L. Sanjay Nandam
- Mental Health Unit, Prince Charles Hospital, Brisbane, QLD, Australia
- *Correspondence: L. Sanjay Nandam, ; Dhanisha J. Jhaveri,
| | - Matthew Brazel
- Mental Health Unit, Prince Charles Hospital, Brisbane, QLD, Australia
- Department of Psychiatry, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Mei Zhou
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dhanisha J. Jhaveri
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: L. Sanjay Nandam, ; Dhanisha J. Jhaveri,
| |
Collapse
|
7
|
Kanner AM, Ribot R, Mazarati A. Bidirectional relations among common psychiatric and neurologic comorbidities and epilepsy: Do they have an impact on the course of the seizure disorder? Epilepsia Open 2018; 3:210-219. [PMID: 30564780 PMCID: PMC6293067 DOI: 10.1002/epi4.12278] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 01/13/2023] Open
Abstract
The treatment of epilepsy is not limited to the achievement of a seizure‐free state. It must also incorporate the management of common psychiatric and neurologic comorbidities, affecting on average between 30 and 50% of patients with epilepsy, which have a significant impact on their lives at various levels, including quality of life and the prognosis of the seizure disorder. Mood and anxiety disorders are the most frequent psychiatric comorbidities, whereas stroke and migraine are among the more common neurologic comorbidities, migraine among the younger patients and stroke among the older patients. Not only do these psychiatric and neurologic comorbidities each have a bidirectional relation with epilepsy, but primary mood disorders have a bidirectional relation with these 2 neurologic disorders. Furthermore, depression and migraine have been each associated with a more severe epilepsy course, whereas depression has been associated with a more severe course of stroke and migraines. The purpose of this article is to review the clinical implications of the complex relations among epilepsy and these 3 comorbid disorders, and to identify any clinical and/or experimental evidence that may suggest that having more than one of these comorbid disorders may increase the risk of and course of epilepsy.
Collapse
Affiliation(s)
- Andres M Kanner
- Comprehensive Epilepsy Center and Epilepsy Division Department of Neurology Miller School of Medicine University of Miami Miami Florida U.S.A
| | - Ramses Ribot
- Comprehensive Epilepsy Center and Epilepsy Division Department of Neurology Miller School of Medicine University of Miami Miami Florida U.S.A
| | - Andrey Mazarati
- Department of Pediatrics and Children's Discovery and Innovation Institute D. Geffen School of Medicine at UCLA Los Angeles California U.S.A
| |
Collapse
|
8
|
Mazarati A, Sankar R. Common Mechanisms Underlying Epileptogenesis and the Comorbidities of Epilepsy. Cold Spring Harb Perspect Med 2016; 6:6/7/a022798. [PMID: 27371669 DOI: 10.1101/cshperspect.a022798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The importance of comorbidities in determining the quality of life of individuals with epilepsy and their families has received increasing attention in the past decade. Along with it has come a recognition that in some individuals, certain comorbidities may have preexisted, and may have contributed to their developing epilepsy. Many mechanisms are capable of interconnecting different dysfunctions that manifest as distinct disorders, often diagnosed and managed by different specialists. We review the human data from the perspective of epidemiology as well as insights gathered from neurodiagnostic and endocrine studies. Animal studies are reviewed to refine our mechanistic understanding of the connections, because they permit the narrowing of variables, which is not possible when studying humans.
Collapse
Affiliation(s)
- Andrey Mazarati
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California 90095-1752
| | - Raman Sankar
- Department of Pediatrics, Division of Pediatric Neurology, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California 90095-1752 Department of Neurology, David Geffen School of Medicine at UCLA, UCLA Medical Center, Los Angeles, California 90095-1752
| |
Collapse
|
9
|
Subchronic and mild social defeat stress accelerates food intake and body weight gain with polydipsia-like features in mice. Behav Brain Res 2014; 270:339-48. [DOI: 10.1016/j.bbr.2014.05.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/28/2014] [Accepted: 05/19/2014] [Indexed: 01/04/2023]
|
10
|
Abstract
The last decade has witnessed a significant shift on our understanding of the relationship between psychiatric disorders and epilepsy. While traditionally psychiatric disorders were considered as a complication of the underlying seizure disorder, new epidemiologic data, supported by clinical and experimental research, have suggested the existence of a bidirectional relation between the two types of conditions: not only are patients with epilepsy at greater risk of experiencing a psychiatric disorder, but patients with primary psychiatric disorders are at greater risk of developing epilepsy. Do these data suggest that some of the pathogenic mechanisms operant in psychiatric comorbidities play a role in epileptogenesis? The aim of this article is to review the epidemiologic data that demonstrate that primary psychiatric disorders are more frequent in people who develop epilepsy, before the onset of the seizure disorder than among controls. The next question looks at the available data of pathogenic mechanisms of primary mood disorders and their potential for facilitating the development and/or exacerbation in the severity of epileptic seizures. Finally, we review data derived from experimental studies in animal models of depression and epilepsy that support a potential role of pathogenic mechanisms of mood disorders in the development of epileptic seizures and epileptogenesis. The data presented in this article do not yet establish conclusive evidence of a pathogenic role of psychiatric comorbidities in epileptogenesis, but raise important research questions that need to be investigated in experimental, clinical, and population-based epidemiologic research studies.
Collapse
Affiliation(s)
- Andres M Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW, 14th Street, Room 1324, Miami, FL, 33136, USA,
| | | | | |
Collapse
|
11
|
Abstract
The effects of brain AngII (angiotensin II) depend on AT(1) receptor (AngII type 1 receptor) stimulation and include regulation of cerebrovascular flow, autonomic and hormonal systems, stress, innate immune response and behaviour. Excessive brain AT(1) receptor activity associates with hypertension and heart failure, brain ischaemia, abnormal stress responses, blood-brain barrier breakdown and inflammation. These are risk factors leading to neuronal injury, the incidence and progression of neurodegerative, mood and traumatic brain disorders, and cognitive decline. In rodents, ARBs (AT(1) receptor blockers) ameliorate stress-induced disorders, anxiety and depression, protect cerebral blood flow during stroke, decrease brain inflammation and amyloid-β neurotoxicity and reduce traumatic brain injury. Direct anti-inflammatory protective effects, demonstrated in cultured microglia, cerebrovascular endothelial cells, neurons and human circulating monocytes, may result not only in AT(1) receptor blockade, but also from PPARγ (peroxisome-proliferator-activated receptor γ) stimulation. Controlled clinical studies indicate that ARBs protect cognition after stroke and during aging, and cohort analyses reveal that these compounds significantly reduce the incidence and progression of Alzheimer's disease. ARBs are commonly used for the therapy of hypertension, diabetes and stroke, but have not been studied in the context of neurodegenerative, mood or traumatic brain disorders, conditions lacking effective therapy. These compounds are well-tolerated pleiotropic neuroprotective agents with additional beneficial cardiovascular and metabolic profiles, and their use in central nervous system disorders offers a novel therapeutic approach of immediate translational value. ARBs should be tested for the prevention and therapy of neurodegenerative disorders, in particular Alzheimer's disease, affective disorders, such as co-morbid cardiovascular disease and depression, and traumatic brain injury.
Collapse
Affiliation(s)
- Juan M Saavedra
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Saavedra JM. Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders. Cell Mol Neurobiol 2011; 32:667-81. [PMID: 21938488 DOI: 10.1007/s10571-011-9754-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/26/2011] [Indexed: 01/06/2023]
Abstract
Excessive allostatic load as a consequence of deregulated brain inflammation participates in the development and progression of multiple brain diseases, including but not limited to mood and neurodegenerative disorders. Inhibition of the peripheral and brain Renin-Angiotensin System by systemic administration of Angiotensin II AT(1) receptor blockers (ARBs) ameliorates inflammatory stress associated with hypertension, cold-restraint, and bacterial endotoxin administration. The mechanisms involved include: (a) decreased inflammatory factor production in peripheral organs and their release to the circulation; (b) reduced progression of peripherally induced inflammatory cascades in the cerebral vasculature and brain parenchyma; and (c) direct anti-inflammatory effects in cerebrovascular endothelial cells, microglia, and neurons. In addition, ARBs reduce bacterial endotoxin-induced anxiety and depression. Further pre-clinical experiments reveal that ARBs reduce brain inflammation, protect cognition in rodent models of Alzheimer's disease, and diminish brain inflammation associated with genetic hypertension, ischemia, and stroke. The anti-inflammatory effects of ARBs have also been reported in circulating human monocytes. Clinical studies demonstrate that ARBs improve mood, significantly reduce cognitive decline after stroke, and ameliorate the progression of Alzheimer's disease. ARBs are well-tolerated and extensively used to treat cardiovascular and metabolic disorders such as hypertension and diabetes, where inflammation is an integral pathogenic mechanism. We propose that including ARBs in a novel integrated approach for the treatment of brain disorders such as depression and Alzheimer's disease may be of immediate translational relevance.
Collapse
Affiliation(s)
- Juan M Saavedra
- Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Saavedra JM, Sánchez-Lemus E, Benicky J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications. Psychoneuroendocrinology 2011; 36:1-18. [PMID: 21035950 PMCID: PMC2998923 DOI: 10.1016/j.psyneuen.2010.10.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 12/22/2022]
Abstract
Poor adaptation to stress, alterations in cerebrovascular function and excessive brain inflammation play critical roles in the pathophysiology of many psychiatric and neurological disorders such as major depression, schizophrenia, post traumatic stress disorder, Parkinson's and Alzheimer's diseases and traumatic brain injury. Treatment for these highly prevalent and devastating conditions is at present very limited and many times inefficient, and the search for novel therapeutic options is of major importance. Recently, attention has been focused on the role of a brain regulatory peptide, Angiotensin II, and in the translational value of the blockade of its physiological AT(1) receptors. In addition to its well-known cardiovascular effects, Angiotensin II, through AT(1) receptor stimulation, is a pleiotropic brain modulatory factor involved in the control of the reaction to stress, in the regulation of cerebrovascular flow and the response to inflammation. Excessive brain AT(1) receptor activity is associated with exaggerated sympathetic and hormonal response to stress, vulnerability to cerebrovascular ischemia and brain inflammation, processes leading to neuronal injury. In animal models, inhibition of brain AT(1) receptor activity with systemically administered Angiotensin II receptor blockers is neuroprotective; it reduces exaggerated stress responses and anxiety, prevents stress-induced gastric ulcerations, decreases vulnerability to ischemia and stroke, reverses chronic cerebrovascular inflammation, and reduces acute inflammatory responses produced by bacterial endotoxin. These effects protect neurons from injury and contribute to increase the lifespan. Angiotensin II receptor blockers are compounds with a good margin of safety widely used in the treatment of hypertension and their anti-inflammatory and vascular protective effects contribute to reduce renal and cardiovascular failure. Inhibition of brain AT(1) receptors in humans is also neuroprotective, reducing the incidence of stroke, improving cognition and decreasing the progression of Alzheimer's disease. Blockade of AT(1) receptors offers a novel and safe therapeutic approach for the treatment of illnesses of increasing prevalence and socioeconomic impact, such as mood disorders and neurodegenerative diseases of the brain.
Collapse
Affiliation(s)
- Juan M Saavedra
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, 10 Center Drive, Building 10, Room 2D-57, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
14
|
Duclot F, Hollis F, Darcy MJ, Kabbaj M. Individual differences in novelty-seeking behavior in rats as a model for psychosocial stress-related mood disorders. Physiol Behav 2010; 104:296-305. [PMID: 21172365 DOI: 10.1016/j.physbeh.2010.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/12/2010] [Accepted: 12/13/2010] [Indexed: 01/09/2023]
Abstract
Most neuropsychiatric disorders, including stress-related mood disorders, are complex multi-parametric syndromes. Diagnoses are therefore hard to establish and current therapeutic strategies suffer from significant variability in effectiveness, making the understanding of inter-individual variations crucial to unveiling effective new treatments. In rats, such individual differences are observed during exposure to a novel environment, where individuals will exhibit either high or low locomotor activity and can thus be separated into high (HR) and low (LR) responders, respectively. In rodents, a long-lasting, psychosocial, stress-induced depressive state can be triggered by exposure to a social defeat procedure. We therefore analyzed the respective vulnerabilities of HR and LR animals to long-lasting, social defeat-induced behavioral alterations relevant to mood disorders. Two weeks after four daily consecutive social defeat exposures, HR animals exhibit higher anxiety levels, reduced body weight gain, sucrose preference, and a marked social avoidance. LR animals, however, remain unaffected. Moreover, while repeated social defeat exposure induces long-lasting contextual fear memory in both HR and LR animals, only HR individuals exhibit marked freezing behavior four weeks after a single social defeat. Combined, these findings highlight the critical involvement of inter-individual variations in novelty-seeking behavior in the vulnerability to stress-related mood disorders, and uncover a promising model for posttraumatic stress disorder.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
15
|
Novelty-evoked activity in open field predicts susceptibility to helpless behavior. Physiol Behav 2010; 101:746-54. [PMID: 20804778 DOI: 10.1016/j.physbeh.2010.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 08/16/2010] [Accepted: 08/23/2010] [Indexed: 11/23/2022]
Abstract
Learned helplessness in animals has been used to model disorders such as depression and post-traumatic stress disorder (PTSD), but there is a lack of knowledge concerning which individual behavioral characteristics at baseline can predict helpless behavior after exposure to inescapable stress. The first aim of this study was to determine behavioral predictors of helplessness using the novel and familiar open-field tests, sucrose consumption, and passive harm-avoidance tasks before learned helplessness training and testing. Individual differences in physiologic responses to restraint stress were also assessed. A cluster analysis of escape latencies from helplessness testing supported the division of the sample population of Holtzman rats into approximately 50% helpless and 50% non-helpless. Linear regression analyses further revealed that increased reactivity to the novel environment, but not general activity or habituation, predicted susceptibility to learned helplessness. During restraint stress there were no mean differences in heart rate, heart rate variability, and plasma corticosterone between helpless and non-helpless rats; however, a lower heart rate during stress was associated with higher activity levels during exploration. Our most important finding was that by using an innocuous screening tool such as the novel and familiar open-field tests, it was possible to identify subjects that were susceptible to learned helplessness.
Collapse
|
16
|
Shevchenko AY, Yakovleva TV, Makarova EN, Bazhan NM. Postnatal development of corticosteroid function of the adrenals in C57BL/6J-A y mice. Russ J Dev Biol 2007. [DOI: 10.1134/s1062360407010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
|
18
|
Hegadoren KM, Lasiuk GC, Coupland NJ. Posttraumatic stress disorder Part III: health effects of interpersonal violence among women. Perspect Psychiatr Care 2006; 42:163-73. [PMID: 16916419 DOI: 10.1111/j.1744-6163.2006.00078.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TOPIC The aim of this three-part series is to examine the sufficiency of the posttraumatic stress (PTSD) diagnostic construct to capture the full spectrum of human responses to psychological trauma. Part I (Lasiuk & Hegadoren, 2006a) reviewed the conceptual history of PTSD from the nineteenth century to its inclusion in the third edition of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 1980), while Part II (Lasiuk & Hegadoren, 2006b) described subsequent refinements to the original PTSD diagnostic criteria and highlighted subsequent controversies. PURPOSE This paper focuses on interpersonal violence (sexual, physical, and emotional abuse/assault) and its sequelae in women. We argue in support of Judith Herman's (1992) conceptualization of the human trauma response as a spectrum, anchored at one end by an acute stress reaction that resolves on its own without treatment, and on the other by "complex" PTSD, with "classic" or "simple" PTSD somewhere between the two. SOURCES OF INFORMATION he existing theoretical, clinical and research literatures related to humans responses to trauma. CONCLUSION The paper concludes with a call for the need to increase a gendered perspective in all aspects of trauma research and clinical service delivery.
Collapse
|
19
|
Kohen R, Kirov S, Navaja GP, Happe HK, Hamblin MW, Snoddy JR, Neumaier JF, Petty F. Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats. THE PHARMACOGENOMICS JOURNAL 2005; 5:278-91. [PMID: 16010284 DOI: 10.1038/sj.tpj.6500322] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Animals
- Behavior, Animal/physiology
- Depression/genetics
- Depression/physiopathology
- Disease Models, Animal
- Electroshock
- Gene Expression
- Gene Expression Profiling
- Helplessness, Learned
- Hippocampus/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mitogen-Activated Protein Kinase 9/genetics
- Mitogen-Activated Protein Kinase 9/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/physiopathology
- Untranslated Regions
Collapse
Affiliation(s)
- R Kohen
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ladd CO, Thrivikraman KV, Huot RL, Plotsky PM. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates. Psychoneuroendocrinology 2005; 30:520-33. [PMID: 15808921 DOI: 10.1016/j.psyneuen.2004.12.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 12/13/2004] [Indexed: 01/08/2023]
Abstract
Burgeoning evidence supports a preeminent role for early- and late-life stressors in the development of physio- and psychopathology. Handling-maternal separation (HMS) in neonatal Long Evans hooded rats leads to stable phenotypes ranging from resilient to vulnerable to later stressor exposure. Handling with 180 min of maternal separation yields a phenotype of stress hyper-responsiveness associated with facilitation of regional CRF neurocircuits and glucocorticoid resistance. This study assessed whether or not prolonged HMS (180 min/day, HMS180) on post-natal days 2-14 sensitizes the adult limbic hypothalamo-pituitary-adrenal (LHPA) axis to chronic variable stress (CS) compared to brief HMS (15 min/day, HMS15). We examined regional mRNA densities of corticotropin-releasing factor (CRF), its receptor CRF1, glucocorticoid receptor (GR), and mineralocorticoid receptor (MR); regional CRF1 and CRF2alpha binding, and pituitary-adrenal responses to an acute air-puff startle (APS) stressor in four groups: HMS15, nonstressed; HMS15, stressed; HMS180, nonstressed; HMS180, stressed. As expected we observed exaggerated pituitary-adrenal responses to APS, increased regional CRF mRNA density, decreased regional CRF1 binding, and decreased cortical GR mRNA density in nonstressed HMS180 vs. HMS15 animals. However, in contrast to our hypothesis, CS decreased pituitary-adrenal reactivity and central amygdala CRF mRNA density in HMS180 rats, while increasing cortical GR mRNA density and CRF1 binding. CS had no effect on the pituitary-adrenal response to APS in HMS15 rats, despite tripling hypothalamic paraventricular CRF mRNA density. The data suggest that many effects of prolonged HMS are reversible in adulthood by CS, while the neuroendocrine adaptations imbued by brief HMS are sufficiently stable to restrain pituitary-adrenal stress responses even following CS.
Collapse
MESH Headings
- Adaptation, Physiological
- Adrenocorticotropic Hormone/blood
- Analysis of Variance
- Animals
- Animals, Newborn/psychology
- Chronic Disease
- Corticosterone/blood
- Corticotropin-Releasing Hormone/genetics
- Corticotropin-Releasing Hormone/metabolism
- Disease Models, Animal
- Female
- Handling, Psychological
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Maternal Deprivation
- Pituitary-Adrenal System/metabolism
- Pituitary-Adrenal System/physiopathology
- RNA, Messenger/analysis
- Random Allocation
- Rats
- Rats, Long-Evans
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Reflex, Startle/physiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Tissue Distribution
Collapse
Affiliation(s)
- Charlotte O Ladd
- Stress Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1639 Pierce Drive, Ste 4105, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
21
|
Abstract
In response to stress, the brain activates several neuropeptide-secreting systems. This eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators. By targeting many genes, corticosteroids function in a binary fashion, and serve as a master switch in the control of neuronal and network responses that underlie behavioural adaptation. In genetically predisposed individuals, an imbalance in this binary control mechanism can introduce a bias towards stress-related brain disease after adverse experiences. New candidate susceptibility genes that serve as markers for the prediction of vulnerable phenotypes are now being identified.
Collapse
Affiliation(s)
- E Ron de Kloet
- Department of Medical Pharmacology, Leiden Amsterdam Center for Drug Research and Leiden University Medical Center, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands.
| | | | | |
Collapse
|
22
|
Abstract
Among the most useful models for depressive disorders are those, which involve a stress induced change in behaviour. Learned helplessness is one such model and is induced through exposure to uncontrollable and unpredictable aversive events. Learned helplessness as induced in rats using foot shock is well characterized and has good face validity and predictive validity as a model of depression, including alterations in HPA axis activity and REM sleep characteristic of depression. The data concerning the validity will be briefly reviewed. The model can also be used to look at the role of genetics through selective breeding. These studies will be reviewed and the utility of the genetic strains for understanding the interaction of stress and affect will be examined. A second model of depression using exposure to chronic stress also has high face and predictive validity. A new form of this approach, recently described, also is suitable for the examination of genetic factors leading to depressive like behaviour and this will be presented.
Collapse
Affiliation(s)
- Fritz A Henn
- Central Institute of Mental Health, D-68159 Mannheim, Germany.
| | | |
Collapse
|
23
|
Igosheva N, Klimova O, Anishchenko T, Glover V. Prenatal stress alters cardiovascular responses in adult rats. J Physiol 2004; 557:273-85. [PMID: 15034122 PMCID: PMC1665046 DOI: 10.1113/jphysiol.2003.056911] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Environmental factors in early life are clearly established risk factors for cardiovascular disease in later life. Most studies have focused on nutritional programming and analysed basal cardiovascular parameters rather than responses. In the present study we have investigated whether prenatal stress has long-term effects on cardiovascular responses in adult offspring. Female pregnant Sprague-Dawley rats were subjected to stress three times daily from day 15 to day 21 of gestation. Litters from stressed and control females were cross-fostered at birth to control for mothering effects. When the offspring were 6 months old, blood pressure was measured in the conscious rats through implanted catheters at rest, during restraint stress and during recovery. Basal haemodynamic parameters were similar in the different groups but the pattern of cardiovascular responses during stress and recovery differed markedly between prenatally stressed (PS) and control animals. PS rats had higher and longer-lasting systolic arterial pressure elevations to restraint stress than control animals. They also showed elevated systolic and diastolic blood pressure values during the recovery phase. PS rats demonstrated a greater increase in blood pressure variability compared with control animals during exposure to restraint stress, and showed more prolonged heart rate responses to acute stress and delayed recovery than controls. There was no effect of prenatal stress on baroreflex regulation of heart rate. PS females showed a greater increase in systolic arterial pressure and blood pressure variability and delayed heart rate recovery following return to the home cage then did PS males. These findings demonstrate for the first time that prenatal stress can induce long-term, sex-related changes in the sensitivity of the cardiovascular system to subsequent stress.
Collapse
Affiliation(s)
- N Igosheva
- Department of Biology, University of Saratov, Saratov, Astrakhanskaya str. 83, 410026, Saratov, Russia.
| | | | | | | |
Collapse
|
24
|
Klenerová V, Jurcovicová J, Kaminský O, Sída P, Krejcí I, Hlinák Z, Hynie S. Combined restraint and cold stress in rats: effects on memory processing in passive avoidance task and on plasma levels of ACTH and corticosterone. Behav Brain Res 2003; 142:143-9. [PMID: 12798275 DOI: 10.1016/s0166-4328(02)00401-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of restraint stress combined with water immersion (IMO+C), applied at various intervals before and after the acquisition of a passive avoidance task, was studied in rats. The procedure started with two pre-training trials. On the single training trial the rats received a footshock (0.3 mA, 3s) after they entered the preferred dark compartment. The exposure to IMO+C lasting 1 h terminated 4 or 1 h before application of the footshock or started immediately or 3 h after this aversive stimulus. Retention tests were performed 1 and 2 days after the acquisition trial. In an attempt to relate the behavioural responses to the stressor with plasma levels of two stress hormones we measured ACTH and corticosterone under similar conditions as were used in the behavioural experiments. IMO+C exposure terminating 1 h before the training resulted in very short avoidance latencies during retention testing. A similar impairment of retention test performance was found in animals exposed to the stressor immediately after training. When IMO+C exposure terminated 4 h before training the stressed rats exhibited comparably long avoidance latencies as shown by the controls. IMO+C presented 3 h after acquisition trial also did not influence retention of avoidance learning. The hormones were estimated 1 and 4 h after IMO+C, both in the absence and presence of footshock. Both ACTH and corticosterone were significantly increased 1 h after IMO+C termination, and their plasma levels returned to control values within 4 h. Footshock alone increased plasma corticosterone, however, the hormone levels were significantly lower than those estimated after IMO+C terminating 1 h before blood collection. Footshock substantially increased ACTH levels in rats exposed to IMO+C 1 h before footshock, but not in stressed rats with already high levels of corticosterone. In conclusion, IMO+C represents a strong stress stimulus exerting amnesic effect when applied shortly before or after the acquisition trial. Further, the findings indicate the restraint and cold stressor to interfere with consolidation of passive avoidance response. We suggest that the moderate circulating levels of corticosterone found after footshock may be positively related to the memory consolidation, while the exceedingly high levels have an opposite effect.
Collapse
Affiliation(s)
- Vera Klenerová
- 1st Medical Faculty, Institute of Pharmacology, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kohen R, Neumaier JF, Hamblin MW, Edwards E. Congenitally learned helpless rats show abnormalities in intracellular signaling. Biol Psychiatry 2003; 53:520-9. [PMID: 12644357 DOI: 10.1016/s0006-3223(02)01503-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Affective disorders and the drugs used to treat them lead to changes in intracellular signaling. We used a genetic animal model to investigate to what extent changes in intracellular signal transduction confer a vulnerability to mood or anxiety disorders. METHODS Levels of gene expression in a selectively bred strain of rats with a high vulnerability to develop congenitally learned helplessness (cLH), a strain highly resistant to the same behavior (cNLH) and outbred Sprague-Dawley (SD) control animals were compared using quantitative reverse transcription polymerase chain reaction. RESULTS Congenitally learned helpless animals had a 24%-30% reduced expression of the cyclic adenosine monophosphate response element binding protein messenger ribonucleic acid (mRNA) in the hippocampus and a 40%-41% increased level of the antiapoptotic protein bcl-2 mRNA in the prefrontal cortex compared to cNLH and SD rats. Other significant changes included changes in the expression levels of the alpha catalytic subunit of protein kinase A, glycogen synthase kinase 3beta, and protein kinase C epsilon. CONCLUSIONS Congenitally learned helpless animals show evidence of altered signal transduction and regulation of apoptosis compared to cNLH and SD control animals.
Collapse
Affiliation(s)
- Ruth Kohen
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
26
|
Shaffery J, Hoffmann R, Armitage R. The neurobiology of depression: perspectives from animal and human sleep studies. Neuroscientist 2003; 9:82-98. [PMID: 12580343 DOI: 10.1177/1073858402239594] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This article reviews human and animal studies in the neurobiology of depression. The etiology of the illness, associated neurotransmitter dysregulation, sex steroids, the role of stress, and sleep regulation are discussed. It is suggested that the genesis of depression is related to homeostatic maladaptation that is sexually dimorphic. The authors propose that depressed females are hyperresponsive to stress, whereas depressed males are hyporesponsive to stress. This divergence reflects the exaggeration of naturally occurring differences between males and females, which are most obvious under challenge conditions. The authors conclude that future work in this area should fully evaluate sexual dimorphism, neural plasticity, critical periods, and individual differences in vulnerability.
Collapse
|
27
|
Abstract
BACKGROUND Acute stress has profound effects on serotonergic activity, but it is not known whether alterations in the serotonin system can predispose individuals to exaggerated stress responses. We examined the regulation of 5-HT(1B) and 5-HT(1A) mRNA in two rodent models of differential sensitivity to stress: congenital learned helplessness (cLH) and handling and maternal separation (HMS). METHODS 5-HT(1B) and 5-HT(1A) mRNAs in brain tissue sections were quantitated by in situ hybridization from control, stress-sensitive, and stress-resistant male rats in the HMS model and stress-sensitive and stress-resistant rats (both males and females) in the cLH model. Dorsal raphe nucleus, striatum, and hippocampus were examined. RESULTS The main result was that dorsal raphe 5-HT(1B) mRNA was substantially elevated (63-73%) in male rats in the stress-resistant group of both models compared with stress-sensitive animals. 5-HT(1B) mRNA in female rats did not differ between groups in the cLH model. There were no differences in 5-HT(1A) mRNA between HMS groups. CONCLUSIONS These findings suggest that 5-HT(1B) autoreceptor regulation is altered in animals with diminished stress reactivity. These results suggest that 5-HT(1B) autoreceptors in unstressed and acutely stressed animals differ, indicating the importance of state versus trait changes in serotonin function in animal models of anxiety and depression.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Female
- Gene Expression Regulation
- In Situ Hybridization
- Male
- Models, Animal
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Raphe Nuclei/metabolism
- Rats
- Receptor, Serotonin, 5-HT1B
- Receptors, Serotonin/genetics
- Receptors, Serotonin, 5-HT1
- Stress, Physiological/genetics
- Stress, Physiological/metabolism
Collapse
Affiliation(s)
- John F Neumaier
- Department of Psychiatry and Behavioral Sciences and Harborview Medical Center, University of Washington, Washington 98104, USA
| | | | | |
Collapse
|
28
|
García-Ovejero D, Trejo JL, Ciriza I, Walton KD, García-Segura LM. Space flight affects magnocellular supraoptic neurons of young prepuberal rats: transient and permanent effects. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 130:191-205. [PMID: 11675122 DOI: 10.1016/s0165-3806(01)00236-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of microgravity on postural control and volume of extracellular fluids as well as stress associated with space flight may affect the function of hypothalamic neurosecretory neurons. Since environmental modifications in young animals may result in permanent alterations in neuroendocrine function, the present study was designed to determine the effect of a space flight on oxytocinergic and vasopressinergic magnocellular hypothalamic neurons of prepuberal rats. Fifteen-day-old Sprague-Dawley female rats were flown aboard the Space Shuttle Columbia (STS-90, Neurolab mission, experiment 150) for 16 days. Age-matched litters remained on the ground in cages similar to those of the flight animals. Six animals from each group were killed on the day of landing and eight animals from each group were maintained under standard vivarium conditions and killed 18 weeks after landing. Several signs of enhanced transcriptional and biosynthetic activity were observed in magnocellular supraoptic neurons of flight animals on the day of landing compared to control animals. These include increased c-Fos expression, larger nucleoli and cytoplasm, and higher volume occupied in the neuronal perikaryon by mitochondriae, endoplasmic reticulum, Golgi apparatus, lysosomes and cytoplasmic inclusions known as nematosomes. In contrast, the volume occupied by neurosecretory vesicles in the supraoptic neuronal perikarya was significantly decreased in flight rats. This decrease was associated with a significant decrease in oxytocin and vasopressin immunoreactive levels, suggestive of an increased hormonal release. Vasopressin levels, cytoplasmic volume and c-Fos expression returned to control levels by 18 weeks after landing. These reversible effects were probably associated to osmotic stimuli resulting from modifications in the volume and distribution of extracellular fluids and plasma during flight and landing. However, oxytocin levels were still reduced at 18 weeks after landing in flight animals compared to controls. This indicates that space flight during prepuberal age may induce irreversible modifications in the regulation of oxytocinergic neurons, which in turn may result in permanent endocrine and behavioral impairments.
Collapse
Affiliation(s)
- D García-Ovejero
- Instituto Cajal, C.S.I.C., Avda. Doctor Arce 37, E-28002 Madrid, Spain.
| | | | | | | | | |
Collapse
|
29
|
Vollmayr B, Faust H, Lewicka S, Henn FA. Brain-derived-neurotrophic-factor (BDNF) stress response in rats bred for learned helplessness. Mol Psychiatry 2001; 6:471-4, 358. [PMID: 11443536 DOI: 10.1038/sj.mp.4000907] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2000] [Revised: 02/16/2001] [Accepted: 02/20/2001] [Indexed: 11/08/2022]
Abstract
Stress-induced elevation of glucocorticoids is accompanied by structural changes and neuronal damage in certain brain areas. This includes reduced expression of brain-derived neurotrophic factor (BDNF) in the hippocampus which can be prevented by chronic electroconvulsive seizures and antidepressant drug treatment. In the last years we have bred two strains of rats, one which reacts with congenital helplessness to stress (cLH), and one which congenitally does not acquire helplessness when stressed (cNLH). After being selectively bred for more than 40 generations these strains have lost their behavioural plasticity including their sensitivity to antidepressant treatment. We show here that in cLH rats, acute immobilization stress does not induce a reduction of BDNF expression in the hippocampus which is observed in Sprague--Dawley and cNLH rats. All animals tested exhibited elevated corticosterone levels when stressed, an indication, that in cLH rats regulation of BDNF expression in the hippocampal formation is uncoupled from corticosterone increase induced through stress. This may explain the lack of adaptive responses in this strain.
Collapse
Affiliation(s)
- B Vollmayr
- Central Institute of Mental Health, J5, D-68159 Mannheim, Germany
| | | | | | | |
Collapse
|