1
|
Gao L, Qiao H, Wei P, Moussian B, Wang Y. Xenobiotic responses in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21869. [PMID: 35088911 DOI: 10.1002/arch.21869] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Insects have evolved a powerful detoxification system to protect themselves against environmental and anthropogenic xenobiotics including pesticides and nanoparticles. The resulting tolerance to insecticides is an immense problem in agriculture. In this study, we summarize advances in our understanding of insect xenobiotic responses: the detoxification strategies and the regulation mechanisms against xenobiotics including nanoparticles, the problem of response specificity and the potential usefulness of this study field for an elaborate pest management. In particular, we highlight that versatility of the detoxification system relies on the relatively unspecific recognition of a broad range of potential toxic substances that trigger either of various canonical xenobiotic responses signaling pathways, including CncC/Keap1, HR96, AHR/ARNT, GPCR, and MAPK/CREB. However, it has emerged that the actual response to an inducer may nevertheless be specific. There are two nonexclusive possibilities that may explain response specificity: (1) differential cross-talk between the known pathways and (2) additional, yet unidentified regulators and pathways of detoxification. Hence, a deeper and broader understanding of the regulation mechanisms of xenobiotic response in insects in the future might facilitate the development and application of highly efficient and environmentally friendly pest control methods, allowing us to face the challenge of the world population growth.
Collapse
Affiliation(s)
- Lujuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Peng Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
- Université Côte d'Azur, Parc Valrose, Nice, France
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Fung CY, Zhu KY, Major K, Poynton HC, Huff Hartz KE, Wellborn G, Lydy MJ. The contribution of detoxification pathways to pyrethroid resistance in Hyalella azteca. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117158. [PMID: 33895574 DOI: 10.1016/j.envpol.2021.117158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Chronic exposure to pyrethroid insecticides can result in strong selective pressures on non-target species in aquatic systems and drive the evolution of resistance and population-level changes. Characterizing the underlying mechanisms of resistance is essential to better understanding the potential consequences of contaminant-driven microevolution. The current study found that multiple mechanisms enhance the overall tolerance of Hyalella azteca to the pyrethroid permethrin. In H. azteca containing mutations in the voltage-gated sodium channel (VGSC), both adaptation and acclimation played a role in mitigating the adverse effects of pyrethroid exposures. Pyrethroid resistance is primarily attributed to the heritable mutation at a single locus of the VGSC, resulting in reduced target-site sensitivity. However, additional pyrethroid tolerance was conferred through enhanced enzyme-mediated detoxification. Cytochrome P450 monooxygenases (CYP450) and general esterases (GE) significantly contributed to the detoxification of permethrin in H. azteca. Over time, VGSC mutated H. azteca retained most of their pyrethroid resistance, though there was some increased sensitivity from parent to offspring when reared in the absence of pyrethroid exposure. Permethrin median lethal concentrations (LC50s) declined from 1809 ng/L in parent (P0) individuals to 1123 ng/L in the first filial (F1) generation, and this reduction in tolerance was likely related to alterations in acclimation mechanisms, rather than changes to target-site sensitivity. Enzyme bioassays indicated decreased CYP450 and GE activity from P0 to F1, whereas the VGSC mutation was retained. The permethrin LC50s in resistant H. azteca were still two orders-of-magnitude higher than non-resistant populations indicating that the largest proportion of resistance was maintained through the inherited VGSC mutation. Thus, the noted variation in tolerance in H. azteca is likely associated with inducible traits controlling enzyme pathways. A better understanding of the mechanistic and genomic basis of acclimation is necessary to more accurately predict the ecological and evolutionary consequences of contaminant-driven change in H. azteca.
Collapse
Affiliation(s)
- Courtney Y Fung
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Kaley Major
- School for the Environment, University of Massachusetts, Boston, Massachusetts, 02125, USA.
| | - Helen C Poynton
- School for the Environment, University of Massachusetts, Boston, Massachusetts, 02125, USA.
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| | - Gary Wellborn
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA.
| | - Michael J Lydy
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, 62901, USA.
| |
Collapse
|
3
|
Molecular response of Musca domestica L. to Mintostachys verticillata essential oil, (4R)(+)-pulegone and menthone. Fitoterapia 2012; 83:336-42. [DOI: 10.1016/j.fitote.2011.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 11/17/2011] [Accepted: 11/25/2011] [Indexed: 11/15/2022]
|
4
|
Johnson RM, Mao W, Pollock HS, Niu G, Schuler MA, Berenbaum MR. Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. PLoS One 2012; 7:e31051. [PMID: 22319603 PMCID: PMC3272026 DOI: 10.1371/journal.pone.0031051] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/31/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Honey bees are exposed to phytochemicals through the nectar, pollen and propolis consumed to sustain the colony. They may also encounter mycotoxins produced by Aspergillus fungi infesting pollen in beebread. Moreover, bees are exposed to agricultural pesticides, particularly in-hive acaricides used against the parasite Varroa destructor. They cope with these and other xenobiotics primarily through enzymatic detoxificative processes, but the regulation of detoxificative enzymes in honey bees remains largely unexplored. METHODOLOGY/PRINCIPAL FINDINGS We used several approaches to ascertain effects of dietary toxins on bee susceptibility to synthetic and natural xenobiotics, including the acaricide tau-fluvalinate, the agricultural pesticide imidacloprid, and the naturally occurring mycotoxin aflatoxin. We administered potential inducers of cytochrome P450 enzymes, the principal biochemical system for Phase 1 detoxification in insects, to investigate how detoxification is regulated. The drug phenobarbital induces P450s in many insects, yet feeding bees with phenobarbital had no effect on the toxicity of tau-fluvalinate, a pesticide known to be detoxified by bee P450s. Similarly, no P450 induction, as measured by tau-fluvalinate tolerance, occurred in bees fed xanthotoxin, salicylic acid, or indole-3-carbinol, all of which induce P450s in other insects. Only quercetin, a common pollen and honey constituent, reduced tau-fluvalinate toxicity. In microarray comparisons no change in detoxificative gene expression was detected in phenobarbital-treated bees. However, northern blot analyses of guts of bees fed extracts of honey, pollen and propolis showed elevated expression of three CYP6AS P450 genes. Diet did not influence tau-fluvalinate or imidacloprid toxicity in bioassays; however, aflatoxin toxicity was higher in bees consuming sucrose or high-fructose corn syrup than in bees consuming honey. CONCLUSIONS/SIGNIFICANCE These results suggest that regulation of honey bee P450s is tuned to chemicals occurring naturally in the hive environment and that, in terms of toxicological capacity, a diet of sugar is not equivalent to a diet of honey.
Collapse
Affiliation(s)
- Reed M Johnson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.
| | | | | | | | | | | |
Collapse
|
5
|
Kirsanov KI, Lesovaya EA, Sidorov RA, Belitsky GA, Yakubovskaya MG. Analysis of blastomogenic activity of mammal carcinogens in Drosophila using the wts P4 allele and RNA interference-induced P53 silencing. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795411040065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Thornton BJ, Elthon TE, Cerny RL, Siegfried BD. Proteomic analysis of atrazine exposure in Drosophila melanogaster (Diptera: Drosophilidae). CHEMOSPHERE 2010; 81:235-241. [PMID: 20609461 DOI: 10.1016/j.chemosphere.2010.06.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/31/2010] [Accepted: 06/08/2010] [Indexed: 05/29/2023]
Abstract
Atrazine is a widely used herbicide that has been reported to induce the activity of certain detoxification enzymes and to affect insecticide toxicity in organisms experiencing simultaneous exposure to both atrazine and insecticides. In this study, the effects of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) exposure on protein expression in male and female Drosophila melanogaster adults in both microsomal and cytosolic cell fractions was investigated by 2-dimensional gel electrophoresis. Differentially expressed proteins (vs. controls) were identified using matrix assisted laser desorption-time (MALDI-TOF) of flight mass spectrometry (MS). We identified a total of 28 proteins associated with energy production including glycolysis and mitochondrial respiration as differentially expressed and nine proteins associated with detoxification and response to oxidative stress. Most of these proteins were expressed in one sex or the other but not in both. Surprisingly, the only proteins associated with detoxification were identified as glutathione transferases. No cytochrome P450s were identified which have previously been shown to be responsive to atrazine exposure in D. melanogaster and proposed to be associated with insecticide/atrazine interactions. Results of this investigation support the role of atrazine in affecting mitochondrial electron transport and oxidative stress. However, the role of atrazine in pesticide interactions remains uncertain.
Collapse
Affiliation(s)
- Benjamin J Thornton
- Division of Science and Mathematics, Jorgensen Hall, Union College, Lincoln, NE 68506, USA
| | | | | | | |
Collapse
|
7
|
Ecological Significance of Induction of Broad-Substrate Cytochrome P450s by Natural and Synthetic Inducers in Helicoverpa zea. J Chem Ecol 2009; 35:183-9. [DOI: 10.1007/s10886-009-9598-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 01/13/2009] [Accepted: 01/16/2009] [Indexed: 11/26/2022]
|
8
|
Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:934-42. [PMID: 17098168 DOI: 10.1016/j.ibmb.2006.09.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/12/2006] [Accepted: 09/12/2006] [Indexed: 05/12/2023]
Abstract
Modifications of metabolic pathways are important in insecticide resistance evolution. Mutations leading to changes in expression levels or substrate specificities of cytochrome P450 (P450), glutathione-S-transferase (GST) and esterase genes have been linked to many cases of resistance with the responsible enzyme shown to utilize the insecticide as a substrate. Many studies show that the substrates of enzymes are capable of inducing the expression of those enzymes. We investigated if this was the case for insecticides and the enzymes responsible for their metabolism. The induction responses for P450s, GSTs and esterases to six different insecticides were investigated using a custom designed microarray in Drosophila melanogaster. Even though these gene families can all contribute to insecticide resistance, their induction responses when exposed to insecticides are minimal. The insecticides spinosad, diazinon, nitenpyram, lufenuron and dicyclanil did not induce any P450, GST or esterase gene expression after a short exposure to high lethal concentrations of insecticide. DDT elicited the low-level induction of one GST and one P450. These results are in contrast to induction responses we observed for the natural plant compound caffeine and the barbituate drug phenobarbital, both of which highly induced a number of P450 and GST genes under the same short exposure regime. Our results indicate that, under the insecticide exposure conditions we used, constitutive over-expression of metabolic genes play more of a role in insect survival than induction of members of these gene families.
Collapse
Affiliation(s)
- Lee Willoughby
- Centre for Environmental Stress and Adaptation Research (CESAR), Department of Genetics, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Vic. 3010, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Sun W, Margam VM, Sun L, Buczkowski G, Bennett GW, Schemerhorn B, Muir WM, Pittendrigh BR. Genome-wide analysis of phenobarbital-inducible genes in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2006; 15:455-64. [PMID: 16907832 DOI: 10.1111/j.1365-2583.2006.00662.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An oligoarray analysis was conducted to determine the differential expression of genes due to phenobarbital exposure in Drosophila melanogaster (w(1118) strain) third instar larvae. Seventeen genes were observed to be induced with increased expression by a statistical analysis of microarrays approach with a q < or = 0.05. At q < or = 0.12, four more genes (Cyp12d1, DmGstd4, and two genes with unknown function) were found to be up-regulated, and 11 genes with unknown function were found to be down-regulated. Fifteen of these genes, Cyp4d14, Cyp6a2, Cyp6a8, Cyp12d1, Cyp6d5, Cyp6w1, CG2065, DmGstd6, DmGstd7, Amy-p/Amy-d, Ugt86Dd, GC5724, Jheh1, Jheh2 and CG11893, were verified using quantitative real time polymerase chain reaction. Some of these genes have been shown to be over-transcribed in metabolically DDT-resistant Drosophila strains.
Collapse
Affiliation(s)
- W Sun
- Department of Entomology, Purdue University, West Lafayette, IN 47907-1158, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Brown RP, McDonnell CM, Berenbaum MR, Schuler MA. Regulation of an insect cytochrome P450 monooxygenase gene (CYP6B1) by aryl hydrocarbon and xanthotoxin response cascades. Gene 2005; 358:39-52. [PMID: 16099607 DOI: 10.1016/j.gene.2005.05.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 02/28/2005] [Accepted: 05/10/2005] [Indexed: 11/18/2022]
Abstract
Many organisms respond to toxic compounds in their environment by inducing regulatory networks controlling the expression and activity of cytochrome P450 monooxygenase (P450s) detoxificative enzymes. In particular, black swallowtail (Papilio polyxenes) caterpillars respond to xanthotoxin, a toxic phytochemical in their hostplants, by activating transcription of the CYP6B1 promoter via several regions located within 150 nt of the transcription initiation site. One such element is the xenobiotic response element to xanthotoxin (XRE-Xan) that lies upstream of consensus XRE-AhR (xenobiotic response element to the aryl hydrocarbon receptor) and OCT-1 (octamer-1 binding site) element known to be utilized in mammalian aryl hydrocarbon response cascades. Two-plasmid transfections conducted in Sf9 cells have indicated that XRE-Xan, XRE-AhR and a number of other proximal elements, but not OCT-1, are critical for basal as well as xanthotoxin- and benzo[alpha]pyrene-induced transcription of the CYP6B1 promoter. Four-plasmid transfections with vectors co-expressing the spineless (Ss) and tango (Tgo) proteins, the Drosophila melanogaster homologues of mammalian AhR and ARNT, have indicated that these proteins enhance basal expression of the CYP6B1 promoter but not the magnitude of its xanthotoxin and benzo[alpha]pyrene induction. Based on these results, we propose that these Drosophila transcription factors modulate basal expression of this promoter in a ligand-independent manner and attenuate its subsequent responses to planar aryl hydrocarbons (benzo[alpha]pyrene) and allelochemicals (xanthotoxin).
Collapse
Affiliation(s)
- Rebecca Petersen Brown
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
11
|
Amichot M, Tarès S, Brun-Barale A, Arthaud L, Bride JM, Bergé JB. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. ACTA ACUST UNITED AC 2004; 271:1250-7. [PMID: 15030474 DOI: 10.1111/j.1432-1033.2004.04025.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three point mutations R335S, L336V and V476L, distinguish the sequence of a cytochrome P450 CYP6A2 variant assumed to be responsible for 1,1,1-trichloro-2,2-bis-(4'-chlorophenyl)ethane (DDT) resistance in the RDDT(R) strain of Drosophila melanogaster. To determine the impact of each mutation on the function of CYP6A2, the wild-type enzyme (CYP6A2wt) of Cyp6a2 was expressed in Escherichia coli as well as three variants carrying a single mutation, the double mutant CYP6A2vSV and the triple mutant CYP6A2vSVL. All CYP6A2 variants were less stable than the CYP6A2wt protein. Two activities enhanced in the RDDT(R) strain were measured with all recombinant proteins, namely testosterone hydroxylation and DDT metabolism. Testosterone was hydroxylated at the 2beta position with little quantitative variation among the variants. In contrast, metabolism of DDT was strongly affected by the mutations. The CYP6A2vSVL enzyme had an enhanced metabolism of DDT, producing dicofol, dichlorodiphenyldichloroethane and dichlorodiphenyl acetic acid. The apparent affinity of the enzymes CYP6A2wt and CYP6A2vSVL for DDT and testosterone was not significantly different as revealed by the type I difference spectra. Sequence alignments with CYP102A1 provided clues to the positions of the amino acids mutated in CYP6A2. These mutations were found spatially clustered in the vicinity of the distal end of helix I relative to the substrate recognition valley. Thus this area, including helix J, is important for the structure and activity of CYP6A2. Furthermore, we show here that point mutations in a cytochrome P450 can have a prominent role in insecticide resistance.
Collapse
Affiliation(s)
- Marcel Amichot
- Unité Mixte de Recherche 1112, Institut National de la Recherche Agronomique, Sophia Antipolis, France.
| | | | | | | | | | | |
Collapse
|
12
|
Zhu YC, Snodgrass GL. Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. INSECT MOLECULAR BIOLOGY 2003; 12:39-49. [PMID: 12542634 DOI: 10.1046/j.1365-2583.2003.00385.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Three cDNAs, cloned from both pyrethroid-susceptible and -resistant strains of Lygus lineolaris, contained a 1548 nucleotide open reading frame encoding a 516 amino acid residue protein. Predicted cytochrome P450s from cDNAs were classified as the first three new members of subfamily CYP6X, CYP6X1v1 for a susceptible strain and CYP6X1v2 and CYP6X1v3 for two resistant strains. Putative cytochrome P450 CYP6X1s from L. lineolaris were highly similar (up to 42% amino acid sequence identity) to several insect CYP6s that are responsible for reduced sensitivity to pyrethroid insecticides. A total of twenty-six nucleotide substitutions were revealed between cDNAs of susceptible and resistant strains. Two nucleotide substitutions resulted in amino acid changes, Asp373 to Ala373 and Ser487 to Ala487, between susceptible and resistant strains. The resistant laboratory strain contained 2.1-fold higher cytochrome P450 mRNA per microgram total RNA than the susceptible laboratory strain. Topical treatment with 10 ng permethrin elevated cytochrome P450 mRNA levels by approximately 2-fold. The results of this study indicated that cytochrome P450 gene mutation, coupled with up-regulation, was present only in the pyrethroid resistant strains, and was possibly related to resistance development in the tarnished plant bug.
Collapse
Affiliation(s)
- Y C Zhu
- Jamie Whitten Delta States Research Center, ARS-USDA, Stoneville, Mississippi 38776, USA.
| | | |
Collapse
|
13
|
Fisher T, Crane M, Callaghan A. Induction of cytochrome P-450 activity in individual Chironomus riparius Meigen larvae exposed to xenobiotics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2003; 54:1-6. [PMID: 12547628 DOI: 10.1016/s0147-6513(02)00031-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cytochrome P450 activity in individual Chironomus riparius larvae was measured using a microtiter plate adaptation of the ethoxyresorufin-O-deethylase (EROD) assay. The sensitivity of this biomarker was tested by exposing larvae to phenobarbital (0.5 and 1.0 mM) and permethrin (1 and 10 microg/g). Both chemicals induced EROD activity in C. riparius larvae by up to 1.58-fold with PB and 2.47-fold with permethrin. EROD induction was more pronounced after 48 h. The initially high EROD activity in the controls suggested that P450s are induced by stress. Feeding levels prior to exposure also had a significant effect on EROD activity. EROD activity compared to the control was highest when larvae were fed double the normal ration. These results indicate that EROD activity in individual C. riparius may be a useful biomarker to add to a suite of biomarkers for the detection of freshwater pollution.
Collapse
Affiliation(s)
- Thomas Fisher
- Ecotoxicology Research Group, Division of Zoology, School of Animal and Microbial Sciences, The University of Reading, Whiteknights PO Box 228, Reading RG6 6AJ, UK
| | | | | |
Collapse
|
14
|
Abstract
Insects, including Drosophila, readily respond to toxins such as phytotoxins, metal ions, and insecticides in their environment by evolving resistance. Although Drosophila are seldom targets for insecticides, nevertheless populations worldwide have evolved resistance to a variety of insecticides, and these resistance alleles persist in high frequency. In many cases, Drosophila use the same genetic and biochemical mechanisms that underlie resistance in pest insects, including single-site changes in target molecules resulting from point mutations and upregulation of degradative enzymes, particularly cytochrome P450 enzymes and glutathione S-transferases. However, several types of resistance found in pest insects, such as gene amplification and knock-down resistance, have not been reported in Drosophila field populations. Excellent Drosophila-plant models are being studied to understand the adaptation to phytotoxins; P450 enzymes are clearly involved in phytotoxin resistance in one of these models. The genetic advantages of D. melanogaster, including availability of the sequenced genome, should allow further study of these genes and identification of new ones, particularly regulatory genes, responsible for resistance.
Collapse
Affiliation(s)
- T G Wilson
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
15
|
Scott JG, Liu N, Wen Z. Insect cytochromes P450: diversity, insecticide resistance and tolerance to plant toxins. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:147-55. [PMID: 9972456 DOI: 10.1016/s0742-8413(98)10035-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the last decade, studies of individual insect P450s have blossomed. This new information has furthered our understanding of P450 diversity, insecticide resistance and tolerance to plant toxins. Insect P450s can be adult specific, larval specific or life stage independent. Similarly, insect P450s vary as to the tissues where they are expressed and in their response to inducers. Insect P450s can now be rapidly sequenced using degenerate PCR primers. Given the huge diversity represented by the Class Insecta, this technique will provide vast amounts of new information about insect P450s and the evolution of the P450 gene superfamily. CYP6D1 is responsible for monooxygenase-mediated resistance to pyrethroid insecticides in the house fly. CYP6D1 is ubiquitously expressed in adults with 10-fold higher levels found in the resistant strain compared to susceptible strains. CYP6D1 is on autosome 1 in house fly. The high level of expression found in the resistant strain is due to genes on autosomes 1 and 2. Whether or not the different CYP6D1 alleles found in resistant and susceptible strains have any role in resistance remains to be elucidated. The CYP6B gene subfamily is involved in the metabolism of host plant toxins (i.e. furanocoumarins). CYP6B gene transcripts in two Papilio (swallowtail) species have been shown to be induced by host plant toxins and in turn to metabolize these toxins. CYP6B P450s play a critical role in allowing Papilio to adapt to furanocoumarin-containing host plants. Similarities in structural and promoter regions of the CYP6B genes suggest that they are derived from a common ancestral gene. Although the P450 monooxygenases of insects are important for the metabolism of hormones and phermones, no individual P450 has yet been shown to metabolize an endogenous compound. Advances in this area are critical because they will provide important new information about insect physiology, biochemistry and development.
Collapse
Affiliation(s)
- J G Scott
- Department of Entomology, Cornell University, Ithaca, NY 14853-0901, USA.
| | | | | |
Collapse
|