1
|
Del Medico Zajac MP, Moyano RD, Colombatti Olivieri MA. Editorial: Vaccination strategies against ruminant infectious diseases. Front Vet Sci 2023; 10:1213269. [PMID: 37323842 PMCID: PMC10265635 DOI: 10.3389/fvets.2023.1213269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/17/2023] Open
|
2
|
Protection against Bovine Respiratory Syncytial Virus Afforded by Maternal Antibodies from Cows Immunized with an Inactivated Vaccine. Vaccines (Basel) 2023; 11:vaccines11010141. [PMID: 36679988 PMCID: PMC9864491 DOI: 10.3390/vaccines11010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The passive protection afforded by the colostrum from cattle that were vaccinated prepartum with an inactivated combination vaccine against the bovine respiratory syncytial virus (BRSV) was evaluated after an experimental challenge of calves. Pregnant cows without or with a low ELISA and neutralizing BRSV antibody titers were twice vaccinated or not vaccinated, the last immunization being at one month prior to calving. Vaccination was followed by a rapid increase in BRSV antibody titers after the second immunization. Twenty-eightnewborn calves were fed during the 6 h following birth, with 4 L of colostrum sourced from vaccinated cows (14 vaccine calves) or non-vaccinated cows (14 control calves) and were challenged with BRSV at 21 days of age. We showed that maternal immunity to BRSV provides a significant reduction in the clinical signs of BRSV in calves, especially for severe clinical forms. This protection was correlated with reduced BRSV detection in the lower respiratory tract but not in nasal swabs, indicating an absence of protection against BRSV nasal excretion. Finally, transcriptomic assays in bronchoalveolar lavages showed no statistical differences between groups for chemokine and cytokine mRNA transcriptions, with the exception of the overexpression of IL-9 at days 6 and 10 post-challenge, and a severe downregulation of CXCL-1 at day 3 post-challenge, in the vaccine group.
Collapse
|
3
|
Martinez DA, Newcomer B, Passler T, Chamorro MF. Efficacy of Bovine Respiratory Syncytial Virus Vaccines to Reduce Morbidity and Mortality in Calves Within Experimental Infection Models: A Systematic Review and Meta-Analysis. Front Vet Sci 2022; 9:906636. [PMID: 35782561 PMCID: PMC9245045 DOI: 10.3389/fvets.2022.906636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Producers and veterinarians commonly use vaccination as the main strategy to reduce the incidence of bovine respiratory syncytial virus (BRSV) infection in calves; however, supportive evidence of BRSV vaccination efficacy has been inconsistent in the literature. The objective of this meta-analysis was to evaluate data from controlled studies on the efficacy of commercially available BRSV vaccines on reducing calf morbidity and mortality after experimental infection with BRSV. A systematic review and meta-analysis was performed in BRSV experimental challenge studies that reported the efficacy of commercially available modified-live virus (MLV) and inactivated BRSV vaccines on protection against calf morbidity and mortality. The studies included in the analysis were randomized, controlled, clinical trials with clear definitions of calf morbidity and mortality. Risk ratios with 95% confidence intervals and forest plots were generated. Fourteen studies including 29 trials were selected for the analysis. Commercially available MLV BRSV vaccines reduced the risk of calf mortality after experimental infection with BRSV. Modified-live virus vaccines reduced the risk of morbidity in calves with absence of serum maternal antibodies at initial vaccination, but failed to demonstrate significant morbidity reduction when calves were vaccinated in the face of maternal immunity. Results from experimental challenge studies do not always represent the conditions of natural infection and caution should be used when making vaccine recommendations.
Collapse
Affiliation(s)
- David A. Martinez
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Benjamin Newcomer
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, West Texas A&M University, Canyon, TX, United States
| | - Thomas Passler
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Manuel F. Chamorro
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- *Correspondence: Manuel F. Chamorro
| |
Collapse
|
4
|
Bovine Respiratory Syncytial Virus Genome Sequences from Cattle with Clinical Respiratory Disease in Kansas, 2021. Microbiol Resour Announc 2022; 11:e0031322. [PMID: 35412352 PMCID: PMC9119100 DOI: 10.1128/mra.00313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report two near-complete bovine respiratory syncytial virus genome sequences collected from 10-month-old cattle with respiratory disease in Kansas in December 2021. No other respiratory pathogens were confirmed in the samples. These genome sequences update the currently circulating BRSV field strains in the United States.
Collapse
|
5
|
Mutua V, Cavallo F, Gershwin LJ. Neutrophil extracellular traps (NETs) in a randomized controlled trial of a combination of antiviral and nonsteroidal anti-inflammatory treatment in a bovine model of respiratory syncytial virus infection. Vet Immunol Immunopathol 2021; 241:110323. [PMID: 34543829 DOI: 10.1016/j.vetimm.2021.110323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022]
Abstract
The function of neutrophils in viral infections has long been established and studies have been done to examine the role of neutrophil extracellular traps (NETs). Further study and analysis of NETs in viral infections may reveal a new therapeutic target. Administration of ibuprofen and GS-561937, a fusion protein inhibitor (FPI), have been experimentally shown to decrease the severity of bovine respiratory syncytial virus (BRSV) infection. Our aims were to determine the effect of ibuprofen and FPI on NETs after BRSV infection as a monotherapy or combined therapy. METHODS We conducted a randomized placebo-controlled trial of ibuprofen, FPI, or as a dual therapy initiated at 3 or 5 days after experimental infection with BRSV in 36 five to six-week-old Holstein calves (Bos Taurus). Lung tissue samples were collected and stained with antibodies conjugated with fluorescence dyes to visualize and quantify the NETs in situ. We estimated the average NETs in the sample lung tissue slides and compared the areas occupied by NETS within and between the treatment groups. RESULTS There were significantly fewer NETs in the lung tissue from calves that were given ibuprofen and both ibuprofen and fusion protein inhibitor from day 3 post infection compared to the placebo group. Calves administered with ibuprofen, fusion protein inhibitor or both from day five had visually fewer NETs than the placebo but the difference was not significant. CONCLUSION BRSV can induce NET formation in vitro and in vivo. A combination of both drugs (Ibuprofen and FPI) resulted in less NETs observed in lung tissue of BRSV infected calves compared to the placebo or monotherapy groups.
Collapse
Affiliation(s)
- Victoria Mutua
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, United States.
| | - Francisco Cavallo
- Division of Veterinary Pathology. Department of Biomedical Sciences & Pathobiology Virginia Tech, Blacksburg, VA, 24060, United States
| | - Laurel J Gershwin
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, 1 Shields Ave, Davis, CA, United States
| |
Collapse
|
6
|
Studer E, Schönecker L, Meylan M, Stucki D, Dijkman R, Holwerda M, Glaus A, Becker J. Prevalence of BRD-Related Viral Pathogens in the Upper Respiratory Tract of Swiss Veal Calves. Animals (Basel) 2021; 11:1940. [PMID: 34209718 PMCID: PMC8300226 DOI: 10.3390/ani11071940] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
The prevention of bovine respiratory disease is important, as it may lead to impaired welfare, economic losses, and considerable antimicrobial use, which can be associated with antimicrobial resistance. The aim of this study was to describe the prevalence of respiratory viruses and to identify risk factors for their occurrence. A convenience sample of 764 deep nasopharyngeal swab samples from veal calves was screened by PCR for bovine respiratory syncytial virus (BRSV), bovine parainfluenza-3 virus (BPI3V), bovine coronavirus (BCoV), influenza D virus (IDV), and influenza C virus (ICV). The following prevalence rates were observed: BRSV, 2.1%; BPI3V, 3.3%; BCoV, 53.5%; IDV, 4.1%; ICV, 0%. Logistic mixed regression models were built for BCoV to explore associations with calf management and housing. Positive swab samples were more frequent in younger calves than older calves (>100 days; p < 0.001). The probability of detecting BCoV increased with increasing group size in young calves. Findings from this study suggested that young calves should be fattened in small groups to limit the risk of occurrence of BCoV, although an extended spectrum of risk factors for viral associated respiratory disorders such as nutritional aspects should be considered in future studies.
Collapse
Affiliation(s)
- Eveline Studer
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland; (E.S.); (L.S.); (M.M.); (D.S.)
| | - Lutz Schönecker
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland; (E.S.); (L.S.); (M.M.); (D.S.)
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland
| | - Mireille Meylan
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland; (E.S.); (L.S.); (M.M.); (D.S.)
| | - Dimitri Stucki
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland; (E.S.); (L.S.); (M.M.); (D.S.)
| | - Ronald Dijkman
- Institute of Virology and Immunology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (R.D.); (M.H.); (A.G.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
| | - Melle Holwerda
- Institute of Virology and Immunology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (R.D.); (M.H.); (A.G.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001 Bern, Switzerland
- Graduate School for Cellular and Biomedical Science, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Anna Glaus
- Institute of Virology and Immunology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3001 Bern, Switzerland; (R.D.); (M.H.); (A.G.)
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Jens Becker
- Clinic for Ruminants, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3012 Bern, Switzerland; (E.S.); (L.S.); (M.M.); (D.S.)
| |
Collapse
|
7
|
Duse A, Ohlson A, Stengärde L, Tråvén M, Alenius S, Bengtsson B. Associations between Bovine Coronavirus and Bovine Respiratory Syncytial Virus Infections and Productivity, Health Status and Occurrence of Antimicrobial Resistance in Swedish Dairy Herds. Antibiotics (Basel) 2021; 10:antibiotics10060641. [PMID: 34071864 PMCID: PMC8227817 DOI: 10.3390/antibiotics10060641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) and bovine coronavirus (BCoV) affect dairy herds worldwide. In this study, effects on herd health, morbidity, and antimicrobial resistance (AMR) were assessed. Herds were considered free of infection (FREE), recently infected (RI) or past steadily infected (PSI) based on antibody testing of milk from primiparous cows. Data from farm records, national databases, and AMR of fecal Escherichia coli from calves were used as outcome variables. Compared to BRSV FREE herds: BRSV PSI herds had significantly higher odds of cough in young stock, a higher proportion of quinolone-resistant E. coli (QREC), but a lower proportion of cows with fever. BRSV RI herds had significantly higher odds of diarrhea in calves and young stock, a higher proportion of QREC and higher odds of multidrug-resistant E. coli. Compared to BCoV FREE herds: BCoV PSI herds had significantly higher odds of cough in all ages, and of diarrhea in young stock and cows, and a higher proportion of cows with fever. BCoV RI herds had significantly higher odds of diarrhea in young stock and cows and of cough in all ages. The results support previous research that freedom from BRSV and BCoV is beneficial for animal welfare and farm economy and possibly also mitigates AMR.
Collapse
Affiliation(s)
- Anna Duse
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, SE-751 89 Uppsala, Sweden;
| | - Anna Ohlson
- Växa Sverige, P.O. Box 30204, SE-104 25 Stockholm, Sweden;
| | | | - Madeleine Tråvén
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (M.T.); (S.A.)
| | - Stefan Alenius
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (M.T.); (S.A.)
| | - Björn Bengtsson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, SE-751 89 Uppsala, Sweden;
- Correspondence:
| |
Collapse
|
8
|
Liu Z, Li J, Liu Z, Li J, Li Z, Wang C, Wang J, Guo L. Development of a nanoparticle-assisted PCR assay for detection of bovine respiratory syncytial virus. BMC Vet Res 2019; 15:110. [PMID: 30971257 PMCID: PMC6458741 DOI: 10.1186/s12917-019-1858-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 03/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background Bovine respiratory syncytial virus (BRSV) is a common pathogen causing respiratory disease in cattle and a significant contributor to the bovine respiratory disease (BRD) complex. BRSV is widely distributed around the world, causing severe economic losses. This study we established a new molecular detection method of BRSV pathogen NanoPCR attributed to the combination of nano-particles in traditional PCR (Polymerase chain reaction) technology. Results In this study, the BRSV NanoPCR assay was developed, and its specificity and sensitivity were investigated. The results showed that no cross-reactivity was observed for the NanoPCR assay for related viruses, including the infectious bovine rhinotracheitis virus (IBRV), bovine viral diarrhea virus (BVDV), and bovine parainfluenza virus type 3 (BPIV3), and the assay was more sensitive than the conventional PCR assay, with a detection limit of 1.43 × 102 copies recombinant plasmids per reaction, compared with 1.43 × 103 copies for conventional PCR analysis. Moreover, thirty-nine clinical bovine samples collected from two provinces in North-Eastern China, 46.15% were determined BRSV positive by our NanoPCR assay, compared with 23.07% for conventional PCR. Conclusions This is the first report to demonstrate the application of a NanoPCR assay for the detection of BRSV. The sensitive and specific NanoPCR assay developed in this study can be applied widely in clinical diagnosis and field surveillance of BRSV infection.
Collapse
Affiliation(s)
- Zhankui Liu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jianyou Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.,Graduate School of Northeast Agricultural University, Harbin, China
| | - Zeyu Liu
- Graduate School of Jilin Agricultural University, Jilin, China
| | - Jiawei Li
- Antu Animal Husbandry and Veterinary Station, Yanbian, China
| | - Zhijie Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Chao Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Jianke Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Li Guo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
9
|
Ellis JA. How efficacious are vaccines against bovine respiratory syncytial virus in cattle? Vet Microbiol 2017; 206:59-68. [DOI: 10.1016/j.vetmic.2016.11.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
10
|
Gray DW, Welsh MD, Doherty S, Mooney MH. Identification of candidate protein markers of Bovine Parainfluenza Virus Type 3 infection using an in vitro model. Vet Microbiol 2017; 203:257-266. [DOI: 10.1016/j.vetmic.2017.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 01/05/2023]
|
11
|
Klem TB, Gulliksen SM, Lie KI, Løken T, Østerås O, Stokstad M. Bovine respiratory syncytial virus: infection dynamics within and between herds. Vet Rec 2013; 173:476. [PMID: 24158321 PMCID: PMC3841740 DOI: 10.1136/vr.101936] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The infection dynamics of bovine respiratory syncytial virus (BRSV) were studied in randomly selected Norwegian dairy herds. A total of 134 herds were tested twice, six months apart. The herds were classified as positive for BRSV if at least one animal between 150 and 365 days old tested positive for antibodies against BRSV, thereby representing herds that had most likely had the virus present during the previous year. The prevalence of positive herds at the first and second sampling was 34 per cent and at 41 per cent, respectively, but varied greatly between regions. Negative herds were found in close proximity to positive herds. Some of these herds remained negative despite several new infections nearby. Of the herds initially being negative, 42 per cent changed status to positive during the six months. This occurred at the same rate during summer as winter, but a higher rate of animals in the herds was positive if it took place during winter. Of the herds initially being positive, 33 per cent changed to negative. This indicates that an effective strategy to lower the prevalence and the impact of BRSV could be to employ close surveillance and place a high biosecurity focus on the negative herds.
Collapse
Affiliation(s)
- T B Klem
- Department of Production Animal Sciences, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
12
|
Szeredi L, Jánosi S, Pálfi V. Microbiological and pathological examination of fatal calf pneumonia cases induced by bacterial and viral respiratory pathogens. Acta Vet Hung 2010; 58:341-56. [PMID: 20713325 DOI: 10.1556/avet.58.2010.3.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The infectious origin of fatal cases of calf pneumonia was studied in 48 calves from 27 different herds on postmortem examination. Lung tissue samples were examined by pathological, histological, bacterial culture, virus isolation and immunohistochemical methods for the detection of viral and bacterial infections. Pneumonia was diagnosed in 47/48 cases and infectious agents were found in 40/47 (85%) of those cases. The presence of multiple respiratory pathogens in 23/40 (57.5%) cases indicated the complex origin of fatal calf pneumonia. The most important respiratory pathogens were Mannheimia-Pasteurella in 36/40 (90%) cases, followed by Arcanobacterium pyogenes in 16/40 (40%) cases, Mycoplasma bovis in 12/40 (30%) cases, and bovine respiratory syncytial virus in 4/40 (10%) cases. Histophilus somni was detected in 2/40 (5%) cases, while bovine herpesvirus-1, bovine viral diarrhoea virus and parainfluenza virus-3 were each found in 1/40 (2.5%) case. Mastadenovirus, bovine coronavirus, influenza A virus or Chlamydiaceae were not detected.
Collapse
Affiliation(s)
- Levente Szeredi
- 1 Veterinary Diagnostic Directorate Central Agricultural Office Tábornok u. 2 H-1149 Budapest Hungary
| | - Szilárd Jánosi
- 1 Veterinary Diagnostic Directorate Central Agricultural Office Tábornok u. 2 H-1149 Budapest Hungary
| | - Vilmos Pálfi
- 1 Veterinary Diagnostic Directorate Central Agricultural Office Tábornok u. 2 H-1149 Budapest Hungary
| |
Collapse
|
13
|
Ellis JA, Gow SP, Goji N. Response to experimentally induced infection with bovine respiratory syncytial virus following intranasal vaccination of seropositive and seronegative calves. J Am Vet Med Assoc 2010; 236:991-9. [PMID: 20433400 DOI: 10.2460/javma.236.9.991] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether a combination modified-live bovine respiratory syncytial virus (BRSV) vaccine can stimulate protective immunity in young BRSV-seropositive calves following intranasal (IN) administration. DESIGN Controlled challenge study. ANIMALS 66 Holstein bull calves, 3 to 8 days old. PROCEDURES In experiment 1, BRSV-seropositive and -seronegative calves were vaccinated IN with a commercially available combination modified-live virus vaccine formulated for SC administration; calves underwent BRSV challenge 4.5 months later. In experiment 2, BRSV-seronegative calves were vaccinated IN or SC (to examine the effect of route of administration) with the same combination vaccine that instead had a 1/100 dose of BRSV (to examine the effect of dose); calves underwent BRSV challenge 21 days later. RESULTS In experiment 1, BRSV challenge resulted in severe respiratory tract disease with low arterial partial pressures of oxygen and lung lesions in most calves from all groups. Maximum change in rectal temperature was significantly greater in seropositive IN vaccinated calves, compared with seronegative IN vaccinated and seropositive control calves. Number of days of BRSV shedding was significantly lower in seronegative IN vaccinated calves than in seropositive IN vaccinated and seropositive control calves. In experiment 2, maximum change in rectal temperature was significantly greater in seronegative control calves, compared with seronegative IN and SC vaccinated calves. Shedding of BRSV was significantly reduced in seronegative IN and SC vaccinated calves, compared with control calves; also, lung lesions were reduced in seronegative IN and SC vaccinated calves. CONCLUSIONS AND CLINICAL RELEVANCE Maternal antibodies may inhibit priming of protective responses by IN delivered BRSV vaccines.
Collapse
Affiliation(s)
- John A Ellis
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| | | | | |
Collapse
|
14
|
Timsit E, Maingourd C, Le Dréan E, Belloc C, Seegers H, Douart A, Assié S. Evaluation of a commercial real-time reverse transcription polymerase chain reaction kit for the diagnosis of Bovine respiratory syncytial virus infection. J Vet Diagn Invest 2010; 22:238-41. [PMID: 20224083 DOI: 10.1177/104063871002200211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently a commercial real-time reverse transcription polymerase chain reaction (RT-PCR) kit has been marketed for the detection of Bovine respiratory syncytial virus (BRSV). However, diagnostic interpretation of the results of this kit requires its comparison to commonly used methods. Therefore, the objective of this study was to evaluate the performance of this kit in comparison with the conventional direct fluorescent antibody test (FAT). Twenty BRSV strains and 14 heterologous bovine viruses were used to check the kit's sensitivity and specificity. The efficiency and detection limit of the kit were determined by testing dilution series of a BRSV strain. The comparison between real-time RT-PCR kit and FAT was performed with 94 clinical samples from calves with clinical signs of respiratory disease including lung tissues (n = 55), transtracheal aspiration samples (n = 20), and nasal swab samples (n = 19). All of the BRSV strains tested were detected by real-time RT-PCR. No cross-reaction was shown with the 14 heterologous bovine viruses. The real-time RT-PCR was 99.3% efficient with a detection limit of 0.1 TCID(50) (50% tissue culture infective dose). The results of real-time RT-PCR and FAT were concordant for 65 of the 94 clinical samples tested. The remaining 29 clinical samples were positive by real-time RT-PCR and negative by FAT, demonstrating the higher sensitivity of real-time RT-PCR. In conclusion, the kit evaluated in this study was sensitive, specific, and had a low threshold of detection. Furthermore, the use of this kit instead of FAT allows an improvement of the sensitivity for the detection of BRSV in clinical samples.
Collapse
Affiliation(s)
- Edouard Timsit
- INRA, Veterinary School, UMR 1300 Unit of Bio-aggression, Epidemiology and Risk Analysis, BP 40706, 44307 Nantes Cedex 03, France.
| | | | | | | | | | | | | |
Collapse
|
15
|
Makoschey B, Muñoz Bielsa J, Oliviero L, Roy O, Pillet F, Dufe D, Valla G, Cavirani S. Field efficacy of combination vaccines against bovine respiratory pathogens in calves. Acta Vet Hung 2008; 56:485-93. [PMID: 19149103 DOI: 10.1556/avet.56.2008.4.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The efficacy of an inactivated bovine respiratory syncytial virus (BRSV)--bovine parainfluenza type 3 (PI3)--Mannheimia haemolytica (Mh) combination vaccine was examined in two field studies. Calves were vaccinated (i) with the inactivated vaccine, (ii) a modified live/killed viral combination vaccine, or (iii) left unvaccinated. The efficacy of the vaccines was judged by the (i) number of treated animals, (ii) number of individual antibiotic treatments per calf and (iii) mortality rates. After vaccination with the inactivated vaccine, the number of calves requiring antibiotic treatment was significantly lower than in the unvaccinated group (odds ratios: 0.26 first study and 0.53 second study), but differences between vaccination with live/killed combination vaccines and controls were not significant (odds ratios: 0.56 and 0.90, respectively). In both studies, a number of unvaccinated controls died due to respiratory disease (4.6% first and 6.7% second study). By contrast, none of the animals vaccinated with the inactivated vaccine died in the first study and only 3.3% in the second study. The mortality rates for the groups vaccinated with the live vaccine (1.3% and 7.8%) were similar to the unvaccinated controls. In summary, these data demonstrate the efficacy of the inactivated vaccine under field conditions.
Collapse
Affiliation(s)
- Birgit Makoschey
- 1 Intervet Schering-Plough Animal Health Wim de Körverstraat 35 NL-5831 AN Boxmeer The Netherlands
| | - Juan Muñoz Bielsa
- 1 Intervet Schering-Plough Animal Health Wim de Körverstraat 35 NL-5831 AN Boxmeer The Netherlands
| | | | | | | | - Divine Dufe
- 1 Intervet Schering-Plough Animal Health Wim de Körverstraat 35 NL-5831 AN Boxmeer The Netherlands
| | - Giorgio Valla
- 4 Intervet Italy S.r.l. Peschiera Borromeo (MI) Italy
| | | |
Collapse
|
16
|
Alm K, Koskinen E, Vahtiala S, Andersson M. Acute BRSV infection in young AI bulls: effect on sperm quality. Reprod Domest Anim 2008; 44:456-9. [PMID: 19000222 DOI: 10.1111/j.1439-0531.2008.01116.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) infection is an important part of the calf pneumonia complex, occasionally affecting even adult cattle. However, the pathogenicity of BRSV in animals older than 6 months is often neglected. Finland is free of many contagious diseases in farm animals, and this gives a good opportunity to study the effects of specific pathogens on bovine reproduction. This report describes the deteriorating effects of BRSV epizootics on sperm morphology and fertility of young dairy bulls (n = 79) at a bull station. More than half of the young bulls had a clinical respiratory disease caused by BRSV during their quarantine when they were 6 months old. Four of seven subsequent quarantine groups were affected. Six months later, when these seropositive bulls (n = 54) came into semen production, they had poorer sperm morphology, and the proportion of normal spermatozoa was 74.1% in BRSV-seropositive animals compared with 81.2% in seronegative bulls (n = 25) (p = 0.035). Field fertility was also slightly affected, the 60-day non-return rates were 75.2% and 76.8% for BRSV seropositive and seronegative bulls respectively (p = 0.014). Potential reasons for lowered sperm quality are discussed here.
Collapse
Affiliation(s)
- K Alm
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Pohjoinen pikatie 800, Saarentaus, Finland.
| | | | | | | |
Collapse
|
17
|
Stilwell G, Matos M, Carolino N, Lima MS. Effect of a quadrivalent vaccine against respiratory virus on the incidence of respiratory disease in weaned beef calves. Prev Vet Med 2008; 85:151-7. [PMID: 18378342 PMCID: PMC7127212 DOI: 10.1016/j.prevetmed.2008.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 02/01/2008] [Accepted: 02/07/2008] [Indexed: 11/25/2022]
Abstract
We investigated the effect of vaccination of male beef calves (mean age ± S.D.: 158 ± 31days) against bovine herpes virus (BHV-1 or IBR virus), bovine respiratory syncitial virus (BRSV), bovine viral diarrhea (BVD) virus and para-influenza (PI3) virus on the incidence of respiratory disease during the first forty days after weaning and entering a feed-lot in Portugal. In May 2003, Mertolenga, Preta and mixed-breed calves from 10 different beef herds, were systematically assigned (by order of entrance in a chute) to two treatment groups, before moving to a common feed-lot. One hundred and twenty five male calves were vaccinated with a quadrivalent vaccine (Rispoval 4®) and revaccinated after 21–27 days while 148 herdmates were injected with saline (0.9% NaCl) on the same occasions. The incidence and severity of clinical cases of “bovine respiratory disease” (BRD) were evaluated every day during the first 40 days after entering the feed-lot. Morbidity (3% vs. 14%) and mortality (0% vs. 4%) due to BRD were significantly lower in the vaccinated group. Ten days after revaccination, the calves were treated with an antimicrobial – ending the study – after an outbreak of BRD caused a high incidence of disease in the non-vaccinated group. In conclusion, our results showed that Rispoval 4®, a quadrivalent vaccine against respiratory viruses, under field conditions, reduces morbidity and mortality due to BRD in beef calves after weaning.
Collapse
Affiliation(s)
- George Stilwell
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Portugal.
| | | | | | | |
Collapse
|
18
|
Willoughby K, Thomson K, Maley M, Gilray J, Scholes S, Howie F, Caldow G, Nettleton PF. Development of a real time reverse transcriptase polymerase chain reaction for the detection of bovine respiratory syncytial virus in clinical samples and its comparison with immunohistochemistry and immunofluorescence antibody testing. Vet Microbiol 2007; 126:264-70. [PMID: 17709212 DOI: 10.1016/j.vetmic.2007.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 06/22/2007] [Accepted: 07/03/2007] [Indexed: 10/23/2022]
Abstract
Bovine respiratory syncytial virus is an agent involved in calf pneumonia complex, a disease of significant economic importance. Accurate diagnosis of the agents involved on farm premises is important when formulating disease control measures, including vaccination. We have developed a real time reverse transcriptase polymerase chain reaction (rtRT-PCR) and compared it with the diagnostic tests currently available in the United Kingdom: immunohistochemistry (IHC) and immunofluorescence antibody test (IFAT). The rtRT-PCR had a detection limit of 10 gene copies and was 96% efficient. Recent UK isolates and clinical samples were tested; the rtRT-PCR was more sensitive than both conventional tests.
Collapse
Affiliation(s)
- Kim Willoughby
- Moredun Research Institute, International Research Centre, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Quinting B, Robert B, Letellier C, Boxus M, Kerkhofs P, Schynts F, Collard A. Development of a 1-step enzyme-linked immunosorbent assay for the rapid diagnosis of bovine respiratory syncytial virus in postmortem specimens. J Vet Diagn Invest 2007; 19:238-43. [PMID: 17459851 DOI: 10.1177/104063870701900302] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bovine respiratory syncytial virus (BRSV) is associated with severe respiratory disease in cattle. BRSV infection frequently leads to the death of young infected animals. The presence of BRSV in postmortem specimens is routinely detected using indirect immunofluorescence (IIF). However, this technique requires special equipment and considerable expertise. The present paper describes the development of a 1-step ELISA for rapid (1.5 hours) detection of BRSV antigen in organ homogenates. The performance of the new 1-step ELISA was evaluated using bovine postmortem specimens (n = 108) in comparison with 3 other BRSV diagnostic techniques: indirect immunofluorescence, the Clearview respiratory syncytial virus (RSV) test, and real-time reverse transcriptase polymerase chain reaction (RT-PCR). The relative sensitivity, specificity, and the kappa coefficient of 1-step ELISA, the Clearview RSV electroimmunoassay (EIA), and IIF were calculated, using real-time RT-PCR as the reference test. The new 1-step ELISA was the most sensitive and specific of the 3 tests. Thus, the new 1-step ELISA is a reliable test for detecting BRSV antigen in organ homogenates.
Collapse
Affiliation(s)
- Birgit Quinting
- Centre d'Economie Rurale, Division Immunologie Animale, rue du Carmel, 1, 6900 Marloie, Belgium.
| | | | | | | | | | | | | |
Collapse
|
20
|
Bennett N, Ellis J, Bonville C, Rosenberg H, Domachowske J. Immunization strategies for the prevention of pneumovirus infections. Expert Rev Vaccines 2007; 6:169-82. [PMID: 17408367 DOI: 10.1586/14760584.6.2.169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pneumoviruses, which are viruses of the family Paramyxoviridae, subfamily Pneumovirinae, are pathogens that infect the respiratory tract of their host species. The human pneumovirus pathogen, human respiratory syncytial virus (RSV), has counterparts that infect cows (bovine RSV), sheep (ovine RSV), goats (caprine RSV) and rodents (pneumonia virus of mice). Each pneumovirus is host specific and results in a spectrum of disease, ranging from mild upper-respiratory illness to severe bronchiolitis and pneumonia with significant morbidity and mortality. Given the public health burden caused by human RSV and the concomitant agricultural impact of bovine RSV, these two viruses are considered as prime targets for the development of safe and effective vaccines. In this review, we describe the strategies used to develop vaccines against human and bovine RSV and introduce the pneumonia virus mouse model as a novel and invaluable tool for preclinical studies and new vaccine strategies.
Collapse
Affiliation(s)
- Nicholas Bennett
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
21
|
Ellis J, Gow S, West K, Waldner C, Rhodes C, Mutwiri G, Rosenberg H. Response of calves to challenge exposure with virulent bovine respiratory syncytial virus following intranasal administration of vaccines formulated for parenteral administration. J Am Vet Med Assoc 2007; 230:233-43. [PMID: 17223757 DOI: 10.2460/javma.230.2.233] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether single-fraction and combination modified-live bovine respiratory syncytial virus (BRSV) vaccines commercially licensed for parenteral administration could stimulate protective immunity in calves after intranasal administration. DESIGN Randomized controlled trial. ANIMALS 39 calves. PROCEDURES Calves were separated from dams at birth, fed colostrum with a minimal concentration of antibodies against BRSV, and maintained in isolation. In 2 preliminary experiments, 9-week-old calves received 1 (n = 3) or 2 (3) doses of a single-component, modified-live BRSV vaccine or no vaccine (8 control calves in each experiment), and were challenged with BRSV 21 days after vaccination. In a third experiment, 2-week-old calves received combination modified-live virus (MLV) vaccines with or without BRSV and calves were challenged with BRSV 8 days later. Calves were euthanized, and lung lesions were measured. Immune responses, including serum and nasal antibody and nasal interferon-alpha concentrations, were assessed. RESULTS BRSV challenge induced signs of severe clinical respiratory tract disease, including death and pulmonary lesions in unvaccinated calves and in calves that received a combination viral vaccine without BRSV. Pulmonary lesions were significantly less severe in BRSV-challenged calves that received single or combination BRSV vaccines. The proportion of calves that shed virus and the peak virus titer was decreased, compared with control calves. Protection was associated with mucosal IgA antibody responses after challenge. CONCLUSIONS AND CLINICAL RELEVANCE Single and combination BRSV vaccines administered intranasally provided clinical protection and sparing of pulmonary tissue similar to that detected in response to parenteral delivery of combination MLV and inactivated BRSV vaccines previously assessed in the same challenge model.
Collapse
Affiliation(s)
- John Ellis
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Salt JS, Thevasagayam SJ, Wiseman A, Peters AR. Efficacy of a quadrivalent vaccine against respiratory diseases caused by BHV-1, PI3V, BVDV and BRSV in experimentally infected calves. Vet J 2007; 174:616-26. [PMID: 17276108 DOI: 10.1016/j.tvjl.2006.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The efficacy of a quadrivalent vaccine against viral bovine respiratory diseases (BRD) was assessed in four experimental studies. Calves between 2 and 9 months of age were allocated to one of two treatment groups (n=9-15) and then received either the vaccine or sterile saline in two doses approximately 3 weeks apart. Three to 5 weeks after the second injection, animals were challenged experimentally with one of the viruses, bovine herpes-virus-1 (BHV-1), parainfluenza type-3 virus (PI(3)V), bovine viral-diarrhoea virus type 1 (BVDV), or bovine respiratory syncytial virus (BRSV) and were then monitored for at least 2 weeks. The administration of the vaccine was associated with enhanced antibody response to all four viruses post-challenge, with the reduction of the amount or duration (or both) of virus shedding in the BHV-1, PI(3)V, BVDV and BRSV studies and with an improvement of some clinical signs in the BHV-1 (nasal discharge, and rectal temperature) and the PI(3)V studies (abnormal respiration, and depression).
Collapse
Affiliation(s)
- J S Salt
- Veterinary Medicine Research and Development, Biologicals, Pfizer Animal Health Sandwich, CT13 9NJ, United Kingdom
| | | | | | | |
Collapse
|
23
|
Ellis JA, Martin BV, Waldner C, Dyer KD, Domachowske JB, Rosenberg HF. Mucosal inoculation with an attenuated mouse pneumovirus strain protects against virulent challenge in wild type and interferon-gamma receptor deficient mice. Vaccine 2007; 25:1085-95. [PMID: 17052820 PMCID: PMC1922442 DOI: 10.1016/j.vaccine.2006.09.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/19/2006] [Accepted: 09/20/2006] [Indexed: 12/31/2022]
Abstract
Protective mechanisms underlying the responses to mucosal vaccination are not yet clearly defined. Using the natural mouse pneumovirus pathogen, pneumonia virus of mice (PVM), we explore responses of wild type and interferon-gamma (IFNgamma) receptor gene-deleted mice to virulent challenge after mucosal vaccination with an attenuated virus strain. Serum neutralizing antibodies develop after intranasal inoculation with 30 pfu of attenuated, replication-competent PVM strain 15, which correlate with diminished gross and microscopic pulmonary pathology and protection from weight loss in response to subsequent challenge with the virulent parent PVM strain J3666. Virus replication in response to challenge was blunted in PVM strain 15 vaccinated mice, as was local production of secretory mediators IFNgamma, TNF-alpha, MIP-1 alpha, and MIP-2. Interestingly, responses of vaccinated IFNgamma receptor gene-deleted mice were indistinguishable from those of the wild type, suggesting that IFNgamma signaling may not be crucial for the generation of adaptive responses to pneumovirus infection in vivo.
Collapse
Affiliation(s)
- John A. Ellis
- Western Veterinary Medical College, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Brittany V. Martin
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cheryl Waldner
- Western Veterinary Medical College, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kimberly D. Dyer
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Helene F. Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Vangeel I, Antonis AFG, Fluess M, Riegler L, Peters AR, Harmeyer SS. Efficacy of a modified live intranasal bovine respiratory syncytial virus vaccine in 3-week-old calves experimentally challenged with BRSV. Vet J 2006; 174:627-35. [PMID: 17169592 DOI: 10.1016/j.tvjl.2006.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 07/21/2006] [Accepted: 10/20/2006] [Indexed: 11/21/2022]
Abstract
Two experimental bovine respiratory syncytial virus (BRSV) challenge studies were undertaken to evaluate the efficacy of a single intranasal dose of a bivalent modified live vaccine containing BRSV in 3-week-old calves. In the first study, vaccine efficacy was evaluated in colostrum deprived (maternal antibody negative) calves 5, 10 and 21 days after vaccination. Nasal shedding of BRSV was significantly reduced in vaccinated calves challenged 10 or 21 days after vaccination. Virus excretion titres were also reduced in vaccinates challenged 5 days after vaccination but reduction in duration of shedding and total amount of virus shed were not statistically significant. Clinical disease after challenge in this study was mild. In the second study, vaccine efficacy was assessed in calves with maternal antibodies against BRSV by challenge 66 days post-vaccination. Vaccination significantly reduced nasal shedding after challenge and the severity of clinical disease was also reduced.
Collapse
Affiliation(s)
- Ilse Vangeel
- Pfizer Animal Health, Veterinary Medicine Research and Development, Ramsgate Road, Sandwich, Kent CT13 9NJ, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related with the risks of poor welfare in intensive calf farming systems. EFSA J 2006; 4:366. [PMID: 32313579 PMCID: PMC7163428 DOI: 10.2903/j.efsa.2006.366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
26
|
Affiliation(s)
- Simon F Peek
- Department of Medical Sciences, University of Wisconsin-Madison School of Veterinary Medicine, 2015 Linden Drive West, Madison, WI 53706, USA.
| |
Collapse
|
27
|
Oumouna M, Mapletoft JW, Karvonen BC, Babiuk LA, van Drunen Littel-van den Hurk S. Formulation with CpG oligodeoxynucleotides prevents induction of pulmonary immunopathology following priming with formalin-inactivated or commercial killed bovine respiratory syncytial virus vaccine. J Virol 2005; 79:2024-32. [PMID: 15681404 PMCID: PMC546558 DOI: 10.1128/jvi.79.4.2024-2032.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Commercial killed bovine respiratory syncytial virus (K-BRSV) and formalin-inactivated BRSV (FI-BRSV) tend to induce Th2-type immune responses, which may not be protective and may even be detrimental during subsequent exposure to the virus. In this study we assessed the ability of CpG oligodeoxynucleotides (ODNs) to aid in the generation of effective and protective BRSV-specific immune responses. Mice were immunized subcutaneously with FI-BRSV formulated with CpG ODN, Emulsigen (Em), CpG ODN and Em, or non-CpG ODN and Em. Two additional groups were immunized with K-BRSV or K-BRSV and CpG ODN. After two vaccinations, the mice were challenged with BRSV. FI-BRSV induced Th2-biased immune responses characterized by production of serum immunoglobulin G1 (IgG1) and IgE, as well as interleukin-4 (IL-4), by in vitro-restimulated splenocytes. Formulation of FI-BRSV with CpG ODN, but not with non-CpG ODN, enhanced serum IgG2a and IFN-gamma production by splenocytes, whereas serum IgE was reduced. Although the immune response induced by K-BRSV was not as strongly Th2 biased, the addition of CpG ODN to this commercial vaccine also resulted in a more Th1-type response. Furthermore, the addition of CpG ODN to the BRSV vaccine formulations resulted in enhanced neutralizing antibody responses. Significant production of IL-5, eotaxin, and eosinophilia was observed in the lungs of FI-BRSV- and K-BRSV-immunized mice. However, IL-5 and eotaxin levels, as well as the number of eosinophils, were decreased in the mice vaccinated with the CpG ODN-formulated vaccines. Finally, when formulated with CpG ODN, both FI-BRSV and K-BRSV significantly reduced virus production after challenge with BRSV.
Collapse
Affiliation(s)
- M Oumouna
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, Saskatchewan S7N 5E3, Canada
| | | | | | | | | |
Collapse
|
28
|
Kalina WV, Woolums AR, Gershwin LJ. Formalin-inactivated bovine RSV vaccine influences antibody levels in bronchoalveolar lavage fluid and disease outcome in experimentally infected calves. Vaccine 2005; 23:4625-30. [PMID: 15967545 DOI: 10.1016/j.vaccine.2005.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 03/31/2005] [Accepted: 04/04/2005] [Indexed: 11/24/2022]
Abstract
Respiratory syncytial virus (RSV) causes severe respiratory disease in calves and human infants. In response to outbreaks, formalin inactivated (FI)-RSV vaccines were developed and found to exacerbate disease following a live RSV infection. We have reproduced vaccination induced disease enhancement in calves and screened various antibody isotypes in bronchoalveolar lavage fluid (BALF) from two studies: one with disease enhancement and another where moderate protection resulted from FI-bovine RSV (BRSV) vaccination. Semi-protected vaccinated calves produced BRSV-specific BALF IgG1, but not IgA and IgG2 prior to infection; whereas, calves with enhanced disease failed to develop BRSV-specific IgG1 in BALF. Ultimately, the formulation and delivery of RSV vaccines influences protective antibody levels in respiratory secretions.
Collapse
Affiliation(s)
- Warren V Kalina
- Department of Pathology, Microbiology, & Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
29
|
Peters AR, Thevasagayam SJ, Wiseman A, Salt JS. Duration of immunity of a quadrivalent vaccine against respiratory diseases caused by BHV-1, PI3V, BVDV, and BRSV in experimentally infected calves. Prev Vet Med 2005; 66:63-77. [PMID: 15579335 DOI: 10.1016/j.prevetmed.2004.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 08/11/2004] [Accepted: 08/18/2004] [Indexed: 11/23/2022]
Abstract
Several laboratory studies assessed the duration of immunity of a quadrivalent vaccine (Rispoval 4, Pfizer Animal Health) against bovine respiratory diseases (BRD) caused by bovine herpes-virus type-1 (BHV-1), parainfluenza type-3 virus (PI3V), bovine viral-diarrhoea virus type 1 (BVDV), or bovine respiratory syncytial virus (BRSV). Calves between 7 weeks and 6 months of age were allocated to treatment and then were injected with two doses of either the vaccine or the placebo 3 weeks apart. Six to 12 months after the second injection, animals were challenged with BHV-1 (n=16), PI3V (n=31), BVDV (n=16), or BRSV (n=20) and the course of viral infection was monitored by serological, haematological (in the BVDV study only), clinical, and virological means for > or =2 weeks. Infection induced mild clinical signs of respiratory disease and elevated rectal temperature in both vaccinated and control animals and was followed by a dramatic rise in neutralising antibodies in all treatment groups. Titres reached higher levels in vaccinated calves than in control calves after challenge with BHV-1, BVDV, or BRSV. On day 3 after PI3V challenge, virus shedding was reduced from 3.64 log10TCID50 in control animals to 2.59 log10TCID50 in vaccinated animals. On days 6 and 8 after BRSV challenge, there were fewer vaccinated animals (n=2/10 and 0/10, respectively) shedding the virus than control animals (n=8/10 and 3/10, respectively). Moreover, after challenge, the mean duration of virus shedding was reduced from 3.8 days in control animals to 1 day in vaccinated animals in the BVDV study and from 3.4 days in control animals to 1.2 days in vaccinated animals in the BRSV study. The duration of immunity of >or =6 months for PI3V, BHV-1 and BVDV, and 12 months for BRSV, after vaccination with Rispoval 4, was associated mainly with enhanced post-challenge antibody response to all four viruses and reduction of the amount or duration of virus shedding or both.
Collapse
Affiliation(s)
- A R Peters
- Veterinary Medicine Research and Development, Biologicals, Pfizer Animal Health, Sandwich CT13 9NJ, UK
| | | | | | | |
Collapse
|
30
|
Brady RP, Topliff CL, Kelling CL. In vitro expression of full-length and truncated bovine respiratory syncytial virus G proteins and their antibody responses in BALB/c mice. Vaccine 2004; 22:3762-8. [PMID: 15315857 DOI: 10.1016/j.vaccine.2004.03.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 02/16/2004] [Accepted: 03/01/2004] [Indexed: 11/13/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) is a primary cause of lower respiratory tract disease in calves. Protection is incomplete following vaccination or natural infection, as re-infections are common. The objectives of this study were to create plasmid DNA constructs encoding the full-length, secreted, or conserved region of the BRSV G glycoprotein, and to compare and evaluate their expression in cell culture and potential to induce antibody responses in BALB/c mice. Transfection of COS-7 cells with plasmid DNA resulted in expression of the BRSV G region from each of the plasmid DNA constructs. Following inoculation of BALB/c mice with plasmid DNA, a significant and equivalent anti-BRSV G IgG response was elicited to the full-length and truncated BRSV G proteins. These constructs may be used to study host pathological and immunological responses.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/analysis
- Antibodies, Viral/biosynthesis
- COS Cells
- Cattle
- Cells, Cultured
- Chlorocebus aethiops
- Conserved Sequence
- DNA/biosynthesis
- DNA/genetics
- DNA, Viral/analysis
- DNA, Viral/biosynthesis
- GTP-Binding Proteins/biosynthesis
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/immunology
- Genetic Vectors
- Immunoglobulin G/analysis
- Immunoglobulin G/biosynthesis
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Plasmids/genetics
- Plasmids/immunology
- Respiratory Syncytial Virus, Bovine/immunology
- Respiratory Syncytial Virus, Bovine/metabolism
- Transfection
- Vaccines, Subunit/biosynthesis
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/immunology
- Viral Vaccines/biosynthesis
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Ryan P Brady
- Department of Veterinary and Biomedical Sciences, University of Nebraska, East Campus Loop and Fair Street, Veterinary Basic Science, Lincoln, NE 68583-0905, USA
| | | | | |
Collapse
|
31
|
Domachowske JB, Bonville CA, Rosenberg HF. Animal models for studying respiratory syncytial virus infection and its long term effects on lung function. Pediatr Infect Dis J 2004; 23:S228-34. [PMID: 15577578 DOI: 10.1097/01.inf.0000144672.81955.a4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Human respiratory syncytial virus (hRSV) infection causes a spectrum of illnesses ranging from mild infection to life-threatening bronchiolitis and respiratory failure. Human studies on the pathogenesis of RSV infection are invaluable, but animal models permit advances with the use of experimental strategies that would be inappropriate in human studies. METHODS We review the advantages and disadvantages of various animal models for the study of hRSV infection. RESULTS No animal model of hRSV infection replicates the complete spectrum of disease severity seen in humans. Available models differ in their ability to incorporate genetic technology and to allow the study of immunity, vaccine efficacy and treatment interventions. Although hRSV establishes disease in primates, this advantage is outweighed by the impracticalities and cost of using such models. The study of bovine RSV infection in calves is appealing because of parallels with human disease. Among rodent models, BALB/c mice have helped delineate the mechanisms underlying vaccine-enhanced RSV disease, and cotton rats have been used for preclinical testing. The single major disadvantage of studying hRSV in rodent models is the limited extent to which this host-restricted human pneumovirus replicates in mouse lung tissue. The rodent-specific Pneumovirus pathogen, pneumonia virus of mice, causes an infection that mirrors severe bronchiolitis and pneumonia in infants infected with RSV, including robust virus replication with profound inflammation. CONCLUSION The recent development of the pneumonia virus of mice model has permitted exploration of the mechanisms of severe Pneumovirus disease in vivo with the use of sophisticated genetic tools and genetically manipulated mouse strains.
Collapse
Affiliation(s)
- Joseph B Domachowske
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, NY, USA
| | | | | |
Collapse
|
32
|
Easton AJ, Domachowske JB, Rosenberg HF. Animal pneumoviruses: molecular genetics and pathogenesis. Clin Microbiol Rev 2004; 17:390-412. [PMID: 15084507 PMCID: PMC387412 DOI: 10.1128/cmr.17.2.390-412.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumoviruses are single-stranded, negative-sense, nonsegmented RNA viruses of the family Paramyxoviridae, subfamily Pneumovirinae, and include pathogens that infect humans (respiratory syncytial virus and human metapneumovirus), domestic mammals (bovine, ovine, and caprine respiratory syncytial viruses), rodents (pneumonia virus of mice), and birds (avian metapneumovirus). Among the topics considered in this review are recent studies focused on the roles of the individual virus-encoded components in promoting virus replication as well as in altering and evading innate antiviral host defenses. Advances in the molecular technology of pneumoviruses and the emergence of recombinant pneumoviruses that are leading to improved virus-based vaccine formulations are also discussed. Since pneumovirus infection in natural hosts is associated with a profound inflammatory response that persists despite adequate antiviral therapy, we also review the recent experimental treatment strategies that have focused on combined antiviral, anti-inflammatory, and immunomodulatory approaches.
Collapse
|
33
|
Jolly S, Detilleux J, Desmecht D. Extensive mast cell degranulation in bovine respiratory syncytial virus-associated paroxystic respiratory distress syndrome. Vet Immunol Immunopathol 2004; 97:125-36. [PMID: 14741132 DOI: 10.1016/j.vetimm.2003.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bovine respiratory syncytial virus (BRSV) infection is an important cause of outbreaks of respiratory disease among calves. This virus commonly induces mild to severe respiratory signs but, in a substantial proportion of cases, is also reported to be associated with paroxystic respiratory distress syndrome (PRDS). The pathogenesis of this 'malignant' clinical form has not been fully elucidated. The present study aimed at determining whether mast cell (MC) degranulation plays a role in the physiopathologic cascade leading to the PRDS. Paired serum samples were taken in herds during outbreaks of severe respiratory diseases (acute sera) and 3 weeks after (convalescent sera). Based on seroconversion to BRSV and clinical picture, 67 pairs of sera were selected from calves with a BRSV-associated PRDS for circulating MC tryptase determination. A MC metachromatic score was measured in post-mortem lungs from animals died from a BRSV-associated PRDS (principals) and compared with reference scores obtained from healthy lungs (controls). Levels of tryptase were significantly higher in acute sera (26.6 +/- 12.4 microg/l) compared to convalescent sera (8.4 +/- 7.8 microg/l; P<0.001). Metachromatic scores yielded significantly different results between controls and principals (P<0.01), demonstrating a significant disappearance of metachromatic granules from lung MCs in principals. Taken together, these data demonstrate the presence of an extensive MC degranulation in BRSV-associated PRDS.
Collapse
Affiliation(s)
- Sandra Jolly
- Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Sart Tilman B43, 4000 Liège, Belgium.
| | | | | |
Collapse
|
34
|
Sandbulte MR, Roth JA. Priming of multiple T cell subsets by modified-live and inactivated bovine respiratory syncytial virus vaccines. Vet Immunol Immunopathol 2003; 95:123-33. [PMID: 12963273 DOI: 10.1016/s0165-2427(03)00139-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
T cell activity is a critical component of immunity to bovine respiratory syncytial virus (BRSV). We tested the effects of immunization by modified-live and inactivated BRSV vaccines on cell-mediated and humoral immunity in young calves. The two forms of vaccine stimulated similar serum neutralizing antibody production, although the early kinetics of those responses differed. CD4+, CD8+, and gammadelta T cells were analyzed before and after immunization for BRSV-specific in vitro recall responses, as evaluated by CD25 upregulation measured by flow cytometry. Modified-live virus (MLV) primed each of the three subsets for statistically significant in vitro responses to antigen. Inactivated vaccine also primed each T cell population for significant antigen-driven CD25 upregulation, including responses by CD4+ and gammadelta T cells that were stronger and longer-lasting than those primed by MLV. Monoclonal antibody was used in additional assays to block MHC class I during incubation of BRSV antigen with peripheral blood mononuclear cells from an animal in the inactivated vaccine group. The recall response by CD8+ T cells was more inhibited by this treatment than the other subsets, further suggesting that the inactivated vaccine had primed antigen-specific CD8+ T cells. In summary, the data indicate that balanced BRSV-specific T cell responses can be induced by inactivated, as well as modified-live, conventional vaccines, which may implicate an alternative pathway of MHC class I antigen presentation.
Collapse
Affiliation(s)
- Matthew R Sandbulte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, 2156 Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
35
|
Abstract
The bovine respiratory disease complex continues to be an economically important syndrome in an era when immunologic control is likely to become increasingly important. Recent studies have yielded a better understanding of the interaction, at the molecular level, of various pathogens with the bovine immune system. Improved challenge models for important viral pathogens such as bovine viral diarrhea virus and bovine respiratory syncytial virus have provided evidence of the efficacy of immune responses stimulated by vaccination. This article highlights recent advances in understanding of the role of the immune response in the pathogenesis and prophylaxis of bovine respiratory disease complex.
Collapse
Affiliation(s)
- J A Ellis
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
36
|
Ellis J, West K, Konoby C, Leard T, Gallo G, Conlon J, Fitzgerald N. Efficacy of an inactivated respiratory syncytial virus vaccine in calves. J Am Vet Med Assoc 2001; 218:1973-80. [PMID: 11417745 DOI: 10.2460/javma.2001.218.1973] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether an inactivated bovine respiratory syncytial virus (BRSV) vaccine would protect calves from infection with virulent BRSV. DESIGN Randomized controlled trial. ANIMALS 27 nine-week-old calves seronegative for BRSV exposure. PROCEDURE Group-1 calves (n = 9) were not vaccinated. Group-2 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing a minimum immunizing dose of antigen. Group-3 calves (n = 9) were vaccinated on days 0 and 21 with an inactivated BRSV vaccine containing an amount of antigen similar to that in a commercial vaccine. All calves were challenged with virulent BRSV on day 42. Clinical signs and immune responses were monitored for 8 days after challenge. Calves were euthanatized on day 50, and lungs were examined for lesions. RESULTS Vaccination elicited increases in BRSV-specific IgG and virus neutralizing antibody titers and in production of interferon-gamma. Virus neutralizing antibody titers were consistently less than IgG titers. Challenge with BRSV resulted in severe respiratory tract disease and extensive pulmonary lesions in control calves, whereas vaccinated calves had less severe signs of clinical disease and less extensive pulmonary lesions. The percentage of vaccinated calves that shed virus in nasal secretions was significantly lower than the percentage of control calves that did, and peak viral titer was lower for vaccinated than for control calves. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest that the inactivated BRSV vaccine provided clinical protection from experimental infection with virulent virus and decreased the severity of pulmonary lesions. Efficacy was similar to that reported for modified-live BRSV vaccines.
Collapse
Affiliation(s)
- J Ellis
- Department of Veterinary Microbiology, Western Collge of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Schreiber P, Matheise JP, Dessy F, Heimann M, Letesson JJ, Coppe P, Collard A. High mortality rate associated with bovine respiratory syncytial virus (BRSV) infection in Belgian white blue calves previously vaccinated with an inactivated BRSV vaccine. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2000; 47:535-50. [PMID: 11048435 DOI: 10.1046/j.1439-0450.2000.00380.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a group of 60 Belgian White Blue calves less than 8 months old still housed in barns, a bovine respiratory syncytial virus (BRSV) outbreak was revealed on the basis of a direct diagnosis (immunofluorescence and virus isolation) performed on the lungs of dead animals, and the kinetics of BRSV neutralizing antibodies. Clinical signs, macroscopical and microscopical pulmonary lesions were also compatible with a BRSV infection. This outbreak is peculiar because the 35 oldest calves (204 +/- 29 days old) had been vaccinated 3-4 months before with an inactivated BRSV vaccine and 30% of these animals had died of respiratory distress. While they experienced a mild respiratory symptomatology, no death was recorded among the 25 youngest calves (69 +/- 29 days old) which had been left unvaccinated. Another peculiarity was found at the histological level where a massive infiltration of eosinophils was demonstrated in the pulmonary tissues of the dead animals. Together these data parallel the dramatic story described 30 years ago in children previously vaccinated with a formalin-inactivated human RSV (HRSV) vaccine upon a natural HRSV challenge. This illustrates that an immunopathological phenomenon also takes place after BRSV vaccination in cattle.
Collapse
Affiliation(s)
- P Schreiber
- Division Immunologie Animale, Centre d'Economie Rurale, Marloie, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
West K, Petrie L, Konoby C, Haines DM, Cortese V, Ellis JA. The efficacy of modified-live bovine respiratory syncytial virus vaccines in experimentally infected calves. Vaccine 1999; 18:907-19. [PMID: 10580205 DOI: 10.1016/s0264-410x(99)00324-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The efficacy of modified-live (MLV) bovine respiratory syncytial virus (BRSV) vaccines and the correlates of vaccine-induced immunity were investigated in calves using a virulent experimental infection. Clinical disease and pulmonary pathology were significantly reduced, relative to unvaccinated controls, in calves vaccinated according to label directions with commercial multivalent MLV BRSV vaccines. In vitro assays of cellular immunity were more consistent correlates of vaccine associated protection than presence of post vaccination serum antibody. Most vaccinated calves shed virus, but peak virus titre was suppressed compared to unvaccinated controls, with clearance coincident with the simultaneous appearance of mucosal antibody, cytotoxic cells in the lung and anamnestic or primary serum antibody responses. Virus clearance in unvaccinated calves was coincident with the appearance of BRSV specific cytotoxic cells, before mucosal antibody was detected.
Collapse
Affiliation(s)
- K West
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Canada.
| | | | | | | | | | | |
Collapse
|
39
|
Gershwin LJ, Schelegle ES, Gunther RA, Anderson ML, Woolums AR, Larochelle DR, Boyle GA, Friebertshauser KE, Singer RS. A bovine model of vaccine enhanced respiratory syncytial virus pathophysiology. Vaccine 1998; 16:1225-36. [PMID: 9682383 DOI: 10.1016/s0264-410x(98)80123-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A critical issue has been the observation that vaccination of children with a formalin-inactivated respiratory syncytial virus (RSV) vaccine is associated with disease enhancement. We have taken advantage of bovine RSV and our experience with this disease in calves to develop a natural model that parallels human disease. Using formalin-inactivated bovine RSV vaccine calves were either sham-vaccinated/infected, vaccinated/infected, or vaccinated/sham-infected and their clinical signs, pulmonary function, and histological lung lesions quantitatively scored. Interestingly there was significantly greater disease in vaccinated/infected calves and histological lesions in calves were similar to those of affected children. Finally, we note that vaccination did not induce neutralizing antibodies, but IgG antibodies were detected by ELISA. Our model of RSV enhanced disease is important because it provides quantifiable evidence of disease severity that can be applied to evaluate the mechanisms of immunopathology and the safety of candidate RSV vaccines.
Collapse
Affiliation(s)
- L J Gershwin
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|