1
|
Telianidis J, Hung YH, Materia S, Fontaine SL. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front Aging Neurosci 2013; 5:44. [PMID: 23986700 PMCID: PMC3750203 DOI: 10.3389/fnagi.2013.00044] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/05/2013] [Indexed: 12/21/2022] Open
Abstract
Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.
Collapse
Affiliation(s)
- Jonathon Telianidis
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Ya Hui Hung
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience Research, The University of MelbourneParkville, VIC, Australia
| | - Stephanie Materia
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| | - Sharon La Fontaine
- Strategic Research Centre for Molecular and Medical Research, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin UniversityBurwood, VIC, Australia
| |
Collapse
|
2
|
Barnerias C, Boddaert N, Guiraud P, Desguerre I, Hertz Pannier L, Dulac O, de Lonlay P, Bahi Buisson N. Unusual magnetic resonance imaging features in Menkes disease. Brain Dev 2008; 30:489-92. [PMID: 18243619 DOI: 10.1016/j.braindev.2007.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 10/28/2007] [Accepted: 12/30/2007] [Indexed: 11/17/2022]
Abstract
We present a case of an inherited disorder of copper metabolism, Menkes disease in which MRI studies revealed the coexistence of T2 hypersignal in the temporal white matter with an increase of apparent diffusion coefficient indicative of vasogenic oedema combined with T2 hypersignal of the putamen and head of the caudate and decreased apparent diffusion coefficient indicative of cytotoxic oedema. These unusual MRI features emphasize the interest of newly developed techniques in early diagnosis in Menkes disease. The acute cerebral damage might result from the combined effects of acute metabolic stress due to infectious disease and prolonged status epilepticus, acting on a highly susceptible developing brain. Vasogenic oedema in the temporal white matter could be related to prolonged status epilepticus and vascular abnormalities. Cytotoxic oedema of the putamen and head caudate could result from energetic failure.
Collapse
Affiliation(s)
- Christine Barnerias
- Department of Paediatric Neurology and Metabolic Disease, Hopital Necker Enfants Malades, 149 rue de Sevres, AP-HP, 75743 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Poretti A, Wolf NI, Boltshauser E. Differential diagnosis of cerebellar atrophy in childhood. Eur J Paediatr Neurol 2008; 12:155-67. [PMID: 17869142 DOI: 10.1016/j.ejpn.2007.07.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/20/2007] [Accepted: 07/26/2007] [Indexed: 11/16/2022]
Abstract
Starting from the imaging appearance of cerebellar atrophy (CA) we provide checklists for various groups of CA: hereditary CA, postnatally acquired CA, and unilateral CA. We also include a list of disorders with ataxia as symptom, but no evidence of CA on imaging. These checklists may be helpful in the evaluation of differential diagnosis and planning of additional investigations. However, the complete constellation of clinical (including history and neurological examination), imaging, and other information have to be considered. On the basis of a single study distinction between prenatal onset atrophy, postnatal onset atrophy, and cerebellar hypoplasia is not always possible. Apart from rare exceptions, neuroimaging findings of CA are nonspecific. A pattern-recognition approach is suggested, considering isolated (pure) CA, CA and hypomyelination, CA and progressive white matter abnormalities, CA and basal ganglia involvement, and cerebellar cortex hyperintensity.
Collapse
Affiliation(s)
- Andrea Poretti
- Department of Paediatric Neurology, University Children's Hospital of Zurich, Steinwiesstrasse 75, CH-8032 Zurich, Switzerland
| | | | | |
Collapse
|
4
|
Abstract
Copper and iron are transition elements essential for life. These metals are required to maintain the brain's biochemistry such that deficiency or excess of either copper or iron results in central nervous system disease. This review focuses on the inherited disorders in humans that directly affect copper or iron homeostasis in the brain. Elucidation of the molecular genetic basis of these rare disorders has provided insight into the mechanisms of copper and iron acquisition, trafficking, storage, and excretion in the brain. This knowledge permits a greater understanding of copper and iron roles in neurobiology and neurologic disease and may allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Erik Madsen
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
5
|
El Meskini R, Crabtree KL, Cline LB, Mains RE, Eipper BA, Ronnett GV. ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis. Mol Cell Neurosci 2007; 34:409-21. [PMID: 17215139 PMCID: PMC1876716 DOI: 10.1016/j.mcn.2006.11.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 11/11/2006] [Accepted: 11/20/2006] [Indexed: 12/19/2022] Open
Abstract
Menkes disease (MD) is a neurodegenerative disorder caused by mutations in the copper transporter, ATP7A, a P-type ATPase. We previously used the olfactory system to demonstrate that ATP7A expression is developmentally, not constitutive, regulated, peaking during synaptogenesis when it is highly expressed in extending axons in a copper-independent manner. Although not known to be associated with axonal functions, we explored the possibility that the inability of mutant ATP7A to support axon outgrowth contributes to the neurodegeneration seen in MD. In vivo analysis of the olfactory system in mottled brindled (Atp7aMobr) mice, a rodent model for MD, demonstrates that ATP7A deficiency affects olfactory sensory neuron (OSN) maturation. Disrupted OSN axonal projections and mitral/tufted cell dendritic growth lead to altered synapse integrity and glomerular disorganization in the olfactory bulbs of Atp7aMobr mice. Our data indicate that the neuronal abnormalities observed in MD are a result of specific age-dependent developmental defects. This study demonstrates a role for ATP7A and/or copper in axon outgrowth and synaptogenesis, and will further help identify the cause of the neuropathology that characterizes MD.
Collapse
Affiliation(s)
- Rajaâ El Meskini
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Niciu MJ, Ma XM, El Meskini R, Ronnett GV, Mains RE, Eipper BA. Developmental changes in the expression of ATP7A during a critical period in postnatal neurodevelopment. Neuroscience 2006; 139:947-64. [PMID: 16549268 DOI: 10.1016/j.neuroscience.2006.01.044] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 01/16/2006] [Accepted: 01/26/2006] [Indexed: 11/27/2022]
Abstract
ATP7A is a P-type ATPase that transports copper from cytosol into the secretory pathway for loading onto cuproproteins or efflux. Mutations in Atp7a cause Menkes disease, a copper-deficiency disorder fatal in the postnatal period due to severe neurodegeneration. Early postnatal copper injections are known to diminish degenerative changes in some human patients and mice bearing mutations in Atp7a. In situ hybridization studies previously demonstrated that ATP7A transcripts are expressed widely in the brain. ATP7A-specific antibody was used to study the neurodevelopmental expression and localization of ATP7A protein in the mouse brain. Based on immunoblot analyses, ATP7A expression is most abundant in the early postnatal period, reaching peak levels at P4 in neocortex and cerebellum. In the developing and adult brain, ATP7A levels are greatest in the choroid plexus/ependymal cells of the lateral and third ventricles. ATP7A expression decreases in most neuronal subpopulations from birth to adulthood. In contrast, ATP7A expression increases in CA2 hippocampal pyramidal and cerebellar Purkinje neurons. ATP7A is expressed in a subset of astrocytes, microglia, oligodendrocytes, tanycytes and endothelial cells. ATP7A is largely localized to the trans-Golgi network, adopting the cell-specific and developmentally-regulated morphology of this organelle. The presence of ATP7A in the axons of postnatal, but not adult, optic nerve suggests stage-specific roles for this enzyme. In sum, the precisely-regulated neurodevelopmental expression of ATP7A correlates well with the limited therapeutic window for effective treatment of Menkes disease.
Collapse
Affiliation(s)
- M J Niciu
- University of Connecticut Health Center, Department of Neuroscience, Academic Research Building (E)-4047, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | | | |
Collapse
|
7
|
Santos LM, Vilanova LC, Micheletti C, Mendes CS, Borri ML, Martins AM. Menkes disease: case report of an uncommon presentation with white matter lesions. ARQUIVOS DE NEURO-PSIQUIATRIA 2001; 59:125-7. [PMID: 11299447 DOI: 10.1590/s0004-282x2001000100027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Menkes disease is a rare X-linked disorder related to a defect in the copper metabolism. According to the current literature, the most frequent neuroimaging findings are cortical atrophy, chronic subdural effusion or hygroma, and vascular abnormalities. White matter lesions may be present before other features of the disease and may evolve into atrophy. We hereby report a case of Menkes disease with typical history and progression, and an early phase imaging study with important white matter abnormalities, which could have lead to diagnostic difficulties.
Collapse
Affiliation(s)
- L M Santos
- Setor de Neurologia Infantil, Escola Paulista de Medicina, Universidade Federal de São Paulo
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Abstract
Menkes' disease is an X-linked disorder caused by impaired intracellular transport of copper. Currently, no therapy effectively arrests the relentless neurodegeneration of Menkes' disease. Previous neuroimaging reports of patients with Menkes' disease describe a range of abnormalities, including intracranial vessel tortuosity and cerebral white matter changes. We report two infants with Menkes' disease who developed ischemic cerebrovascular disease early in infancy. Magnetic resonance studies, including diffusion-weighted imaging and proton magnetic resonance spectroscopy, demonstrated bilateral infarctions of deep gray matter nuclei, a finding not previously described in Menkes' disease. Potential mechanisms for these cerebrovascular lesions in Menkes' disease include the susceptibility to free radical attack and inadequate energy supply from oxidative phosphorylation. These infarctions may play an unrecognized but important role in the neurodegeneration of children with Menkes' disease. The development of effective therapeutic agents against this disease will require a more detailed understanding of such underlying mechanisms.
Collapse
Affiliation(s)
- G E Hsich
- Department of Neurology, Harvard Medical School and Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Copper is an essential trace metal which plays a fundamental role in the biochemistry of the human nervous system. Menkes disease and Wilson disease are inherited disorders of copper metabolism and the dramatic neurodegenerative phenotypes of these two diseases underscore the essential nature of copper in nervous system development as well as the toxicity of this metal when neuronal copper homeostasis is perturbed. Ceruloplasmin contains 95% of the copper found in human plasma and inherited loss of this essential ferroxidase is associated with progressive neurodegeneration of the retina and basal ganglia. Gain-of-function mutations in the cytosolic copper enzyme superoxide dismutase result in the motor neuron degeneration of amyotrophic lateral sclerosis and current evidence suggests a direct pathogenic role for copper in this process. Recent studies have also implicated copper in the pathogenesis of neuronal injury in Alzheimer's disease and the prion-mediated encephalopathies, suggesting that further elucidation of the mechanisms of copper trafficking and metabolism within the nervous system will be of direct relevance to our understanding of the pathophysiology and treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- D J Waggoner
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|