1
|
Xu H, Li Y, Li Q, Ma Z, Yin S, He H, Xiong Y, Xiong X, Lan D, Li J, Fu W. Cloning and Characterization of Yak DHODH Gene and Its Functional Studies in a Bisphenol S-Induced Ferroptosis Model of Fetal Fibroblasts. Animals (Basel) 2023; 13:3832. [PMID: 38136869 PMCID: PMC10740537 DOI: 10.3390/ani13243832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Dihydroorotate dehydrogenase (DHODH) is a rate-limiting enzyme of de novo biosynthesis of pyrimidine. Although the involvement of DHODH in resisting ferroptosis has been successively reported in recent years, which greatly advanced the understanding of the mechanism of programmed cell death (PCD), the genetic sequence of the yak DHODH gene and its roles in ferroptosis are still unknown. For this purpose, we firstly cloned the coding region sequence of DHODH (1188 bp) from yak liver and conducted a characterization analysis of its predictive protein that consists of 395 amino acids. We found that the coding region of the yak DHODH gene presented high conservation among species. Second, the expression profile of the DHODH gene in various yak tissues was investigated using RT-qPCR. The results demonstrated that DHODH was widely expressed in different yak tissues, with particularly high levels in the spleen, heart, and liver. Third, to investigate the involvement of DHODH in regulating ferroptosis in cells, yak skin fibroblasts (YSFs) were isolated from fetuses. And then, bisphenol S (BPS) was used to induce the in vitro ferroptosis model of YSFs. We observed that BPS decreased the cell viability (CCK8) and membrane potential (JC-1) of YSFs in a dose-dependent manner and induced oxidative stress by elevating reactive oxygen species (ROS). Simultaneously, it was evident that BPS effectively augmented the indicators associated with ferroptosis (MDA and BODIPY staining) and reduced GSH levels. Importantly, the co-administration of Ferrostatin-1 (Fer), a potent inhibitor of ferroptosis, significantly alleviated the aforementioned markers, thereby confirming the successful induction of ferroptosis in YSFs by BPS. Finally, overexpression plasmids and siRNAs of the yak DHODH gene were designed and transfected respectively into BPS-cultured YSFs to modulate DHODH expression. The findings revealed that DHODH overexpression alleviated the occurrence of BPS-induced ferroptosis, while interference of DHODH intensified the ferroptosis process in YSFs. In summary, we successfully cloned the coding region of the yak DHODH gene, demonstrating its remarkable conservation across species. Moreover, using BPS-induced ferroptosis in YSFs as the model, the study confirmed the role of the DHODH gene in resisting ferroptosis in yaks. These results offer valuable theoretical foundations for future investigations into the functionality of the yak DHODH gene and the underlying mechanisms of ferroptosis in this species.
Collapse
Affiliation(s)
- Hongmei Xu
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
| | - Yueyue Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
| | - Qiao Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
| | - Zifeng Ma
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
| | - Shi Yin
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Honghong He
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China; (H.X.); (Y.L.); (Q.L.); (Z.M.); (S.Y.); (H.H.); (Y.X.); (X.X.); (D.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Chauhan R, Archibong AE, Ramesh A. Imprinting and Reproductive Health: A Toxicological Perspective. Int J Mol Sci 2023; 24:16559. [PMID: 38068882 PMCID: PMC10706004 DOI: 10.3390/ijms242316559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
This overview discusses the role of imprinting in the development of an organism, and how exposure to environmental chemicals during fetal development leads to the physiological and biochemical changes that can have adverse lifelong effects on the health of the offspring. There has been a recent upsurge in the use of chemical products in everyday life. These chemicals include industrial byproducts, pesticides, dietary supplements, and pharmaceutical products. They mimic the natural estrogens and bind to estradiol receptors. Consequently, they reduce the number of receptors available for ligand binding. This leads to a faulty signaling in the neuroendocrine system during the critical developmental process of 'imprinting'. Imprinting causes structural and organizational differentiation in male and female reproductive organs, sexual behavior, bone mineral density, and the metabolism of exogenous and endogenous chemical substances. Several studies conducted on animal models and epidemiological studies provide profound evidence that altered imprinting causes various developmental and reproductive abnormalities and other diseases in humans. Altered metabolism can be measured by various endpoints such as the profile of cytochrome P-450 enzymes (CYP450's), xenobiotic metabolite levels, and DNA adducts. The importance of imprinting in the potentiation or attenuation of toxic chemicals is discussed.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Anthony E. Archibong
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
3
|
Wang Z, Chen M, Liu N, Zhao Y, Ru J, Qin C, Zhang T. Common and unique testosterone and 17 beta-estradiol degradation mechanisms in Comamonas testosteroni JLU460ET by transcriptome analysis. Front Microbiol 2023; 14:1238855. [PMID: 37954242 PMCID: PMC10637631 DOI: 10.3389/fmicb.2023.1238855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Strain C. testosteroni JLU460ET was isolated for testosterone and 17 beta-estradiol degradation by our group. In this study, strain C. testosteroni JLU460ET was induced by testosterone and 17 beta-estradiol and then subjected to transcriptome analysis. There were 2,047 upregulated genes after 3 h of testosterone induction, 2,040 upregulated genes after 13 h of testosterone induction, 2,078 upregulated genes after 3 h of 17 beta-estradiol induction, and 2,095 upregulated genes after 13 h of 17 beta-estradiol induction. Significantly upregulated genes were mainly involved in steroid and aromatic compound degradation. A 100 kb steroid-degrading gene cluster was found by transcriptome analysis, which included 92 annotated genes and 58 novel genes. Among them, MucB/RseB and Fiu are secretory proteins for sensing substrates in the environment. MFS-1 and TonB are transporters of testosterone and 17 beta-estradiol. Ring-cleavage enzymes and beta-oxidation enzymes are important for degradation. The genes upregulated by both substrates were almost the same, but the degree of induction by testosterone was higher than that by 17 beta-estradiol. Nine upregulated genes were selected for verification by quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR results were consistent with the transcriptome sequencing results. In this study, the common and unique metabolic mechanisms of testosterone and 17 beta-estradiol were compared by transcriptome analysis in C. testosteroni JLU460ET for the first time.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, Jilin, China
| | - Mingming Chen
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, Jilin, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Yongkang Zhao
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, Jilin, China
| | - Jintao Ru
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, Jilin, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, Jilin, China
| | - Tingdi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Extraction of estrogenic pollutants in aqueous solution using poly(lactic acid). J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Ibor OR, Nnadozie P, Ogarekpe DM, Idogho O, Anyanti J, Aizobu D, Onyezobi C, Chukwuka AV, Adeogun AO, Arukwe A. Public health implications of endocrine disrupting chemicals in drinking water and aquatic food resources in Nigeria: A state-of-the-science review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159835. [PMID: 36334666 DOI: 10.1016/j.scitotenv.2022.159835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This state-of-the-science review is aimed at identifying the sources, occurrence, and concentrations of EDCs, including potential public health risks associated with drinking water and aquatic food resources from Nigerian inland waters. A total of 6024 articles from scientific databases (PubMed, Scopus, Web of science, ScienceDirect, Google Scholar, and African Journals Online) were identified, out of which, 103 eligible articles were selected for this study. Eleven (11) classes of EDCs (OCPs, PCBs, PBDEs, PAHs, BPA, OTs, PEs, PCs, PPCPs, sterols and n-alkanes) were identified from drinking waters, river sediments and aquatic food species from Nigerian rivers, showing that OCPs were the most studied and reported EDCs. Analytical methods used were HPLC, LC-MS/MS, GC-FID, GC-ECD and GC-MS with all EDCs identified to originate from anthropogenic sources. Carcinogenic, mutagenic, and teratogenic effects were the highest (54.4 %) toxicological effects identified, while reproductive/endocrine disruptive effects (15.2 %) and obesogenic effects (4.3 %) were the least identified toxicological effects. The targeted hazard quotient (THQ) and cancer risk (CR) were generally highest in children, compared to the adult populations, indicating age-specific toxicity. PEs produced the highest THQ (330.3) and CR (1.2) for all the EDCs in drinking water for the children population, suggesting enhanced vulnerability of this population group, compared to the adult population. Due to associated public health, wildlife and environmental risk of EDCs and their increasing concentrations in drinking water and food fish species from Nigerian inland waters, there is an urgent need for focused and strategic interventions, sensitization and policy formulation/implementation towards public health and aquatic food safety in Nigeria.
Collapse
Affiliation(s)
- Oju R Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria.
| | | | - Dinah M Ogarekpe
- Center for Disaster Risk Management, Department of Geography and Environmental Management, University of Port Harcourt, Nigeria
| | | | | | | | | | - Azubuike V Chukwuka
- National Environmental Standards Regulations and Enforcement Agency (NESREA), Nigeria
| | | | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491 Trondheim, Norway.
| |
Collapse
|
6
|
Dobrzyńska MM, Radzikowska J. The effects of Aroclor 1254 alone and in combination with X-rays on the male mice germ cells quantity and quality. Toxicology 2022; 477:153273. [PMID: 35872225 DOI: 10.1016/j.tox.2022.153273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
The effects of chemical and physical environmental factors are concerned as the main reason of diminished male fertility. The aim of the study was the investigation of the effects of low doses of Aroclor 1254 or combined exposure to low doses of Aroclor 1254 and low doses of ionizing radiation on the sperm quantity and quality of male germ cells including damage to genetic material of adult male mice. Mice were exposed for 2 weeks, 3 times per week by intraperitoneal injection with Aroclor 1254 diluted in corn oil at doses of 1, 2 and 4 mg/kg bw or to whole body X-rays irradiation at doses 0.05 Gy, 0.10 Gy and 0.15 Gy or to combination of X-rays and Aroclor 1254 at following doses 0.05 Gy + 1 mg/kg bw Aroclor 1254, 0.10 Gy + 2 mg/kg bw Aroclor 1254. The samples for sperm count, motility, morphology and DNA integrity of male germ cells estimation were taken from animals just after the end of exposure and 5 weeks later. Irradiation alone deteriorated sperm count and quality. Aroclor 1254 significantly reduced the sperm motility and increased sperm abnormality and at the highest dose also induced DNA damage of gametes. The combined exposure to 0.10 Gy + 2 mg/kg bw of Aroclor 1254 showed the increase in the sperm concentration and the decrease of percentage of abnormal spermatozoa compared to results after irradiation to 0.10 Gy alone. In conclusion, the low doses of Aroclor 1254 used in this study did not significantly reduce the sperm count, but affected the sperm motility, morphology and sometimes also DNA integrity of gametes. In combination with low doses of irradiation, low doses of Aroclor 1254 may ameliorate the harmful effect of irradiation on the male gametes.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland.
| | - Joanna Radzikowska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health NIH - National Research Institute, Warsaw, Poland
| |
Collapse
|
7
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Abdi SAH, Alzahrani A, Asad M, Alquraini A, Alghamdi AI, Sayed SF. Molecular docking and dynamics simulation to screen interactive potency and stability of fungicide tebuconazole with thyroid and sex hormone-binding globulin: Implications of endocrine and reproductive interruptions. J Appl Toxicol 2021; 41:1649-1659. [PMID: 33629778 DOI: 10.1002/jat.4153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 01/24/2023]
Abstract
Tebuconazole is a widely used fungicide in agriculture, and it may easily enter in the human food chain. In addition, tebuconzaol skin permeation coefficient (Log Kp) is -5.55 cm/s and it does not violate Lipinski's rule. It may mimic as a ligand for various endocrine and reproductive receptor leading to toxicological response or disease manifestation. We studied interactive potential of tebuconazole with thyroid and sex hormone-binding globulin. The main methods for this in silico analyses are molecular docking and molecular dynamic (MD) simulation. This paper explores how agriculture fungicide tebuconzaol exposure can be a risk for endocrine and reprotoxicity due to its stable interactive potency with thyroid and sex hormone-binding globulin (2CEO and 1D2S). Thyroid impairment is one of the most common endocrine issues in human health. In molecular docking analyses, tebuconazole exhibited binding potency of -6.28 kcal/mol with 2CEO compared to its native ligand thyroxin and inhibitor propylthiouracil which had the binding potency of -9.9 and -4.49 kcal/mol, respectively. The binding score of tebuconzaol with 1D2S was found to be -7.54 kcal/mol compared to native ligand dihydrotestosteron and inhibitor aminoglutethimide which exhibited the binding score of -6.84 and -11.41 kcal/mol, respectively. Therefore, each complex was subjected to MD simulation for comparative assessment of physical movement. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), Radius of Gyration and hydrogen bonding exhibited that fluconazole had stable binding pattern with 2CEO and 1D2S which was almost similar to native ligand and its inhibitor. Study revealed that tebuconazole may lead to potent endocrine and reproductive disruptions.
Collapse
Affiliation(s)
| | | | - Mohammad Asad
- CEISAM, UMR CNRS 6230, Université de Nantes, BP 92208, 2, Rue de la Houssinière, 44322, Nantes Cedex 3, France
| | - Ali Alquraini
- Department of Pharmacy, Albaha University, Albaha, Kingdom of Saudi Arabia
| | | | - Shabihul Fatma Sayed
- Department of Nursing, University College Farasan Campus, Jazan University, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Vilela CLS, Peixoto RS, Rachid CTCDC, Bassin JP. Assessing the impact of synthetic estrogen on the microbiome of aerated submerged fixed-film reactors simulating tertiary sewage treatment and isolation of estrogen-degrading consortium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140428. [PMID: 32763724 DOI: 10.1016/j.scitotenv.2020.140428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
17α-ethinylestradiol (EE2) is a synthetic estrogen that can cause harmful effects on animals, such as male feminization and infertility. However, the impact of the EE2 contamination on microbial communities and the potential role of bacterial strains as bioremediation agents are underexplored. The aim of this work was to evaluate the impact of EE2 on the microbial community dynamics of aerated submerged fixed-film reactors (ASFFR) simulating a polishing step downstream of a secondary sewage treatment. For this purpose, the reactors were fed with a synthetic medium with low COD content (around 50 mg l-1), supplemented (reactor H) or not (reactor C) with 1 μg l-1 of EE2. Sludge samples were periodically collected during the bioreactors operation to assess the bacterial profile over time by 16S rRNA gene amplicon sequencing or by bacterial isolation using culture-dependent approach. The results revealed that the most abundant phyla in both reactors were Proteobacteria and Bacteroidetes. At genus level, Chitinophagaceae, Nitrosomonas and Bdellovibrio predominated. Significant effects caused by EE2 treatment and bioreactors operating time were observed by non-metric multidimensional scaling. Therefore, even at low concentrations as 1 μg l-1, EE2 is capable of influencing the bioreactor microbiome. Culture-dependent methods showed that six bacterial isolates, closely related to Pseudomonas and Acinetobacter genera, could grow on EE2 as the sole carbon source under aerobic conditions. These organisms may potentially be used for the assembly of an EE2-degrading bacterial consortium and further exploited for bioremediation applications, including tertiary sewage treatment to remove hormone-related compounds not metabolized in secondary depuration stages.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caio Tavora Coelho da Costa Rachid
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Uterine Cancer Mortality in White and African American Females in Southeastern North Carolina. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2020; 2020:6734031. [PMID: 33061996 PMCID: PMC7545445 DOI: 10.1155/2020/6734031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/21/2020] [Accepted: 09/16/2020] [Indexed: 11/30/2022]
Abstract
The residents of southeastern North Carolina (NC) are exposed to multiple socioeconomic and environmental risk factors and have higher mortality rates for a number of diseases. Uterine cancer mortality is known to vary dramatically by race, so we analyzed uterine cancer mortality in populations defined by zip codes in this area to investigate the contributions of various environmental risk factors to race-specific disease patterns. Methods. Zip code specific mortality and hospital admissions for uterine cancer from 2007 to 2013 were analyzed using the NC State Center for Health Statistics data and the Inpatient Database of the Healthcare Cost and Utilization Project datafiles, respectively. Results were adjusted for age, income, education, health insurance coverage, prevalence of current smokers, and density of primary care providers. Results. Uterine cancer mortality rates were generally higher in African American (32.5/100,000, 95% CI = 18.9–46.1) compared to White (19.6/100,000, 95% CI = 12.3–26.9) females. Odds ratios (ORs) of uterine cancer death were higher in White females (OR = 2.27, p < 0.0001) residing within zip codes with hog concentrated animal feeding operations (CAFOs) (hog density >215 hogs/km2) than in White females residing in non-CAFO communities. African American females living near CAFOs had less pronounced increase of uterine cancer death (OR = 1.08, p=0.7657). Conclusion. White females living in adjacent to hog CAFOs areas of southeastern NC have lower rates of mortality from uterine cancer than African American females, but they have higher odds of death compared to their counterparts living in other NC areas. African American females living near CAFOs also have modest increases from their high baseline mortality. While the observed associations do not prove a causation, improving access to screening and medical care is important to mitigate this health issues in southeastern NC.
Collapse
|
11
|
Cascate reactions of progesterone by mycelia and culture broth from marine-derived fungus Aspergillus sydowii CBMAI 935. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Lobsiger N, Venetz JE, Gregorini M, Christen M, Christen B, Stark WJ. YestroSens, a field-portable S. cerevisiae biosensor device for the detection of endocrine-disrupting chemicals: Reliability and stability. Biosens Bioelectron 2019; 146:111710. [DOI: 10.1016/j.bios.2019.111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
|
13
|
Rogowska A, Pomastowski P, Rafińska K, Railean-Plugaru V, Złoch M, Walczak J, Buszewski B. A study of zearalenone biosorption and metabolisation by prokaryotic and eukaryotic cells. Toxicon 2019; 169:81-90. [PMID: 31493420 DOI: 10.1016/j.toxicon.2019.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 11/30/2022]
Abstract
A study of the mechanism responsible for the zearalenone (ZEA) neutralization by lactic acid bacteria Lactococcus lactis 56 and L929 cell line was carried out by determination of the kinetics of the binding process. In the case of prokaryotic cells the biosorption process was non-linear and three steps were identified. The maximum efficiency of zearalenone binding to L. lactis was almost 30% and no metabolites were observed. In turn, for eukaryotic cells only two steps of the binding process were differentiated, and the efficiency of zearalenone binding was 53.99%. Furthermore, L929 cell line metabolizes zearalenone to α-ZOL and β-ZOL. Additionally, Fourier transform infrared spectroscopy (FTIR) was used for description of the structural changes at the protein and lipid level, while Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS) was applied to detect changes at the molecular level.
Collapse
Affiliation(s)
- Agnieszka Rogowska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Michał Złoch
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Justyna Walczak
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7 St, PL-87-100 Toruń, Poland; Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Torun, Poland.
| |
Collapse
|
14
|
Sheng Z, Wang C, Ren F, Liu Y, Zhu B. Molecular mechanism of endocrine-disruptive effects induced by Bisphenol A: The role of transmembrane G-protein estrogen receptor 1 and integrin αvβ3. J Environ Sci (China) 2019; 75:1-13. [PMID: 30473274 DOI: 10.1016/j.jes.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is one of the highest volume industrial products worldwide and has been widely used to make various products as the intermediates of polycarbonate plastics and epoxy resins. Inevitably, general population has been widely exposed to BPA due to extensive use of BPA-containing products. BPA has similar chemical structure with the natural estrogen and has been shown to induce a variety of estrogen-like endocrine effects on organism in vivo or in vitro. High doses of BPA tend to act as antagonist of estrogen receptors (ERs) by directly regulating the genomic transcription. However, BPA at environmentally relevant low-dose always disrupt the biological function via a non-genomic manner mediated by membrane receptors, rather than ERs. Although some studies had investigated the non-genomic effects of low-dose BPA, the exact molecular mechanism still remains unclear. Recently, we found that membrane G protein-coupled estrogen receptor 1 and integrin αvβ3 and its relative signal pathways participate in the induction of male germ cell proliferation and thyroid transcription disruption by the low-dose BPA. A profound understanding for the mechanism of action of the environmentally relevant BPA exposure not only contributes to objectively evaluate and predict the potential influence to human health, but also provides theoretical basis and methodological support for assessing health effects trigged by other estrogen-like environmental endocrine disruptors. Based mainly on our recent findings, this review outlines the research progress of molecular mechanism on endocrine disrupting effects of environmental low-dose BPA, existing problems and some consideration for future studies.
Collapse
Affiliation(s)
- Zhiguo Sheng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Furong Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuxiang Liu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Benzhan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Magnetic covalent organic frameworks based on magnetic solid phase extraction for determination of six steroidal and phenolic endocrine disrupting chemicals in food samples. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Vilela CLS, Bassin JP, Peixoto RS. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:546-559. [PMID: 29329096 DOI: 10.1016/j.envpol.2017.12.098] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 05/12/2023]
Abstract
Hormone active agents constitute a dangerous class of pollutants. Among them, those agents that mimic the action of estrogens on target cells and are part of the group of endocrine-disruptor compounds (EDCs) are termed estrogenic EDCs, the main focus of this review. Exposure to these compounds causes a number of negative effects, including breast cancer, infertility and animal hermaphroditism. However, especially in underdeveloped countries, limited efforts have been made to warn people about this serious issue, explain the methods of minimizing exposure, and develop feasible and efficient mitigation strategies at different levels and in various environments. For instance, the use of bioremediation processes capable of transforming EDCs into environmentally friendly compounds has been little explored. A wide diversity of estrogen-degrading microorganisms could be used to develop such technologies, which include bioremediation processes for EDCs that could be implemented in biological filters for the post-treatment of wastewater effluent. This review describes problems associated with EDCs, primarily estrogenic EDCs, including exposure as well as the present status of understanding and the effects of natural and synthetic hormones and estrogenic EDCs on living organisms. We also describe potential biotechnological strategies for EDC biodegradation, and suggest novel treatment approaches for minimizing the persistence of EDCs in the environment.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Silva Peixoto
- Department of General Microbiology, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; IMAM-AquaRio - Rio de Janeiro Marine Aquarium Research Center, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Xu P, Zhou X, Xu D, Xiang Y, Ling W, Chen M. Contamination and Risk Assessment of Estrogens in Livestock Manure: A Case Study in Jiangsu Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E125. [PMID: 29329262 PMCID: PMC5800224 DOI: 10.3390/ijerph15010125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022]
Abstract
This study investigated the occurrence and contamination risk of estrogens in livestock manure in Jiangsu Province, China. Four estrogens-estriol (E3), 17β-estradiol (17β-E2), bisphenol A (BPA), and 17α-ethinyloestradiol (EE2)-were detected in livestock manure from hens, ducks, swine, and cows. The respective mean concentrations of each estrogen found in these manures were 289.8, 334.1, 330.3, and 33.7 μg/kg for E3; 38.6, 10.9, 52.9, and 38.8 μg/kg for 17β-E2; 63.6, 48.7, 51.9, and 11.7 μg/kg for BPA; and 14.3, 11.3, 25.1, and 21.8 μg/kg for EE2. Estrogens were most frequently detected at high concentrations in the manure of finishing pigs, followed by the manure of growing pigs and piglets. Estrogens can be partially degraded after banking up for seven days; yet, great quantities of estrogens remain in livestock manure. The total estradiol equivalent quantity (EEQt) estimated to be present in aquatic environments but originating from livestock waste was 10.5 ng/L, which was greater than the hazard baseline value (1 ng/L) and also higher than the proposed lowest observable effect concentration (10 ng/L) of E2 in aquatic environments. The results of our study demonstrate that livestock waste is an important source of estrogens, which may potentially affect the hormonal metabolism of aquatic organisms.
Collapse
Affiliation(s)
- Pengcheng Xu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Defu Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yanbing Xiang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
18
|
Dumasia K, Kumar A, Deshpande S, Balasinor NH. Estrogen signaling, through estrogen receptor β, regulates DNA methylation and its machinery in male germ line in adult rats. Epigenetics 2017; 12:476-483. [PMID: 28362134 DOI: 10.1080/15592294.2017.1309489] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Estrogen, through its receptors, regulates various aspects of spermatogenesis and male fertility. To understand the roles of estrogen receptors (ERα and ERβ) in male fertility, we have developed in vivo selective ER agonist administration models. Treatment of adult male rats with ERα or ERβ agonist for 60 d decreases fertility and litter size mainly due to increased pre- and post-implantation embryo loss. Since epigenetic mechanisms like DNA methylation play a crucial role in male fertility, we investigated the effects of the ER agonists on DNA methylation in spermatozoa. Treatment with ERβ agonist causes a significant decrease in DNA methylation both at the global level and at the H19 differentially methylated region (DMR). This could be due to decrease in DNA methyltransferases in the testis upon ERβ agonist treatment. The hypomethylation observed at the H19 DMR corroborates with aberrant expression of Igf2 and H19 imprinted genes in the resorbed embryos sired by ERβ agonist-treated males. Thus, our study demonstrates that ERβ regulates DNA methylation and methylating enzymes during adult rat spermatogenesis. Activation of estrogen signaling through ERβ could therefore cause DNA methylation defects leading to impaired male fertility. These results define a role for estrogen in epigenetic regulation of male germ line, suggesting that epigenetic insults by exposure to environmental estrogens could potentially affect male fertility.
Collapse
Affiliation(s)
- Kushaan Dumasia
- a Department of Neuroendocrinology , National Institute for Research in Reproductive Health (Indian Council of Medical Research) , Parel, Mumbai , India
| | - Anita Kumar
- a Department of Neuroendocrinology , National Institute for Research in Reproductive Health (Indian Council of Medical Research) , Parel, Mumbai , India
| | - Sharvari Deshpande
- a Department of Neuroendocrinology , National Institute for Research in Reproductive Health (Indian Council of Medical Research) , Parel, Mumbai , India
| | - Nafisa H Balasinor
- a Department of Neuroendocrinology , National Institute for Research in Reproductive Health (Indian Council of Medical Research) , Parel, Mumbai , India
| |
Collapse
|
19
|
Zou QX, Peng Z, Zhao Q, Chen HY, Cheng YM, Liu Q, He YQ, Weng SQ, Wang HF, Wang T, Zheng LP, Luo T. Diethylstilbestrol activates CatSper and disturbs progesterone actions in human spermatozoa. Hum Reprod 2016; 32:290-298. [PMID: 28031325 DOI: 10.1093/humrep/dew332] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/24/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Is diethylstilbestrol (DES), a prototypical endocrine-disrupting chemical (EDC), able to induce physiological changes in human spermatozoa and affect progesterone actions? SUMMARY ANSWER DES promoted Ca2+ flux into human spermatozoa by activating the cation channel of sperm (CatSper) and suppressed progesterone-induced Ca2+ signaling, tyrosine phosphorylation and sperm functions. WHAT IS KNOWN ALREADY DES significantly impairs the male reproductive system both in fetal and postnatal exposure. Although various EDCs affect human spermatozoa in a non-genomic manner, the effect of DES on human spermatozoa remains unknown. STUDY DESIGN, SIZE, DURATION Sperm samples from normozoospermic donors were exposed in vitro to a range of DES concentrations with or without progesterone at 37°C in a 5% CO2 incubator to mimic the putative exposure to this toxicant in seminal plasma and the female reproductive tract fluids. The incubation time varied according to the experimental protocols. All experiments were repeated at least five times using different individual sperm samples. PARTICIPANTS/MATERIALS, SETTING, METHODS Human sperm intracellular calcium concentrations ([Ca2+]i) were monitored with a multimode plate reader following sperm loading with Ca2+ indicator Fluo-4 AM, and the whole-cell patch-clamp technique was performed to record CatSper and alkalinization-activated sperm K+ channel (KSper) currents. Sperm viability and motility parameters were assessed by an eosin-nigrosin staining kit and a computer-assisted semen analysis system, respectively. The ability of sperm to penetrate into viscous media was examined by penetration into 1% methylcellulose. The sperm acrosome reaction was measured using chlortetracycline staining. The level of tyrosine phosphorylation was determined by western blot assay. MAIN RESULTS AND THE ROLE OF CHANCE DES exposure rapidly increased human sperm [Ca2+]i dose dependently and even at an environmentally relevant concentration (100 pM). The elevation of [Ca2+]i was derived from extracellular Ca2+ influx and mainly mediated by CatSper. Although DES did not affect sperm viability, motility, penetration into viscous media, tyrosine phosphorylation or the acrosome reaction, it suppressed progesterone-stimulated Ca2+ signaling and tyrosine phosphorylation. Consequently, DES (1-100 μM) significantly inhibited progesterone-induced human sperm penetration into viscous media and acrosome reaction. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Although DES has been shown to disturb progesterone actions on human spermatozoa, this study was performed in vitro, and caution must be taken when extrapolating the results in practical applications. WIDER IMPLICATIONS OF THE FINDINGS The present study revealed that DES interfered with progesterone-stimulated Ca2+ signaling and tyrosine phosphorylation, ultimately inhibited progesterone-induced human sperm functions and, thereby, might impair sperm fertility. The non-genomic manner in which DES disturbs progesterone actions may be a potential mechanism for some estrogenic endocrine disruptors to affect human sperm function. STUDY FUNDING/COMPETING INTERESTS National Natural Science Foundation of China (No. 31400996); Natural Science Foundation of Jiangxi, China (No. 20161BAB204167 and No. 20142BAB215050); open project of National Population and Family Planning Key Laboratory of Contraceptives and Devices Research (No. 2016KF07) to T. Luo; National Natural Science Foundation of China (No. 81300539) to L.P. Zheng. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Qian-Xing Zou
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen Peng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Qing Zhao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hou-Yang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China
| | - Yi-Min Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Qing Liu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yuan-Qiao He
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shi-Qi Weng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hua-Feng Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Tao Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Li-Ping Zheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
20
|
Dumasia K, Kumar A, Deshpande S, Sonawane S, Balasinor NH. Differential roles of estrogen receptors, ESR1 and ESR2, in adult rat spermatogenesis. Mol Cell Endocrinol 2016; 428:89-100. [PMID: 27004961 DOI: 10.1016/j.mce.2016.03.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/18/2016] [Accepted: 03/19/2016] [Indexed: 02/01/2023]
Abstract
Estrogens, through their receptors, play an important role in regulation of spermatogenesis. However, the precise role of the estrogen receptors (ESR1 and ESR2) has been difficult to determine as in vivo estradiol treatment would signal through both the ESRs. Hence we had developed in vivo selective ESR agonist administration models in adult male rats to decipher the individual roles of the ESRs. Treatment with both ESR1 and ESR2 agonists decreased sperm counts after 60 days of treatment. The present study aimed to delineate the precise causes of decreased sperm counts following treatment with the two ESR agonists. Treatment with ESR1 agonist causes an arrest in differentiation of round spermatids into elongated spermatids, mainly due to down-regulation of genes involved in spermiogenesis. ESR2 agonist administration reduces sperm counts due to spermiation failure and spermatocyte apoptosis. Spermiation failure observed is due to defects in tubulobulbar complex formation because of decrease in expression of genes involved in actin remodelling. The increase in spermatocyte apoptosis could be due to increase in oxidative stress and decrease in transcripts of anti-apoptotic genes. Our results suggest that the two ESRs regulate distinct aspects of spermatogenesis. ESR1 is mainly involved with regulation of spermiogenesis, while ESR2 regulates spermatocyte apoptosis and spermiation. Activation of estrogen signaling through either of the receptors can affect their respective processes during spermatogenesis and lead to low sperm output. Since many environmental estrogens can bind to the two ESRs with different affinities, these observations can be useful in understanding their potential effects on spermatogenesis.
Collapse
Affiliation(s)
- Kushaan Dumasia
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Anita Kumar
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Sharvari Deshpande
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Shobha Sonawane
- Confocal Facility, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - N H Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India.
| |
Collapse
|
21
|
Lv X, Xiao S, Zhang G, Jiang P, Tang F. Occurrence and removal of phenolic endocrine disrupting chemicals in the water treatment processes. Sci Rep 2016; 6:22860. [PMID: 26953121 PMCID: PMC4782170 DOI: 10.1038/srep22860] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/19/2016] [Indexed: 11/09/2022] Open
Abstract
This paper evaluated the occurrence and removal efficiency of four selected phenolic endocrine disrupting chemicals (bisphenol A (BPA), octylphenol (OP), nonylphenol (NP) and diethylstilbestrol (DES)) in two drinking waterworks in Jiangsu province which take source water from Taihu Lake. The recombined yeast estrogen screen (YES) and liquid chromatography tandem mass spectrometry (LC-MS/MS) were applied to assess the estrogenicity and detect the estrogens in the samples. The estrogen equivalents (EEQs) ranged from nd (not detected) to 2.96 ng/L, and the estrogenic activities decreased along the processes. Among the 32 samples, DES prevailed in all samples, with concentrations ranging 1.46-12.0 ng/L, BPA, OP and NP were partially detected, with concentrations ranging from nd to 17.73 ng/L, nd to 0.49 ng/L and nd to 3.27 ng/L, respectively. DES was found to be the main contributor to the estrogenicity (99.06%), followed by NP (0.62%), OP (0.23%) and BPA (0.09%). From the observation of treatment efficiency, the advanced treatment processes presented much higher removal ratio in reducing DES, the biodegradation played an important role in removing BPA, ozonation and pre-oxidation showed an effective removal on all the four estrogens; while the conventional ones can also reduce all the four estrogens.
Collapse
Affiliation(s)
- Xuemin Lv
- Department of Environmental Microbiology, Institute of Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Sanhua Xiao
- Department of Environmental Microbiology, Institute of Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Gang Zhang
- Department of Environmental Microbiology, Institute of Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Pu Jiang
- Department of Environmental Microbiology, Institute of Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Fei Tang
- Department of Environmental Microbiology, Institute of Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| |
Collapse
|
22
|
Male-mediated F1 effects in mice exposed to bisphenol A, either alone or in combination with X-irradiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 789-790:36-45. [DOI: 10.1016/j.mrgentox.2015.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 06/18/2015] [Accepted: 06/26/2015] [Indexed: 12/11/2022]
|
23
|
Dumasia K, Kumar A, Kadam L, Balasinor NH. Effect of estrogen receptor-subtype-specific ligands on fertility in adult male rats. J Endocrinol 2015; 225:169-80. [PMID: 25869617 DOI: 10.1530/joe-15-0045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2015] [Indexed: 11/08/2022]
Abstract
Maintenance of normal male fertility relies on the process of spermatogenesis which is under complex endocrine control by mechanisms involving gonadotropin and steroid hormones. Although testosterone is the primary sex steroid in males, estrogen is locally produced in the testis and plays a very crucial role in male fertility. This is evident from presence of both the estrogen receptors alpha (ERα) and beta (ERβ) in the testis and their absence, as in the case of knockout mice models, leads to sterility. The present study was undertaken to understand individual roles of the two ERs in spermatogenesis and their direct contribution towards the maintenance of male fertility using receptor-subtype-specific ligands. Administration of ERα and β agonists to adult male rats for 60 days results in a significant decrease in fertility, mainly due to an increase in pre- and post-implantation loss and a concomitant decrease in litter size and sperm counts. Our results indicate that ERα is mainly involved in negative feedback regulation of gonadotropin hormones, whereas both ERs are involved in regulation of prolactin and testosterone production. Histological examinations of the testis reveal that ERβ could be involved in the process of spermiation since many failed spermatids were observed in stages IX-XI following ERβ agonist treatment. Our results indicate that overactivation of estrogen signaling through either of its receptors can have detrimental effects on the fertility parameters and that the two ERs have both overlapping and distinct roles in maintenance of male fertility.
Collapse
Affiliation(s)
- Kushaan Dumasia
- Department of Neuroendocrinology National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Anita Kumar
- Department of Neuroendocrinology National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - Leena Kadam
- Department of Neuroendocrinology National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| | - N H Balasinor
- Department of Neuroendocrinology National Institute for Research in Reproductive Health (Indian Council of Medical Research), Parel, Mumbai 400 012, India
| |
Collapse
|
24
|
Etchepare R, van der Hoek JP. Health risk assessment of organic micropollutants in greywater for potable reuse. WATER RESEARCH 2015; 72:186-198. [PMID: 25472689 DOI: 10.1016/j.watres.2014.10.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/11/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
In light of the increasing interest in development of sustainable potable reuse systems, additional research is needed to elucidate the risks of producing drinking water from new raw water sources. This article investigates the presence and potential health risks of organic micropollutants in greywater, a potential new source for potable water production introduced in this work. An extensive literature survey reveals that almost 280 organic micropollutants have been detected in greywater. A three-tiered approach is applied for the preliminary health risk assessment of these chemicals. Benchmark values are derived from established drinking water standards for compounds grouped in Tier 1, from literature toxicological data for compounds in Tier 2, and from a Threshold of Toxicological Concern approach for compounds in Tier 3. A risk quotient is estimated by comparing the maximum concentration levels reported in greywater to the benchmark values. The results show that for the majority of compounds, risk quotient values were below 0.2, which suggests they would not pose appreciable concern to human health over a lifetime exposure to potable water. Fourteen compounds were identified with risk quotients above 0.2 which may warrant further investigation if greywater is used as a source for potable reuse. The present findings are helpful in prioritizing upcoming greywater quality monitoring and defining the goals of multiple barriers treatment in future water reclamation plants for potable water production.
Collapse
Affiliation(s)
- Ramiro Etchepare
- Laboratório de Tecnologia Mineral e Ambiental, Departamento de Engenharia de Minas, PPGE3M, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil; CAPES Foundation, Ministry of Education of Brazil, Brasília DF 70.040-020, Brazil.
| | - Jan Peter van der Hoek
- Delft University of Technology, Department Water Management, Stevinweg 1, 2628 CN Delft, The Netherlands; Waternet, Strategic Centre, Korte Ouderkerkerdijk 7, 1096 AC Amsterdam, The Netherlands.
| |
Collapse
|
25
|
Use of ovary culture techniques in reproductive toxicology. Reprod Toxicol 2014; 49:117-35. [DOI: 10.1016/j.reprotox.2014.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/14/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
|
26
|
Harris LA, Selgrade JF. Modeling endocrine regulation of the menstrual cycle using delay differential equations. Math Biosci 2014; 257:11-22. [PMID: 25180928 DOI: 10.1016/j.mbs.2014.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 11/29/2022]
Abstract
This article reviews an effective mathematical procedure for modeling hormonal regulation of the menstrual cycle of adult women. The procedure captures the effects of hormones secreted by several glands over multiple time scales. The specific model described here consists of 13 nonlinear, delay, differential equations with 44 parameters and correctly predicts blood levels of ovarian and pituitary hormones found in the biological literature for normally cycling women. In addition to this normal cycle, the model exhibits another stable cycle which may describe a biologically feasible "abnormal" condition such as polycystic ovarian syndrome. Model simulations illustrate how one cycle can be perturbed to the other cycle. Perturbations due to the exogenous administration of each ovarian hormone are examined. This model may be used to test the effects of hormone therapies on abnormally cycling women as well as the effects of exogenous compounds on normally cycling women. Sensitive parameters are identified and bifurcations in model behavior with respect to parameter changes are discussed. Modeling various aspects of menstrual cycle regulation should be helpful in predicting successful hormone therapies, in studying the phenomenon of cycle synchronization and in understanding many factors affecting the aging of the female reproductive endocrine system.
Collapse
Affiliation(s)
- Leona A Harris
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ 08628, United States.
| | - James F Selgrade
- Department of Mathematics and Biomathematics Program, North Carolina State University, Raleigh, NC 27695-8205, United States.
| |
Collapse
|
27
|
Nie M, Yang Y, Liu M, Yan C, Shi H, Dong W, Zhou JL. Environmental estrogens in a drinking water reservoir area in Shanghai: occurrence, colloidal contribution and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:785-91. [PMID: 24364991 DOI: 10.1016/j.scitotenv.2013.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/08/2013] [Accepted: 12/02/2013] [Indexed: 05/26/2023]
Abstract
The occurrence and multi-phase distribution of six environmental estrogen compounds were investigated in a drinking water reservoir area by analyzing estrogens in suspended particulate matter (SPM), filtrate (conventional dissolved phase, <1 μm), permeate (truly soluble phase, <1 kDa) and retentate (colloidal phase, 1 kDa to 1 μm). The estrogen concentrations at different sites occurred in the following order: animal feed operation (AFO) wastewater-affected streams>tributaries>main stream channel. Correlation analysis showed that organic carbon (OC) contents had significantly positive correlations with environmental estrogens in filtrate, SPM and colloidal phases, respectively, indicating the important role played by OC. Aquatic colloids, often neglected, showed a much higher sorption capability of environmental estrogens compared to SPM. Similar Kcoc values in three types of sampling sites showed that colloids could be transported from AFO wastewater to tributaries and further into the main river channel. Mass balance calculations showed that 14.5-68.4% of OP, 4.5-32.1% of BPA, 2.0-58.4% of E1, 8.36-72.0% of E2, 0-20.6% of EE2, 3.4-62.7% of E3 and 8.3-36.1% of total estrogens were associated with colloidal fractions, suggesting that the colloids could act as a significant sink for environmental estrogens. Risk assessment demonstrated that the occurrence of environmental estrogens might pose a risk to aquatic organisms in the study area.
Collapse
Affiliation(s)
- Minghua Nie
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Resource and Environmental Sciences, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Resource and Environmental Sciences, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Resource and Environmental Sciences, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062, China
| | - Caixia Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062, China
| | - Hao Shi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Resource and Environmental Sciences, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062, China
| | - Wenbo Dong
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - John L Zhou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 Zhongshan North Road, Shanghai 200062, China
| |
Collapse
|
28
|
Wang Y, Jin S, Wang Q, Lu G, Jiang J, Zhu D. Zeolitic imidazolate framework-8 as sorbent of micro-solid-phase extraction to determine estrogens in environmental water samples. J Chromatogr A 2013; 1291:27-32. [DOI: 10.1016/j.chroma.2013.03.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/24/2013] [Accepted: 03/14/2013] [Indexed: 10/27/2022]
|
29
|
John Aitken R. Falling sperm counts twenty years on: where are we now? Asian J Androl 2013; 15:204-7. [PMID: 23353718 DOI: 10.1038/aja.2012.167] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
30
|
Shrestha SL, Casey FXM, Hakk H, Smith DJ, Padmanabhan G. Fate and transformation of an estrogen conjugate and its metabolites in agricultural soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11047-11053. [PMID: 22967238 DOI: 10.1021/es3021765] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the environment, conjugated estrogens are nontoxic but may hydrolyze to their potent unconjugated, 'free' forms. Compared to free estrogens, conjugated estrogens would be more mobile in the environment because of their higher water solubility. To identify the fate of a conjugated estrogen in natural agricultural soils, batch experiments were conducted with a (14)C labeled prototype conjugate, 17β-estradiol-3-glucuronide (E2-3G). Initially, aqueous dissipation was dominated by biological hydrolysis of E2-3G and its oxidized metabolite, estrone glucuronide (E1-3G), both of which were transformed into the free estrogens, 17β-estradiol (E2) and estrone (E1), respectively. Following hydrolysis, hydrophobic sorption interactions of E2 and E1 dominated. Depending on soil organic matter contents, dissolved E2-3G persisted from 1-14 d, which was much longer than what others reported for free estrogens (generally <24 h). Biodegradation rate constants of E2-3G were smaller in the subsoil (0.01-0.02 h(-1)) compared to topsoil (0.2-0.4 h(-1)). Field observations supported our laboratory findings where significant concentrations (425 ng L(-1)) of intact E2-3G were detected in groundwater (6.5-8.1 m deep) near a swine (Sus scrofa domesticus) farm. This study provides evidence that conjugate estrogens may be a significant source of free estrogens to surface water and groundwater.
Collapse
Affiliation(s)
- Suman L Shrestha
- Department of Soil Science, School of Natural Resource Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | | | | | | | | |
Collapse
|
31
|
Mekenyan O, Dimitrov S, Pavlov T, Dimitrova G, Todorov M, Petkov P, Kotov S. Simulation of chemical metabolism for fate and hazard assessment. V. Mammalian hazard assessment. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:553-606. [PMID: 22536822 DOI: 10.1080/1062936x.2012.679689] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Animals and humans are exposed to a wide array of xenobiotics and have developed complex enzymatic mechanisms to detoxify these chemicals. Detoxification pathways involve a number of biotransformations, such as oxidation, reduction, hydrolysis and conjugation reactions. The intermediate substances created during the detoxification process can be extremely toxic compared with the original toxins, hence metabolism should be accounted for when hazard effects of chemicals are assessed. Alternatively, metabolic transformations could detoxify chemicals that are toxic as parents. The aim of the present paper is to describe specificity of eukaryotic metabolism and its simulation and incorporation in models for predicting skin sensitization, mutagenicity, chromosomal aberration, micronuclei formation and estrogen receptor binding affinity implemented in the TIMES software platform. The current progress in model refinement, data used to parameterize models, logic of simulating metabolism, applicability domain and interpretation of predictions are discussed. Examples illustrating the model predictions are also provided.
Collapse
Affiliation(s)
- O Mekenyan
- Laboratory of Mathematical Chemistry, University "Prof. As. Zlatarov", Bourgas, Bulgaria.
| | | | | | | | | | | | | |
Collapse
|
32
|
Lee MS, Lee YS, Lee HH, Song HY. Human endometrial cell coculture reduces the endocrine disruptor toxicity on mouse embryo development. J Occup Med Toxicol 2012; 7:7. [PMID: 22546201 PMCID: PMC3480945 DOI: 10.1186/1745-6673-7-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 03/14/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUNDS Previous studies suggested that endocrine disruptors (ED) are toxic on preimplantation embryos and inhibit development of embryos in vitro culture. However, information about the toxicity of endocrine disruptors on preimplantation development of embryo in human reproductive environment is lacking. METHODS Bisphenol A (BPA) and Aroclor 1254 (polychlorinated biphenyls) were used as endocrine disruptors in this study. Mouse 2-cell embryos were cultured in medium alone or vehicle or co-cultured with human endometrial epithelial layers in increasing ED concentrations. RESULTS At 72 hours the percentage of normal blastocyst were decreased by ED in a dose-dependent manner while the co-culture system significantly enhanced the rate and reduced the toxicity of endocrine disruptors on the embryonic development in vitro. CONCLUSIONS In conclusion, although EDs have the toxic effect on embryo development, the co-culture with human endometrial cell reduced the preimplantation embryo from it thereby making human reproductive environment protective to preimplantation embryo from the toxicity of endocrine disruptors.
Collapse
Affiliation(s)
- Myeong-Seop Lee
- Department of Microbiology, School of Medicine, Soonchunhyang University, Cheonan, 330-090, South Korea.
| | | | | | | |
Collapse
|
33
|
Brausch JM, Connors KA, Brooks BW, Rand GM. Human pharmaceuticals in the aquatic environment: a review of recent toxicological studies and considerations for toxicity testing. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 218:1-99. [PMID: 22488604 DOI: 10.1007/978-1-4614-3137-4_1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although an increasingly large amount of data exists on the acute and chronic aquatic toxicity of pharmaceuticals, numerous questions still remain. There remains a dearth of information pertaining to the chronic toxicity of bivalves, benthic invertebrates, fish, and endangered species, as well as study designs that examine mechanism-of-action (MOA)-based toxicity, in vitro and computational toxicity, and pharmaceutical mixtures. Studies examining acute toxicity are prolific in the published literature; therefore, we address many of the shortcomings in the literature by proposing "intelligent" well-designed aquatic toxicology studies that consider comparative pharmacokinetics and pharmacodynamics. For example, few studies on the chronic responses of aquatic species to residues of pharmaceuticals have been performed, and very few on variables that are plausibly linked to any therapeutic MOA. Unfortunately, even less is understood about the metabolism of pharmaceuticals in aquatic organisms. Therefore, it is clear that toxicity testing at each tier of an ecological risk assessment scheme would be strengthened for some pharmaceuticals by selecting model organisms and endpoints to address ecologically problematic MOAs. We specifically recommend that future studies employ AOP approaches (Ankley et al. 2010) that leverage mammalian pharmacology information, including data on side effects and contraindications. Use of conceptual AOP models for pharmaceuticals can enhance future studies in ways that assist in the development of more definitive ecological risk assessments, identify chemical classes of concern, and help protect ecosystems that are affected by WWTP effluent discharge.
Collapse
Affiliation(s)
- John M Brausch
- Ecotoxicology and Risk Assessment Laboratory, Department of Earth and Environment, Southeastern Environmental Research Center, Florida International University, 3000 NE 151st St, North Miami, FL 33181, USA
| | | | | | | |
Collapse
|
34
|
Mathur PP, D'Cruz SC. The effect of environmental contaminants on testicular function. Asian J Androl 2011; 13:585-91. [PMID: 21706039 DOI: 10.1038/aja.2011.40] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Male reproductive health has deteriorated considerably in the last few decades. Nutritional, socioeconomic, lifestyle and environmental factors (among others) have been attributed to compromising male reproductive health. In recent years, a large volume of evidence has accumulated that suggests that the trend of decreasing male fertility (in terms of sperm count, quality and other changes in male reproductive health) might be due to exposure to environmental toxicants. These environmental contaminants can mimic natural oestrogens and target testicular spermatogenesis, steroidogenesis, and the function of both Sertoli and Leydig cells. Most environmental toxicants have been shown to induce reactive oxygen species, thereby causing a state of oxidative stress in various compartments of the testes. However, the molecular mechanism(s) of action of the environmental toxicants on the testis have yet to be elucidated. This review discusses the effects of some of the more commonly used environmental contaminants on testicular function through the induction of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Premendu Prakash Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry 605 014, India.
| | | |
Collapse
|
35
|
Embryonic exposure to octylphenol induces changes in testosterone levels and disrupts reproductive efficiency in rats at their adulthood. Food Chem Toxicol 2011; 49:983-90. [PMID: 21219960 DOI: 10.1016/j.fct.2011.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/01/2010] [Accepted: 01/04/2011] [Indexed: 11/20/2022]
Abstract
The purpose of the present study was to investigate the effects of prenatal exposure to octylphenol (OP) at the dose of 50mg/kg body weight on days 1, 7 and 14 of pregnancy on reproductive health of male rats at adulthood. F1 male rats from control and OP exposed animals were weaned and maintained up to postnatal day (PND) 100. The indices of testis, epididymis and seminal vesicles were significantly decreased in male rats exposed to OP during embryonic development when compared with controls. Significant reduction in the epididymal sperm count, viable sperms and motile sperms and number of tail coiled sperms (HOS-test) were observed in experimental rats when compared to control rats. The levels of serum testosterone and also activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased with a significant increase in the serum follicle stimulating and leutinizing hormones in experimental rats. Furthermore, embryonic exposure to OP caused significant down regulation of StAR, 3ß hydroxysteroid dehydrogenase and 17ß hydroxysteroid dehydrogenase mRNAs in testis of adult rats as compared to control rats. The results of fertility studies revealed that there was an increase in the mating index in experimental rats with an increase in the pre- and post-implantation losses in rats cohabited with treated animals indicating poor male reproductive performance.
Collapse
|
36
|
Pollack AZ, Buck Louis GM, Lynch CD, Kostyniak PJ. Persistent Organochlorine Exposure and Pregnancy Loss: A Prospective Cohort Study. ACTA ACUST UNITED AC 2011; 2:683-691. [PMID: 22140635 DOI: 10.4236/jep.2011.26079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polychlorinated biphenyls (PCBs) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE) are suspected reproductive toxicants. We assessed serum concentration of 76 PCB congeners, DDE, and risk of human chorionic gonadotropin confirmed pregnancy loss among 79 women followed for up to 12 menstrual cycles or until pregnancy. 55 women had live births, 14 experienced pregnancy losses, and 10 did not achieve pregnancy. PCBs and DDE were quantified using gas chromatography with electron capture. PCBs were grouped a priori by biologic activity. Cox proportional hazard regression adjusting for age (categorized 24 - 29, 30 - 34) and average standardized alcohol and cigarette intake (continuous) was used to estimate hazard ratios (HR) of pregnancy loss. Estrogenic PCBs (HR = 1.66, 95% CI: 0.68, 4.02), anti-estrogenic PCBs (HR = 0.10, 95% CI: <0.01, 67.07) and DDE (HR = 1.43, 95% CI: 0.45, 4.52) were not statistically significantly associated with pregnancy loss. Our results provide some signal that estrogenic and antiestrogenic PCBs may be differentially associated with pregnancy loss. Further research is needed to elucidate these associations.
Collapse
Affiliation(s)
- Anna Z Pollack
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, USA
| | | | | | | |
Collapse
|
37
|
Sapbamrer R, Prapamontol T, Hock B. Assessment of estrogenic activity and total lipids in maternal biological samples (serum and breast milk). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:679-684. [PMID: 19959230 DOI: 10.1016/j.ecoenv.2009.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/12/2009] [Accepted: 08/30/2009] [Indexed: 05/28/2023]
Abstract
The present study investigated estrogenic activity and total lipid levels in maternal serum and breast milk. The study was performed with 50 mothers from Fang district of northern Thailand. Maternal serum was collected 5 times, including the second trimester, pre-delivery period, delivery period, and lactating period at day 30 and day 60. Breast milk was collected 7 times, including day 1, 7, 14, 21, 30, 45, and 60 of lactation. There were the same patterns of variation between estrogenicity and total lipid levels both in serum and breast milk. The correlation between serum estrogenicity and serum total lipids was found with a correlation coefficient (r) ranging from 0.403 to 0.661. However, no correlation was found between milk estrogenicity and milk total lipids. The results therefore suggest that lipid contents might be the major factors affecting the variation of estrogenicity levels, and xenoestrogens, which the mother subjects exposed, were lipophilic pollutants. The remarkable findings were that the mean levels of estrogenicity in breast milk were approximately 8-13.5 times higher than those in maternal serum compared at the same period. However, no correlation was found between estrogenicity levels in serum and breast milk, leading to decreased accuracy in predicted infant exposure by maternal serum.
Collapse
Affiliation(s)
- R Sapbamrer
- School of Medicine, Naresuan University Phayao, Phayao 56000, Thailand.
| | | | | |
Collapse
|
38
|
Selgrade J, Harris L, Pasteur R. A model for hormonal control of the menstrual cycle: Structural consistency but sensitivity with regard to data. J Theor Biol 2009; 260:572-80. [DOI: 10.1016/j.jtbi.2009.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/10/2009] [Accepted: 06/18/2009] [Indexed: 11/29/2022]
|
39
|
Björkblom C, Salste L, Katsiadaki I, Wiklund T, Kronberg L. Detection of estrogenic activity in municipal wastewater effluent using primary cell cultures from three-spined stickleback and chemical analysis. CHEMOSPHERE 2008; 73:1064-70. [PMID: 18783814 DOI: 10.1016/j.chemosphere.2008.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/07/2008] [Accepted: 07/22/2008] [Indexed: 05/02/2023]
Abstract
Environmental estrogens are substances that imitate the effects of endogenous estrogens. Effluents from municipal wastewater treatment plants are known to contain substances with estrogenic activity including steroidal estrogens and xenoestrogens. In the current study, a combination of biological and chemical analysis was applied to determine the estrogenic activity in municipal wastewater effluents in Finland. The male three-spined stickleback (Gasterosteus aculeatus) hepatocyte assay with vitellogenin induction as an endpoint was used for the detection of estrogenic activity in solid phase extracts of wastewater effluents, and 17beta-estradiol (E2) as a positive control. The wastewater extracts and E2 were found to induce vitellogenin production. The extracts were also subjected to chromatographic fractionation and the collected fractions were assayed. The only active fraction was the one in which E2, estrone and ethynylestradiol were eluted. Its activity corresponded to the activity of the original wastewater extract. The LC-MS/MS analyses of the wastewater extracts showed that the concentration of estrone was about 65 ng L(-1), the concentration of E2 was less than 1 ng L(-1), while estriol and 17alpha-ethynylestradiol could not be detected. These findings showed that the activity of the wastewater extracts and the chromatographic fraction was much higher than the activity which could have been expected on the base of the chemical analysis. This strongly indicates that other compounds, possibly acting by additivity or synergism, are playing a major role in the induced vitellogenin production by the hepatocytes.
Collapse
Affiliation(s)
- C Björkblom
- Laboratory of Aquatic Pathobiology, Abo Akademi University, BioCity, 20520 Turku, Finland.
| | | | | | | | | |
Collapse
|
40
|
Clouzot L, Marrot B, Doumenq P, Roche N. 17α-Ethinylestradiol: An endocrine disrupter of great concern. Analytical methods and removal processes applied to water purification. A review. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/ep.10291] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Göktekin E, Barlas N. Histopathological effects of 4-tert-octylphenol treatment through the pregnancy period, on the pituitary, adrenal, pancreas, thyroid and parathyroid glands of offspring rats at adulthood. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:199-205. [PMID: 21783911 DOI: 10.1016/j.etap.2008.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/18/2008] [Accepted: 03/24/2008] [Indexed: 05/20/2023]
Abstract
The present study was carried out to investigate the effects of 4-tert-octylphenol (OP) exposure at fetal period on adrenal, pituitary, thyroid+parathyroid and pancreas tissues of male and female offsprings. Pregnant rats were treated with OP (100 or 250mg/(kgday)) in vehicle (corn oil) or vehicle alone daily from day 1 to 20 of pregnancy. After birth, young rats were allowed to growth until adulthood. While there were no differences in data of organ weight between control and treatment groups, in contrast, a decrease of relative organ weights of thyroid+parathyroid and adrenal in high dose treatment group in male rats, otherwise an increase of final body weights was found in 250mg/(kgday) treatment group in all rats. Also, a lot of histopathological findings were observed in investigated tissues. The results of this study suggest that, the octylphenol which was applied in fetal period causes negative effects on the adrenal, pituitary gland, thyroid+parathyroid and pancreas in rats.
Collapse
Affiliation(s)
- Emre Göktekin
- Hacettepe University, Faculty of Science, Department of Biology, 06800 Beytepe, Ankara, Turkey
| | | |
Collapse
|
42
|
Azeredo A, Torres JPM, de Freitas Fonseca M, Britto JL, Bastos WR, Azevedo e Silva CE, Cavalcanti G, Meire RO, Sarcinelli PN, Claudio L, Markowitz S, Malm O. DDT and its metabolites in breast milk from the Madeira River basin in the Amazon, Brazil. CHEMOSPHERE 2008; 73:S246-51. [PMID: 18495200 PMCID: PMC2561184 DOI: 10.1016/j.chemosphere.2007.04.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2007] [Indexed: 05/13/2023]
Abstract
Until the 1990s the 1,1,1-trichloro-bis-2,2'-(4chlorophenyl) ethane (DDT) was sprayed in the walls of the house along the Madeira River basin, Brazilian Amazon, a region well known for its large number of malaria cases. In 1910, Oswaldo Cruz described the presence of malaria in 100% of the population living in some localities from the Madeira River basin. Data available in the literature point to the DDT contamination in fishes captured in Madeira River region. Fish is the major source of dietary protein to these people. DDT tends to accumulate in lipid rich tissues and is being eliminated by different events, including lactation. Considering the importance of feeding breast milk to the children, the associated risks of DDT exposure via breast milk intake to children must be assessed. This is the main objective of this work: to analyse the presence of the p,p'-DDT and its metabolites p,p'-DDE and p,p'-DDD in 69 human milk samples and to estimate the intake of DDT and its metabolite in terms of total DDT (total DDT=p,p'-DDE+p,p'-DDD+p,p'-DDT). All the samples showed contamination with DDT and its metabolites ranging from 25.4 to 9361.9 ng of total DDT/g of lipid (median=369.6 ng of total DDT/g of lipid) and 8.7% of the estimated daily intake (EDI), in terms of total DDT, which was higher than the acceptable daily intake proposed by the WHO.
Collapse
Affiliation(s)
- Antonio Azeredo
- Colegiado de Ciências Farmacêuticas, Departamento de Saúde, UEFS, Brazil
- Laboratório de Radioisótopos Eduardo Penna Franca Instituto de Biofísica Carlos Chagas Filho, UFRJ, Brazil
| | - João P. M. Torres
- Laboratório de Radioisótopos Eduardo Penna Franca Instituto de Biofísica Carlos Chagas Filho, UFRJ, Brazil
- corresponding author:
| | - Márlon de Freitas Fonseca
- Laboratório de Radioisótopos Eduardo Penna Franca Instituto de Biofísica Carlos Chagas Filho, UFRJ, Brazil
- Instituto Fernandes Figueira/FIOCRUZ
| | | | | | - Cláudio E. Azevedo e Silva
- Laboratório de Radioisótopos Eduardo Penna Franca Instituto de Biofísica Carlos Chagas Filho, UFRJ, Brazil
| | - Giselle Cavalcanti
- Laboratório de Radioisótopos Eduardo Penna Franca Instituto de Biofísica Carlos Chagas Filho, UFRJ, Brazil
- Laboratório de Biogeoquímica, UNIR, Brazil
| | - Rodrigo Ornellas Meire
- Laboratório de Radioisótopos Eduardo Penna Franca Instituto de Biofísica Carlos Chagas Filho, UFRJ, Brazil
| | - Paula N. Sarcinelli
- Laboratório de Toxicologia, Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública/FIOCRUZ
| | - Luz Claudio
- International Training Program on Environmental and Occupational Health – Mount Sinai School of Medicine/Queens College, New York
| | - Steven Markowitz
- International Training Program on Environmental and Occupational Health – Mount Sinai School of Medicine/Queens College, New York
| | - Olaf Malm
- Laboratório de Radioisótopos Eduardo Penna Franca Instituto de Biofísica Carlos Chagas Filho, UFRJ, Brazil
| |
Collapse
|
43
|
Garner M, Turner MC, Ghadirian P, Krewski D, Wade M. Testicular cancer and hormonally active agents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:260-75. [PMID: 18368556 DOI: 10.1080/10937400701873696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Testicular cancer (TC) is a rare form of cancer, accounting for 1% of all new cancer cases in Canadian males. TC is the most common malignancy among young men, aged 25-34 yr old. Over previous decades, the incidence of TC has increased in many Western countries. Countries with a sufficiently long period of cancer registration, such as Denmark, document this trend back to the first half of the 20th century. The etiology of TC remains poorly understood. Most of the established risk factors are likely related to in utero events, including some factors that are purported to be surrogate measures for exposure to endogenous estrogens. The correlation of TC with other testicular abnormalities and with pregnancy factors led to the proposal that these conditions are a constellation of sequelae of impairment of testicular development called testis dysgenesis syndrome. There is some limited evidence suggesting that exposure to pharmacological estrogens may contribute to some cases of TC. There is currently no compelling evidence that exposure to environmental estrogenic or other hormonally active substances is contributing to the rise in TC incidence observed in Western nations over the last several decades; however, this question has not been extensively studied. The (1) rarity of this condition in the population, (2) long lag time between the presumed sensitive period during fetal development and clinical appearance of the condition, and (3) lack of a good animal model to study the progression of the disease have greatly hindered the understanding of environmental influences on TC risk.
Collapse
Affiliation(s)
- Michael Garner
- McLaughlin Center for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
44
|
Stavrakakis C, Hequet V, Faur C, Andres Y, Le Cloirec P, Colin R. Biodegradation of endocrine disrupters: case of 17beta-estradiol and bisphenol A. ENVIRONMENTAL TECHNOLOGY 2008; 29:269-277. [PMID: 18610788 DOI: 10.1080/09593330802099304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The biodegradation of 17 beta-estradiol (E2) and bisphenol A (BPA) was compared to that of a reference pollutant, sodium benzoate (SB), known for its high biodegradability. The biodegradation was measured using the Sturm test (ISO 9439 modified Sturm test). The susceptibility of the target pollutants to be degraded by microorganisms of activated sludge from a wastewater treatment plant (WWTP) was evaluated by the production of carbon dioxide (CO2). Sorption experiments onto inactivated sludge were carried out to assess the contribution of sorption in E2 and BPA removal during biological treatment in a WWTP. E2 was more adsorbed than BPA onto inactivated sludge, probably making it less accessible to assimilation by microorganisms. In fact, E2 was less biodegradable than BPA with 66% and 74% of theoretical CO2 formation (Th(co2)) in 28 days, respectively. However, E2 showed faster biodegradation than BPA due to the shorter adaptation time of the microorganisms to start the assimilation. Final concentrations were measured and revealed that, under Sturm test conditions, E2 was totally removed from the aqueous phase while some traces of BPA were detected. This result could be explained by the lower adsorbability of BPA observed in adsorption experiments onto inactivated sludge. To investigate competition in a bi-component solution, Sturm tests were carried out with BPA/SB and E2/SB. Moreover, the biodegradation curves obtained did not indicate a toxicity of the target compounds towards microorganisms, which rapidly degraded SB. In the case of BPA/SB, an inflection in the curve confirmed the adaptation time of 4-5 days for BPA to be degraded.
Collapse
Affiliation(s)
- C Stavrakakis
- Ecole des Mines de Nantes, GEPEA UMR CNRS 6144, 4 rue Alfred Kastler, BP 20722, 44307 Nantes cedex 3, France
| | | | | | | | | | | |
Collapse
|
45
|
Bonde JP, Toft G, Rylander L, Rignell-Hydbom A, Giwercman A, Spano M, Manicardi GC, Bizzaro D, Ludwicki JK, Zvyezday V, Bonefeld-Jørgensen EC, Pedersen HS, Jönsson BAG, Thulstrup AM. Fertility and markers of male reproductive function in Inuit and European populations spanning large contrasts in blood levels of persistent organochlorines. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:269-77. [PMID: 18335090 PMCID: PMC2265036 DOI: 10.1289/ehp.10700] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 11/23/2007] [Indexed: 05/18/2023]
Abstract
OBJECTIVE We synthesized the main findings from an international epidemiologic study on the impact of biopersistent organic pollutants (POPs) on human reproductive function. DATA SOURCES AND EXTRACTION We used a database with interview and biological data from 2,269 women and their spouses, and 18 published core papers. DATA SYNTHESIS The study did not provide direct evidence of hormone-like activity of the polychlorinated biphenyl (PCB) congener CB-153 and the main dichlorodiphenyltrichloroethane (DDT) metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (p,p'-DDE), as serum concentrations of these compounds were not consistently related to either endogenous or exogenous hormone activity in serum. Nevertheless several links bewteen POP exposure and biomarkers of male reproductive function were identified. First, an association between high CB-153 serum levels and low sperm counts was detected within a subgroup of men with short androgen receptor CAG repeat length. Second, a relationship between increased CB-153 serum concentrations and decreased sperm motility was seen in all four studied regions, and indications of reduced neutral alpha-glucosidase activity in seminal plasma point to a post-testicular effect. Third, damage of sperm chromatin integrity was considerably less frequent in Greenlandic Inuits compared with that in European groups, and only in the latter was impairment of sperm chromatin integrity related to POPs. Despite these effects, fertility in terms of time taken to conceive was not related to POPs except in Inuits. A likely explanation of the latter was not identified. CONCLUSIONS POPs may interfere with male reproductive function without major impact on fertility. The data do not provide direct evidence for endocrine disruption, hence other mechanisms should also be considered.
Collapse
Affiliation(s)
- Jens Peter Bonde
- Department of Occupational Medicine, Aarhus University Hospital, Arhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Stavrakakis C, Colin R, Hequet V, Faur C, Le Cloirec P. Analysis of endocrine disrupting compounds in wastewater and drinking water treatment plants at the nanogram per litre level. ENVIRONMENTAL TECHNOLOGY 2008; 29:279-286. [PMID: 18610789 DOI: 10.1080/09593330802099452] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The determination of steroid hormones, alkylphenolic compounds and bisphenol A at the ng l(-1) level in environmental water samples (surface water and WasteWater Treatment Plant samples (WWTP)) is performed by a specific analytical procedure. Pre-concentration by solid-phase extraction conditions was optimized using C18 cartridges for steroid hormones and polymeric Oasis HLB cartridges for phenolic compounds. Identification and quantification were performed using a LCMS/MS system with electrospray ionization in the negative mode for both compound families. For steroid hormones, the need to have limits of detection lower than 0.5 ng l(-1) in WWTP samples led to the improvement of a purification step on silica cartridges. In the case of the phenolic compounds, no purification was required because of their lower estrogenicity. The limits of detection in WWTP effluents ranged between 0.02 ng l(-1)and 0.21 ng l(-1) for steroid hormones and 0.4 and 10.2 ng l(-1) for phenolic compounds. The method was then applied to determine concentrations of the target compounds at each step of a WWTP. The process efficiencies were evaluated. Finally, concentrations were measured in influents and effluents of a Drinking Water Treatment Plant showing the complete removal of estrogenicity.
Collapse
Affiliation(s)
- C Stavrakakis
- Institut Départemental d'Analyse et de Conseil de Loire-Atlantique, Route de Gâchet, BP 80603, 44306 Nantes cedex 3, France
| | | | | | | | | |
Collapse
|
47
|
Willhite CC, Ball GL, McLellan CJ. Derivation of a bisphenol A oral reference dose (RfD) and drinking-water equivalent concentration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:69-146. [PMID: 18188738 DOI: 10.1080/10937400701724303] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Human exposure to bisphenol A (BPA) is due to that found in the diet, and BPA and its metabolites were detected at parts per billion (or less) concentrations in human urine, milk, saliva, serum, plasma, ovarian follicular fluid, and amniotic fluid. Adverse health effects in mice and rats may be induced after parenteral injection or after massive oral doses. Controlled ingestion trials in healthy adult volunteers with 5 mg d16-BPA were unable to detect parent BPA in plasma despite exquisitely sensitive (limit of detection = 6 nM) methods, but by 96 h 100% of the administered dose was recovered in urine as the glucuronide. The extensive BPA glucuronidation following ingestion is not seen after parenteral injection; only the parent BPA binds plasma proteins and estrogen receptors (ER). The hypothesis that BPA dose-response may be described by a J- or U-shape curve was not supported by toxicogenomic data collected in fetal rat testes and epididymes (after repeated parenteral exposure at 2-400,000 microg/kg-d), where a clear monotonic dose-response both in the numbers of genes and magnitude of individual gene expression was evident. There is no clear indication from available data that the BPA doses normally consumed by humans pose an increased risk for immunologic or neurologic disease. There is no evidence that BPA poses a genotoxic or carcinogenic risk and clinical evaluations of 205 men and women with high-performance liquid chromatography (HPLC)-verified serum or urinary BPA conjugates showed (1) no objective signs, (2) no changes in reproductive hormones or clinical chemistry parameters, and (3) no alterations in the number of children or sons:daughters ratio. Results of benchmark dose (BMD10 and BMDL10) calculations and no-observed-adverse-effect level (NOAEL) inspections of all available and reproducible rodent studies with oral BPA found BMD and NOAEL values all greater than the 5 mg/kg-d NOAELs from mouse and rat multigeneration reproduction toxicity studies. While allometric and physiologically based pharmacokinetic (PBPK) models were constructed for interspecies scaling of BPA and its interaction with ER, multigeneration feeding studies with BPA at doses spanning 5 orders of magnitude failed to identify signs of developmental toxicity or adverse changes in reproductive tract tissues; the 5-mg/kg-d NOAELs identified for systemic toxicity in rats and mice were less than the oral NOAELs for reproductive toxicity. Thus, it is the generalized systemic toxicity of ingested BPA rather than reproductive, immunologic, neurobehavioral, or genotoxic hazard that represents the point of departure. Using U.S. Environmental Protection Agency (EPA) uncertainty factor guidance and application of a threefold database uncertainty factor (to account for the fact that the carcinogenic potential of transplacental BPA exposure has yet to be fully defined and comprehensive neurobehavioral and immunotoxicologic evaluations of BPA by relevant routes and at relevant doses have yet to be completed) to the administered dose NOAEL results in an oral RfD of 0.016 mg/kg-d. Assuming the 70-kg adult consumes 2 L of water each day and adopting the default 20% U.S. EPA drinking water relative source contribution yields a 100 microg/L BPA total allowable concentration (TAC).
Collapse
Affiliation(s)
- Calvin C Willhite
- Department of Toxic Substances Control, State of California, Berkeley, California, USA
| | | | | |
Collapse
|
48
|
Kummer V, Masková J, Zralý Z, Matiasovic J, Faldyna M. Effect of postnatal exposure to benzo[a]pyrene on the uterus of immature rats. ACTA ACUST UNITED AC 2007; 59:69-76. [PMID: 17583486 DOI: 10.1016/j.etp.2007.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 02/09/2007] [Indexed: 12/27/2022]
Abstract
The objective of this study was to investigate the morphological effects of postnatal exposure to benzo[a]pyrene (B[a]P) on the development of the uterus, uterine estrogen receptor (ERalpha) expression, and the uterine response to estrogen stimulation using the uterotrophic bioassay in rats. Neonates were injected on each postnatal day (PND) 1-14 with B[a]P (0.1, 1.0 and 10.0mg/kg), ethynylestradiol (EE; 1.0 microg/kg) or vehicle (control group). All animals were killed on PND 23. Postnatal administration of B[a]P with doses of 1.0 and 10.0 mg/kg induced significant (P<0.01) reduction of uterine weight and significantly lowered (P<0.05) ERalpha expression in the luminal epithelium. The increase in uterine weight and luminal epithelium heights after EE stimulation (1.0 microg/kg) on PND 20-22 was significantly higher (P<0.01) in all groups in comparison with corresponding non-stimulated groups. However, the uterotrophic response in rats postnatally exposed to EE and B[a]P was significantly lower (P<0.01) than in controls. In the control and EE groups, EE stimulation on PND 20-22 induced a significant (P<0.01) decrease in ERalpha immunoreactivity of the luminal epithelium. In contrast, rats postnatally treated with B[a]P showed no change in the density of ERalpha immunostaining when detected after estrogenic stimulation. The present study showed that postnatal exposure to B[a]P caused pathological changes in constitution and maturation of uterine ERalpha resulting in disturbed morphological development and uterine dysfunction in immature rats.
Collapse
|
49
|
Antonijevic B, Matthys C, Sioen I, Bilau M, Van Camp J, Willems JL, De Henauw S. Simulated impact of a fish based shift in the population n--3 fatty acids intake on exposure to dioxins and dioxin-like compounds. Food Chem Toxicol 2007; 45:2279-86. [PMID: 17637492 DOI: 10.1016/j.fct.2007.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 10/13/2006] [Accepted: 06/04/2007] [Indexed: 11/24/2022]
Abstract
Due to the favourable health effects of LC n-3 PUFAs, marine products have been recognised as a food group of special importance in the human diet. However, seafood is susceptible to contamination by lipophilic organic pollutants. The objective of this study was to evaluate intake levels of PCDDs, PCDFs and dioxin-like PCBs, by a probabilistic Monte Carlo procedure, in relation to the recommendation on LC n-3 PUFAs given by Belgian Federal Health Council. Regarding the recommendation, two scenarios were developed differing in LC n-3 PUFAs intake: a 0.3 E% and a 0.46 E% scenario. Total exposure to dioxins and dioxin-like substances in the 0.3 E% LC n-3 PUFAs scenario ranges from 2.31 pg TEQ/kg bw/day at the 5th percentile, over 4.37 pg TEQ/kgbw/day at the 50th percentile to 8.41 pg TEQ/kgbw/day at the 95th percentile. In the 0.46 E% LC n-3 PUFAs scenario, 5, 50 and 95th percentile are exposed to 2.74, 5.52 and 9.98 pg TEQ/kgbw/day, respectively. Therefore, if the recommended LC n-3 PUFAs intake would be based on fish consumption as the only extra source, the majority of the study population would exceed the proposed health based guidance values for dioxins and dioxin-like substances.
Collapse
Affiliation(s)
- B Antonijevic
- Institute of Toxicological Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia and Montenegro
| | | | | | | | | | | | | |
Collapse
|
50
|
Kuehn CM, Mueller BA, Checkoway H, Williams M. Risk of malformations associated with residential proximity to hazardous waste sites in Washington State. ENVIRONMENTAL RESEARCH 2007; 103:405-12. [PMID: 17046743 DOI: 10.1016/j.envres.2006.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/27/2006] [Accepted: 08/23/2006] [Indexed: 05/12/2023]
Abstract
Hazardous waste sites often contain substances harmful to fetal development. Using linked birth-hospital discharge and hazardous sites data for Washington State, we evaluated the association between malformation occurrence and maternal residential proximity to hazardous waste sites. Cases (N=63,006) were infants born 1987-2001 with malformations. Controls (N=315,030) were randomly selected infants without malformations born during these years. Distance between maternal residence and nearest hazardous waste site was measured using geographic information systems (GIS) software. Odds ratio (OR) estimates of the relative risk of malformation at varying distances were calculated. Relative to living >5 miles from a site, living < or = 5 miles was associated with increased risk of any malformations in offspring (for >2- < or = 5 miles: OR 1.15: 95% Confidence Interval (CI): 1.10, 1.21; for >1- < or = 2 miles: OR 1.26, 95% CI: 1.20, 1.32; for >0.5- < or = 1 miles: OR 1.28, 95% CI: 1.22, 1.35; for < or = 0.5 miles: OR 1.33, 95% CI: 1.27, 1.40.) Risk estimates varied by urban vs. rural maternal residence and by specific malformation type. Hazardous waste sites are often located within populated areas. Thus, the possibility of increased malformation occurrence among those in close proximity deserves closer scrutiny.
Collapse
Affiliation(s)
- Carrie M Kuehn
- Department of Epidemiology, School of Public Health & Community Medicine, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|