1
|
Niu M, Rapan L, Froudist-Walsh S, Zhao L, Funck T, Amunts K, Palomero-Gallagher N. Multimodal mapping of macaque monkey somatosensory cortex. Prog Neurobiol 2024; 239:102633. [PMID: 38830482 DOI: 10.1016/j.pneurobio.2024.102633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/19/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
The somatosensory cortex is a brain region responsible for receiving and processing sensory information from across the body and is structurally and functionally heterogeneous. Since the chemoarchitectonic segregation of the cerebral cortex can be revealed by transmitter receptor distribution patterns, by using a quantitative multireceptor architectonical analysis, we determined the number and extent of distinct areas of the macaque somatosensory cortex. We identified three architectonically distinct cortical entities within the primary somatosensory cortex (i.e., 3bm, 3bli, 3ble), four within the anterior parietal cortex (i.e., 3am, 3al, 1 and 2) and six subdivisions (i.e., S2l, S2m, PVl, PVm, PRl and PRm) within the lateral fissure. We provide an ultra-high resolution 3D atlas of macaque somatosensory areas in stereotaxic space, which integrates cyto- and receptor architectonic features of identified areas. Multivariate analyses of the receptor fingerprints revealed four clusters of identified areas based on the degree of (dis)similarity of their receptor architecture. Each of these clusters can be associated with distinct levels of somatosensory processing, further demonstrating that the functional segregation of cortical areas is underpinned by differences in their molecular organization.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Seán Froudist-Walsh
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of Bristol, Bristol, UK
| | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Graïc JM, Corain L, Finos L, Vadori V, Grisan E, Gerussi T, Orekhova K, Centelleghe C, Cozzi B, Peruffo A. Age-related changes in the primary auditory cortex of newborn, adults and aging bottlenose dolphins ( Tursiops truncatus) are located in the upper cortical layers. Front Neuroanat 2024; 17:1330384. [PMID: 38250022 PMCID: PMC10796513 DOI: 10.3389/fnana.2023.1330384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction The auditory system of dolphins and whales allows them to dive in dark waters, hunt for prey well below the limit of solar light absorption, and to communicate with their conspecific. These complex behaviors require specific and sufficient functional circuitry in the neocortex, and vicarious learning capacities. Dolphins are also precocious animals that can hold their breath and swim within minutes after birth. However, diving and hunting behaviors are likely not innate and need to be learned. Our hypothesis is that the organization of the auditory cortex of dolphins grows and mature not only in the early phases of life, but also in adults and aging individuals. These changes may be subtle and involve sub-populations of cells specificall linked to some circuits. Methods In the primary auditory cortex of 11 bottlenose dolphins belonging to three age groups (calves, adults, and old animals), neuronal cell shapes were analyzed separately and by cortical layer using custom computer vision and multivariate statistical analysis, to determine potential minute morphological differences across these age groups. Results The results show definite changes in interneurons, characterized by round and ellipsoid shapes predominantly located in upper cortical layers. Notably, neonates interneurons exhibited a pattern of being closer together and smaller, developing into a more dispersed and diverse set of shapes in adulthood. Discussion This trend persisted in older animals, suggesting a continuous development of connections throughout the life of these marine animals. Our findings further support the proposition that thalamic input reach upper layers in cetaceans, at least within a cortical area critical for their survival. Moreover, our results indicate the likelihood of changes in cell populations occurring in adult animals, prompting the need for characterization.
Collapse
Affiliation(s)
- Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Livio Corain
- Department of Management and Engineering, University of Padova, Vicenza, Italy
| | - Livio Finos
- Department of Statistical Sciences, University of Padova, Padua, Italy
| | - Valentina Vadori
- Department of Computer Science and Informatics, London South Bank University, London, United Kingdom
| | - Enrico Grisan
- Department of Computer Science and Informatics, London South Bank University, London, United Kingdom
| | - Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Italy
| |
Collapse
|
3
|
Feusner JD, Kurth F, Luders E, Ly R, Wong WW. Cytoarchitectonically Defined Volumes of Early Extrastriate Visual Cortex in Unmedicated Adults With Body Dysmorphic Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:909-917. [PMID: 34688924 PMCID: PMC9037993 DOI: 10.1016/j.bpsc.2021.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 04/23/2023]
Abstract
BACKGROUND Individuals with body dysmorphic disorder (BDD) misperceive that they have prominent defects in their appearance, resulting in preoccupations, time-consuming rituals, and distress. Previous neuroimaging studies have found abnormal activation patterns in the extrastriate visual cortex, which may underlie experiences of distorted perception of appearance. Correspondingly, we investigated gray matter volumes in individuals with BDD in the early extrastriate visual cortex using cytoarchitectonically defined maps that were previously derived from postmortem brains. METHODS We analyzed T1-weighted magnetic resonance imaging data from 133 unmedicated male and female participants (BDD: n = 65; healthy control subjects: n = 68). We used cytoarchitectonically defined probability maps for the early extrastriate cortex, consisting of areas corresponding to V2, V3d, V3v/VP, V3a, and V4v. Gray matter volumes were compared between groups, supplemented by testing associations with clinical symptoms. RESULTS The BDD group exhibited significantly larger gray matter volumes in the left and right early extrastriate cortex. Region-specific follow-up analyses revealed multiple subregions showing larger volumes in BDD, significant in the left V4v. There were no significant associations after corrections for multiple comparisons between gray matter volumes in early extrastriate cortex and BDD symptoms, comorbid symptoms, or duration of illness. CONCLUSIONS Greater volumes of the early extrastriate visual cortex were evident in those with BDD, which aligns with outcomes of prior studies revealing BDD-specific functional abnormalities in these regions. Enlarged volumes of the extrastriate cortex in BDD might manifest during neurodevelopment, which could predispose individuals to aberrant visual perception and contribute to the core phenotype of distortion of perception for appearance.
Collapse
Affiliation(s)
- Jamie D Feusner
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry and Biobehavioral Sciences, School of Medicine, University of California Los Angeles, Los Angeles, California.
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Eileen Luders
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden; Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, California; School of Psychology, University of Auckland, Auckland, New Zealand
| | - Ronald Ly
- Department of Psychiatry and Biobehavioral Sciences, School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Wan-Wa Wong
- Department of Psychiatry and Biobehavioral Sciences, School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
4
|
Rapan L, Froudist-Walsh S, Niu M, Xu T, Zhao L, Funck T, Wang XJ, Amunts K, Palomero-Gallagher N. Cytoarchitectonic, receptor distribution and functional connectivity analyses of the macaque frontal lobe. eLife 2023; 12:e82850. [PMID: 37578332 PMCID: PMC10425179 DOI: 10.7554/elife.82850] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/14/2023] [Indexed: 08/15/2023] Open
Abstract
Based on quantitative cyto- and receptor architectonic analyses, we identified 35 prefrontal areas, including novel subdivisions of Walker's areas 10, 9, 8B, and 46. Statistical analysis of receptor densities revealed regional differences in lateral and ventrolateral prefrontal cortex. Indeed, structural and functional organization of subdivisions encompassing areas 46 and 12 demonstrated significant differences in the interareal levels of α2 receptors. Furthermore, multivariate analysis included receptor fingerprints of previously identified 16 motor areas in the same macaque brains and revealed 5 clusters encompassing frontal lobe areas. We used the MRI datasets from the non-human primate data sharing consortium PRIME-DE to perform functional connectivity analyses using the resulting frontal maps as seed regions. In general, rostrally located frontal areas were characterized by bigger fingerprints, that is, higher receptor densities, and stronger regional interconnections. Whereas more caudal areas had smaller fingerprints, but showed a widespread connectivity pattern with distant cortical regions. Taken together, this study provides a comprehensive insight into the molecular structure underlying the functional organization of the cortex and, thus, reconcile the discrepancies between the structural and functional hierarchical organization of the primate frontal lobe. Finally, our data are publicly available via the EBRAINS and BALSA repositories for the entire scientific community.
Collapse
Affiliation(s)
- Lucija Rapan
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Sean Froudist-Walsh
- Center for Neural Science, New York UniversityNew YorkUnited States
- Bristol Computational Neuroscience Unit, Faculty of Engineering, University of BristolBristolUnited Kingdom
| | - Meiqi Niu
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Ting Xu
- Center for the Developing Brain, Child Mind InstituteNew YorkUnited States
| | - Ling Zhao
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Thomas Funck
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
| | - Xiao-Jing Wang
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Katrin Amunts
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre JülichJülichGermany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-UniversityDüsseldorfGermany
| |
Collapse
|
5
|
Unger N, Haeck M, Eickhoff SB, Camilleri JA, Dickscheid T, Mohlberg H, Bludau S, Caspers S, Amunts K. Cytoarchitectonic mapping of the human frontal operculum-New correlates for a variety of brain functions. Front Hum Neurosci 2023; 17:1087026. [PMID: 37448625 PMCID: PMC10336231 DOI: 10.3389/fnhum.2023.1087026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/18/2023] [Indexed: 07/15/2023] Open
Abstract
The human frontal operculum (FOp) is a brain region that covers parts of the ventral frontal cortex next to the insula. Functional imaging studies showed activations in this region in tasks related to language, somatosensory, and cognitive functions. While the precise cytoarchitectonic areas that correlate to these processes have not yet been revealed, earlier receptorarchitectonic analysis resulted in a detailed parcellation of the FOp. We complemented this analysis by a cytoarchitectonic study of a sample of ten postmortem brains and mapped the posterior FOp in serial, cell-body stained histological sections using image analysis and multivariate statistics. Three new areas were identified: Op5 represents the most posterior area, followed by Op6 and the most anterior region Op7. Areas Op5-Op7 approach the insula, up to the circular sulcus. Area 44 of Broca's region, the most ventral part of premotor area 6, and parts of the parietal operculum are dorso-laterally adjacent to Op5-Op7. The areas did not show any interhemispheric or sex differences. Three-dimensional probability maps and a maximum probability map were generated in stereotaxic space, and then used, in a first proof-of-concept-study, for functional decoding and analysis of structural and functional connectivity. Functional decoding revealed different profiles of cytoarchitectonically identified Op5-Op7. While left Op6 was active in music cognition, right Op5 was involved in chewing/swallowing and sexual processing. Both areas showed activation during the exercise of isometric force in muscles. An involvement in the coordination of flexion/extension could be shown for the right Op6. Meta-analytic connectivity modeling revealed various functional connections of the FOp areas within motor and somatosensory networks, with the most evident connection with the music/language network for Op6 left. The new cytoarchitectonic maps are part of Julich-Brain, and publicly available to serve as a basis for future analyses of structural-functional relationships in this region.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia A. Camilleri
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
6
|
Bruno A, Bludau S, Mohlberg H, Amunts K. Cytoarchitecture, intersubject variability, and 3D mapping of four new areas of the human anterior prefrontal cortex. Front Neuroanat 2022; 16:915877. [PMID: 36032993 PMCID: PMC9403835 DOI: 10.3389/fnana.2022.915877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) plays a key role in cognitive control and executive functions, including working memory, attention, value encoding, decision making, monitoring, and controlling behavioral strategies. However, the relationships between this variety of functions and the underlying cortical areas, which specifically contribute to these functions, are not yet well-understood. Existing microstructural maps differ in the number, localization, and extent of areas of the DLPFC. Moreover, there is a considerable intersubject variability both in the sulcal pattern and in the microstructure of this region, which impedes comparison with functional neuroimaging studies. The aim of this study was to provide microstructural, cytoarchitectonic maps of the human anterior DLPFC in 3D space. Therefore, we analyzed 10 human post-mortem brains and mapped their borders using a well-established approach based on statistical image analysis. Four new areas (i.e., SFS1, SFS2, MFG1, and MFG2) were identified in serial, cell-body stained brain sections that occupy the anterior superior frontal sulcus and middle frontal gyrus, i.e., a region corresponding to parts of Brodmann areas 9 and 46. Differences between areas in cytoarchitecture were captured using gray level index profiles, reflecting changes in the volume fraction of cell bodies from the surface of the brain to the cortex-white matter border. A hierarchical cluster analysis of these profiles indicated that areas of the anterior DLPFC displayed higher cytoarchitectonic similarity between each other than to areas of the neighboring frontal pole (areas Fp1 and Fp2), Broca's region (areas 44 and 45) of the ventral prefrontal cortex, and posterior DLPFC areas (8d1, 8d2, 8v1, and 8v2). Area-specific, cytoarchitectonic differences were found between the brains of males and females. The individual areas were 3D-reconstructed, and probability maps were created in the MNI Colin27 and ICBM152casym reference spaces to take the variability of areas in stereotaxic space into account. The new maps contribute to Julich-Brain and are publicly available as a resource for studying neuroimaging data, helping to clarify the functional and organizational principles of the human prefrontal cortex.
Collapse
Affiliation(s)
- Ariane Bruno
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Ariane Bruno
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Ruland SH, Palomero-Gallagher N, Hoffsteadter F, Eickhoff SB, Mohlberg H, Amunts K. The inferior frontal sulcus: cortical segregation, molecular architecture and function. Cortex 2022; 153:235-256. [DOI: 10.1016/j.cortex.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/13/2023]
|
8
|
Convolutional neural networks for cytoarchitectonic brain mapping at large scale. Neuroimage 2021; 240:118327. [PMID: 34224853 DOI: 10.1016/j.neuroimage.2021.118327] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/05/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023] Open
Abstract
Human brain atlases provide spatial reference systems for data characterizing brain organization at different levels, coming from different brains. Cytoarchitecture is a basic principle of the microstructural organization of the brain, as regional differences in the arrangement and composition of neuronal cells are indicators of changes in connectivity and function. Automated scanning procedures and observer-independent methods are prerequisites to reliably identify cytoarchitectonic areas, and to achieve reproducible models of brain segregation. Time becomes a key factor when moving from the analysis of single regions of interest towards high-throughput scanning of large series of whole-brain sections. Here we present a new workflow for mapping cytoarchitectonic areas in large series of cell-body stained histological sections of human postmortem brains. It is based on a Deep Convolutional Neural Network (CNN), which is trained on a pair of section images with annotations, with a large number of un-annotated sections in between. The model learns to create all missing annotations in between with high accuracy, and faster than our previous workflow based on observer-independent mapping. The new workflow does not require preceding 3D-reconstruction of sections, and is robust against histological artefacts. It processes large data sets with sizes in the order of multiple Terabytes efficiently. The workflow was integrated into a web interface, to allow access without expertise in deep learning and batch computing. Applying deep neural networks for cytoarchitectonic mapping opens new perspectives to enable high-resolution models of brain areas, introducing CNNs to identify borders of brain areas.
Collapse
|
9
|
Niu M, Rapan L, Funck T, Froudist-Walsh S, Zhao L, Zilles K, Palomero-Gallagher N. Organization of the macaque monkey inferior parietal lobule based on multimodal receptor architectonics. Neuroimage 2021; 231:117843. [PMID: 33577936 PMCID: PMC8188735 DOI: 10.1016/j.neuroimage.2021.117843] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
The macaque monkey inferior parietal lobe (IPL) is a structurally heterogeneous brain region, although the number of areas it contains and the anatomical/functional relationship of identified subdivisions remains controversial. Neurotransmitter receptor distribution patterns not only reveal the position of the cortical borders, but also segregate areas associated to different functional systems. Thus we carried out a multimodal quantitative analysis of the cyto- and receptor architecture of the macaque IPL to determine the number and extent of distinct areas it encompasses. We identified four areas on the IPL convexity arranged in a caudo-rostral sequence, as well as two areas in the parietal operculum, which we projected onto the Yerkes19 surface. We found rostral areas to have relatively smaller receptor fingerprints than the caudal ones, which is in an agreement with the functional gradient along the caudo-rostral axis described in previous studies. The hierarchical analysis segregated IPL areas into two clusters: the caudal one, contains areas involved in multisensory integration and visual-motor functions, and rostral cluster, encompasses areas active during motor planning and action-related functions. The results of the present study provide novel insights into clarifying the homologies between human and macaque IPL areas. The ensuing 3D map of the macaque IPL, and the receptor fingerprints are made publicly available to the neuroscientific community via the Human Brain Project and BALSA repositories for future cyto- and/or receptor architectonically driven analyses of functional imaging studies in non-human primates.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Ling Zhao
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany; C. & O. Vogt Institute of Brain Research, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
10
|
Rapan L, Froudist-Walsh S, Niu M, Xu T, Funck T, Zilles K, Palomero-Gallagher N. Multimodal 3D atlas of the macaque monkey motor and premotor cortex. Neuroimage 2021; 226:117574. [PMID: 33221453 PMCID: PMC8168280 DOI: 10.1016/j.neuroimage.2020.117574] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 01/16/2023] Open
Abstract
In the present study we reevaluated the parcellation scheme of the macaque frontal agranular cortex by implementing quantitative cytoarchitectonic and multireceptor analyses, with the purpose to integrate and reconcile the discrepancies between previously published maps of this region. We applied an observer-independent and statistically testable approach to determine the position of cytoarchitectonic borders. Analysis of the regional and laminar distribution patterns of 13 different transmitter receptors confirmed the position of cytoarchitectonically identified borders. Receptor densities were extracted from each area and visualized as its "receptor fingerprint". Hierarchical and principal components analyses were conducted to detect clusters of areas according to the degree of (dis)similarity of their fingerprints. Finally, functional connectivity pattern of each identified area was analyzed with areas of prefrontal, cingulate, somatosensory and lateral parietal cortex and the results were depicted as "connectivity fingerprints" and seed-to-vertex connectivity maps. We identified 16 cyto- and receptor architectonically distinct areas, including novel subdivisions of the primary motor area 4 (i.e. 4a, 4p, 4m) and of premotor areas F4 (i.e. F4s, F4d, F4v), F5 (i.e. F5s, F5d, F5v) and F7 (i.e. F7d, F7i, F7s). Multivariate analyses of receptor fingerprints revealed three clusters, which first segregated the subdivisions of area 4 with F4d and F4s from the remaining premotor areas, then separated ventrolateral from dorsolateral and medial premotor areas. The functional connectivity analysis revealed that medial and dorsolateral premotor and motor areas show stronger functional connectivity with areas involved in visual processing, whereas 4p and ventrolateral premotor areas presented a stronger functional connectivity with areas involved in somatomotor responses. For the first time, we provide a 3D atlas integrating cyto- and multi-receptor architectonic features of the macaque motor and premotor cortex. This atlas constitutes a valuable resource for the analysis of functional experiments carried out with non-human primates, for modeling approaches with realistic synaptic dynamics, as well as to provide insights into how brain functions have developed by changes in the underlying microstructure and encoding strategies during evolution.
Collapse
Affiliation(s)
- Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, New York
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA - Translational Brain Medicine, Aachen, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Kiwitz K, Schiffer C, Spitzer H, Dickscheid T, Amunts K. Deep learning networks reflect cytoarchitectonic features used in brain mapping. Sci Rep 2020; 10:22039. [PMID: 33328511 PMCID: PMC7744572 DOI: 10.1038/s41598-020-78638-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
The distribution of neurons in the cortex (cytoarchitecture) differs between cortical areas and constitutes the basis for structural maps of the human brain. Deep learning approaches provide a promising alternative to overcome throughput limitations of currently used cytoarchitectonic mapping methods, but typically lack insight as to what extent they follow cytoarchitectonic principles. We therefore investigated in how far the internal structure of deep convolutional neural networks trained for cytoarchitectonic brain mapping reflect traditional cytoarchitectonic features, and compared them to features of the current grey level index (GLI) profile approach. The networks consisted of a 10-block deep convolutional architecture trained to segment the primary and secondary visual cortex. Filter activations of the networks served to analyse resemblances to traditional cytoarchitectonic features and comparisons to the GLI profile approach. Our analysis revealed resemblances to cellular, laminar- as well as cortical area related cytoarchitectonic features. The networks learned filter activations that reflect the distinct cytoarchitecture of the segmented cortical areas with special regard to their laminar organization and compared well to statistical criteria of the GLI profile approach. These results confirm an incorporation of relevant cytoarchitectonic features in the deep convolutional neural networks and mark them as a valid support for high-throughput cytoarchitectonic mapping workflows.
Collapse
Affiliation(s)
- Kai Kiwitz
- Cécile and Oskar Vogt Institute of Brain Research, Univ. Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany.
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany.
| | - Christian Schiffer
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Spitzer
- Institute of Computational Biology, Helmholtz Zentrum, München, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute of Brain Research, Univ. Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
12
|
Majka P, Bednarek S, Chan JM, Jermakow N, Liu C, Saworska G, Worthy KH, Silva AC, Wójcik DK, Rosa MGP. Histology-Based Average Template of the Marmoset Cortex With Probabilistic Localization of Cytoarchitectural Areas. Neuroimage 2020; 226:117625. [PMID: 33301940 DOI: 10.1016/j.neuroimage.2020.117625] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 12/25/2022] Open
Abstract
The rapid adoption of marmosets in neuroscience has created a demand for three dimensional (3D) atlases of the brain of this species to facilitate data integration in a common reference space. We report on a new open access template of the marmoset cortex (the Nencki-Monash, or NM template), representing a morphological average of 20 brains of young adult individuals, obtained by 3D reconstructions generated from Nissl-stained serial sections. The method used to generate the template takes into account morphological features of the individual brains, as well as the borders of clearly defined cytoarchitectural areas. This has resulted in a resource which allows direct estimates of the most likely coordinates of each cortical area, as well as quantification of the margins of error involved in assigning voxels to areas, and preserves quantitative information about the laminar structure of the cortex. We provide spatial transformations between the NM and other available marmoset brain templates, thus enabling integration with magnetic resonance imaging (MRI) and tracer-based connectivity data. The NM template combines some of the main advantages of histology-based atlases (e.g. information about the cytoarchitectural structure) with features more commonly associated with MRI-based templates (isotropic nature of the dataset, and probabilistic analyses). The underlying workflow may be found useful in the future development of 3D brain atlases that incorporate information about the variability of areas in species for which it may be impractical to ensure homogeneity of the sample in terms of age, sex and genetic background.
Collapse
Affiliation(s)
- Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| | - Sylwia Bednarek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Jonathan M Chan
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Natalia Jermakow
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Cirong Liu
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Gabriela Saworska
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Daniel K Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 02-093 Warsaw, Poland; Institute of Applied Psychology, Faculty of Management and Social Communication, Jagiellonian University, 30-348 Cracow, Poland
| | - Marcello G P Rosa
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC 3800, Australia; Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
13
|
Vasung L, Rollins CK, Velasco-Annis C, Yun HJ, Zhang J, Warfield SK, Feldman HA, Gholipour A, Grant PE. Spatiotemporal Differences in the Regional Cortical Plate and Subplate Volume Growth during Fetal Development. Cereb Cortex 2020; 30:4438-4453. [PMID: 32147720 PMCID: PMC7325717 DOI: 10.1093/cercor/bhaa033] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
The regional specification of the cerebral cortex can be described by protomap and protocortex hypotheses. The protomap hypothesis suggests that the regional destiny of cortical neurons and the relative size of the cortical area are genetically determined early during embryonic development. The protocortex hypothesis suggests that the regional growth rate is predominantly shaped by external influences. In order to determine regional volumes of cortical compartments (cortical plate (CP) or subplate (SP)) and estimate their growth rates, we acquired T2-weighted in utero MRIs of 40 healthy fetuses and grouped them into early (<25.5 GW), mid- (25.5-31.6 GW), and late (>31.6 GW) prenatal periods. MRIs were segmented into CP and SP and further parcellated into 22 gyral regions. No significant difference was found between periods in regional volume fractions of the CP or SP. However, during the early and mid-prenatal periods, we found significant differences in relative growth rates (% increase per GW) between regions of cortical compartments. Thus, the relative size of these regions are most likely conserved and determined early during development whereas more subtle growth differences between regions are fine-tuned later, during periods of peak thalamocortical growth. This is in agreement with both the protomap and protocortex hypothesis.
Collapse
Affiliation(s)
- Lana Vasung
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Caitlin K Rollins
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk Jin Yun
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jennings Zhang
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Henry A Feldman
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ali Gholipour
- Computational Radiology Laboratory, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center (FNNDSC), Boston, MA 02115, USA
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Shah M, Kurth F, Luders E. The impact of aging on the subregions of the fusiform gyrus in healthy older adults. J Neurosci Res 2020; 99:263-270. [PMID: 32147882 DOI: 10.1002/jnr.24586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 11/06/2022]
Abstract
The fusiform gyrus is known to decrease in size with increasing age. However, reported findings are inconsistent and existing studies differ in terms of the cohorts examined and/or the methods applied. Here, we analyzed age-related links in four distinct subregions of the fusiform gyrus through integrating imaging-based intensity information with microscopically defined cytoarchitectonic probabilities. In addition to age effects we investigated sex effects as well as age-by-sex interactions in a relatively large sample of 468 healthy subjects (272 females/196 males) covering a broad age range (42-97 years). We observed significant negative correlations between age and all four subregions of the fusiform gyrus indicating volume decreases over time, albeit with subregion-specific trajectories. Additionally, we observed significant negative quadratic associations with age for some subregions, suggesting an accelerating volume loss over time. These findings may serve as a frame of reference for future cross-sectional as well as longitudinal studies, not only for normative samples but also potentially for clinical conditions that present with abnormal atrophy of the fusiform gyrus. We did not detect any significant sex differences or sex-by-age interactions, suggesting that the size of the fusiform gyrus is similar in male and female brains and that age-related atrophy follows a similar trajectory in both men and women.
Collapse
Affiliation(s)
- Mahima Shah
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Florian Kurth
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Wojtasik M, Bludau S, Eickhoff SB, Mohlberg H, Gerboga F, Caspers S, Amunts K. Cytoarchitectonic Characterization and Functional Decoding of Four New Areas in the Human Lateral Orbitofrontal Cortex. Front Neuroanat 2020; 14:2. [PMID: 32116573 PMCID: PMC7014920 DOI: 10.3389/fnana.2020.00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/17/2020] [Indexed: 11/20/2022] Open
Abstract
A comprehensive concept of the biological basis of reward, social and emotional behavior, and language requires a deeper understanding of the microstructure and connectivity of the underlying brain regions. Such understanding could provide deeper insights into their role in functional networks, and form the anatomical basis of the functional segregation of this region as shown in recent in vivo imaging studies. Here, we investigated the cytoarchitecture of the lateral orbitofrontal cortex (lateral OFC) in serial histological sections of 10 human postmortem brains by image analysis and a statistically reproducible approach to detect borders between cortical areas. Profiles of the volume fraction of cell bodies were therefore extracted from digitized histological images, describing laminar changes from the layer I/layer II boundary to the white matter. As a result, four new areas, Fo4–7, were identified. Area Fo4 was mainly found in the anterior orbital gyrus (AOG), Fo5 anteriorly in the inferior frontal gyrus (IFG), Fo6 in the lateral orbital gyrus (LOG), and Fo7 in the lateral orbital sulcus. Areas differed in cortical thickness, abundance and size of pyramidal cells in layer III and degree of granularity in layer IV. A hierarchical cluster analysis was used to quantify cytoarchitectonic differences between them. The 3D-reconstructed areas were transformed into the single-subject template of the Montreal Neurological Institute (MNI), where probabilistic maps and a maximum probability map (MPM) were calculated as part of the JuBrain Cytoarchitectonic Atlas. These maps served as reference data to study the functional properties of the areas using the BrainMap database. The type of behavioral tasks that activated them was analyzed to get first insights of co-activation patterns of the lateral OFC and its contribution to cognitive networks. Meta-analytic connectivity modeling (MACM) showed that functional decoding revealed activation in gustatory perception in Fo4; reward and somesthetic perception in Fo5; semantic processing and pain perception in Fo6; and emotional processing and covert reading in Fo7. Together with existing maps of the JuBrain Cytoarchitectonic Atlas, the new maps can now be used as an open-source reference for neuroimaging studies, allowing to further decode brain function.
Collapse
Affiliation(s)
- Magdalena Wojtasik
- Cécile and Oskar Vogt-Institute for Brain Research, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine 1 (INM-1), Research Center Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine 7 (INM-7), Research Center Jülich, Jülich, Germany.,Institut für Systemische Neurowissenschaften, Medizinische Fakultät, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine 1 (INM-1), Research Center Jülich, Jülich, Germany
| | - Fatma Gerboga
- Cécile and Oskar Vogt-Institute for Brain Research, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine 1 (INM-1), Research Center Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt-Institute for Brain Research, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine 1 (INM-1), Research Center Jülich, Jülich, Germany
| |
Collapse
|
16
|
Cadwell CR, Bhaduri A, Mostajo-Radji MA, Keefe MG, Nowakowski TJ. Development and Arealization of the Cerebral Cortex. Neuron 2019; 103:980-1004. [PMID: 31557462 PMCID: PMC9245854 DOI: 10.1016/j.neuron.2019.07.009] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
Abstract
Adult cortical areas consist of specialized cell types and circuits that support unique higher-order cognitive functions. How this regional diversity develops from an initially uniform neuroepithelium has been the subject of decades of seminal research, and emerging technologies, including single-cell transcriptomics, provide a new perspective on area-specific molecular diversity. Here, we review the early developmental processes that underlie cortical arealization, including both cortex intrinsic and extrinsic mechanisms as embodied by the protomap and protocortex hypotheses, respectively. We propose an integrated model of serial homology whereby intrinsic genetic programs and local factors establish early transcriptomic differences between excitatory neurons destined to give rise to broad "proto-regions," and activity-dependent mechanisms lead to progressive refinement and formation of sharp boundaries between functional areas. Finally, we explore the potential of these basic developmental processes to inform our understanding of the emergence of functional neural networks and circuit abnormalities in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Cathryn R Cadwell
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mohammed A Mostajo-Radji
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94122, USA; The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA
| | - Matthew G Keefe
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J Nowakowski
- The Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research at the University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
17
|
Richter M, Amunts K, Mohlberg H, Bludau S, Eickhoff SB, Zilles K, Caspers S. Cytoarchitectonic segregation of human posterior intraparietal and adjacent parieto-occipital sulcus and its relation to visuomotor and cognitive functions. Cereb Cortex 2019; 29:1305-1327. [PMID: 30561508 PMCID: PMC6373694 DOI: 10.1093/cercor/bhy245] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/27/2018] [Indexed: 01/05/2023] Open
Abstract
Human posterior intraparietal sulcus (pIPS) and adjacent posterior wall of parieto-occipital sulcus (POS) are functionally diverse, serving higher motor, visual and cognitive functions. Its microstructural basis, though, is still largely unknown. A similar or even more pronounced architectonical complexity, as described in monkeys, could be assumed. We cytoarchitectonically mapped the pIPS/POS in 10 human postmortem brains using an observer-independent, quantitative parcellation. 3D-probability maps were generated within MNI reference space and used for functional decoding and meta-analytic coactivation modeling based on the BrainMap database to decode the general structural-functional organization of the areas. Seven cytoarchitectonically distinct areas were identified: five within human pIPS, three on its lateral (hIP4-6) and two on its medial wall (hIP7-8); and two (hPO1, hOc6) in POS. Mediocaudal areas (hIP7, hPO1) were predominantly involved in visual processing, whereas laterorostral areas (hIP4-6, 8) were associated with higher cognitive functions, e.g. counting. This shift was mirrored by systematic changes in connectivity, from temporo-occipital to premotor and prefrontal cortex, and in cytoarchitecture, from prominent Layer IIIc pyramidal cells to homogeneous neuronal distribution. This architectonical mosaic within human pIPS/POS represents a structural basis of its functional and connectional heterogeneity. The new 3D-maps of the areas enable dedicated assessments of structure-function relationships.
Collapse
Affiliation(s)
- Monika Richter
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| |
Collapse
|
18
|
Ruan J, Bludau S, Palomero-Gallagher N, Caspers S, Mohlberg H, Eickhoff SB, Seitz RJ, Amunts K. Cytoarchitecture, probability maps, and functions of the human supplementary and pre-supplementary motor areas. Brain Struct Funct 2018; 223:4169-4186. [PMID: 30187192 PMCID: PMC6267244 DOI: 10.1007/s00429-018-1738-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/16/2018] [Indexed: 12/20/2022]
Abstract
The dorsal mesial frontal cortex contains the supplementary motor area (SMA) and the pre-supplementary motor area (pre-SMA), which play an important role in action and cognition. Evidence from cytoarchitectonic, stimulation, and functional studies suggests structural and functional divergence between the two subregions. However, a microstructural map of these areas obtained in a representative sample of brains in a stereotaxic reference space is still lacking. In the present study we show that the dorsal mesial frontal motor cortex comprises two microstructurally different brain regions: area SMA and area pre-SMA. Area-specific cytoarchitectonic patterns were studied in serial histological sections stained for cell bodies of ten human postmortem brains. Borders of the two cortical areas were identified using image analysis and statistical features. The 3D reconstructed areas were transferred to a common reference space, and probabilistic maps were calculated by superimposing the individual maps. A coordinate-based meta-analysis of functional imaging data was subsequently performed using the two probabilistic maps as microstructurally defined seed regions. It revealed that areas SMA and pre-SMA were strongly co-activated with areas in precentral, supramarginal and superior frontal gyri, Rolandic operculum, thalamus, putamen and cerebellum. Both areas were related to motor functions, but area pre-SMA was involved in more complex processes such as learning, cognitive processes and perception. The here described subsequent analyses led to converging evidence supporting the microstructural, and functional segregation of areas SMA and pre-SMA, and maps will be made available to the scientific community to further elucidate the microstructural substrates of motor and cognitive control.
Collapse
Affiliation(s)
- Jianghai Ruan
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Centre of Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA Translational Brain Medicine, Aachen, Germany
| | - Svenja Caspers
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
| | - Rüdiger J Seitz
- Centre of Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.
- Florey Neuroscience Institutes, Melbourne, VIC, Australia.
| | - Katrin Amunts
- C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
19
|
Wei Y, Scholtens LH, Turk E, van den Heuvel MP. Multiscale examination of cytoarchitectonic similarity and human brain connectivity. Netw Neurosci 2018; 3:124-137. [PMID: 30793077 PMCID: PMC6372019 DOI: 10.1162/netn_a_00057] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/01/2018] [Indexed: 11/05/2022] Open
Abstract
The human brain comprises an efficient communication network, with its macroscale connectome organization argued to be directly associated with the underlying microscale organization of the cortex. Here, we further examine this link in the human brain cortex by using the ultrahigh-resolution BigBrain dataset; 11,660 BigBrain profiles of laminar cell structure were extracted from the BigBrain data and mapped to the MRI based Desikan-Killiany atlas used for macroscale connectome reconstruction. Macroscale brain connectivity was reconstructed based on the diffusion-weighted imaging dataset from the Human Connectome Project and cross-correlated to the similarity of laminar profiles. We showed that the BigBrain profile similarity between interconnected cortical regions was significantly higher than those between nonconnected regions. The pattern of BigBrain profile similarity across the entire cortex was also found to be strongly correlated with the pattern of cortico-cortical connectivity at the macroscale. Our findings suggest that cortical regions with higher similarity in the laminar cytoarchitectonic patterns have a higher chance of being connected, extending the evidence for the linkage between macroscale connectome organization and microscale cytoarchitecture.
Collapse
Affiliation(s)
- Yongbin Wei
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lianne H. Scholtens
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elise Turk
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Brain Center Rudolf Magnus, Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Martijn P. van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Palomero-Gallagher N, Zilles K. Differences in cytoarchitecture of Broca's region between human, ape and macaque brains. Cortex 2018; 118:132-153. [PMID: 30333085 DOI: 10.1016/j.cortex.2018.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/15/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
Areas 44 and 45 have been identified in non-human primates as homologs of the human Broca region. Distribution of large and smaller pyramids and the ventro-lateral localization in the posterior frontal lobe enable their identification in non-human primates. Since only humans hold the ability of language, it has been hypothesized that differences in microstructure may, together with other anatomical factors, e.g., white matter tract connectivity, volumes of cortical areas and their molecular differentiation, be responsible for the lack (non-human primates) or ability (humans) of language. We sought to identify microstructural differences, by quantitatively studying the cytoarchitecture of areas 44 and 45 using layer-specific grey level indices (volume proportion of neuropil and cell bodies) in serially sectioned and cell body stained human, bonobo, chimpanzee, gorilla, orangutan and Macaca fascicularis brains. The main results are the interspecies differences in neuropil volume relative to cell bodies in all layers of both areas which allows a grouping of the different species into three major groups: Homo sapiens has the largest, great apes a markedly lower, and macaque the lowest neuropil volume. This indicates considerably more space for local and interregional connectivity in human brains, which matches recent studies of fiber tracts and spacing of cortical minicolumns because increasing connectivity also requires more space for axons and dendrites in the neuropil. The evolutionary enlargement of neuropil is, therefore, a major structural difference between humans and non-human primates which may correspond to the underlying functional differences.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| |
Collapse
|
21
|
Palomero-Gallagher N, Zilles K. Cyto- and receptor architectonic mapping of the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2018; 150:355-387. [PMID: 29496153 DOI: 10.1016/b978-0-444-63639-3.00024-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mapping of the human brain is more than the generation of an atlas-based parcellation of brain regions using histologic or histochemical criteria. It is the attempt to provide a topographically informed model of the structural and functional organization of the brain. To achieve this goal a multimodal atlas of the detailed microscopic and neurochemical structure of the brain must be registered to a stereotaxic reference space or brain, which also serves as reference for topographic assignment of functional data, e.g., functional magnet resonance imaging, electroencephalography, or magnetoencephalography, as well as metabolic imaging, e.g., positron emission tomography. Although classic maps remain pioneering steps, they do not match recent concepts of the functional organization in many regions, and suffer from methodic drawbacks. This chapter provides a summary of the recent status of human brain mapping, which is based on multimodal approaches integrating results of quantitative cyto- and receptor architectonic studies with focus on the cerebral cortex in a widely used reference brain. Descriptions of the methods for observer-independent and statistically testable cytoarchitectonic parcellations, quantitative multireceptor mapping, and registration to the reference brain, including the concept of probability maps and a toolbox for using the maps in functional neuroimaging studies, are provided.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH, Aachen, Germany; JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.
| |
Collapse
|
22
|
Kurth F, Luders E, Pigdon L, Conti-Ramsden G, Reilly S, Morgan AT. Altered gray matter volumes in language-associated regions in children with developmental language disorder and speech sound disorder. Dev Psychobiol 2018; 60:814-824. [DOI: 10.1002/dev.21762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Florian Kurth
- School of Psychology; University of Auckland; Auckland New Zealand
| | - Eileen Luders
- School of Psychology; University of Auckland; Auckland New Zealand
- Murdoch Childrens Research Institute; Melbourne Australia
| | - Lauren Pigdon
- Murdoch Childrens Research Institute; Melbourne Australia
- Monash Institute of Cognitive and Clinical Neurosciences; Monash University; Melbourne Australia
| | - Gina Conti-Ramsden
- Murdoch Childrens Research Institute; Melbourne Australia
- The University of Manchester; Manchester United Kingdom
| | - Sheena Reilly
- Murdoch Childrens Research Institute; Melbourne Australia
- Menzies Health Institute Queensland, Griffith University; Southport Queensland Australia
| | - Angela T. Morgan
- Murdoch Childrens Research Institute; Melbourne Australia
- University of Melbourne; Melbourne Australia
| |
Collapse
|
23
|
Integrating Cytoarchitectonic Probabilities with MRI-Based Signal Intensities to Calculate Regional Volumes of Interest. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-7647-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
24
|
Zilles K, Palomero-Gallagher N. Multiple Transmitter Receptors in Regions and Layers of the Human Cerebral Cortex. Front Neuroanat 2017; 11:78. [PMID: 28970785 PMCID: PMC5609104 DOI: 10.3389/fnana.2017.00078] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 01/16/2023] Open
Abstract
We measured the densities (fmol/mg protein) of 15 different receptors of various transmitter systems in the supragranular, granular and infragranular strata of 44 areas of visual, somatosensory, auditory and multimodal association systems of the human cerebral cortex. Receptor densities were obtained after labeling of the receptors using quantitative in vitro receptor autoradiography in human postmortem brains. The mean density of each receptor type over all cortical layers and of each of the three major strata varies between cortical regions. In a single cortical area, the multi-receptor fingerprints of its strata (i.e., polar plots, each visualizing the densities of multiple different receptor types in supragranular, granular or infragranular layers of the same cortical area) differ in shape and size indicating regional and laminar specific balances between the receptors. Furthermore, the three strata are clearly segregated into well definable clusters by their receptor fingerprints. Fingerprints of different cortical areas systematically vary between functional networks, and with the hierarchical levels within sensory systems. Primary sensory areas are clearly separated from all other cortical areas particularly by their very high muscarinic M2 and nicotinic α4β2 receptor densities, and to a lesser degree also by noradrenergic α2 and serotonergic 5-HT2 receptors. Early visual areas of the dorsal and ventral streams are segregated by their multi-receptor fingerprints. The results are discussed on the background of functional segregation, cortical hierarchies, microstructural types, and the horizontal (layers) and vertical (columns) organization in the cerebral cortex. We conclude that a cortical column is composed of segments, which can be assigned to the cortical strata. The segments differ by their patterns of multi-receptor balances, indicating different layer-specific signal processing mechanisms. Additionally, the differences between the strata-and area-specific fingerprints of the 44 areas reflect the segregation of the cerebral cortex into functionally and topographically definable groups of cortical areas (visual, auditory, somatosensory, limbic, motor), and reveals their hierarchical position (primary and unimodal (early) sensory to higher sensory and finally to multimodal association areas). HighlightsDensities of transmitter receptors vary between areas of human cerebral cortex. Multi-receptor fingerprints segregate cortical layers. The densities of all examined receptor types together reach highest values in the supragranular stratum of all areas. The lowest values are found in the infragranular stratum. Multi-receptor fingerprints of entire areas and their layers segregate functional systems Cortical types (primary sensory, motor, multimodal association) differ in their receptor fingerprints.
Collapse
Affiliation(s)
- Karl Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1)Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA-Translational Brain MedicineAachen, Germany
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1)Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, and JARA-Translational Brain MedicineAachen, Germany
| |
Collapse
|
25
|
Abstract
Face perception is critical for normal social functioning and is mediated by a network of regions in the ventral visual stream. In this review, we describe recent neuroimaging findings regarding the macro- and microscopic anatomical features of the ventral face network, the characteristics of white matter connections, and basic computations performed by population receptive fields within face-selective regions composing this network. We emphasize the importance of the neural tissue properties and white matter connections of each region, as these anatomical properties may be tightly linked to the functional characteristics of the ventral face network. We end by considering how empirical investigations of the neural architecture of the face network may inform the development of computational models and shed light on how computations in the face network enable efficient face perception.
Collapse
Affiliation(s)
- Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, California 94305;
- Stanford Neurosciences Institute, Stanford University, Stanford, California 94305
| | - Kevin S Weiner
- Department of Psychology, Stanford University, Stanford, California 94305;
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jesse Gomez
- Neurosciences Program, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
26
|
Palomero-Gallagher N, Zilles K. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. Neuroimage 2017; 197:716-741. [PMID: 28811255 DOI: 10.1016/j.neuroimage.2017.08.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022] Open
Abstract
Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| |
Collapse
|
27
|
Cozzi B, De Giorgio A, Peruffo A, Montelli S, Panin M, Bombardi C, Grandis A, Pirone A, Zambenedetti P, Corain L, Granato A. The laminar organization of the motor cortex in monodactylous mammals: a comparative assessment based on horse, chimpanzee, and macaque. Brain Struct Funct 2017; 222:2743-2757. [DOI: 10.1007/s00429-017-1369-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/12/2017] [Indexed: 11/27/2022]
|
28
|
Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A, Amunts K, Zilles K, Fischl B, Grill-Spector K. The Cytoarchitecture of Domain-specific Regions in Human High-level Visual Cortex. Cereb Cortex 2017; 27:146-161. [PMID: 27909003 PMCID: PMC5939223 DOI: 10.1093/cercor/bhw361] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/05/2016] [Accepted: 10/29/2016] [Indexed: 12/02/2022] Open
Abstract
A fundamental hypothesis in neuroscience proposes that underlying cellular architecture (cytoarchitecture) contributes to the functionality of a brain area. However, this hypothesis has not been tested in human ventral temporal cortex (VTC) that contains domain-specific regions causally involved in perception. To fill this gap in knowledge, we used cortex-based alignment to register functional regions from living participants to cytoarchitectonic areas in ex vivo brains. This novel approach reveals 3 findings. First, there is a consistent relationship between domain-specific regions and cytoarchitectonic areas: each functional region is largely restricted to 1 cytoarchitectonic area. Second, extracting cytoarchitectonic profiles from face- and place-selective regions after back-projecting each region to 20-μm thick histological sections indicates that cytoarchitectonic properties distinguish these regions from each other. Third, some cytoarchitectonic areas contain more than 1 domain-specific region. For example, face-, body-, and character-selective regions are located within the same cytoarchitectonic area. We summarize these findings with a parsimonious hypothesis incorporating how cellular properties may contribute to functional specialization in human VTC. Specifically, we link computational principles to correlated axes of functional and cytoarchitectonic segregation in human VTC, in which parallel processing across domains occurs along a lateral-medial axis while transformations of information within domain occur along an anterior-posterior axis.
Collapse
Affiliation(s)
- Kevin S. Weiner
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | | | - Simon Lorenz
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
| | - Julian Caspers
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
- Department of Diagnostic and Interventional Radiology, Medical Faculty,University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Anthony Stigliani
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Katrin Amunts
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, Heinrich-Heine University of Düsseldorf, 40225 Düsseldorf, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52428 Jülich, Germany
| | - Karl Zilles
- Institute of Neurosciences and Medicine (INM-1), Research Centre Jülich, 52428 Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, 52428 Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, 52062 Aachen, Germany
| | - Bruce Fischl
- Martinos Center for Biomedical Imaging and Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, USA
- Computer Science and Artificial Intelligence Laboratory, MIT EECS/HST, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Bastiani M, Oros-Peusquens AM, Seehaus A, Brenner D, Möllenhoff K, Celik A, Felder J, Bratzke H, Shah NJ, Galuske R, Goebel R, Roebroeck A. Automatic Segmentation of Human Cortical Layer-Complexes and Architectural Areas Using Ex vivo Diffusion MRI and Its Validation. Front Neurosci 2016; 10:487. [PMID: 27891069 PMCID: PMC5102896 DOI: 10.3389/fnins.2016.00487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/11/2016] [Indexed: 11/14/2022] Open
Abstract
Recently, several magnetic resonance imaging contrast mechanisms have been shown to distinguish cortical substructure corresponding to selected cortical layers. Here, we investigate cortical layer and area differentiation by automatized unsupervised clustering of high-resolution diffusion MRI data. Several groups of adjacent layers could be distinguished in human primary motor and premotor cortex. We then used the signature of diffusion MRI signals along cortical depth as a criterion to detect area boundaries and find borders at which the signature changes abruptly. We validate our clustering results by histological analysis of the same tissue. These results confirm earlier studies which show that diffusion MRI can probe layer-specific intracortical fiber organization and, moreover, suggests that it contains enough information to automatically classify architecturally distinct cortical areas. We discuss the strengths and weaknesses of the automatic clustering approach and its appeal for MR-based cortical histology.
Collapse
Affiliation(s)
- Matteo Bastiani
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4)Jülich, Germany
| | | | - Arne Seehaus
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Biology, TU DarmstadtDarmstadt, Germany
| | - Daniel Brenner
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4) Jülich, Germany
| | - Klaus Möllenhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4) Jülich, Germany
| | - Avdo Celik
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4) Jülich, Germany
| | - Jörg Felder
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4) Jülich, Germany
| | - Hansjürgen Bratzke
- Department of Forensic Medicine, Faculty of Medicine, Goethe University Frankfurt Frankfurt, Germany
| | - Nadim J Shah
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4)Jülich, Germany; Department of Neurology, Faculty of Medicine, Jülich Aachen Research Alliance, RWTH Aachen UniversityAachen, Germany
| | - Ralf Galuske
- Department of Biology, TU Darmstadt Darmstadt, Germany
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience - KNAWAmsterdam, Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University Maastricht, Netherlands
| |
Collapse
|
30
|
Cytoarchitecture and probability maps of the human medial orbitofrontal cortex. Cortex 2016; 75:87-112. [DOI: 10.1016/j.cortex.2015.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
|
31
|
Augustinack JC, van der Kouwe AJW. Postmortem imaging and neuropathologic correlations. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:1321-39. [PMID: 27430472 DOI: 10.1016/b978-0-444-53486-6.00069-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Postmortem imaging refers to scanning autopsy specimens using magnetic resonance imaging (MRI) or optical imaging. This chapter summarizes postmortem imaging and its usefulness in brain mapping. Standard in vivo MRI has limited resolution due to time constraints and does not deliver cortical boundaries (e.g., Brodmann areas). Postmortem imaging offers a means to obtain ultra-high-resolution images with appropriate contrast for delineating cortical regions. Postmortem imaging provides the ability to validate MRI properties against histologic stained sections. This approach has enabled probabilistic mapping that is based on ex vivo MRI contrast, validated to histology, and subsequently mapped on to an in vivo model. This chapter emphasizes structural imaging, which can be validated with histologic assessment. Postmortem imaging has been applied to neuropathologic studies as well. This chapter includes many ex vivo studies, but focuses on studies of the medial temporal lobe, often involved in neurologic disease. New research using optical imaging is also highlighted.
Collapse
Affiliation(s)
- Jean C Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.
| | - André J W van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
32
|
Architectonic Mapping of the Human Brain beyond Brodmann. Neuron 2015; 88:1086-1107. [DOI: 10.1016/j.neuron.2015.12.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 10/13/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
|
33
|
Ray KL, Zald DH, Bludau S, Riedel MC, Bzdok D, Yanes J, Falcone KE, Amunts K, Fox PT, Eickhoff SB, Laird AR. Co-activation based parcellation of the human frontal pole. Neuroimage 2015; 123:200-11. [PMID: 26254112 PMCID: PMC4626376 DOI: 10.1016/j.neuroimage.2015.07.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/14/2015] [Accepted: 07/27/2015] [Indexed: 12/16/2022] Open
Abstract
Historically, the human frontal pole (FP) has been considered as a single architectonic area. Brodmann's area 10 is located in the frontal lobe with known contributions in the execution of various higher order cognitive processes. However, recent cytoarchitectural studies of the FP in humans have shown that this portion of cortex contains two distinct cytoarchitectonic regions. Since architectonic differences are accompanied by differential connectivity and functions, the frontal pole qualifies as a candidate region for exploratory parcellation into functionally discrete sub-regions. We investigated whether this functional heterogeneity is reflected in distinct segregations within cytoarchitectonically defined FP-areas using meta-analytic co-activation based parcellation (CBP). The CBP method examined the co-activation patterns of all voxels within the FP as reported in functional neuroimaging studies archived in the BrainMap database. Voxels within the FP were subsequently clustered into sub-regions based on the similarity of their respective meta-analytically derived co-activation maps. Performing this CBP analysis on the FP via k-means clustering produced a distinct 3-cluster parcellation for each hemisphere corresponding to previously identified cytoarchitectural differences. Post-hoc functional characterization of clusters via BrainMap metadata revealed that lateral regions of the FP mapped to memory and emotion domains, while the dorso- and ventromedial clusters were associated broadly with emotion and social cognition processes. Furthermore, the dorsomedial regions contain an emphasis on theory of mind and affective related paradigms whereas ventromedial regions couple with reward tasks. Results from this study support previous segregations of the FP and provide meta-analytic contributions to the ongoing discussion of elucidating functional architecture within human FP.
Collapse
Affiliation(s)
- K L Ray
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - D H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - S Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - M C Riedel
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - D Bzdok
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany; Parietal Team, INRIA, NeuroSpin, Bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France; NeuroSpin, CEA, Bat 145, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - J Yanes
- Department of Physics, Florida International University, Miami, FL, USA
| | - K E Falcone
- Department of Physics, Florida International University, Miami, FL, USA
| | - K Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - P T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; Research Service, South Texas Veterans Administration Medical Center, San Antonio, TX, USA; State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong; School of Medicine, Shenzhen University, Shenzhen, China
| | - S B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - A R Laird
- Department of Physics, Florida International University, Miami, FL, USA.
| |
Collapse
|
34
|
Cytoarchitecture of the human lateral occipital cortex: mapping of two extrastriate areas hOc4la and hOc4lp. Brain Struct Funct 2015; 221:1877-97. [DOI: 10.1007/s00429-015-1009-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
|
35
|
Zilles K, Amunts K. Anatomical Basis for Functional Specialization. FMRI: FROM NUCLEAR SPINS TO BRAIN FUNCTIONS 2015. [DOI: 10.1007/978-1-4899-7591-1_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Cheng H, Wu H, Fan Y. Optimizing affinity measures for parcellating brain structures based on resting state fMRI data: a validation on medial superior frontal cortex. J Neurosci Methods 2014; 237:90-102. [PMID: 25224735 DOI: 10.1016/j.jneumeth.2014.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/03/2014] [Accepted: 09/05/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Parcellating brain structures into functionally homogeneous subregions based on resting state fMRI data could be achieved by grouping image voxels using clustering algorithms, such as normalized cut. The affinity between brain voxels adopted in the clustering algorithms is typically characterized by a combination of the similarity of their functional signals and their spatial distance with parameters empirically specified. However, improper parameter setting of the affinity measure may result in parcellation results biased to spatial smoothness. NEW METHOD To obtain a functionally homogeneous and spatially contiguous brain parcellation result, we propose to optimize the affinity measure of image voxels using a constrained bi-level programming optimization method. Particularly, we first identify the space of all possible parameters that are able to generate spatially contiguous brain parcellation results. Then, within the constrained parameter space we search those leading to the brain parcellation results with optimal functional homogeneity and spatial smoothness. RESULTS AND COMPARISON WITH EXISTING METHODS The method has successfully parcellated medial superior frontal cortex into supplementary motor area (SMA) and pre-SMA for 106 subjects based on their resting state fMRI data. These results have been validated through functional connectivity analysis and meta-analysis of existing functional imaging studies and compared with those obtained by state-of-the-art brain parcellation methods. CONCLUSIONS The validation results have demonstrated that our method could obtain brain parcellation results consistent with the existing functional anatomy knowledge, and the comparison results have further demonstrated that optimizing affinity measure could improve the brain parcellation's robustness and functional homogeneity.
Collapse
Affiliation(s)
- Hewei Cheng
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Wu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Fan
- Brainnetome Center, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
37
|
Bludau S, Eickhoff SB, Mohlberg H, Caspers S, Laird AR, Fox PT, Schleicher A, Zilles K, Amunts K. Cytoarchitecture, probability maps and functions of the human frontal pole. Neuroimage 2014; 93 Pt 2:260-75. [PMID: 23702412 PMCID: PMC5325035 DOI: 10.1016/j.neuroimage.2013.05.052] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022] Open
Abstract
The frontal pole has more expanded than any other part in the human brain as compared to our ancestors. It plays an important role for specifically human behavior and cognitive abilities, e.g. action selection (Kovach et al., 2012). Evidence about divergent functions of its medial and lateral part has been provided, both in the healthy brain and in psychiatric disorders. The anatomical correlates of such functional segregation, however, are still unknown due to a lack of stereotaxic, microstructural maps obtained in a representative sample of brains. Here we show that the human frontopolar cortex consists of two cytoarchitectonically and functionally distinct areas: lateral frontopolar area 1 (Fp1) and medial frontopolar area 2 (Fp2). Based on observer-independent mapping in serial, cell-body stained sections of 10 brains, three-dimensional, probabilistic maps of areas Fp1 and Fp2 were created. They show, for each position of the reference space, the probability with which each area was found in a particular voxel. Applying these maps as seed regions for a meta-analysis revealed that Fp1 and Fp2 differentially contribute to functional networks: Fp1 was involved in cognition, working memory and perception, whereas Fp2 was part of brain networks underlying affective processing and social cognition. The present study thus disclosed cortical correlates of a functional segregation of the human frontopolar cortex. The probabilistic maps provide a sound anatomical basis for interpreting neuroimaging data in the living human brain, and open new perspectives for analyzing structure-function relationships in the prefrontal cortex. The new data will also serve as a starting point for further comparative studies between human and non-human primate brains. This allows finding similarities and differences in the organizational principles of the frontal lobe during evolution as neurobiological basis for our behavior and cognitive abilities.
Collapse
Affiliation(s)
- S Bludau
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany.
| | - S B Eickhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany; Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, 40001 Düsseldorf, Germany
| | - H Mohlberg
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany
| | - S Caspers
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany
| | - A R Laird
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA; Department of Physics, Florida International University, Miami, FL, USA
| | - P T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA
| | - A Schleicher
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany
| | - K Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany; Dept. of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Aachen, 52074 Aachen, Germany; JARA, Juelich-Aachen Research Alliance, Translational Brain Medicine, Jülich, Germany
| | - K Amunts
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany; JARA, Juelich-Aachen Research Alliance, Translational Brain Medicine, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, 40001 Düsseldorf, Germany
| |
Collapse
|
38
|
de Haan B, Bither M, Brauer A, Karnath HO. Neural Correlates of Spatial Attention and Target Detection in a Multi-Target Environment. Cereb Cortex 2014; 25:2321-31. [PMID: 24642422 DOI: 10.1093/cercor/bhu046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our ability to attend and respond in a multi-target environment is an essential and distinct human skill, as is dramatically demonstrated in stroke patients suffering from extinction. We performed a functional magnetic resonance imaging study to determine the neural anatomy associated with attending and responding to simultaneously presented targets. In healthy subjects, we tested the hypothesis that the right intraparietal sulcus (IPS) is associated both with the top-down direction of attention to multiple target locations and the bottom-up detection of multiple targets, whereas the temporo-parietal junction (TPJ) is predominantly associated with the bottom-up detection of multiple targets. We used a cued target detection task with a high proportion of catch trials to separately estimate top-down cue-related and bottom-up target-related neural activity. Both cues and targets could be presented unilaterally or bilaterally. We found no evidence of target-related neural activation specific to bilateral situations in the TPJ, but observed both cue-related and target-related neural activation specific to bilateral situations in the right IPS and target-related neural activity specific to bilateral situations in the right inferior frontal gyrus (IFG). We conclude that the IPS and the IFG of the right hemisphere underlie our ability to attend and respond in a multi-target environment.
Collapse
Affiliation(s)
- Bianca de Haan
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Maria Bither
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anne Brauer
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Division of Neuropsychology, Center of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany Department of Psychology, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
39
|
Caspers J, Palomero-Gallagher N, Caspers S, Schleicher A, Amunts K, Zilles K. Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus. Brain Struct Funct 2013; 220:205-19. [DOI: 10.1007/s00429-013-0646-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/26/2013] [Indexed: 01/02/2023]
|
40
|
Cortical mapping by magnetic resonance imaging (MRI) and quantitative cytological analysis in the human brain: a feasibility study in the fusiform gyrus. J Neurosci Methods 2013; 218:9-16. [PMID: 23628159 DOI: 10.1016/j.jneumeth.2013.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 11/21/2022]
Abstract
The cerebral cortex is a layered cellular structure that is tangentially organized into a mosaic of anatomically and functionally distinct fields. In spite of centuries of investigation, the precise localization and classification of many areas in the cerebral cortex remain problematic because the relationship between functional specificity and intra-cortical structure has not been firmly established. Furthermore, it is not yet clear how surface landmarks, visible through gross examination and, more recently, using non-invasive magnetic resonance imaging (MRI), relate to underlying microstructural borders and to the topography of functional activation. We have designed a multi-modal neuroimaging protocol that combines MRI and quantitative microscopic analysis in the same individual to clarify the topography of cytoarchitecture underlying gross anatomical landmarks in the cerebral cortex. We tested our approach in the region of the fusiform gyrus (FG) because, in spite of its seemingly smooth appearance on the ventral aspect of both hemispheres, this structure houses many functionally defined areas whose histological borders remain unclear. In practice, we used MRI-based automated segmentation to define the region of interest from which we could then collect quantitative histological data (specifically, neuronal size and density). A modified stereological approach was used to sample the cortex within the FG without a priori assumptions on the location of architectonic boundaries. The results of these analyses illustrate architectonic variations along the FG and demonstrate that it is possible to correlate quantitative histological data to measures that are obtained in the context of large-scale, non-invasive MRI-based population studies.
Collapse
|
41
|
Caspers S, Eickhoff SB, Zilles K, Amunts K. Microstructural grey matter parcellation and its relevance for connectome analyses. Neuroimage 2013; 80:18-26. [PMID: 23571419 DOI: 10.1016/j.neuroimage.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/27/2013] [Accepted: 04/01/2013] [Indexed: 12/12/2022] Open
Abstract
The human brain connectome is closely linked to the anatomical framework provided by the structural segregation of the cortex into distinct cortical areas. Therefore, a thorough anatomical reference for the analysis and interpretation of connectome data is indispensable to understand the structure and function of different regions of the cortex, the white matter fibre architecture connecting them, and the interplay between these different entities. This article focuses on parcellation schemes of the cerebral grey matter and their relevance for connectome analyses. In particular, benefits and limitations of using different available atlases and parcellation schemes are reviewed. It is furthermore discussed how atlas information is currently used in connectivity analyses with major focus on seed-based and seed-target analyses, connectivity-based parcellation results, and the robust anatomical interpretation of connectivity data. Particularly this last aspect opens the possibility of integrating connectivity information into given anatomical frameworks, paving the way to multi-modal atlases of the human brain for a thorough understanding of structure-function relationships.
Collapse
Affiliation(s)
- Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.
| | | | | | | |
Collapse
|
42
|
Kujovic M, Zilles K, Malikovic A, Schleicher A, Mohlberg H, Rottschy C, Eickhoff SB, Amunts K. Cytoarchitectonic mapping of the human dorsal extrastriate cortex. Brain Struct Funct 2013; 218:157-72. [PMID: 22354469 PMCID: PMC3535362 DOI: 10.1007/s00429-012-0390-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/31/2012] [Indexed: 11/06/2022]
Abstract
The dorsal visual stream consists of several functionally specialized areas, but most of their cytoarchitectonic correlates have not yet been identified in the human brain. The cortex adjacent to Brodmann area 18/V2 was therefore analyzed in serial sections of ten human post-mortem brains using morphometrical and multivariate statistical analyses for the definition of areal borders. Two previously unknown cytoarchitectonic areas (hOc3d, hOc4d) were detected. They occupy the medial and, to a smaller extent, lateral surface of the occipital lobe. The larger area, hOc3d, is located dorso-lateral to area V2 in the region of superior and transverse occipital, as well as parieto-occipital sulci. Area hOc4d was identified rostral to hOc3d; it differed from the latter by larger pyramidal cells in lower layer III, thinner layers V and VI, and a sharp cortex-white-matter borderline. The delineated areas were superimposed in the anatomical MNI space, and probabilistic maps were calculated. They show a relatively high intersubject variability in volume and position. Based on their location and neighborhood relationship, areas hOc3d and hOc4d are putative anatomical substrates of functionally defined areas V3d and V3a, a hypothesis that can now be tested by comparing probabilistic cytoarchitectonic maps and activation studies of the living human brain.
Collapse
Affiliation(s)
- Milenko Kujovic
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
| | - Karl Zilles
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
| | - Aleksandar Malikovic
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
- Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Axel Schleicher
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
| | - Claudia Rottschy
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
| | - Simon B. Eickhoff
- C. & O. Vogt Institute for Brain Research, University of Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM 1, INM 2) and JARA, Translational Brain Medicine, Research Centre Jülich, 52425 Juelich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
43
|
Hutsler JJ, Avino TA. Sigmoid fits to locate and characterize cortical boundaries in human cerebral cortex. J Neurosci Methods 2012; 212:242-6. [PMID: 23137653 DOI: 10.1016/j.jneumeth.2012.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/11/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Quantitative evaluation of neuropathology within the cortex often requires a significant investigator time commitment. Here we elaborate on a method of quantifying the distinctiveness of the gray-white matter boundary using function fitting methods (Avino and Hutsler, 2010) and demonstrate that it can also be adapted to reliably identify the location of the gray matter/white matter (GM-WM) boundary in microscopic images, even when that boundary is indistinct. Multiple images of the gray-white matter boundary were acquired from sixteen subjects. Density profiles across the cortical layers were acquired and sigmoid functions were iteratively fit to the density profiles until a best fit was found. The slope of the resulting sigmoid was used to describe both the position and distinctiveness of the GM-WM boundary. Subsequently, two raters laid cortical boundaries on the same set of images and agreement between the raters, as well as agreement between each rater and the transverse-based boundaries, was assessed. Computer-generated boundaries showed reliably higher agreement with each individual rater, relative to the agreement between individual raters. Error between the raters and the transverse-based boundaries was associated with those images where the boundary was less distinct as assessed by the sigmoid slopes. These findings suggest that transverse-based boundaries are superior to user-generated boundaries. Furthermore, these findings suggest that rater-based boundary definitions in both neurotypical and pathological cases may become unreliable as the number of cell profiles found in the subplate region increases, as is the case in both autism and schizophrenia.
Collapse
Affiliation(s)
- Jeffrey J Hutsler
- Psychology Department, Program in Neuroscience, University of Nevada, Reno, NV 89557, USA.
| | | |
Collapse
|
44
|
Caspers J, Zilles K, Eickhoff SB, Schleicher A, Mohlberg H, Amunts K. Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus. Brain Struct Funct 2012; 218:511-26. [PMID: 22488096 PMCID: PMC3580145 DOI: 10.1007/s00429-012-0411-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 03/23/2012] [Indexed: 12/20/2022]
Abstract
The human extrastriate visual cortex comprises numerous functionally defined areas, which are not identified in the widely used cytoarchitectonical map of Brodmann. The ventral part of the extrastriate cortex is particularly devoted to the identification of visual objects, faces and word forms. We analyzed the region immediately antero-lateral to hOc4v in serially sectioned (20 μm) and cell body-stained human brains using a quantitative observer-independent cytoarchitectonical approach to further identify the anatomical organization of the extrastriate cortex. Two novel cytoarchitectonical areas, FG1 and FG2, were identified on the posterior fusiform gyrus. The results of ten postmortem brains were then registered to their MRI volumes (acquired before histological processing), 3D reconstructed, and spatially normalized to the Montreal Neurological Institute reference brain. Finally, probabilistic maps were generated for each cytoarchitectonical area by superimposing the areas of the individual brains in the reference space. Comparison with recent functional imaging studies yielded that both areas are located within the object-related visual cortex. FG1 fills the gap between the retinotopically mapped area VO-1 and a posterior fusiform face patch. FG2 is probably the correlate of this face patch.
Collapse
Affiliation(s)
- Julian Caspers
- Institute of Neuroscience and Medicine (INM-1, INM-2), Research Centre Jülich, 52425, Jülich, Germany.
| | | | | | | | | | | |
Collapse
|
45
|
Chen G, Wang F, Gore JC, Roe AW. Identification of cortical lamination in awake monkeys by high resolution magnetic resonance imaging. Neuroimage 2011; 59:3441-9. [PMID: 22080152 DOI: 10.1016/j.neuroimage.2011.10.079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 10/10/2011] [Accepted: 10/25/2011] [Indexed: 11/26/2022] Open
Abstract
Brodmann divided the neocortex into 47 different cortical areas based on histological differences in laminar myeloarchitectonic and cytoarchitectonic defined structure. The ability to do so in vivo with anatomical magnetic resonance (MR) methods in awake subjects would be extremely advantageous for many functional studies. However, due to the limitations of spatial resolution and contrast, this has been difficult to achieve in awake subjects. Here, we report that by using a combination of MR microscopy and novel contrast effects, cortical layers can be delineated in the visual cortex of awake subjects (nonhuman primates) at 4.7 T. We obtained data from 30-min acquisitions at voxel size of 62.5 × 62.5 × 1000 μm(3) (4 nl). Both the phase and magnitude components of the T(2)*-weighted image were used to generate laminar profiles which are believed to reflect variations in myelin and local cell density content across cortical depth. Based on this, we were able to identify six layers characteristic of the striate cortex (V1). These were the stripe of Kaes-Bechterew (in layer II/III), the stripe of Gennari (in layer IV), the inner band of Baillarger (in layer V), as well as three sub-layers within layer IV (IVa, IVb, and IVc). Furthermore, we found that the laminar structure of two extrastriate visual cortex (V2, V4) can also be detected. Following the tradition of Brodmann, this significant improvement in cortical laminar visualization should make it possible to discriminate cortical regions in awake subjects corresponding to differences in myeloarchitecture and cytoarchitecture.
Collapse
Affiliation(s)
- Gang Chen
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA
| | | | | | | |
Collapse
|
46
|
Schmitt O, Birkholz H. Improvement in cytoarchitectonic mapping by combining electrodynamic modeling with local orientation in high-resolution images of the cerebral cortex. Microsc Res Tech 2011; 74:225-43. [DOI: 10.1002/jemt.20897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/28/2010] [Indexed: 11/11/2022]
|
47
|
Juenger H, de Haan B, Krägeloh-Mann I, Staudt M, Karnath HO. Early determination of somatosensory cortex in the human brain. Cereb Cortex 2011; 21:1827-31. [PMID: 21209119 DOI: 10.1093/cercor/bhq258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The developing brain possesses a high potential for neuroplasticity. Yet, this remarkable potential of (re-)organization is not a general principle. It seems to vary among different functional systems. Here, we show that distinct brain structures involved in somatosensory processing are already prenatally determined so that a pre- or perinatally acquired (congenital) brain damage of such structures results in a persistent somatosensory deficit. Eleven patients with hemiparesis due to congenital cortico-subcortical unilateral stroke who showed versus not showed a somatosensory deficit were contrasted with magnetic resonance imaging lesion-behavior mapping. The brain areas which were typically damaged in patients with a somatosensory deficit but typically spared in patients without a somatosensory deficit were located in the primary and secondary somatosensory cortex (S1, S2) as well as the inferior parietal cortex directly neighboring S1 and S2. The results argue for an early functional determination of primary and secondary somatosensory cortex, without substantial capacities for (re-)organization. They demonstrate that cortical damage of these areas cannot be compensated by shifting the functional representation to undamaged parts of the cortex.
Collapse
Affiliation(s)
- Hendrik Juenger
- Department Pediatric Neurology and Developmental Medicine, University Children's Hospital, University of Tuebingen, 72076 Tuebingen, Germany.
| | | | | | | | | |
Collapse
|
48
|
Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J Neurophysiol 2010; 103:2544-56. [PMID: 20164393 DOI: 10.1152/jn.01017.2009] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is now routinely used to map the topographic organization of human visual cortex. Mapping the detailed topography of somatosensory cortex, however, has proven to be more difficult. Here we used the increased blood-oxygen-level-dependent contrast-to-noise ratio at ultra-high field (7 Tesla) to measure the topographic representation of the digits in human somatosensory cortex at 1 mm isotropic resolution in individual subjects. A "traveling wave" paradigm was used to locate regions of cortex responding to periodic tactile stimulation of each distal phalangeal digit. Tactile stimulation was applied sequentially to each digit of the left hand from thumb to little finger (and in the reverse order). In all subjects, we found an orderly map of the digits on the posterior bank of the central sulcus (postcentral gyrus). Additionally, we measured event-related responses to brief stimuli for comparison with the topographic mapping data and related the fMRI responses to anatomical images obtained with an inversion-recovery sequence. Our results have important implications for the study of human somatosensory cortex and underscore the practical utility of ultra-high field functional imaging with 1 mm isotropic resolution for neuroscience experiments. First, topographic mapping of somatosensory cortex can be achieved in 20 min, allowing time for further experiments in the same session. Second, the maps are of sufficiently high resolution to resolve the representations of all five digits and third, the measurements are robust and can be made in an individual subject. These combined advantages will allow somatotopic fMRI to be used to measure the representation of digits in patients undergoing rehabilitation or plastic changes after peripheral nerve damage as well as tracking changes in normal subjects undergoing perceptual learning.
Collapse
Affiliation(s)
- R M Sanchez-Panchuelo
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
49
|
Hawrylycz M, Bernard A, Lau C, Sunkin SM, Chakravarty MM, Lein ES, Jones AR, Ng L. Areal and laminar differentiation in the mouse neocortex using large scale gene expression data. Methods 2010; 50:113-21. [DOI: 10.1016/j.ymeth.2009.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/23/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022] Open
|
50
|
Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K. Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex 2009; 20:1448-61. [PMID: 19822572 DOI: 10.1093/cercor/bhp208] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human posterior insula was shown to respond to a wide variety of stimulation paradigms (e.g. pain, somatosensory, or auditory processing) in functional imaging experiments. Although various anatomical maps of this region have been published over the last century, these schemes show variable results. Moreover, none can directly be integrated with functional imaging data. Hence, our current knowledge about the structure-function relationships in this region remains limited. We therefore remapped the posterior part of the human insular cortex in 10 postmortem brains using an observer-independent approach. This analysis revealed the existence of 3 cytoarchitectonically distinct areas in the posterior insula. The examined brains were then 3D reconstructed and spatially normalized to the Montreal Neurological Institute single-subject template. Probabilistic maps for each area were calculated by superimposing the individual delineations, and a cytoarchitectonic summary map was computed to chart the regional architectonic organization. These maps can be used to identify the anatomical correlates of functional activations observed in neuroimaging studies and to understand the microstructural correlates of the functional segregation of the human posterior insula.
Collapse
Affiliation(s)
- Florian Kurth
- C & O Vogt Institute of Brain Research, University Düsseldorf, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|