1
|
Mersni M, Zhou B, Reversat G, Khouja ML, Guy A, Oger C, Galano JM, Durand T, Messaoud C, Vigor C. Phytoprostanes and phytofurans: Bioactive compounds in aerial parts of Acacia cyanophylla Lindl. Fitoterapia 2024; 172:105717. [PMID: 37931720 DOI: 10.1016/j.fitote.2023.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The relevance of oxylipins as biomarkers of oxidative stress has been established in recent years. Phytoprostanes and phytofurans are plant metabolites derived from peroxidation of α-linolenic acid (ALA) induced by ROS. Previous findings have suggested new valuable biological properties for these new active compounds in the frame of diverse pathophysiological situations and health constraints. Lipidomic profiling of different aerial parts of the same Acacia cyanophylla Lindl. specimen, was evaluated for the first time here, using LC-MS/MS technology. Analysis revealed the existence of six PhytoPs and three PhytoFs. Stems have the highest amount of these metabolites with 179.35 ng/g and 320.79 ng/g respectively. This first complete profile paves the way to explore Acacia cyanophylla Lindl. as a source of plant oxylipins for therapeutic or pharmaceutical uses.
Collapse
Affiliation(s)
- Marwa Mersni
- University of Carthage, National Institute of Applied Sciences and Technology (INSAT), UR17ES22 Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, Centre Urbain Nord, BP 676, 1080 Tunis Cedex, Tunisia; Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Bingqing Zhou
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Guillaume Reversat
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Mohamed Larbi Khouja
- University of Carthage, National Institute of Research in Rural Engineering, Waters and Forests, BP 10, Ariana 2080, Tunisia
| | - Alexandre Guy
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Camille Oger
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Jean-Marie Galano
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Thierry Durand
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France
| | - Chokri Messaoud
- University of Carthage, National Institute of Applied Sciences and Technology (INSAT), UR17ES22 Laboratory of Nanobiotechnology and Valorization of Medicinal Phytoresources, Centre Urbain Nord, BP 676, 1080 Tunis Cedex, Tunisia
| | - Claire Vigor
- Institut of Biomolecules Max Mousseron (IBMM), UMR 5247 CNRS, ENSCM, Pôle Chimie Balard Recherche, University of Montpellier, MAMMA (Montpellier Alliance for Metabolomics and metabolism Analysis), BIOCampus, Montpellier, France.
| |
Collapse
|
2
|
Yonny ME, Toscano Adamo ML, Rodríguez Torresi A, Reversat G, Zhou B, Oger C, Galano JM, Durand T, Vigor C, Nazareno MA. Oxidative stress mitigation in horticultural crops using foliar applications of Ilex paraguariensis extract: a dose-dependent study. PHYSIOLOGIA PLANTARUM 2023; 175:e14066. [PMID: 38148241 DOI: 10.1111/ppl.14066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023]
Abstract
Abiotic stress has been shown to induce the formation of reactive oxygen species (ROS) in plant cells. When the level of ROS surpasses the capacity of the endogenous defence mechanism, oxidative stress status is reached, leading to plant damage and a drop in crop productivity. Under oxidative stress conditions, ROS can react with polyunsaturated fatty acids to form oxidized derivatives called phytoprostanes (PhytoPs) and phytofurans (PhytoFs), which are recognized as biomarkers of oxidative damage advance. Modern agriculture proposes the use of biostimulants as a sustainable strategy to alleviate the negative effects of oxidative stress on plants. This work evaluates the dose effect of natural antioxidant extract to mitigate the oxidative-stress deleterious effects in melon and sweet pepper exposed to thermal stress. The plants were sprayed with Ilex paraguariensis (IP) aqueous extract in three different concentrations before exposure to abiotic stress. PhytoP and PhytoF levels were determined in the leaves of melon and pepper plants. IP1 and IP2 were effective against oxidative stress in both plants, with IP1 being the most protective one. IP1 decreased the levels of PhytoPs and PhytoFs by roughly 44% in both melon plants and pepper plants. The yield, with IP1, increased by 57 and 39% in stressed melon and pepper plants, respectively. IP3 foliar application in melon plants induced a pro-oxidant effect rather than the expected mitigating action. However, in sweet pepper plants, IP3 decreased the oxidative stress progress and increased the fruit yield.
Collapse
Affiliation(s)
- Melisa E Yonny
- Instituto de Ciencias Químicas- Facultad de Agronomía y Agroindustrias -Universidad Nacional de Santiago del Estero. CONICET. Santiago del Estero, Argentina
| | - María L Toscano Adamo
- Instituto de Ciencias Químicas- Facultad de Agronomía y Agroindustrias -Universidad Nacional de Santiago del Estero. CONICET. Santiago del Estero, Argentina
| | | | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Binqging Zhou
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, Université de Montpellier, CNRS, ENSCM, Faculté de Pharmacie, Montpellier, France
| | - Mónica A Nazareno
- Instituto de Ciencias Químicas- Facultad de Agronomía y Agroindustrias -Universidad Nacional de Santiago del Estero. CONICET. Santiago del Estero, Argentina
| |
Collapse
|
3
|
Savchenko T, Degtyaryov E, Radzyukevich Y, Buryak V. Therapeutic Potential of Plant Oxylipins. Int J Mol Sci 2022; 23:14627. [PMID: 36498955 PMCID: PMC9741157 DOI: 10.3390/ijms232314627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
For immobile plants, the main means of protection against adverse environmental factors is the biosynthesis of various secondary (specialized) metabolites. The extreme diversity and high biological activity of these metabolites determine the researchers' interest in plants as a source of therapeutic agents. Oxylipins, oxygenated derivatives of fatty acids, are particularly promising in this regard. Plant oxylipins, which are characterized by a diversity of chemical structures, can exert protective and therapeutic properties in animal cells. While the therapeutic potential of some classes of plant oxylipins, such as jasmonates and acetylenic oxylipins, has been analyzed thoroughly, other oxylipins are barely studied in this regard. Here, we present a comprehensive overview of the therapeutic potential of all major classes of plant oxylipins, including derivatives of acetylenic fatty acids, jasmonates, six- and nine-carbon aldehydes, oxy-, epoxy-, and hydroxy-derivatives of fatty acids, as well as spontaneously formed phytoprostanes and phytofurans. The presented analysis will provide an impetus for further research investigating the beneficial properties of these secondary metabolites and bringing them closer to practical applications.
Collapse
Affiliation(s)
- Tatyana Savchenko
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Evgeny Degtyaryov
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Puschchino State Institute of Natural Sciences, Prospect Nauki st., 3, 142290 Pushchino, Russia
| | - Yaroslav Radzyukevich
- Institute of Basic Biological Problems, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vlada Buryak
- Faculty of Biotechnology, Moscow State University, Leninskie Gory 1, str. 51, 119991 Moscow, Russia
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Vigor C, Züllig T, Eichmann TO, Oger C, Zhou B, Rechberger GN, Hilsberg L, Trötzmüller M, Pellegrino RM, Alabed HBR, Hartler J, Wolinski H, Galano JM, Durand T, Spener F. α-Linolenic acid and product octadecanoids in Styrian pumpkin seeds and oils: How processing impacts lipidomes of fatty acid, triacylglycerol and oxylipin molecular structures. Food Chem 2022; 371:131194. [PMID: 34600364 DOI: 10.1016/j.foodchem.2021.131194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Styrian pumpkin seed oil is a conditioned green-colored oil renowned for nutty smell and taste. Due to α-linolenic acid (ALA) contents below 1% of total fatty acids and the prospect of nutritional health claims based on its potential oxidation products, we investigated the fate of ALA and product oxylipins in the course of down-stream processing of seeds and in oils. Lipidomic analyses with Lipid Data Analyzer 2.8.1 revealed: Processing did not change (1) main fatty acid composition in the oils, (2) amounts of triacylglycerol species, (3) structures of triacylglycerol molecular species containing ALA. (4) Minor precursor ALA in fresh Styrian and normal pumpkins produced 6 product phytoprostanes in either cultivar, quantitatively more in the latter. (5) In oil samples 7 phytoprostanes and 2 phytofurans were detected. The latter two are specific for their presence in pumpkin seed oils, of note, quantitatively more in conditioned oils than in cold-pressed native oils.
Collapse
Affiliation(s)
- Claire Vigor
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thomas Züllig
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Thomas O Eichmann
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Camille Oger
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Bingqing Zhou
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Gerald N Rechberger
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | | | - Martin Trötzmüller
- Core Facility Mass Spectrometry, Medical University of Graz, Stiftingtalstr. 24, 8010 Graz, Austria
| | - Roberto M Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Husam B R Alabed
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via del Giochetto, Building B, 06126 Perugia, Italy
| | - Jürgen Hartler
- Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1/I, 8010 Graz, Austria; Field of Excellence BioHealth - University of Graz, Humboldtstraße 50, 8010 Graz, Austria
| | - Heimo Wolinski
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria
| | - Jean-Marie Galano
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Thierry Durand
- Institute of Biomolecules Max Mousseron, UMR 5247, CNRS, University of Montpellier, ENSCM, 34093 Montpellier, France
| | - Friedrich Spener
- Department of Molecular Biosciences, University of Graz, Heinrichstr. 31/II, 8010 Graz, Austria; Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstr. 6/6, 8010 Graz, Austria.
| |
Collapse
|
5
|
Rontani JF. Use of Gas Chromatography-Mass Spectrometry Techniques (GC-MS, GC-MS/MS and GC-QTOF) for the Characterization of Photooxidation and Autoxidation Products of Lipids of Autotrophic Organisms in Environmental Samples. Molecules 2022; 27:1629. [PMID: 35268730 PMCID: PMC8911584 DOI: 10.3390/molecules27051629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/04/2022] [Accepted: 02/27/2022] [Indexed: 01/21/2023] Open
Abstract
This paper reviews applications of gas chromatography-mass spectrometry techniques for the characterization of photooxidation and autoxidation products of lipids of senescent phototrophic organisms. Particular attention is given to: (i) the selection of oxidation products that are sufficiently stable under environmental conditions and specific to each lipid class and degradation route; (ii) the description of electron ionization mass fragmentation of trimethylsilyl derivatives of these compounds; and (iii) the use of specific fragment ions for monitoring the oxidation of the main unsaturated lipid components of phototrophs. The techniques best geared for this task were gas chromatography-quadrupole-time of flight to monitor fragment ions with very high resolution and accuracy, and gas chromatography-tandem mass spectrometry to monitor very selective transitions in multiple reaction monitoring mode. The extent of the degradation processes can only be estimated if the oxidation products are unaffected by fast secondary oxidation reactions, as it is notably the case of ∆5-sterols, monounsaturated fatty acids, chlorophyll phytyl side-chain, and di- and triterpenoids. In contrast, the primary degradation products of highly branched isoprenoid alkenes possessing more than one trisubstituted double bond, alkenones, carotenoids and polyunsaturated fatty acids, appear to be too unstable with respect to secondary oxidation or other reactions to serve for quantification in environmental samples.
Collapse
Affiliation(s)
- Jean-François Rontani
- Mediterranean Institute of Oceanography (MIO), Aix Marseille University, Université de Toulon, CNRS, IRD, UM 110, 13288 Marseille, France
| |
Collapse
|
6
|
Hall RD, Trevisan F, de Vos RCH. Coffee berry and green bean chemistry - Opportunities for improving cup quality and crop circularity. Food Res Int 2022; 151:110825. [PMID: 34980376 DOI: 10.1016/j.foodres.2021.110825] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Coffee cup quality is primarily determined by the type and variety of green beans chosen and the roasting regime used. Furthermore, green coffee beans are not only the starting point for the production of all coffee beverages but also are a major source of revenue for many sub-tropical countries. Green bean quality is directly related to its biochemical composition which is influenced by genetic and environmental factors. Post-harvest, on-farm processing methods are now particularly recognised as being influential to bean chemistry and final cup quality. However, research on green coffee has been limited and results are fragmented. Despite this, there are already indications that multiple factors play a role in determining green coffee chemistry - including plant cultivation/fruit ripening issues and ending with farmer practices and post-harvest storage conditions. Here, we provide the first overview of the knowledge determined so far specifically for pre-factory, green coffee composition. In addition, the potential of coffee waste biomass in a biobased economy context for the delivery of useful bioactives is described as this is becoming a topic of growing relevance within the coffee industry. We draw attention to a general lack of consistency in experimentation and reporting and call for a more intensive and united effort to build up our knowledge both of green bean composition and also how perturbations in genetic and environmental factors impact bean chemistry, crop sustainability and ultimately, cup quality.
Collapse
Affiliation(s)
- Robert D Hall
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Fabio Trevisan
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ric C H de Vos
- Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
7
|
Smrček J, Hájek M, Hodek O, Čížek K, Pohl R, Jahn E, Galano JM, Oger C, Durand T, Cvačka J, Jahn U. First Total Synthesis of Phytoprostanes with Prostaglandin-Like Configuration, Evidence for Their Formation in Edible Vegetable Oils and Orienting Study of Their Biological Activity. Chemistry 2021; 27:9556-9562. [PMID: 33904184 DOI: 10.1002/chem.202100872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 11/09/2022]
Abstract
Phytoprostanes (PhytoP) are natural products, which form in plants under oxidative stress conditions from α-linolenic acid. However, their epimers with relative prostaglandin configuration termed phytoglandins (PhytoG) have never been detected in Nature, likely because of the lack of synthetic reference material. Here, the first asymmetric total synthesis of such compounds, namely of PhytoGF1α (9-epi-16-F1t -PhytoP) and its diastereomer ent-16-epi-PhytoGF1α (ent-9,16-diepi-16-F1t -PhytoP), has been accomplished. The synthetic strategy is based on radical anion oxidative cyclization, copper(I)-mediated alkyl-alkyl coupling and enantioselective reduction reactions. A UHPLC-MS/MS study using the synthesized compounds as standards indicates PhytoG formation at significant levels during autoxidation of α-linolenic acid in edible vegetable oils. Initial testing of synthetic PhytoGs together with F1 -PhytoP and 15-F2t -IsoP derivatives for potential interactions with the PGF2α (FP) receptor did not reveal significant activity. The notion that PUFA-derived oxidatively formed cyclic metabolites with prostaglandin configuration do not form to a significant extent in biological or food matrices has to be corrected. Strong evidence is provided that oxidatively formed PhytoG metabolites may be ingested with plant-derived food, which necessitates further investigation of their biological profile.
Collapse
Affiliation(s)
- Jakub Smrček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Miroslav Hájek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Ondřej Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Karel Čížek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Emanuela Jahn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Av. Charles Flahault, CS14491, 34093, Montpellier Cedex 05, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Av. Charles Flahault, CS14491, 34093, Montpellier Cedex 05, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, CNRS, ENSCM, Faculté de Pharmacie, Université de Montpellier, 15 Av. Charles Flahault, CS14491, 34093, Montpellier Cedex 05, France
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague 6, Czech Republic
| |
Collapse
|
8
|
Moving forward with isoprostanes, neuroprostanes and phytoprostanes: where are we now? Essays Biochem 2021; 64:463-484. [PMID: 32602531 DOI: 10.1042/ebc20190096] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential components in eukaryotic cell membrane. They take part in the regulation of cell signalling pathways and act as precursors in inflammatory metabolism. Beside these, PUFAs auto-oxidize through free radical initiated mechanism and release key products that have various physiological functions. These products surfaced in the early nineties and were classified as prostaglandin isomers or isoprostanes, neuroprostanes and phytoprostanes. Although these molecules are considered robust biomarkers of oxidative damage in diseases, they also contain biological activities in humans. Conceptual progress in the last 3 years has added more understanding about the importance of these molecules in different fields. In this chapter, a brief overview of the past 30 years and the recent scope of these molecules, including their biological activities, biosynthetic pathways and analytical approaches are discussed.
Collapse
|
9
|
Rac M, Shumbe L, Oger C, Guy A, Vigor C, Ksas B, Durand T, Havaux M. Luminescence imaging of leaf damage induced by lipid peroxidation products and its modulation by β-cyclocitral. PHYSIOLOGIA PLANTARUM 2021; 171:246-259. [PMID: 33215689 DOI: 10.1111/ppl.13279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 05/26/2023]
Abstract
Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid β-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of β-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity β-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.
Collapse
Affiliation(s)
- Marek Rac
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Leonard Shumbe
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Brigitte Ksas
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, Montpellier, France
| | - Michel Havaux
- Institute of Biosciences and Biotechnologies, CEA/Cadarache, Aix Marseille University, CEA, CNRS, BIAM, UMR7265, Saint-Paul-lez-Durance, France
| |
Collapse
|
10
|
Guo J, Bai Y, Chen Z, Mo J, Li Q, Sun H, Zhang Q. Transcriptomic analysis suggests the inhibition of DNA damage repair in green alga Raphidocelis subcapitata exposed to roxithromycin. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110737. [PMID: 32505758 DOI: 10.1016/j.ecoenv.2020.110737] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Macrolide antibiotics are common contaminants in the aquatic environment. They are toxic to a wide range of primary producers, inhibiting the algal growth and further hindering the delivery of several ecosystem services. Yet the molecular mechanisms of macrolides in algae remain undetermined. The objectives of this study were therefore to: 1. evaluate whether macrolides at the environmentally relevant level inhibit the growth of algae; and 2. test the hypothesis that macrolides bind to ribosome and inhibit protein translocation in algae, as it does in bacteria. In this study, transcriptomic analysis was applied to elucidate the toxicological mechanism in a model green alga Raphidocelis subcapitata treated with 5 and 90 μg L-1 of a typical macrolide roxithromycin (ROX). While exposure to ROX at 5 μg L-1 for 7 days did not affect algal growth and the transciptome, ROX at 90 μg L-1 resulted in 45% growth inhibition and 2306 (983 up- and 1323 down-regulated) DEGs, which were primarily enriched in the metabolism of energy, lipid, vitamins, and DNA replication and repair pathways. Nevertheless, genes involved in pathways in relation to translation and protein translocation and processing were dysregulated. Surprisingly, we found that genes involved in the base excision repair process were mostly repressed, suggesting that ROX may be genotoxic and cause DNA damage in R. subcapitata. Taken together, ROX was unlikely to pose a threat to green algae in the environment and the mode of action of macrolides in bacteria may not be directly extrapolated to green algae.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Yi Bai
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, H3G 1M8, Canada
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Haotian Sun
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
11
|
Medina S, Gil-Izquierdo Á, Abu-Reidah IM, Durand T, Bultel-Poncé V, Galano JM, Domínguez-Perles R. Evaluation of Phoenix dactylifera Edible Parts and Byproducts as Sources of Phytoprostanes and Phytofurans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8942-8950. [PMID: 32693588 DOI: 10.1021/acs.jafc.0c03364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Even though traditionally date-fruit has been featured by a marginal use, mainly restricted to its dietary intake, in recent years, it has raised the range of applications for this agro-food production. These new uses have entailed an enlarged production of date fruits and, simultaneously, of date palm byproducts. Encouraged by the traditional medicinal uses of dates, according to their phytochemical composition, the present work was focused on the evaluation of a new family of secondary metabolites, the plant oxylipins phytoprostanes (PhytoPs) and phytofurans (PhytoFs), in six separate matrixes of the date palm edible parts and byproducts, applying an UHPLC-ESI-QqQ-MS/MS-based methodology. The evaluation for the first time of date palm edible parts and byproducts as a dietary source of PhytoPs and PhytoFs provides evidence on the value of six different parts (pulp, skin, pits, leaves, clusters, and pollen) regarding their content in these plant oxylipins evidenced by the presence of the PhytoPs, 9-F1t-PhytoP (201.3-7223.1 ng/100 g dw) and 9-epi-9-F1t-PhytoP (209.7-7297.4 ng/100 g dw), and the PhytoFs ent-16(RS)-9-epi-ST-Δ14-10-PhytoF (4.6-191.0 ng/100g dw), and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF as the most abundant compounds. Regarding the diverse matrixes assessed, pollen, clusters, and leaves for PhytoPs and skins and pollen for PhytoFs were identified as the most interesting sources of these compounds. In this concern, the information obtained upon the detailed characterization performed in the present work will allow unravelling the biological interest of PhytoPs and PhytoFs and the extent to which these compounds could exert valuable biological activities upon in vitro (mechanistic) and in vivo studies, allocating the effort-focus on the chemical species of PhytoPs and PhytoFs responsible for such traits.
Collapse
Affiliation(s)
- Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| | - Ibrahim M Abu-Reidah
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
- Department of Industrial Chemistry, Arab American University, P.O. Box 240, 13 Zababdeh-Jenin, Palestine
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, 34093 Montpellier Cedex 5, France
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, E-30100 Murcia, Spain
| |
Collapse
|
12
|
Lipan L, Collado-González J, Domínguez-Perles R, Corell M, Bultel-Poncé V, Galano JM, Durand T, Medina S, Gil-Izquierdo Á, Carbonell-Barrachina Á. Phytoprostanes and Phytofurans-Oxidative Stress and Bioactive Compounds-in Almonds are Affected by Deficit Irrigation in Almond Trees. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7214-7225. [PMID: 32520540 DOI: 10.1021/acs.jafc.0c02268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Almonds have gained consumers' attention due to their health benefits (they are rich in bioactive compounds) and sensory properties. Nevertheless, information about phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (new plant markers of oxidative stress and compounds with biological properties for human health) in almonds under deficit irrigation is scarce or does not exist. These compounds are plant oxylipins synthesized by the oxidation of α-linolenic acid (ALA). Besides, they are biomarkers of plant oxidative degradation and biologically active molecules involved in several plant defense mechanisms. hydroSOStainable or hydroSOS mean plant foods made from from plants under controlled water stress. Almonds are a good source of polyunsaturated fatty (PUFAs) acids, including a high content of ALA. This paper aimed to describe the influence of diverse irrigation treatments on in vitro anti-oxidant activity (AAc) and total phenolic content (TPC), as well as on the level of ALA, PhytoP, and PhytoF in "Vairo" almonds. The AAc and TPC were not affected by the irrigation strategy, while the in vivo oxidative stress makers, PhytoPs and PhytoFs, exhibited significant differences in response to water shortage. The total PhytoP and PhytoF contents ranged from 4551 to 8151 ng/100 g dry weight (dw) and from 33 to 56 ng/100 g dw, respectively. The PhytoP and PhytoF profiles identified in almonds showed significant differences among treatments. Individual PhytoPs and PhytoFs were present above the limit of detection only in almonds obtained from trees maintained under deficit irrigation (DI) conditions (regulated deficit irrigation, RDI, and sustained deficit irrigation, SDI) but not in control almonds obtained from fully irrigated trees. Therefore, these results confirm PhytoPs and PhytoFs as valuable biomarkers to detect whether an almond-based product is hydroSOStainable. As a final conclusion, it can be stated that almond quality and functionality can be improved and water irrigation consumption can be reduced if controlled DI strategies are applied in almond orchards.
Collapse
Affiliation(s)
- Leontina Lipan
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Mireia Corell
- Departamento Ciencias Agroforestales, Escuela Técnica Superior de Ingeniería Agronómica, Universty of Sevilla, Carretera de Utrera, Km 1, 41013, Sevilla, Spain
- Associated Unity to CSIC: Uso Sostenible del Suelo y el Agua en la Agricultura (Universidad de Sevilla-Instituto de Recursos Naturales y Agrobiología de Sevilla), Carretera de Utrera Km 1, 41013 Sevilla, Spain
| | - Valérie Bultel-Poncé
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM, Montpellier, 34093, France
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Departamento de Ciencia y Tecnología de Alimentos (CEBAS-CSIC), Campus de Espinardo-25, 30100 Murcia, Spain
| | - Ángel Carbonell-Barrachina
- Department of Agro-Food Technology, Research Group "Food Quality and Safety", Universidad Miguel Hernández de Elche (UMH), Escuela Politécnica Superior de Orihuela (EPSO), Carretera de Beniel, Km 3.2, 03312 Orihuela, Alicante, Spain
| |
Collapse
|
13
|
García‐García MC, del Río Celestino M, Gil‐Izquierdo Á, Egea‐Gilabert C, Galano JM, Durand T, Oger C, Fernández JA, Ferreres F, Domínguez‐Perles R. The Value of Legume Foods as a Dietary Source of Phytoprostanes and Phytofurans Is Dependent on Species, Variety, and Growing Conditions. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800484] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- María C. García‐García
- Center IFAPA La Mojonera, CAPDER, Junta de AndalucíaCamino San Nicolás 104745 AlmeríaSpain
| | | | - Ángel Gil‐Izquierdo
- Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS‐CSIC), University Campus Edif25, 30100 EspinardoSpain
| | | | - Jean M. Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM34093 MontpellierFrance
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM34093 MontpellierFrance
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM34093 MontpellierFrance
| | - Juan A. Fernández
- Technical University of CartagenaPaseo Alfonso XIII 4830203 CartagenaSpain
| | - Federico Ferreres
- Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS‐CSIC), University Campus Edif25, 30100 EspinardoSpain
| | - Raúl Domínguez‐Perles
- Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS‐CSIC), University Campus Edif25, 30100 EspinardoSpain
| |
Collapse
|
14
|
González Roldán N, Engel R, Düpow S, Jakob K, Koops F, Orinska Z, Vigor C, Oger C, Galano JM, Durand T, Jappe U, Duda KA. Lipid Mediators From Timothy Grass Pollen Contribute to the Effector Phase of Allergy and Prime Dendritic Cells for Glycolipid Presentation. Front Immunol 2019; 10:974. [PMID: 31134071 PMCID: PMC6514527 DOI: 10.3389/fimmu.2019.00974] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 04/16/2019] [Indexed: 12/02/2022] Open
Abstract
Plant pollen are an important source of antigens that evoke allergic responses. Protein antigens have been the focus of studies aiming to elucidate the mechanisms responsible for allergic reactions to pollen. However, proteins are not the sole active agent present in pollen. It is known that pollen grains contain lipids essential for its reproduction and bioactive lipid mediators. These small molecular compounds are co-delivered with the allergens and hence have the potential to modulate the immune response of subjects by activating their innate immune cells. Previous reports showed that pollen associated lipid mediators exhibited neutrophil- and eosinophil-chemotactic activity and induced polarization of dendritic cells (DCs) toward a Th2-inducing phenotype. In our study we performed chemical analyses of the pollen associated lipids, that are rapidly released upon hydration. As main components we have identified different types of phytoprostanes (PhytoPs), and for the first time phytofurans (PhytoFs), with predominating 16-F1t-PhytoPs (PPF1-I), 9-F1t-PhytoPs (PPF1-II), 16-E1t-PhytoPs (PPE1-I) and 9-D1t-PhytoPs (PPE1-II), and 16(RS)-9-epi-ST-Δ14-10-PhytoFs. Interestingly 16-E1t-PhytoP and 9-D1t-PhytoPs were found to be bound to glycerol. Lipid-containing samples (aqueous pollen extract, APE) induced murine mast cell chemotaxis and IL-6 release, and enhanced their IgE-dependent degranulation, demonstrating a role for these lipids in the immediate effector phase of allergic inflammation. Noteworthy, mast cell degranulation seems to be dependent on glycerol-bound, but not free phytoprostanes. On murine dendritic cells, APE selectively induced the upregulation of CD1d, likely preparing lipid-antigen presentation to iNKT cells. Our report contributes to the understanding of the activity of lipid mediators in the immediate effector phase of allergic reactions but identifies a yet undescribed pathway for the recognition of pollen-derived glycolipids by iNKT cells.
Collapse
Affiliation(s)
- Nestor González Roldán
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Regina Engel
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Sylvia Düpow
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Katharina Jakob
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Frauke Koops
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Zane Orinska
- Division of Experimental Pneumology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, ENSCM, University of Montpellier, Montpellier, France
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany.,Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Katarzyna A Duda
- Junior Research Group of Allergobiochemistry, Airway Research North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
15
|
Ruesgas-Ramón M, Figueroa-Espinoza MC, Durand E, Suárez-Quiroz ML, González-Ríos O, Rocher A, Reversat G, Vercauteren J, Oger C, Galano JM, Durand T, Vigor C. Identification and quantification of phytoprostanes and phytofurans of coffee and cocoa by- and co-products. Food Funct 2019; 10:6882-6891. [DOI: 10.1039/c9fo01528k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are isoprostanoids that result from the peroxidation of α-linolenic acid and are biomarkers of oxidative stress in plants and humans.
Collapse
Affiliation(s)
| | | | | | - Mirna L. Suárez-Quiroz
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz. UNIDA
- 91860 Veracruz
- Mexico
| | - Oscar González-Ríos
- Tecnológico Nacional de México/Instituto Tecnológico de Veracruz. UNIDA
- 91860 Veracruz
- Mexico
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Camille Oger
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron
- IBMM
- University of Montpellier
- CNRS
- ENSCM
| |
Collapse
|
16
|
Medina S, Gil-Izquierdo Á, Durand T, Ferreres F, Domínguez-Perles R. Structural/Functional Matches and Divergences of Phytoprostanes and Phytofurans with Bioactive Human Oxylipins. Antioxidants (Basel) 2018; 7:E165. [PMID: 30453565 PMCID: PMC6262570 DOI: 10.3390/antiox7110165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022] Open
Abstract
Structure-activity relationship (SAR) constitutes a crucial topic to discover new bioactive molecules. This approach initiates with the comparison of a target candidate with a molecule or a collection of molecules and their attributed biological functions to shed some light in the details of one or more SARs and subsequently using that information to outline valuable application of the newly identified compounds. Thus, while the empiric knowledge of medicinal chemistry is critical to these tasks, the results retrieved upon dedicated experimental demonstration retrieved resorting to modern high throughput analytical approaches and techniques allow to overwhelm the constraints adduced so far to the successful accomplishment of such tasks. Therefore, the present work reviews critically the evidences reported to date on the occurrence of phytoprostanes and phytofurans in plant foods, and the information available on their bioavailability and biological activity, shedding some light on the expectation waken up due to their structural similarities with prostanoids and isoprostanes.
Collapse
Affiliation(s)
- Sonia Medina
- CQM-Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS, Faculty of Pharmacy, University of Montpellier-ENSCM, 34093 Montpellier, France.
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Campus University Espinardo, 30100 Murcia, Spain.
| |
Collapse
|
17
|
García-Flores LA, Medina S, Gómez C, Wheelock CE, Cejuela R, Martínez-Sanz JM, Oger C, Galano JM, Durand T, Hernández-Sáez Á, Ferreres F, Gil-Izquierdo Á. Aronia-citrus juice (polyphenol-rich juice) intake and elite triathlon training: a lipidomic approach using representative oxylipins in urine. Food Funct 2018; 9:463-475. [PMID: 29231216 DOI: 10.1039/c7fo01409k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present study, we examined whether particular urinary oxylipins (isoprostanes (IsoPs), leukotrienes (LTs), prostaglandins (PGs), and thromboxanes (TXs)) in 16 elite triathletes could alter during 145 days of training. Within this time span, 45 days were dedicated to examining the effects of the intake of a beverage rich in polyphenols (one serving: 200 mL per day) supplemented in their diet. The beverage was a mixture of citrus juice (95%) and Aronia melanocarpa juice (5%) (ACJ). Fifty-two oxylipins were analyzed in the urine. The quantification was carried out using solid-phase extraction, liquid chromatography coupled with triple quadrupole mass spectrometry. The physical activity decreased the excretion of some PG, IsoP, TX, and LT metabolites from arachidonic acid, γ-dihomo-linolenic acid, and eicosapentaenoic acid. The ACJ also reduced the excretion of 2,3-dinor-11β-PGF2α and 11-dehydro-TXB2, although the levels of other metabolites increased after juice supplementation (PGE2, 15-keto-15-F2t-IsoP, 20-OH-PGE2, LTE4, and 15-epi-15-E2t-IsoP), compared to the placebo. The metabolites that increased in abundance have been related to vascular homeostasis and smooth muscle function, suggesting a positive effect on the cardiovascular system. In conclusion, exercise influences mainly the decrease in oxidative stress and the inflammation status in elite triathletes, while ACJ supplementation has a potential benefit regarding the cardiovascular system that is connected in a synergistic manner with elite physical activity.
Collapse
Affiliation(s)
- Libia Alejandra García-Flores
- Department of Food Science and Technology, CEBAS-CSIC, Campus de Espinardo, P.O. Box 164, 30100 Espinardo, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marhuenda J, Medina S, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Solana A, Ferreres F, López-García JJ, Gil-Izquierdo A. Effect of the dietary intake of melatonin- and hydroxytyrosol-rich wines by healthy female volunteers on the systemic lipidomic-related oxylipins. Food Funct 2018; 8:3745-3757. [PMID: 28956582 DOI: 10.1039/c7fo01081h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxylipins are lipid mediators involved in the physiopathology of all organs. Moreover, isoprostanes have been established as general and reliable in vivo oxidative stress biomarkers. Red wine has proved to exert several benefits through the maintenance of the oxidative balance of the organism. Antiradical scavenging capacity has been mainly attributed to polyphenols. However, melatonin and hydroxytyrosol should be taken into account as potent antiradical agents. The present research aimed to clarify the situation of enzymatic and oxidative injury and eicosanoid urinary excretion related to the intake of three kinds of red wines and their primary musts. Judging by the reduction in the excretion of isoprostanes, red wine consumption exhibited the highest antioxidant protection against oxidative stress, attributed to its OHTyr content (p < 0.05), and to a lesser extent to its MEL content. Similarly, the intake of red wine leads to the cardioprotective effect due to the reduction in the urinary excretion of the pro-inflammatory prostaglandin 2,3-dinor-11-β-PGF2α, besides the increase in the vasodilator prostaglandin PGE1, mediated by the melatonin (p < 0.05) and hydroxytyrosol (p < 0.05) contents. In conclusion, red wine (especially non-aged wine) exerts a higher in vivo antioxidant capacity than must or alcohol.
Collapse
Affiliation(s)
- Javier Marhuenda
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Domínguez-Perles R, Abellán Á, León D, Ferreres F, Guy A, Oger C, Galano JM, Durand T, Gil-Izquierdo Á. Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Res Int 2018; 107:619-628. [PMID: 29580528 DOI: 10.1016/j.foodres.2018.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 10/17/2022]
Abstract
Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are prostaglandin-like compounds, contributing to defense signaling and prevention of cellular damage. These plant oxylipins result from autoxidation of α-linolenic acid (ALA) and have been proposed as new bioactive compounds due to their structural analogies with isoprostanes (IsoPs) and prostanoids derived from arachidonic acid in mammals, which have demonstrated diverse biological activities. The present work assesses a wide range of vegetable oils - including extra virgin olive oils (n = 7) and flax, sesame, argan, safflower seed, grapeseed, and palm oils - for their content of PhytoPs and PhytoFs. Flax oil displayed the highest concentrations, being notable the presence of 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP, and 9-L1-PhytoP (7.54, 28.09, 28.67, and 19.22 μg mL-1, respectively), which contributed to a total PhytoPs concentration of 119.15 μg mL-1, and of ent-16-(RS)-9-epi-ST-Δ14-10-PhytoF (21.46 μg mL-1). Palm and grapeseed oils appeared as the most appropriate negative controls, given the near absence of PhytoPs and PhytoFs (lower than 0.15 μg mL-1). These data inform on the chance to develop nutritional trials using flax and grapeseed oils as food matrices that would provide practical information to design further assays intended to determine the actual bioavailability/bioactivity in vivo.
Collapse
Affiliation(s)
- Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Ángel Abellán
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Daniel León
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Alexander Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
20
|
Da Silva MS, Bilodeau JF, Julien P, Rudkowska I. Dietary fats and F 2-isoprostanes: A review of the clinical evidence. Crit Rev Food Sci Nutr 2018; 57:3929-3941. [PMID: 27438347 DOI: 10.1080/10408398.2016.1196646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Evidence supports that a high dietary fat intake increases oxidative stress and the risk of diet-induced metabolic disorders such as obesity, diabetes and cardiovascular diseases. F2-isoprostanes (F2-isoP) are formed by the non-enzymatic oxidation of arachidonic acid and are widely used as reliable biomarkers of oxidative stress in clinical studies. Dietary fats may influence F2-isoP levels, as they (1) are metabolic substrates for their formation, (2) modify the lipid composition of tissues, and (3) affect the plasma lipoprotein concentrations which are involved in F2-isoP transport. This review examined the latest clinical evidence on how dietary fats can affect blood circulation and excretion of F2-isoP in individuals with healthy or deteriorated metabolic profiles. Clinical studies reported that saturated or monounsaturated fat-rich diets did not affect F2-isoP levels in adults with healthy or deteriorated metabolic profiles. Though, ω-3 polyunsaturated fatty acids decreased F2-isoP levels in numerous studies, whereas trans-fatty acids raised F2-isoP excretion. Yet, the reported heterogeneous results reveal important considerations, such as the health status of the participants, the biological fluids used to determine F2-isoP, the analytical methods employed and the specific F2-isoP isomers detected. Therefore, future clinical studies should be designed in order to consider these issues in the studies of the effects of fat intake on oxidative stress.
Collapse
Affiliation(s)
- Marine S Da Silva
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,c Department of Kinesiology, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| | - Jean-François Bilodeau
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,b Department of Medicine, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| | - Pierre Julien
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,b Department of Medicine, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| | - Iwona Rudkowska
- a Endocrinology and Nephrology Unit , CHU de Québec Research Center, Université Laval , Quebec , QC , Canada.,c Department of Kinesiology, Faculty of Medecine , Université Laval , Quebec , QC , Canada
| |
Collapse
|
21
|
Pinciroli M, Domínguez-Perles R, Abellán A, Guy A, Durand T, Oger C, Galano JM, Ferreres F, Gil-Izquierdo A. Comparative Study of the Phytoprostane and Phytofuran Content of indica and japonica Rice (Oryza sativa L.) Flours. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8938-8947. [PMID: 28931281 DOI: 10.1021/acs.jafc.7b03482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phytoprostanes and phytofurans (PhytoPs and PhytoFs, respectively) are nonenzymatic lipid peroxidation products derived from α-linolenic acid (C18:3 n-3), considered biomarkers of oxidative degradation in plant foods. The present work profiled these compounds in white and brown grain flours and rice bran from 14 rice cultivars of the subspecies indica and japonica by ultrahigh performance liquid chromatography coupled to electrospray ionization and triple quadrupole mass spectrometry. For PhytoPs, the average concentrations were higher in rice bran (0.01-9.35 ng g-1) than in white and brown grain flours (0.01-1.17 ng g-1). In addition, the evaluation of rice flours for the occurrence PhytoFs evidenced average values 1.77, 4.22, and 10.30 ng g-1 dw in rice bran, brown grain flour, and white grain flour, respectively. A significant correlation was observed between total and individual compounds. The concentrations retrieved suggest rice bran as a valuable source of PhytoPs and PhytoFs that should be considered in further studies on bioavailability and bioactivity of such compounds.
Collapse
Affiliation(s)
- M Pinciroli
- Programa Arroz, Facultad de Ciencias Agrarias y Forestales Universidad Nacional de la Plata . Calle 60 y 119, 1900 La Plata, Buenos Aires, Argentina
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Abellán
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - J M Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - F Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| |
Collapse
|
22
|
Galano JM, Lee YY, Oger C, Vigor C, Vercauteren J, Durand T, Giera M, Lee JCY. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology. Prog Lipid Res 2017; 68:83-108. [PMID: 28923590 DOI: 10.1016/j.plipres.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/07/2023]
Abstract
Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades.
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Yiu Yiu Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, ENSCM, Université de Montpellier, France
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2300RC Leiden, The Netherlands
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
23
|
Wang W, Yang H, Johnson D, Gensler C, Decker E, Zhang G. Chemistry and biology of ω-3 PUFA peroxidation-derived compounds. Prostaglandins Other Lipid Mediat 2017; 132:84-91. [DOI: 10.1016/j.prostaglandins.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 12/15/2022]
|
24
|
Carrasco-Del Amor AM, Aguayo E, Collado-González J, Guy A, Galano JM, Durand T, Gil-Izquierdo Á. Impact of processing conditions on the phytoprostanes profile of three types of nut kernels. Free Radic Res 2017; 51:141-147. [DOI: 10.1080/10715762.2017.1288909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ana María Carrasco-Del Amor
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain
- Institute of Plant Biotechnology, Unit of Food Quality and Health, UPCT, Cartagena, Spain
| | - Encarna Aguayo
- Postharvest and Refrigeration Group, Universidad Politécnica de Cartagena (UPCT), Cartagena, Spain
- Institute of Plant Biotechnology, Unit of Food Quality and Health, UPCT, Cartagena, Spain
| | - Jacinta Collado-González
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| | - Alexandre Guy
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 – CNRS – University of Montpellier – ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 – CNRS – University of Montpellier – ENSCM, Montpellier, France
| | - Thierry Durand
- Faculty of Pharmacy, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 – CNRS – University of Montpellier – ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), Murcia, Spain
| |
Collapse
|
25
|
Yonny ME, Rodríguez Torresi A, Cuyamendous C, Réversat G, Oger C, Galano JM, Durand T, Vigor C, Nazareno MA. Thermal Stress in Melon Plants: Phytoprostanes and Phytofurans as Oxidative Stress Biomarkers and the Effect of Antioxidant Supplementation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8296-8304. [PMID: 27732779 DOI: 10.1021/acs.jafc.6b03011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The extreme temperatures generated in the melon crop, early harvest, induce an increase in reactive oxygen species (ROS) plant levels leading to oxidative stress. Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are plant metabolites derived from α-linolenic acid oxidation induced by ROS. The aims of this work were to evaluate PhytoPs and PhytoFs as oxidative stress biomarkers in leaves of melon plants thermally stressed. In addition, to fortify melon plant antioxidant defenses, foliar spraying was assayed using salicylic and gallic acid solutions and Ilex paraguariensis extract. PhytoP and PhytoF concentration ranges were 109-1146 and 130-4400 ng/g, respectively. Their levels in stressed plants were significantly higher than in nonstressed samples. In stressed samples treated with I. paraguariensis, PhytoP and PhytoF levels were significantly lower than in stressed samples without antioxidants. PhytoPs and PhytoFs represent relevant oxidative stress biomarkers in melon leaves. The use of natural antioxidants could reduce plant oxidative stress.
Collapse
Affiliation(s)
- Melisa E Yonny
- CITSE-CONICET, Universidad Nacional de Santiago del Estero , RN 9 Km 1125, Villa El Zanjón, C.P. 4206, Santiago del Estero, Argentina
| | | | - Claire Cuyamendous
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Guillaume Réversat
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , F-34093 Montpellier, France
| | - Mónica A Nazareno
- CITSE-CONICET, Universidad Nacional de Santiago del Estero , RN 9 Km 1125, Villa El Zanjón, C.P. 4206, Santiago del Estero, Argentina
| |
Collapse
|
26
|
Marhuenda J, Medina S, Díaz-Castro A, Martínez-Hernández P, Arina S, Zafrilla P, Mulero J, Oger C, Galano JM, Durand T, Ferreres F, Gil-Izquierdo A. Dependency of Phytoprostane Fingerprints of Must and Wine on Viticulture and Enological Processes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9022-9028. [PMID: 26422255 DOI: 10.1021/acs.jafc.5b03365] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Wine is one of the most consumed alcoholic beverages around the world. Red wine has demonstrated several benefits for health maintenance. One group of potential anti-inflammatory compounds is the phytoprostanes, oxidative degradation products of linolenic acid. The aim of the present study was to measure, for the first time, the phytoprostane content in wine and must by an UHPLC-QqQ-MS/MS method after solid-phase extraction. The data showed two predominant classes of phytoprostanes: F1- and D1-phytoprostane series. In wines, the total phytoprostane concentration ranged from 134.1 ± 2.3 to 216.2 ± 3.06 ng/mL. Musts showed concentrations between 21.4 ± 0.8 and 447.1 ± 15.8 ng/mL. The vinification and aging procedures for the production of wine seem to influence the final phytoprostane levels in red wine and to modify the phytoprostane profile. The high concentrations observed and previous reports on anti-inflammatory effects of phytoprostanes make further research on the benefits of phytoprostanes more important.
Collapse
Affiliation(s)
- Javier Marhuenda
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
- Food Science and Technology Department, Catholic University of Murcia (UCAM) , Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| | - Alexandra Díaz-Castro
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| | | | - Simón Arina
- Bodegas Baigorri S.L., Samaniego, Paı́s Vasco, Spain
| | - Pilar Zafrilla
- Food Science and Technology Department, Catholic University of Murcia (UCAM) , Murcia, Spain
| | - Juana Mulero
- Food Science and Technology Department, Catholic University of Murcia (UCAM) , Murcia, Spain
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Universités Montpellier 1 & Montpellier 2 - ENSCM , Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Universités Montpellier 1 & Montpellier 2 - ENSCM , Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS-Universités Montpellier 1 & Montpellier 2 - ENSCM , Montpellier, France
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, Murcia, Spain
| |
Collapse
|
27
|
Barbosa M, Collado-González J, Andrade PB, Ferreres F, Valentão P, Galano JM, Durand T, Gil-Izquierdo Á. Nonenzymatic α-Linolenic Acid Derivatives from the Sea: Macroalgae as Novel Sources of Phytoprostanes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6466-74. [PMID: 26125601 DOI: 10.1021/acs.jafc.5b01904] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytoprostanes, autoxidation products of α-linolenic acid, have been studied in several plant species, but information regarding the natural occurrence of this large family of biologically active oxidized lipids in macroalgae is still scarce. In this work, the free phytoprostane composition of 24 macroalgae species belonging to Chlorophyta, Phaeophyta, and Rhodophyta was determined through a recently validated UHPLC-QqQ-MS/MS method. The phytoprostane profiles varied greatly among all samples, F1t-phytoprostanes and L1-phytoprostanes being the predominant and minor classes, respectively. No correlation between the amounts of α-linolenic acid in alga material and phytoprostane content was found. Therefore, it was hypothesized that the observed variability could be species-specific or result from interspecific interactions. This study provides new insight about the occurrence of phytoprostanes in macroalgae and opens doors for future exploitation of these marine photosynthetic organisms as sources of potentially bioactive oxylipins, encouraging their incorporation in food products and nutraceutical and pharmaceutical preparations for human health.
Collapse
Affiliation(s)
- Mariana Barbosa
- †REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Quı́mica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jacinta Collado-González
- §Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Paula B Andrade
- †REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Quı́mica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Federico Ferreres
- §Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| | - Patrícia Valentão
- †REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Quı́mica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Jean-Marie Galano
- #Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- #Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS - University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Ángel Gil-Izquierdo
- §Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, 30100 Campus University Espinardo, Murcia, Spain
| |
Collapse
|
28
|
Collado-González J, Medina S, Durand T, Guy A, Galano JM, Torrecillas A, Ferreres F, Gil-Izquierdo A. New UHPLC–QqQ-MS/MS method for quantitative and qualitative determination of free phytoprostanes in foodstuffs of commercial olive and sunflower oils. Food Chem 2015; 178:212-20. [DOI: 10.1016/j.foodchem.2015.01.097] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 11/18/2014] [Accepted: 01/20/2015] [Indexed: 01/03/2023]
|
29
|
|
30
|
Carrasco-Del Amor AM, Collado-González J, Aguayo E, Guy A, Galano JM, Durand T, Gil-Izquierdo A. Phytoprostanes in almonds: identification, quantification, and impact of cultivar and type of cultivation. RSC Adv 2015. [DOI: 10.1039/c5ra07803b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The phytoprostane profile in 11 almonds cvs varied greatly according to the genotype and several factors (agricultural system conventional or ecological and irrigation).
Collapse
Affiliation(s)
- A. M. Carrasco-Del Amor
- Institute of Plant Biotechnology
- Universidad Politécnica de Cartagena (UPCT)
- Campus Muralla del Mar
- 30202 Cartagena
- Spain
| | - J. Collado-González
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Department of Food Science and Technology
- CEBAS (CSIC)
- Murcia
| | - E. Aguayo
- Institute of Plant Biotechnology
- Universidad Politécnica de Cartagena (UPCT)
- Campus Muralla del Mar
- 30202 Cartagena
- Spain
| | - A. Guy
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 – CNRS – University of Montpellier – ENSCM
- Faculty of Pharmacy
- Montpellier
- France
| | - J. M. Galano
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 – CNRS – University of Montpellier – ENSCM
- Faculty of Pharmacy
- Montpellier
- France
| | - T. Durand
- Institut des Biomolécules Max Mousseron (IBMM)
- UMR 5247 – CNRS – University of Montpellier – ENSCM
- Faculty of Pharmacy
- Montpellier
- France
| | - A. Gil-Izquierdo
- Research Group on Quality
- Safety and Bioactivity of Plant Foods
- Department of Food Science and Technology
- CEBAS (CSIC)
- Murcia
| |
Collapse
|
31
|
Matikainen J, Lehtinen M, Pelttari E, Elo H. Toxicity of Fatty Acid autoxidation products: highest anti-microbial toxicity in the initial oxidative phase. Molecules 2014; 20:35-42. [PMID: 25546619 PMCID: PMC6272717 DOI: 10.3390/molecules20010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/15/2014] [Indexed: 11/17/2022] Open
Abstract
The autoxidation-degradation processes of polyunsaturated fatty acids give rise to toxic products, and the relative toxicity at different stages of the process is of great interest. We report here that when methyl α-linolenate is exposed to sunlight and air, its antimicrobial activity against yeasts and bacteria (as measured by agar diffusion) reaches its maximum during the early oxidative phase when addition of oxygen occurs and the mass increases drastically. Before exposure, the activity is minimal or zero, but it increases rapidly during the first days of the test, simultaneously with the increase of the mass of the material, and begins to decrease while the mass is still increasing and before the mass begins to decrease due to degradation and formation of volatile compounds. Thus, the products formed during the degradation phase of the process are far less toxic to the test organisms than the compounds formed at the early stages when addition of oxygen occurs with maximal rate.
Collapse
Affiliation(s)
- Jorma Matikainen
- Laboratory of Organic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FI-00014 Helsinki, Finland.
| | - Markku Lehtinen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Biocenter 1, Viikinkaari 9), FI-00014 Helsinki, Finland.
| | - Eila Pelttari
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Biocenter 1, Viikinkaari 9), FI-00014 Helsinki, Finland.
| | - Hannu Elo
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Biocenter 1, Viikinkaari 9), FI-00014 Helsinki, Finland.
| |
Collapse
|
32
|
Galano JM, Lee JCY, Gladine C, Comte B, Le Guennec JY, Oger C, Durand T. Non-enzymatic cyclic oxygenated metabolites of adrenic, docosahexaenoic, eicosapentaenoic and α-linolenic acids; bioactivities and potential use as biomarkers. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:446-55. [PMID: 25463478 DOI: 10.1016/j.bbalip.2014.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/07/2014] [Accepted: 11/07/2014] [Indexed: 02/04/2023]
Abstract
Cyclic oxygenated metabolites are formed in vivo through non-enzymatic free radical reaction of n-6 and n-3 polyunsaturated fatty acids (PUFAs) such as arachidonic (ARA C20:4 n-6), adrenic (AdA 22:4 n-6), α-linolenic (ALA 18:3 n-3), eicosapentaenoic (EPA 20:5 n-3) and docosahexaenoic (DHA 22:6 n-3) acids. These cyclic compounds are known as isoprostanes, neuroprostanes, dihomo-isoprostanes and phytoprostanes. Evidence has emerged for their use as biomarkers of oxidative stress and, more recently, the n-3PUFA-derived compounds have been shown to mediate bioactivities as secondary messengers. Accordingly, this review will focus on the cyclic oxygenated metabolites generated from AdA, ALA, EPA and DHA. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, Montpellier, France
| | | | - Cecile Gladine
- INRA, UMR1019, UNH, CRNH Auvergne, Clermont-Ferrand, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Blandine Comte
- INRA, UMR1019, UNH, CRNH Auvergne, Clermont-Ferrand, Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, Clermont-Ferrand, France
| | - Jean-Yves Le Guennec
- INSERM U1046, Physiologie & Médecine Expérimentale du Cœur et des Muscles, University Montpellier I and II, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University Montpellier I and II, ENSCM, Faculty of Pharmacy, Montpellier, France
| |
Collapse
|
33
|
Ning C, Jiang Y, Meng J, Zhou C, Tao J. Herbaceous peony seed oil: A rich source of unsaturated fatty acids and γ-tocopherol. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201400212] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Chuanlong Ning
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| | - Yao Jiang
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| | - Jiasong Meng
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| | - Chunhua Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| | - Jun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology; College of Horticulture and Plant Protection, Yangzhou University; Yangzhou China
| |
Collapse
|
34
|
Spiteller G, Afzal M. The action of peroxyl radicals, powerful deleterious reagents, explains why neither cholesterol nor saturated fatty acids cause atherogenesis and age-related diseases. Chemistry 2014; 20:14928-45. [PMID: 25318456 DOI: 10.1002/chem.201404383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells respond to alterations in their membrane structure by activating hydrolytic enzymes. Thus, polyunsaturated fatty acids (PUFAs) are liberated. Free PUFAs react with molecular oxygen to give lipid hydroperoxide molecules (LOOHs). In case of severe cell injury, this physiological reaction switches to the generation of lipid peroxide radicals (LOO(·)). These radicals can attack nearly all biomolecules such as lipids, carbohydrates, proteins, nucleic acids and enzymes, impairing their biological functions. Identical cell responses are triggered by manipulation of food, for example, heating/grilling and particularly homogenization, representing cell injury. Cholesterol as well as diets rich in saturated fat have been postulated to accelerate the risk of atherosclerosis while food rich in unsaturated fatty acids has been claimed to lower this risk. However, the fact is that LOO(·) radicals generated from PUFAs can oxidize cholesterol to toxic cholesterol oxides, simulating a reduction in cholesterol level. In this review it is shown how active LOO(·) radicals interact with biomolecules at a speed transcending usual molecule-molecule reactions by several orders of magnitude. Here, it is explained how functional groups are fundamentally transformed by an attack of LOO(·) with an obliteration of essential biomolecules leading to pathological conditions. A serious reconsideration of the health and diet guidelines is required.
Collapse
Affiliation(s)
- Gerhard Spiteller
- University of Bayreuth, Universitätsstr. 30, 95445 Bayreuth (Germany).
| | | |
Collapse
|
35
|
Vigor C, Bertrand-Michel J, Pinot E, Oger C, Vercauteren J, Le Faouder P, Galano JM, Lee JCY, Durand T. Non-enzymatic lipid oxidation products in biological systems: assessment of the metabolites from polyunsaturated fatty acids. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:65-78. [PMID: 24856297 DOI: 10.1016/j.jchromb.2014.04.042] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 01/12/2023]
Abstract
Metabolites of non-enzymatic lipid peroxidation of polyunsaturated fatty acids notably omega-3 and omega-6 fatty acids have become important biomarkers of lipid products. Especially the arachidonic acid-derived F2-isoprostanes are the classic in vivo biomarker for oxidative stress in biological systems. In recent years other isoprostanes from eicosapentaenoic, docosahexaenoic, adrenic and α-linolenic acids have been evaluated, namely F3-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes and F1-phytoprostanes, respectively. These have been gaining interest as complementary specific biomarkers in human diseases. Refined extraction methods, robust analysis and elucidation of chemical structures have improved the sensitivity of detection in biological tissues and fluids. Previously the main reliable instrumentation for measurement was gas chromatography-mass spectrometry (GC-MS), but now the use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and immunological techniques is gaining much attention. In this review, the types of prostanoids generated from non-enzymatic lipid peroxidation of some important omega-3 and omega-6 fatty acids and biological samples that have been determined by GC-MS and LC-MS/MS are discussed.
Collapse
Affiliation(s)
- Claire Vigor
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Justine Bertrand-Michel
- Plateau de lipidomique, Bio-Medical Federative Research Institute of Toulouse, INSERM, Plateforme MetaToul, Toulouse, France
| | - Edith Pinot
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Pauline Le Faouder
- Plateau de lipidomique, Bio-Medical Federative Research Institute of Toulouse, INSERM, Plateforme MetaToul, Toulouse, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France
| | - Jetty Chung-Yung Lee
- The University of Hong Kong, School of Biological Sciences, Hong Kong SAR, China.
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier 1/Université Montpellier 2, France.
| |
Collapse
|
36
|
Pohl CH, Kock JLF. Oxidized fatty acids as inter-kingdom signaling molecules. Molecules 2014; 19:1273-85. [PMID: 24448067 PMCID: PMC6270766 DOI: 10.3390/molecules19011273] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 12/27/2022] Open
Abstract
Oxylipins or oxidized fatty acids are a group of molecules found to play a role in signaling in many different cell types. These fatty acid derivatives have ancient evolutionary origins as signaling molecules and are ideal candidates for inter-kingdom communication. This review discusses examples of the ability of organisms from different kingdoms to “listen” and respond to oxylipin signals during interactions. The interactions that will be looked at are signaling between animals and plants; between animals and fungi; between animals and bacteria and between plants and fungi. This will aid in understanding these interactions, which often have implications in ecology, agriculture as well as human and animal health.
Collapse
Affiliation(s)
- Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| | - Johan L F Kock
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.
| |
Collapse
|
37
|
Shalaby KH, Allard-Coutu A, O'Sullivan MJ, Nakada E, Qureshi ST, Day BJ, Martin JG. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway. THE JOURNAL OF IMMUNOLOGY 2013; 191:922-33. [PMID: 23776177 DOI: 10.4049/jimmunol.1103644] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress in allergic asthma may result from oxidase activity or proinflammatory molecules in pollens. Signaling via TLR4 and its adaptor Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF) has been implicated in reactive oxygen species-mediated acute lung injury and in Th2 immune responses. We investigated the contributions of oxidative stress and TLR4/TRIF signaling to experimental asthma induced by birch pollen exposure exclusively via the airways. Mice were exposed to native or heat-inactivated white birch pollen extract (BPEx) intratracheally and injected with the antioxidants, N-acetyl-L-cysteine or dimethylthiourea, prior to sensitization, challenge, or all allergen exposures, to assess the role of oxidative stress and pollen-intrinsic NADPH oxidase activity in allergic sensitization, inflammation, and airway hyperresponsiveness (AHR). Additionally, TLR4 signaling was antagonized concomitantly with allergen exposure, or the development of allergic airway disease was evaluated in TLR4 or TRIF knockout mice. N-acetyl-L-cysteine inhibited BPEx-induced eosinophilic airway inflammation and AHR except when given exclusively during sensitization, whereas dimethylthiourea was inhibitory even when administered with the sensitization alone. Heat inactivation of BPEx had no effect on the development of allergic airway disease. Oxidative stress-mediated AHR was also TLR4 and TRIF independent; however, TLR4 deficiency decreased, whereas TRIF deficiency increased BPEx-induced airway inflammation. In conclusion, oxidative stress plays a significant role in allergic sensitization to pollen via the airway mucosa, but the pollen-intrinsic NADPH oxidase activity and TLR4 or TRIF signaling are unnecessary for the induction of allergic airway disease and AHR. Pollen extract does, however, activate TLR4, thereby enhancing airway inflammation, which is restrained by the TRIF-dependent pathway.
Collapse
Affiliation(s)
- Karim H Shalaby
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Vázquez-Romero A, Verdaguer X, Riera A. General Approach to Prostanes B1by Intermolecular Pauson-Khand Reaction: Syntheses of Methyl Esters of Prostaglandin B1and Phytoprostanes 16-B1-PhytoP and 9-L1-PhytoP. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
39
|
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6602, USA.
| | | | | | | | | |
Collapse
|
40
|
Perlikowska W, Mikołajczyk M. A concise approach to both enantiomers of phytoprostane B1 type II. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.tetasy.2011.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Durand T, Bultel-Poncé V, Guy A, El Fangour S, Rossi JC, Galano JM. Isoprostanes and phytoprostanes: Bioactive lipids. Biochimie 2010; 93:52-60. [PMID: 20594988 DOI: 10.1016/j.biochi.2010.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 05/21/2010] [Indexed: 11/26/2022]
Abstract
Polyunsaturated fatty acids (PUFA) are important constituents in all eukaryotic organisms, contributing to the structural integrity of biological membranes and serving as precursors for enzymatically-generated local hormones. In addition to these functions, PUFA can generate by a free radical-initiated mechanism, key products which participate in a variety of pathophysiological processes. In particular, free radical-catalyzed peroxidation of PUFA leads to in vivo formation of isoprostanes (IsoP), neuroprostanes (NeuroP), and phytoprostanes (PhytoP) which display a wide range of biological actions. IsoP are now the most reliable indicators of oxidative stress in humans. In this review, we will discuss some advances in our knowledge regarding two cyclic PUFA derivatives, IsoP and PhytoP, and how their biological roles may be clarified through new approaches based on analytical and synthetic organic chemistry.
Collapse
Affiliation(s)
- T Durand
- Institut des Biomolécules Max Mousseron IBMM, UMR 5247 CNRS/Université Montpellier I/Université Montpellier II, Faculté de Pharmacie, 15. Av. Ch. Flahault, F-34093 Montpellier cedex 05, France.
| | | | | | | | | | | |
Collapse
|
42
|
Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 2010; 12:1009-59. [PMID: 19686040 PMCID: PMC3121779 DOI: 10.1089/ars.2009.2597] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycerophospholipids represent a common class of lipids critically important for integrity of cellular membranes. Oxidation of esterified unsaturated fatty acids dramatically changes biological activities of phospholipids. Apart from impairment of their structural function, oxidation makes oxidized phospholipids (OxPLs) markers of "modified-self" type that are recognized by soluble and cell-associated receptors of innate immunity, including scavenger receptors, natural (germ line-encoded) antibodies, and C-reactive protein, thus directing removal of senescent and apoptotic cells or oxidized lipoproteins. In addition, OxPLs acquire novel biological activities not characteristic of their unoxidized precursors, including the ability to regulate innate and adaptive immune responses. Effects of OxPLs described in vitro and in vivo suggest their potential relevance in different pathologies, including atherosclerosis, acute inflammation, lung injury, and many other conditions. This review summarizes current knowledge on the mechanisms of formation, structures, and biological activities of OxPLs. Furthermore, potential applications of OxPLs as disease biomarkers, as well as experimental therapies targeting OxPLs, are described, providing a broad overview of an emerging class of lipid mediators.
Collapse
Affiliation(s)
- Valery N Bochkov
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
43
|
Mueller MJ. Isoprostane nomenclature: inherent problems may cause setbacks for the development of the isoprostanoid field. Prostaglandins Leukot Essent Fatty Acids 2010; 82:71-81. [PMID: 20034775 DOI: 10.1016/j.plefa.2009.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/29/2009] [Accepted: 11/30/2009] [Indexed: 10/19/2022]
Abstract
Do we have to bother about the isoprostane nomenclature? The widely accepted IUPAC isoprostane nomenclature provides an unambiguous and systematic terminology to name all theoretical possible isoprostanes. However, the currently accepted nomenclature system provides an unnatural framework which is not well suited to address certain biologically relevant questions. Artificial categorization of isoprostanoids into prostanoid families disrupts prostaglandin-ring core structures needed to describe biogenetic precursor-product relationships. In addition, the IUPAC system defines isoprostanoid families which comprise chemically heterogeneous isoprostanoids which largely differ in their physicochemical properties from those of the corresponding prostaglandins. As a result of this, alternative nomenclature systems such as the phytoprostane nomenclature system overcoming some inherent problems of the IUPAC nomenclature are still in use. However, different naming of isoprostanoids especially the classification of prostanoid family names has created considerable confusion. Therefore, a cautionary note on the current use of different nomenclature systems is necessary.
Collapse
Affiliation(s)
- Martin J Mueller
- Julius-von-Sachs-Institut fuer Biowissenschaften, Pharm. Biologie, Biozentrum, Universitaet Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany.
| |
Collapse
|
44
|
Barden AE, Croft KD, Durand T, Guy A, Mueller MJ, Mori TA. Flaxseed oil supplementation increases plasma F1-phytoprostanes in healthy men. J Nutr 2009; 139:1890-5. [PMID: 19675101 DOI: 10.3945/jn.109.108316] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Supplementation with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been reported to reduce lipid peroxidation products formed from arachidonic acid (F(2)-isoprostanes) in healthy humans, as well as in those under oxidative stress. alpha-Linolenic acid (ALA) is a precursor to EPA and DHA; however, its conversion in humans is thought to be inefficient. ALA can also undergo free radical oxidation, forming compounds known as F(1)-phytoprostanes, which are found in all plants and are in high concentrations in plant pollens. In this study, we examined the effect of ALA supplementation on plasma and urine F(1)-phytoprostane and F(2)-isoprostane concentrations in men. Thirty-six nonsmoking men, aged 20-65 y, were recruited from the general population and randomly allocated to consume 9 g/d of either flaxseed oil (62% ALA, 5.4 g/d) or olive oil (placebo) for 4 wk in a parallel design. At baseline and after 4 wk of supplementation, blood samples and a 24-h urine sample were collected for measurement of plasma and urinary F(1)-phytoprostanes and F(2)-isoprostanes and plasma fatty acids. Compared with the olive oil group, plasma phospholipid ALA was greater (P < 0.0001), as were F(1)-phytoprostanes in plasma (P = 0.049) and urine (P = 0.06) in the flaxseed oil group after 4 wk supplementation. Flaxseed oil did not affect plasma or urinary F(2)-isoprostanes. The greater plasma F(1)-phytoprostane concentration in the flaxseed oil group most likely resulted from the increased plasma concentration of the ALA substrate and/or the F(1)-phytoprostane content of the flaxseed oil. Future studies are needed to determine the physiological importance of increased plasma and urine F(1)-phytoprostanes and their relevance to heart disease prevention.
Collapse
Affiliation(s)
- Anne E Barden
- University of Western Australia, School of Medicine and Pharmacology, Cardiovascular Research Center, Royal Perth Hospital, 6001, Western Australia, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
Durand T, Bultel-Poncé V, Guy A, Berger S, Mueller MJ, Galano JM. New bioactive oxylipins formed by non-enzymatic free-radical-catalyzed pathways: the phytoprostanes. Lipids 2009; 44:875-88. [PMID: 19789901 DOI: 10.1007/s11745-009-3351-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/11/2009] [Indexed: 01/03/2023]
Abstract
In animals and plants, fatty acids with at least three double bonds can be oxidized to prostaglandin-like compounds via enzymatic and non-enzymatic pathways. The most common fatty acid precursor in mammals is arachidonic acid (C20:4) (AA) which can be converted through the cyclooxygenase pathway to a series of prostaglandins (PG). Non-enzymatic cyclization of arachidonate yields a series of isoprostanes (IsoP) which comprises all PG (minor compounds) as well as PG isomers that cannot be formed enzymatically. In contrast, in plants, alpha-linolenic acid (C18:3) (ALA) is the most common substrate for the allene oxide synthase pathway leading to the jasmonate (JA) family of lipid mediators. Non-enzymatic oxidation of linolenate leads to a series of C18-IsoPs termed dinor IsoP or phytoprostanes (PP). PP structurally resemble JA but cannot be formed enzymatically. We will give an overview of the biological activity of the different classes of PP and also discuss their analytical applications and the strategies developed so far for the total synthesis of PP, depending on the synthetic approaches according to the targets and which key steps serve to access the natural products.
Collapse
Affiliation(s)
- Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université Montpellier I, Université Montpellier II, Faculté de Pharmacie, 15. Av. Ch. Flahault, 34093, Montpellier Cedex 05, France.
| | | | | | | | | | | |
Collapse
|
46
|
Göbel C, Feussner I. Methods for the analysis of oxylipins in plants. PHYTOCHEMISTRY 2009; 70:1485-503. [PMID: 19735927 DOI: 10.1016/j.phytochem.2009.07.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 05/08/2023]
Abstract
Plant oxylipins comprise a highly diverse and complex class of molecules that are derived from lipid oxidation. The initial oxidation of unsaturated fatty acids may either occur by enzymatic or chemical reactions. A large variety of oxylipin classes are generated by an array of alternative reactions further converting hydroperoxy fatty acids. The structural diversity of oxylipins is further increased by their occurrence either as free fatty acid derivatives or as esters in complex lipids. Lipid peroxidation is common to all biological systems, appearing in developmentally regulated processes and as a response to environmental changes. The oxylipins formed may perform various biological roles; some of them have signaling functions. In order to elucidate the roles of oxylipins in a given biological context, comprehensive analytical assays are available for determining the oxylipin profiles of plant tissues. This review summarizes indirect methods to estimate the general peroxidation state of a sample and more sophisticated techniques for the identification, structure determination and quantification of oxylipins.
Collapse
Affiliation(s)
- Cornelia Göbel
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Science, Department of Plant Biochemistry, D-37077 Göttingen, Germany
| | | |
Collapse
|
47
|
Karg K, Dirsch VM, Vollmar AM, Cracowski JL, Laporte F, Mueller MJ. Biologically active oxidized lipids (phytoprostanes) in the plant diet and parenteral lipid nutrition. Free Radic Res 2009; 41:25-37. [PMID: 17164176 DOI: 10.1080/10715760600939734] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Phytoprostanes (PP) are autoxidation products of alpha-linolenate that are present in all plant tissues. Several classes of PP with a prostaglandin (PG) F1-, E1-, A1- and B1-like structure were identified and quantified by gas chromatography-mass spectrometry in vegetable oils and parenteral nutrition (intralipid). High levels of PP (0.09 up to 99 mg/l) were found even in apparently fresh vegetable oils. After oral consumption of olive or soybean oil, PPF1 were absorbed, found to circulate in plasma in conjugated form and excreted in free form into urine. Evidence is emerging that certain PP, such as the PPE1, may modulate the function of immune cells in a PG-like fashion. Here, we show that PPA1- and deoxy-PPJ1 display potent anti-inflammatory and apoptosis inducing activities similar to PGA1 and deoxy-PGJ2. Results of this study indicate that PP are novel, biologically active lipids in plant nutrition.
Collapse
Affiliation(s)
- Kathrin Karg
- Julius-von-Sachs-Institute for Biosciences, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz 2, D-97082, Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Gilles S, Mariani V, Bryce M, Mueller MJ, Ring J, Jakob T, Pastore S, Behrendt H, Traidl-Hoffmann C. Pollen-derived E1-phytoprostanes signal via PPAR-gamma and NF-kappaB-dependent mechanisms. THE JOURNAL OF IMMUNOLOGY 2009; 182:6653-8. [PMID: 19454659 DOI: 10.4049/jimmunol.0802613] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In a humid milieu such as mucosal surfaces, pollen grains do not only release allergens but also proinflammatory and immunomodulatory lipids, termed pollen-associated lipid mediators. Among these, the E(1)-phytoprostanes (PPE(1)) were identified to modulate dendritic cell (DC) function: PPE(1) inhibit the DC's capacity to produce IL-12 and enhance DC mediated T(H)2 polarization of naive T cells. The mechanism(s) by which PPE(1) act on DC remained elusive. We thus analyzed candidate signaling elements and their role in PPE(1)-mediated regulation of DC function. Aqueous birch pollen extracts induced a marked cAMP response in DC that could be blocked partially by EP2 and EP4 antagonists. In contrast, PPE(1) hardly induced cAMP and the inhibitory effect on IL-12 production was mostly independent of EP2 and EP4. Instead, PPE(1) inhibited the LPS-induced production of IL-12 p70 by a mechanism involving the nuclear receptor PPAR-gamma. Finally, PPE(1) efficiently blocked NF-kappaB signaling in DCs by inhibiting IkappaB-alpha degradation, translocation of p65 to the nucleus, and binding to its target DNA elements. We conclude that pollen-derived PPE(1) modulate DC function via PPAR-gamma dependent pathways that lead to inhibition of NFkappaB activation and result in reduced DC IL-12 production and consecutive T(H)2 polarization.
Collapse
Affiliation(s)
- Stefanie Gilles
- Division of Environmental Dermatology and Allergy Helmholz Center Munich, Zentrum Allergie und Umwelt, Technische Universität Munich, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Vázquez-Romero A, Cárdenas L, Blasi E, Verdaguer X, Riera A. Synthesis of Prostaglandin and Phytoprostane B1 Via Regioselective Intermolecular Pauson−Khand Reactions. Org Lett 2009; 11:3104-7. [DOI: 10.1021/ol901213d] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana Vázquez-Romero
- Unitat de Recerca en Síntesi Asimètrica (URSA-PCB), Institute for Research in Biomedicine (IRB Barcelona) and Departament de Química Orgànica, Universitat de Barcelona, Parc Científic de Barcelona c/ Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lydia Cárdenas
- Unitat de Recerca en Síntesi Asimètrica (URSA-PCB), Institute for Research in Biomedicine (IRB Barcelona) and Departament de Química Orgànica, Universitat de Barcelona, Parc Científic de Barcelona c/ Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Emma Blasi
- Unitat de Recerca en Síntesi Asimètrica (URSA-PCB), Institute for Research in Biomedicine (IRB Barcelona) and Departament de Química Orgànica, Universitat de Barcelona, Parc Científic de Barcelona c/ Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Xavier Verdaguer
- Unitat de Recerca en Síntesi Asimètrica (URSA-PCB), Institute for Research in Biomedicine (IRB Barcelona) and Departament de Química Orgànica, Universitat de Barcelona, Parc Científic de Barcelona c/ Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Antoni Riera
- Unitat de Recerca en Síntesi Asimètrica (URSA-PCB), Institute for Research in Biomedicine (IRB Barcelona) and Departament de Química Orgànica, Universitat de Barcelona, Parc Científic de Barcelona c/ Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
50
|
Mosblech A, Feussner I, Heilmann I. Oxylipins: structurally diverse metabolites from fatty acid oxidation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:511-7. [PMID: 19167233 DOI: 10.1016/j.plaphy.2008.12.011] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/13/2008] [Accepted: 12/08/2008] [Indexed: 05/19/2023]
Abstract
Oxylipins are lipophilic signaling molecules derived from the oxidation of polyunsaturated fatty acids. Initial fatty acid oxidation occurs mainly by the enzymatic or chemical formation of fatty acid hydroperoxides. An array of alternative reactions further converting fatty acid hydroperoxides gives rise to a multitude of oxylipin classes, many with reported signaling functions in plants. Oxylipins include the phytohormone, jasmonic acid, and a number of other molecules including hydroxy-, oxo- or keto-fatty acids or volatile aldehydes that may perform various biological roles as second messengers, messengers in inter-organismic signaling, or even as bactericidal agents. The structural diversity of oxylipins is further increased by esterification of the compounds in plastidial glycolipids, for instance the Arabidopsides, or by conjugation of oxylipins to amino acids or other metabolites. The enzymes involved in oxylipin metabolism are diverse and comprise a multitude of examples with interesting and unusual catalytic properties. In addition, the interplay of different subcellular compartments during oxylipin biosynthesis suggests complex mechanisms of regulation that are not well understood. This review aims at giving an overview of plant oxylipins and the multitude of enzymes responsible for their biosynthesis.
Collapse
Affiliation(s)
- Alina Mosblech
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | | | | |
Collapse
|