1
|
Duță C, Muscurel C, Dogaru CB, Stoian I. Ferroptosis-A Shared Mechanism for Parkinson's Disease and Type 2 Diabetes. Int J Mol Sci 2024; 25:8838. [PMID: 39201524 PMCID: PMC11354749 DOI: 10.3390/ijms25168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Type 2 diabetes (T2D) and Parkinson's disease (PD) are the two most frequent age-related chronic diseases. There are many similarities between the two diseases: both are chronic diseases; both are the result of a decrease in a specific substance-insulin in T2D and dopamine in PD; and both are caused by the destruction of specific cells-beta pancreatic cells in T2D and dopaminergic neurons in PD. Recent epidemiological and experimental studies have found that there are common underlying mechanisms in the pathophysiology of T2D and PD: chronic inflammation, mitochondrial dysfunction, impaired protein handling and ferroptosis. Epidemiological research has indicated that there is a higher risk of PD in individuals with T2D. Moreover, clinical studies have observed that the symptoms of Parkinson's disease worsen significantly after the onset of T2D. This article provides an up-to-date review on the intricate interplay between oxidative stress, reactive oxygen species (ROS) and ferroptosis in PD and T2D. By understanding the shared molecular pathways and how they can be modulated, we can develop more effective therapies, or we can repurpose existing drugs to improve patient outcomes in both disorders.
Collapse
|
2
|
Kompoura V, Karapantzou I, Mitropoulou G, Parisis NA, Gkalpinos VK, Anagnostou VA, Tsiailanis AD, Vasdekis EP, Koutsaliaris IK, Tsouka AN, Karapetsi L, Madesis P, Letsiou S, Florou D, Koukkou AI, Barbouti A, Tselepis AD, Kourkoutas Y, Tzakos AG. Exploiting the beneficial effects of Salvia officinalis L. extracts in human health and assessing their activity as potent functional regulators of food microbiota. Food Chem 2024; 441:138175. [PMID: 38194793 DOI: 10.1016/j.foodchem.2023.138175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Salvia officinalis L. has attracted scientific and industrial interest due to its pharmacological properties. However, its detailed phytochemical profile and its correlation with beneficial effects in the human microbiome and oxidative stress remained elusive. To unveil this, S. officinalis was collected from the region of Epirus and its molecular identity was verified with DNA barcoding. Phytochemical profile for both aqueous and ethanol-based extracts was determined by high-pressure liquid chromatography-tandem mass spectrometry and 103 phytochemicals were determined. The effect of S. officinalis extracts as functional regulators of food microbiota by stimulating the growth of Lacticaseibacillus rhamnosus strains and by suppressing evolution of pathogenic bacteria was verified. Furthermore, we recorded that both extracts exhibited a significant cellular protection against H2O2-induced DNA damage. Finally, both extracts exhibited strong inhibitory effect towards LDL oxidation. This study provides a comprehensive characterization of S. officinalis on its phytochemical components as also its potential impact in human microbiome and oxidative stress.
Collapse
Affiliation(s)
- Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Karapantzou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos A Parisis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios K Gkalpinos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki A Anagnostou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Antonis D Tsiailanis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | - Ioannis K Koutsaliaris
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Aikaterini N Tsouka
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Stavroula Letsiou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Florou
- Department of Forensic Medicine & Toxicology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna-Irini Koukkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros D Tselepis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; University Research Center of Ioannina, Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
3
|
Najeeb HA, Sanusi T, Saldanha G, Brown K, Cooke MS, Jones GD. Redox modulation of oxidatively-induced DNA damage by ascorbate enhances both in vitro and ex-vivo DNA damage formation and cell death in melanoma cells. Free Radic Biol Med 2024; 213:309-321. [PMID: 38262545 DOI: 10.1016/j.freeradbiomed.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Elevated genomic instability in cancer cells suggests a possible model-scenario for their selective killing via the therapeutic delivery of well-defined levels of further DNA damage. To examine this scenario, this study investigated the potential for redox modulation of oxidatively-induced DNA damage by ascorbate in malignant melanoma (MM) cancer cells, to selectively enhance both DNA damage and MM cell killing. DNA damage was assessed by Comet and ɣH2AX assays, intracellular oxidising species by dichlorofluorescein fluorescence, a key antioxidant enzymatic defence by assessment of catalase activity and cell survival was determined by clonogenic assay. Comet revealed that MM cells had higher endogenous DNA damage levels than normal keratinocytes (HaCaT cells); this correlated MM cells having higher intracellular oxidising species and lower catalase activity, and ranked with MM cell melanin pigmentation. Comet also showed MM cells more sensitive towards the DNA damaging effects of exogenous H2O2, and that ascorbate further enhanced this H2O2-induced damage in MM cells; again, with MM cell sensitivity to induced damage ranking with degree of cell pigmentation. Furthermore, cell survival data indicated that ascorbate enhanced H2O2-induced clonogenic cell death selectively in MM cells whilst protecting HaCaT cells. Finally, we show that ascorbate serves to enhance the oxidising effects of the MM therapeutic drug Elesclomol in both established MM cells in vitro and primary cell cultures ex vivo. Together, these results suggest that ascorbate selectively enhances DNA damage and cell-killing in MM cells. This raises the option of incorporating ascorbate into clinical oxidative therapies to treat MM.
Collapse
Affiliation(s)
- Hishyar A Najeeb
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Timi Sanusi
- Leicester Medical School, University of Leicester, UK
| | - Gerald Saldanha
- University Hospitals of Leicester NHS Trust, Leicester Royal Infirmary, UK
| | - Karen Brown
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, USA.
| | - George Dd Jones
- Leicester Cancer Research Centre, Department of Genetics & Genome Biology, University of Leicester, UK.
| |
Collapse
|
4
|
Christou A, Parisis NA, Venianakis T, Barbouti A, Tzakos AG, Gerothanassis IP, Goulas V. Ultrasound-Assisted Extraction of Taro Leaf Antioxidants Using Natural Deep Eutectic Solvents: An Eco-Friendly Strategy for the Valorization of Crop Residues. Antioxidants (Basel) 2023; 12:1801. [PMID: 37891880 PMCID: PMC10604219 DOI: 10.3390/antiox12101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Colocasia esculenta L. leaves are considered a by-product of taro cultivation and are discarded as environmental waste, despite their valuable phenolic composition. Their valorization to obtain value-added substances for medicinal, food, and cosmetic applications is the aim of the current work. An ultrasound-assisted extraction was developed for the environmentally friendly and sustainable isolation of taro leaf antioxidants using natural deep eutectic solvents (NaDESs). Among the utilized solvents, the NaDES based on betaine and ethylene glycol provided the best extraction efficiencies in terms of polyphenolic content and antioxidant activity. Multi-response optimization suggested a solvent-to-solid ratio of 10 mL g-1, a processing time of 60 min, an extraction temperature of 60 °C, and a water content of 33.8% (w/w) as optimal extraction parameters. Leaf extract obtained under these optimum operational parameters demonstrated a strong radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (65.80 ± 0.87%), a high ferric reducing antioxidant power (126.62 ± 1.92 μmol TE g-1 sample), and significant protection against oxidative stress-induced DNA damage. The chromatographic characterization of the optimum extract revealed its richness in flavonoids (flavones and flavonols). The outcomes of the present study suggest that the proposed method could serve as a highly efficient and green alternative for the recovery of polyphenols from agricultural wastes.
Collapse
Affiliation(s)
- Atalanti Christou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus
| | - Nikolaos A. Parisis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (N.A.P.); (T.V.); (A.G.T.); (I.P.G.)
| | - Themistoklis Venianakis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (N.A.P.); (T.V.); (A.G.T.); (I.P.G.)
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (N.A.P.); (T.V.); (A.G.T.); (I.P.G.)
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (N.A.P.); (T.V.); (A.G.T.); (I.P.G.)
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3603, Cyprus
| |
Collapse
|
5
|
Nousis L, Kanavaros P, Barbouti A. Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link? Antioxidants (Basel) 2023; 12:1250. [PMID: 37371980 DOI: 10.3390/antiox12061250] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage macromolecules and impair cellular function is the availability of labile (redox-active) iron, which catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced cellular senescence, with special attention to the potential implication of labile iron.
Collapse
Affiliation(s)
- Lambros Nousis
- Department of Hygiene and Epidemiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
6
|
Benetis NP, Paloncýová M, Knippenberg S. Multiscale Modeling Unravels the Influence of Biomembranes on the Photochemical Properties of Embedded Anti-Oxidative Polyphenolic and Phenanthroline Chelating Dyes. J Phys Chem B 2023; 127:212-227. [PMID: 36563093 DOI: 10.1021/acs.jpcb.2c07072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The embedding of caffeate methyl ester, the flavonoids luteolin and quercetin, and the o-phenanthroline and neocuproine in a liquid disordered lipid bilayer has been studied through extensive atomistic calculations. The location and the orientation of these bio-active antioxidants are explained and analyzed. While the two phenanthrolines strongly associate with the lipid tail region, the other three compounds are rather found among the head groups. The simulations showcase conformational changes of the flavonoids. Through the use of a hybrid quantum mechanics-molecular mechanics scheme and supported by a profound benchmarking of the electronic excited-state method for these compounds, the influence of the anisotropic environment on the compounds' optical properties is analyzed. Influences of surrounding water molecules and of the polar parts of the lipids on the transition dipole moments and excited-state dipole moments are weighted with respect to a change in conformation. The current study highlights the importance of the mapping of molecular interactions in model membranes and pinpoints properties, which can be biomedically used to discriminate and detect different lipid environments.
Collapse
Affiliation(s)
| | - Markéta Paloncýová
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technologies and Research Institute, Palacký University Olomouc, Křížkovského 8, Olomouc779 00, Czech Republic
| | - Stefan Knippenberg
- Hasselt University, Theory Lab, Agoralaan Building D, 3590Diepenbeek, Belgium.,Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Université Libre de Bruxelles, 50 Avenue F. Roosevelt, C.P. 160/09, B-1050Brussels, Belgium
| |
Collapse
|
7
|
Qin M, Shao B, Lin L, Zhang ZQ, Sheng ZG, Qin L, Shao J, Zhu BZ. Molecular mechanism of the unusual biphasic effects of the natural compound hinokitiol on iron-induced cellular DNA damage. Free Radic Biol Med 2023; 194:163-171. [PMID: 36476568 DOI: 10.1016/j.freeradbiomed.2022.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/19/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Hinokitiol is a natural monoterpene compound found in the heartwood of cupressaceous plants that have anticancer and anti-inflammatory properties. However, few studies have focused on its effect on iron-mediated cellular DNA damage. Here we show that hinokitiol exhibited unusual biphasic effects on iron-induced DNA damage in a molar ratio (hinokitiol/iron) dependent manner in HeLa cells. Under low ratios (<3:1), hinokitiol markedly enhanced DNA damage induced by Fe(II) or Fe(II)-H2O2; However, when the ratios increased over 3:1, the DNA damage was progressively inhibited. We found that the total cytoplasmic and nuclear iron concentration increased as the ratios of hinokitiol/iron increased. However, the cellular level of labile iron pool (LIP) only increased at ratios lower than 3, and the ROS generation is consistent with LIP change. Hinokitiol was found to interact with iron to form lipophilic hinokitiol-iron complexes with different stoichiometry and redox-activity by complementary applications of various analytical methods. Taken together, we propose that the enhancement of iron-induced cellular DNA damage by hinokitiol at low ratios (<3:1) was due to formation of lipophilic and redox-active iron complexes which facilitated cellular iron uptake and •OH production, while the inhibition at ratios higher than 3 was due to formation of redox-inactive iron complexes. These new findings will help us to design more effective drugs for the prevention and treatment of a series of iron-related diseases via regulating the two critical physicochemical factors (lipophilicity and redox activity of iron complexes) by simple natural compounds with iron-chelating properties.
Collapse
Affiliation(s)
- Miao Qin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Bo Shao
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Li Lin
- School of Public Health, Weifang Medical University, Weifang, Shandong, 261053, China; School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, 272013, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Li Qin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Resources and Environment, The University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Mantelou AG, Barbouti A, Goussia A, Zacharioudaki A, Papoudou-Bai A, Vlachou C, Kokkoris S, Papalois A, Galaris D, Glantzounis GK. Combined administration of membrane-permeable and impermeable iron-chelating drugs attenuates ischemia/reperfusion-induced hepatic injury. Free Radic Biol Med 2022; 193:227-237. [PMID: 36243210 DOI: 10.1016/j.freeradbiomed.2022.10.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND The underlying pathophysiological mechanisms of hepatic ischemia-reperfusion (I/R) injury have not been completely elucidated. However, it is well known that oxidative stress, caused by a burst of reactive oxygen species (ROS) production during the reperfusion phase, plays a crucial role. A growing body of evidence indicates that the intracellular availability of free iron represents a requirement for ROS-induced adverse effects, as iron catalyzes the generation of highly reactive free radicals. The aim of this study was to examine whether a combination of iron chelators with varying lipophilicity could offer enhanced protection against I/R by diminishing the conversion of weak oxidants, like H2O2, to extremely reactive ones such as hydroxyl radicals (HO.). METHODS HepG2 cells (hepatocellular carcinoma cell line) were exposed to oxidative stress conditions after pre-treatment with the iron chelators desferrioxamine (DFO) and deferiprone (DFP) alone or in combination. Labile iron pool was estimated using the calcein-acetoxymethyl ester (calcein-AM) method and DNA damage with the comet assay. We subsequently used a rabbit model (male New Zealand white rabbits) of hepatic I/R-induced injury to investigate, by measuring biochemical (ALT, ALT, ALP, γGT) and histological parameters, whether this may be true for in vivo conditions. RESULTS The combination of a membrane-permeable iron chelator (DFP) with a strong membrane-impermeable one (DFO) raises the level of protection in both hepatic cell lines exposed to oxidative stress conditions and hepatic I/R rabbit model. CONCLUSIONS Our results show that combinations of iron chelators with selected lipophilicity and iron-binding properties may represent a valuable strategy to protect against tissue damage during reperfusion after a period of ischemia.
Collapse
Affiliation(s)
- Athina G Mantelou
- HPB Unit, Department of Surgery, University Hospital of Ioannina and Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Anna Goussia
- Department of Pathology, University Hospital of Ioannina and Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | | | - Alexandra Papoudou-Bai
- Department of Pathology, University Hospital of Ioannina and Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Chara Vlachou
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Stelios Kokkoris
- First Department of Critical Care, School of Medicine, National and Kapodistrian University of Athens, Athens, 10676, Greece
| | - Apostolos Papalois
- Experimental, Educational and Research Center ELPEN, Athens, 19009, Greece; European University of Cyprus, School of Medicine, Nicosia, 2404, Cyprus
| | - Dimitrios Galaris
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece
| | - Georgios K Glantzounis
- HPB Unit, Department of Surgery, University Hospital of Ioannina and Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, 45110, Greece.
| |
Collapse
|
9
|
Role of Fe, Transferrin and Transferrin Receptor in Anti-Tumor Effect of Vitamin C. Cancers (Basel) 2022; 14:cancers14184507. [PMID: 36139668 PMCID: PMC9496724 DOI: 10.3390/cancers14184507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
High-dose vitamin C (VC) exhibits anti-tumor effects, and the cytotoxicity of VC is correlated with oxidative stress. However, iron, as a redox metal, plays an important effect in redox cycling and free radical formation in cells. This study addresses the role of iron ion in the cytotoxicity of VC. We found that iron supplementation increases the anti-tumor effect of VC, which was influenced by the cellular iron uptake pathway-transferrin (TF)/transferrin receptor (TFR) system. The TFR expression of tumors can be assessed by 68Ga-citrate PET imaging, and it would be helpful to screen out the tumor type which is more sensitive to VC combined with an iron supplementation treatment.
Collapse
|
10
|
Lin MC, Liu CC, Liao CS, Ro JH. Neuroprotective Effect of Quercetin during Cerebral Ischemic Injury Involves Regulation of Essential Elements, Transition Metals, Cu/Zn Ratio, and Antioxidant Activity. Molecules 2021; 26:molecules26206128. [PMID: 34684707 PMCID: PMC8538157 DOI: 10.3390/molecules26206128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Cerebral ischemia results in increased oxidative stress in the affected brain. Accumulating evidence suggests that quercetin possesses anti-oxidant and anti-inflammatory properties. The essential elements magnesium (Mg), zinc (Zn), selenium (Se), and transition metal iron (Fe), copper (Cu), and antioxidants superoxide dismutase (SOD) and catalase (CAT) are required for brain functions. This study investigates whether the neuroprotective effects of quercetin on the ipsilateral brain cortex involve altered levels of essential trace metals, the Cu/Zn ratio, and antioxidant activity. Rats were intraperitoneally administered quercetin (20 mg/kg) once daily for 10 days before ischemic surgery. Cerebral ischemia was induced by ligation of the right middle cerebral artery and the right common carotid artery for 1 h. The ipsilateral brain cortex was homogenized and the supernatant was collected for biochemical analysis. Results show that rats pretreated with quercetin before ischemia significantly increased Mg, Zn, Se, SOD, and CAT levels, while the malondialdehyde, Fe, Cu, and the Cu/Zn ratio clearly decreased as compared to the untreated ligation subject. Taken together, our findings suggest that the mechanisms underlying the neuroprotective effects of quercetin during cerebral ischemic injury involve the modulation of essential elements, transition metals, Cu/Zn ratio, and antioxidant activity.
Collapse
Affiliation(s)
- Ming-Cheng Lin
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
- Correspondence: (M.-C.L.); (J.-H.R.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (J.-H.R.)
| | - Chien-Chi Liu
- Department of Nursing, National Taichung University of Science and Technology, Taichung 404336, Taiwan;
| | - Chin-Sheng Liao
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 407211, Taiwan;
| | - Ju-Hai Ro
- Department of Pharmacy, Chung-Kang Branch, Cheng-Ching Hospital, Taichung 407211, Taiwan
- Correspondence: (M.-C.L.); (J.-H.R.); Tel.: +886-4-2239-1647 (M.-C.L.); +886-4-2463-2000 (J.-H.R.)
| |
Collapse
|
11
|
Dietary Antioxidants in the Mediterranean Diet. Antioxidants (Basel) 2021; 10:antiox10081213. [PMID: 34439460 PMCID: PMC8389003 DOI: 10.3390/antiox10081213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/23/2022] Open
|
12
|
Shatrova AN, Burova EB, Kharchenko MV, Smirnova IS, Lyublinskaya OG, Nikolsky NN, Borodkina AV. Outcomes of Deferoxamine Action on H 2O 2-Induced Growth Inhibition and Senescence Progression of Human Endometrial Stem Cells. Int J Mol Sci 2021; 22:6035. [PMID: 34204881 PMCID: PMC8199751 DOI: 10.3390/ijms22116035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are broadly applied in regenerative therapy to replace cells that are lost or impaired during disease. The low survival rate of MSCs after transplantation is one of the major limitations heavily influencing the success of the therapy. Unfavorable microenvironments with inflammation and oxidative stress in the damaged regions contribute to MSCs loss. Most of the strategies developed to overcome this obstacle are aimed to prevent stress-induced apoptosis, with little attention paid to senescence-another common stress reaction of MSCs. Here, we proposed the strategy to prevent oxidative stress-induced senescence of human endometrial stem cells (hMESCs) based on deferoxamine (DFO) application. DFO prevented DNA damage and stress-induced senescence of hMESCs, as evidenced by reduced levels of reactive oxygen species, lipofuscin, cyclin D1, decreased SA-β-Gal activity, and improved mitochondrial function. Additionally, DFO caused accumulation of HIF-1α, which may contribute to the survival of H2O2-treated cells. Importantly, cells that escaped senescence due to DFO preconditioning preserved all the properties of the initial hMESCs. Therefore, once protecting cells from oxidative damage, DFO did not alter further hMESCs functioning. The data obtained may become the important prerequisite for development of a new strategy in regenerative therapy based on MSCs preconditioning using DFO.
Collapse
Affiliation(s)
- Alla N. Shatrova
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (E.B.B.); (M.V.K.); (I.S.S.); (O.G.L.); (N.N.N.); (A.V.B.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Shao B, Mao L, Tang M, Yan ZY, Shao J, Huang CH, Sheng ZG, Zhu BZ. Caffeic Acid Phenyl Ester (CAPE) Protects against Iron-Mediated Cellular DNA Damage through Its Strong Iron-Binding Ability and High Lipophilicity. Antioxidants (Basel) 2021; 10:antiox10050798. [PMID: 34069954 PMCID: PMC8157578 DOI: 10.3390/antiox10050798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) and its structurally-related caffeic acid (CA), ferulic acid (FA) and ethyl ferulate (EF) are constituents of honeybee propolis that have important pharmacological activities. This study found that CAPE—but not CA, FA, and EF—could effectively prevent cellular DNA damage induced by overloaded iron through decreasing the labile iron pool (LIP) levels in HeLa cells. Interestingly, CAPE was found to be more effective than CA in protecting against plasmid DNA damage induced by Fe(II)–H2O2 or Fe(III)–citrate–ascorbate-H2O2 via the inhibition of hydroxyl radical (•OH) production. We further provided more direct and unequivocal experimental evidences for the formation of inactive CAPE/CA–iron complexes. CAPE was found to have a stronger iron-binding ability and a much higher lipophilicity than CA. Taken together, we propose that the esterification of the carboxylic moiety with phenethyl significantly enhanced the iron-binding ability and lipophilicity of CAPE, which is also responsible for its potent protection against iron-mediated cellular DNA damage. A study on the iron coordination mechanism of such natural polyphenol antioxidants will help to design more effective antioxidants for the treatment and prevention of diseases caused by metal-induced oxidative stress, as well as help to understand the structure–activity relationships of these compounds.
Collapse
Affiliation(s)
- Bo Shao
- Department of Public Health, Jining Medical University, Jining 272067, China;
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
- Correspondence: (L.M.); (B.-Z.Z.); Tel.: +86-10-62849030 (B.-Z.Z.)
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, China; (M.T.); (Z.-Y.Y.); (J.S.); (C.-H.H.); (Z.-G.S.)
- University of Chinese Academy of Sciences, Beijing 100085, China
- Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing 100085/Hong Kong 999077, China
- Correspondence: (L.M.); (B.-Z.Z.); Tel.: +86-10-62849030 (B.-Z.Z.)
| |
Collapse
|
14
|
Barbouti A, Lagopati N, Veroutis D, Goulas V, Evangelou K, Kanavaros P, Gorgoulis VG, Galaris D. Implication of Dietary Iron-Chelating Bioactive Compounds in Molecular Mechanisms of Oxidative Stress-Induced Cell Ageing. Antioxidants (Basel) 2021; 10:491. [PMID: 33800975 PMCID: PMC8003849 DOI: 10.3390/antiox10030491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
One of the prevailing perceptions regarding the ageing of cells and organisms is the intracellular gradual accumulation of oxidatively damaged macromolecules, leading to the decline of cell and organ function (free radical theory of ageing). This chemically undefined material known as "lipofuscin," "ceroid," or "age pigment" is mainly formed through unregulated and nonspecific oxidative modifications of cellular macromolecules that are induced by highly reactive free radicals. A necessary precondition for reactive free radical generation and lipofuscin formation is the intracellular availability of ferrous iron (Fe2+) ("labile iron"), catalyzing the conversion of weak oxidants such as peroxides, to extremely reactive ones like hydroxyl (HO•) or alcoxyl (RO•) radicals. If the oxidized materials remain unrepaired for extended periods of time, they can be further oxidized to generate ultimate over-oxidized products that are unable to be repaired, degraded, or exocytosed by the relevant cellular systems. Additionally, over-oxidized materials might inactivate cellular protection and repair mechanisms, thus allowing for futile cycles of increasingly rapid lipofuscin accumulation. In this review paper, we present evidence that the modulation of the labile iron pool distribution by nutritional or pharmacological means represents a hitherto unappreciated target for hampering lipofuscin accumulation and cellular ageing.
Collapse
Affiliation(s)
- Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Nefeli Lagopati
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
| | - Dimitris Veroutis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Lemesos, Cyprus;
| | - Konstantinos Evangelou
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Vassilis G. Gorgoulis
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Faculty of Medicine, School of Health Science, National and Kapodistrian University of Athens, 75, Mikras Asias Str., Goudi, 11527 Athens, Greece; (N.L.); (D.V.); (K.E.); (V.G.G.)
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
- Faculty of Biology, Medicine and Health Manchester Cancer Research Centre, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios Galaris
- Laboratory of Biological Chemistry, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
15
|
Gao HY, Huang CH, Mao L, Shao B, Shao J, Yan ZY, Tang M, Zhu BZ. First Direct and Unequivocal Electron Spin Resonance Spin-Trapping Evidence for pH-Dependent Production of Hydroxyl Radicals from Sulfate Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14046-14056. [PMID: 33064470 DOI: 10.1021/acs.est.0c04410] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, the sulfate radical (SO4•-) has been found to exhibit broad application prospects in various research fields such as chemical, biomedical, and environmental sciences. It has been suggested that SO4•- could be transformed into a more reactive hydroxyl radical (•OH); however, no direct and unequivocal experimental evidence has been reported yet. In this study, using an electron spin resonance (ESR) secondary radical spin-trapping method coupled with the classic spin-trapping agent 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and the typical •OH-scavenging agent dimethyl sulfoxide (DMSO), we found that •OH can be produced from three SO4•--generating systems from weakly acidic (pH = 5.5) to alkaline conditions (optimal at pH = 13.0), while SO4•- is the predominant radical species at pH < 5.5. A comparative study with three typical •OH-generating systems strongly supports the above conclusion. This is the first direct and unequivocal ESR spin-trapping evidence for •OH formation from SO4•- over a wide pH range, which is of great significance to understand and study the mechanism of many SO4•--related reactions and processes. This study also provides an effective and direct method for unequivocally distinguishing •OH from SO4•-.
Collapse
Affiliation(s)
- Hui-Ying Gao
- Science and Technology College, North China Electric Power University, Baoding 071051, P. R. China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhu-Ying Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Joint Institute of Environmental Sciences of Hong Kong Baptist University and the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| |
Collapse
|
16
|
Shao B, Mao L, Shao J, Huang CH, Qin L, Huang R, Sheng ZG, Cao D, Zhang ZQ, Lin L, Zhang CZ, Zhu BZ. Mechanism of synergistic DNA damage induced by caffeic acid phenethyl ester (CAPE) and Cu(II): Competitive binding between CAPE and DNA with Cu(II)/Cu(I). Free Radic Biol Med 2020; 159:107-118. [PMID: 32755670 DOI: 10.1016/j.freeradbiomed.2020.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 12/26/2022]
Abstract
Caffeic acid phenethyl ester (CAPE) is an active polyphenol of propolis from honeybee hives, and exhibits antioxidant and interesting pharmacological activities. However, in this study, we found that in the presence of Cu(II), CAPE exhibited pro-oxidative rather than antioxidant effect: synergistic DNA damage was induced by the combination of CAPE and Cu(II) together as measured by strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, which is dependent on the molar ratio of CAPE:Cu(II). Production of Cu(I) and H2O2 from the redox reaction between CAPE and Cu(II), and subsequent OH formation was found to be responsible for the synergistic DNA damage. DNA sequencing investigations provided more direct evidence that CAPE/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Interestingly, we found there are competitive binding between CAPE and DNA with Cu(II)/Cu(I), which changed the redox activity of Cu(II)/Cu(I), via complementary applications of different analytical methods. The observed DNA damage was mainly attributed to the formation of DNA-Cu(II)/Cu(I) complexes, which is still redox active and initiated the redox reaction near the binding site between copper and DNA. Based on these data, we proposed that the synergistic DNA damage induced by CAPE/Cu(II) might be due to the competitive binding between CAPE and DNA with Cu, and site-specific production of OH near the binding site of copper with DNA. Our findings may have broad biological implications for future research on the pro-oxidative effects of phenolic compounds in the presence of transition metals.
Collapse
Affiliation(s)
- Bo Shao
- School of Public Health, Jining Medical University, Jining, Shandong, 272067, PR China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Li Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Rong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Zhao-Qiang Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Li Lin
- School of Public Health, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Chun-Zhi Zhang
- School of Public Health, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences and University of Chinese Academy of Sciences, The Chinese Academy of Sciences, Beijing, 100085, PR China; Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Beijing, PR China.
| |
Collapse
|
17
|
Campos A, Pereira R, Vaz A, Caetano T, Malta M, Oliveira J, Carvalho FP, Mendo S, Lourenço J. Metals and low dose IR: Molecular effects of combined exposures using HepG2 cells as a biological model. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122634. [PMID: 32304850 DOI: 10.1016/j.jhazmat.2020.122634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Uranium mining sites produce residues rich in metals and radionuclides, that may contaminate all environmental matrices, exposing human and non-human biota to low doses of ionizing radiation (LDIR) and to the chemical toxicity of several metals. To date, experimental and radio-epidemiological studies do not provide conclusive evidence of LDIR induced cancer. However, co-exposures (LDIR plus other contaminants), may increase the risks. To determine the potential for genotoxic effects in human cells induced by the exposure to LDIR plus metals, HEPG2 cells were exposed to different concentrations of a uranium mine effluent for 96 h. DNA damage was evaluated using the comet assay and changes in the expression of tumor suppressor and oncogenes were determined using qPCR. Results show that effluent concentrations higher than 5%, induce significant DNA damage. Also, a significant under-expression of ATM and TP53 genes and a significant overexpression of GADD45a gene was observed. Results show that the exposure to complex mixtures cannot be disregarded, as effects were detected at very low doses. This study highlights the need for further studies to clarify the risks of exposure to LDIR along with other stressors, to fully review the IR exposure risk limits established for human and non-human biota.
Collapse
Affiliation(s)
- A Campos
- ICBAS & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - R Pereira
- ICBAS & Department of Biology, Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; GreenUPorto- Sustainable Agrifood Production Research Centre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - A Vaz
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - T Caetano
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - M Malta
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, Km 139, 2695-066 Bobadela LRS, Portugal.
| | - J Oliveira
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, Km 139, 2695-066 Bobadela LRS, Portugal.
| | - F P Carvalho
- Instituto Superior Técnico/Laboratório de Proteccão e Segurança Radiológica, Universidade de Lisboa, Estrada Nacional 10, Km 139, 2695-066 Bobadela LRS, Portugal.
| | - S Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - J Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
18
|
Miao J, Xu M, Kuang Y, Pan S, Hou J, Cao P, Duan X, Chang Y, Hasem H, Zhou N, Tan K, Fan Y. Deferasirox protects against hydrogen peroxide-induced cell apoptosis by inhibiting ubiquitination and degradation of p21 WAF1/CIP1. Biochem Biophys Res Commun 2020; 524:736-743. [PMID: 32035614 DOI: 10.1016/j.bbrc.2020.01.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Abstract
Deferasirox (DFX) is an iron chelator approved for the treatment of iron overload diseases. However, the role of DFX in oxidative stress-induced cell apoptosis and the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this study, we found that DFX rendered resistant to H2O2-induced apoptosis in HEK293T cells, reduced the intracellular levels of the labile iron pool (LIP) and oxidative stress induced by H2O2. Furthermore, DFX inhibited the ubiquitination and degradation of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) via modulation of the interaction of p21 with SCF-Skp2. DFX also showed the inhibition effect on the activation of c-Jun N-terminal kinase (JNK), pro-caspase-3 and related mitochondrial apoptosis pathway induced by H2O2. These results provide novel insights into the molecular mechanism underpinning iron-mediated oxidative stress and apoptosis, and they may represent a promising target for therapeutic interventions in related pathological conditions.
Collapse
Affiliation(s)
- Junhua Miao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Mutao Xu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Yuhuan Kuang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Shuhong Pan
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Jianyuan Hou
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Pengxiu Cao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China
| | - Habelhah Hasem
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, United States
| | - Nan Zhou
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China; Department of Gynecolog, Xingtai People's Hospital, Xingtai, 054031, PR China
| | - Ke Tan
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Yumei Fan
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China; Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, United States.
| |
Collapse
|
19
|
Iron homeostasis and oxidative stress: An intimate relationship. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118535. [DOI: 10.1016/j.bbamcr.2019.118535] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/23/2019] [Accepted: 08/18/2019] [Indexed: 02/07/2023]
|
20
|
Zahedi K, Barone S, Soleimani M. Polyamine Catabolism in Acute Kidney Injury. Int J Mol Sci 2019; 20:E4790. [PMID: 31561575 PMCID: PMC6801762 DOI: 10.3390/ijms20194790] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) refers to an abrupt decrease in kidney function. It affects approximately 7% of all hospitalized patients and almost 35% of intensive care patients. Mortality from acute kidney injury remains high, particularly in critically ill patients, where it can be more than 50%. The primary causes of AKI include ischemia/reperfusion (I/R), sepsis, or nephrotoxicity; however, AKI patients may present with a complicated etiology where many of the aforementioned conditions co-exist. Multiple bio-markers associated with renal damage, as well as metabolic and signal transduction pathways that are involved in the mediation of renal dysfunction have been identified as a result of the examination of models, patient samples, and clinical data of AKI of disparate etiologies. These discoveries have enhanced our ability to diagnose AKIs and to begin to elucidate the mechanisms involved in their pathogenesis. Studies in our laboratory revealed that the expression and activity of spermine/spermidine N1-acetyltransferase (SAT1), the rate-limiting enzyme in polyamine back conversion, were enhanced in kidneys of rats after I/R injury. Additional studies revealed that the expression of spermine oxidase (SMOX), another critical enzyme in polyamine catabolism, is also elevated in the kidney and other organs subjected to I/R, septic, toxic, and traumatic injuries. The maladaptive role of polyamine catabolism in the mediation of AKI and other injuries has been clearly demonstrated. This review will examine the biochemical and mechanistic basis of tissue damage brought about by enhanced polyamine degradation and discuss the potential of therapeutic interventions that target polyamine catabolic enzymes or their byproducts for the treatment of AKI.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Sharon Barone
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Manoocher Soleimani
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
21
|
Pospíšil P, Prasad A, Rác M. Mechanism of the Formation of Electronically Excited Species by Oxidative Metabolic Processes: Role of Reactive Oxygen Species. Biomolecules 2019; 9:E258. [PMID: 31284470 PMCID: PMC6681336 DOI: 10.3390/biom9070258] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/07/2023] Open
Abstract
It is well known that biological systems, such as microorganisms, plants, and animals, including human beings, form spontaneous electronically excited species through oxidative metabolic processes. Though the mechanism responsible for the formation of electronically excited species is still not clearly understood, several lines of evidence suggest that reactive oxygen species (ROS) are involved in the formation of electronically excited species. This review attempts to describe the role of ROS in the formation of electronically excited species during oxidative metabolic processes. Briefly, the oxidation of biomolecules, such as lipids, proteins, and nucleic acids by ROS initiates a cascade of reactions that leads to the formation of triplet excited carbonyls formed by the decomposition of cyclic (1,2-dioxetane) and linear (tetroxide) high-energy intermediates. When chromophores are in proximity to triplet excited carbonyls, the triplet-singlet and triplet-triplet energy transfers from triplet excited carbonyls to chromophores result in the formation of singlet and triplet excited chromophores, respectively. Alternatively, when molecular oxygen is present, the triplet-singlet energy transfer from triplet excited carbonyls to molecular oxygen initiates the formation of singlet oxygen. Understanding the mechanism of the formation of electronically excited species allows us to use electronically excited species as a marker for oxidative metabolic processes in cells.
Collapse
Affiliation(s)
- Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
22
|
Ghassemi-Rad J, Maleki M, Knickle AF, Hoskin DW. Myricetin-induced oxidative stress suppresses murine T lymphocyte activation. Cell Biol Int 2018; 42:1069-1075. [PMID: 29745443 DOI: 10.1002/cbin.10977] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 12/12/2022]
Abstract
A number of polyphenolic compounds present in fruits and vegetables have the capacity to modulate immune responses; however, the impact of the common plant-derived flavonoid myricetin on T lymphocyte function has not been investigated. We show that myricetin inhibited mouse T lymphocyte activation by bead-immobilized anti-CD3 and anti-CD28 monoclonal antibodies, as indicated by a dose-dependent reduction in cell proliferation and decreased synthesis of interferon-γ, interleukin (IL)-2, IL-4, and IL-17 associated with different T helper cell subsets. This effect was attributed to myricetin-induced reactive oxygen species (ROS) since myricetin caused hydrogen peroxide (H2 O2 ) to accumulate in cell-free culture medium and H2 O2 inhibited T cell proliferation and cytokine synthesis. In addition, the antioxidant N-acetyl cysteine restored the ability of myricetin-treated T lymphocytes to proliferate in response to a mitogenic stimulus. The presence of dendritic cells or bone marrow-derived macrophages negated the inhibitory effect of myricetin on T cell activation, and H2 O2 in T cell cultures that were treated with exogenous H2 O2 was reduced when antigen-presenting cells were also present. These findings suggest that antioxidant molecules produced by dendritic cells and macrophages protected T cells from myricetin-induced oxidative stress, and underscore the importance of considering immune cell interactions when evaluating the immunomodulatory activity of ROS-generating phytochemicals.
Collapse
Affiliation(s)
| | - Mahdis Maleki
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Allison F Knickle
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - David W Hoskin
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Surgery, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
23
|
Ding L, Chen S, Zhang W, Zhang Y, Wang XD. Fully Reversible Optical Sensor for Hydrogen Peroxide with Fast Response. Anal Chem 2018; 90:7544-7551. [DOI: 10.1021/acs.analchem.8b01159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Longjiang Ding
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Siyu Chen
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Wei Zhang
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Yinglu Zhang
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Xu-dong Wang
- Department of Chemistry, Fudan University, 200433 Shanghai, People’s Republic of China
| |
Collapse
|
24
|
Knickle A, Fernando W, Greenshields AL, Rupasinghe HPV, Hoskin DW. Myricetin-induced apoptosis of triple-negative breast cancer cells is mediated by the iron-dependent generation of reactive oxygen species from hydrogen peroxide. Food Chem Toxicol 2018; 118:154-167. [PMID: 29742465 DOI: 10.1016/j.fct.2018.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/30/2022]
Abstract
Myricetin is a dietary phytochemical with anticancer activity; however, the effect of myricetin on breast cancer cells remains unclear. Here, we show that myricetin inhibited the growth of triple-negative breast cancer (TNBC) cells but was less inhibitory for normal cells. The effect of myricetin was comparable to epigallocatechin gallate and doxorubicin, and greater than resveratrol and cisplatin. Myricetin-treated TNBC cells showed evidence of early and late apoptosis/necrosis, which was associated with intracellular reactive oxygen species (ROS) accumulation, extracellular regulated kinase 1/2 and p38 mitogen-activated protein kinase activation, mitochondrial membrane destabilization and cytochrome c release, and double-strand DNA breaks. The antioxidant N-acetyl-cysteine protected myricetin-treated TNBC cells from cytotoxicity due to DNA damage. Myricetin also induced hydrogen peroxide (H2O2) production in cell-free culture medium, as well as in the presence of TNBC cells and normal cells. In addition, deferiprone-mediated inhibition of intracellular ROS generation via the iron-dependent Fenton reaction and inhibition of extracellular ROS accumulation with superoxide dismutase plus catalase prevented myricetin-induced cytotoxicity in TNBC cell cultures. We conclude that the cytotoxic effect of myricetin on TNBC cells was due to oxidative stress initiated by extracellular H2O2 formed by autoxidation of myricetin, leading to intracellular ROS production via the Fenton reaction.
Collapse
Affiliation(s)
- Allison Knickle
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Wasundara Fernando
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anna L Greenshields
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - H P Vasantha Rupasinghe
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - David W Hoskin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Surgery, Faculty of Medicine, Dalhousie University, Nova Scotia, Canada.
| |
Collapse
|
25
|
Gerogianni PS, Chatziathanasiadou MV, Diamantis DA, Tzakos AG, Galaris D. Lipophilic ester and amide derivatives of rosmarinic acid protect cells against H 2O 2-induced DNA damage and apoptosis: The potential role of intracellular accumulation and labile iron chelation. Redox Biol 2018; 15:548-556. [PMID: 29413966 PMCID: PMC5975196 DOI: 10.1016/j.redox.2018.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
Phenolic acids represent abundant components contained in human diet. However, the negative charge in their carboxylic group limits their capacity to diffuse through biological membranes, thus hindering their access to cell interior. In order to promote the diffusion of rosmarinic acid through biological membranes, we synthesized several lipophilic ester- and amide-derivatives of this compound and evaluated their capacity to prevent H2O2-induced DNA damage and apoptosis in cultured human cells. Esterification of the carboxylic moiety with lipophilic groups strongly enhanced the capacity of rosmarinic acid to protect cells. On the other hand, the amide-derivatives were somewhat less effective but exerted less cytotoxicity at high concentrations. Cell uptake experiments, using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS), illustrated different levels of intracellular accumulation among the ester- and amide-derivatives, with the first being more effectively accumulated, probably due to their extensive hydrolysis inside the cells. In conclusion, these results highlight the hitherto unrecognized fundamental importance of derivatization of diet-derived phenolic acids to unveil their biological potential.
Collapse
Affiliation(s)
- Paraskevi S Gerogianni
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Maria V Chatziathanasiadou
- Laboratory of Organic Chemistry and Biochemistry, School of Natural Sciences, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios A Diamantis
- Laboratory of Organic Chemistry and Biochemistry, School of Natural Sciences, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Andreas G Tzakos
- Laboratory of Organic Chemistry and Biochemistry, School of Natural Sciences, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Galaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
26
|
Anichini C, Lotti F, Longini M, Felici C, Proietti F, Buonocore G. Antioxidant Strategies in Genetic Syndromes with High Neoplastic Risk in Infant Age. TUMORI JOURNAL 2018. [DOI: 10.1177/1778.19256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cecilia Anichini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Federica Lotti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cosetta Felici
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Fabrizio Proietti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
27
|
Akhtar MF, Ashraf M, Javeed A, Anjum AA, Sharif A, Saleem M, Mustafa G, Ashraf M, Saleem A, Akhtar B. Association of textile industry effluent with mutagenicity and its toxic health implications upon acute and sub-chronic exposure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:179. [PMID: 29492685 DOI: 10.1007/s10661-018-6569-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/20/2018] [Indexed: 06/08/2023]
Abstract
Complex industrial discharges pose certain risks to the ecosystem. This study was aimed at identifying acute and sub-chronic toxicological effects of the textile industry wastewater. The textile wastewater was evaluated for the metals and organic pollutants by atomic absorption spectrophotometer and GC-MS respectively. In vitro genotoxicity and mutagenicity were assessed by Comet assay in peripheral lymphocytes isolated from Ovis aries and Ames test in Salmonella typhimurium strains TA-100 and 102 respectively. Physiological and behavioral changes along with systemic toxicity were determined in Rattus norvegicus albinus following acute and sub-chronic exposure. High amount of heavy metals such as Cr, Pb, Hg, As, and Cd were detected in textile wastewater. Organic pollutants such as 25-deacetoxy cucurbitacin-b, E-14-Hexadecenal, 11-Tricosene, and phthalates were also found. In vitro genotoxicity assessment in lymphocytes showed statistically significant DNA damaging potential of textile wastewater. Textile wastewater also showed significantly higher (p˂ 0.05) mutagenic potential in Salmonella TA-100 and TA-102 strains than sodium azide and 2-amino anthracycline. Acute exposure of textile wastewater to Rattus norvegicus was associated with several physiological changes and behavioral symptoms. Sub-chronic exposure of textile wastewater in Rattus norvegicus instigated the degeneration and necrosis of epithelial cells in renal tubules, hydropic degeneration and necrosis of hepatocytes, peri-bronchiolar infiltration and emphysema of the alveoli, and the degradation of myocardial cells. This study concludes that the textile wastewater may cause genotoxicity and mutagenicity, result in physiological and behavioral changes upon acute exposure, and inflict various pathological lesions upon sub-chronic exposure.
Collapse
Affiliation(s)
- Muhammad Furqan Akhtar
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan.
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Muhammad Ashraf
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aqeel Javeed
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Aftab Ahmad Anjum
- Department of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology and Toxicology, University of Veterinary and Animal Sciences, Lahore, Pakistan
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Mohammad Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Mustafa
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Moneeb Ashraf
- Post Graduate Medical Institute, Jail Road, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Bushra Akhtar
- Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
28
|
Sloots J, Lalonde W, Reid B, Millman J. Kastle-Meyer blood test reagents are deleterious to DNA. Forensic Sci Int 2017; 281:141-146. [PMID: 29128654 DOI: 10.1016/j.forsciint.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 11/17/2022]
Abstract
The Kastle-Meyer (KM) test is a quick and easy chemical test for blood used in forensic analyses. Two practical variations of this test are the KM-rub (indirect) test and the more sensitive KM-direct test, the latter of which is performed by applying reagents directly to a suspected blood stain. This study found that sodium hydroxide present in the KM reagents eliminated the potential to generate a DNA profile when applied directly to small quantities of blood. A modified approach to the KM-rub test that increases its sensitivity is presented as a method to replace destructive KM-direct testing.
Collapse
Affiliation(s)
- James Sloots
- Centre of Forensic Sciences, 25 Morton Shulman Ave, Toronto, ON M3M 0B1, Canada
| | - Wendy Lalonde
- Centre of Forensic Sciences, 25 Morton Shulman Ave, Toronto, ON M3M 0B1, Canada
| | - Barbara Reid
- Centre of Forensic Sciences, 25 Morton Shulman Ave, Toronto, ON M3M 0B1, Canada
| | - Jonathan Millman
- Centre of Forensic Sciences, 25 Morton Shulman Ave, Toronto, ON M3M 0B1, Canada.
| |
Collapse
|
29
|
Abel S. Phosphate scouting by root tips. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:168-177. [PMID: 28527590 DOI: 10.1016/j.pbi.2017.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 05/21/2023]
Abstract
Chemistry assigns phosphate (Pi) dominant roles in metabolism; however, it also renders the macronutrient a genuinely limiting factor of plant productivity. Pi bioavailability is restricted by low Pi mobility in soil and antagonized by metallic toxicities, which force roots to actively seek and selectively acquire the vital element. During the past few years, a first conceptual outline has emerged of the sensory mechanisms at root tips, which monitor external Pi and transmit the edaphic cue to inform root development. This review highlights new aspects of the Pi acquisition strategy of Arabidopsis roots, as well as a framework of local Pi sensing in the context of antagonistic interactions between Pi and its major associated metallic cations, Fe3+ and Al3+.
Collapse
Affiliation(s)
- Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany; Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Zahedi K, Barone S, Destefano-Shields C, Brooks M, Murray-Stewart T, Dunworth M, Li W, Doherty JR, Hall MA, Smith RD, Cleveland JL, Casero RA, Soleimani M. Activation of endoplasmic reticulum stress response by enhanced polyamine catabolism is important in the mediation of cisplatin-induced acute kidney injury. PLoS One 2017; 12:e0184570. [PMID: 28886181 PMCID: PMC5590979 DOI: 10.1371/journal.pone.0184570] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX) increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI). Using gene knockout and chemical inhibitors, the role of polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neutralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, significantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the induction of SSAT and elevated polyamine catabolism in cells increases the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) and enhances the expression of binding immunoglobulin protein BiP/GRP78) and CCAAT-enhancer-binding protein homologous protein (CHOP/GADD153). The increased expression of these endoplasmic reticulum stress response (ERSR) markers was accompanied by the activation of caspase-3. These results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular damage through the induction of ERSR and the consequent onset of apoptosis. In support of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutralization of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and CHOP) and apoptosis (e.g. reduced activated caspase-3). These studies indicate that enhanced polyamine catabolism and its toxic products are important mediators of ERSR and critical to the pathogenesis of cisplatin AKI.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| | - Sharon Barone
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| | - Christina Destefano-Shields
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marybeth Brooks
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Tracy Murray-Stewart
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew Dunworth
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Weimin Li
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States of America
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Joanne R. Doherty
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Mark A. Hall
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Roger D. Smith
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - John L. Cleveland
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL, United States of America
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Manoocher Soleimani
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH, United States of America
| |
Collapse
|
31
|
Gureev AP, Shaforostova EA, Starkov AA, Popov VN. Simplified qPCR method for detecting excessive mtDNA damage induced by exogenous factors. Toxicology 2017; 382:67-74. [PMID: 28286206 DOI: 10.1016/j.tox.2017.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/08/2023]
Abstract
Damage to mitochondrial DNA (mtDNA) is a meaningful biomarker for evaluating genotoxicity of drugs and environmental toxins. Existing PCR methods utilize long mtDNA fragments (∼8-10kb), which complicates detecting exact sites of mtDNA damage. To identify the mtDNA regions most susceptible to damage, we have developed and validated a set of primers to amplify ∼2kb long fragments, while covering over 95% of mouse mtDNA. We have modified the detection method by greatly increasing the enrichment of mtDNA, which allows us solving the problem of non-specific primer annealing to nuclear DNA. To validate our approach, we have determined the most damage-susceptible mtDNA regions in mice treated in vivo and in vitro with rotenone and H2O2. The GTGR-sequence-enriched mtDNA segments located in the D-loop region were found to be especially susceptible to damage. Further, we demonstrate that H2O2-induced mtDNA damage facilitates the relaxation of mtDNA supercoiled conformation, making the sequences with minimal damage more accessible to DNA polymerase, which, in turn, results in a decrease in threshold cycle value. Overall, our modified PCR method is simpler and more selective to the specific sites of damage in mtDNA.
Collapse
Affiliation(s)
- Artem P Gureev
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Ekaterina A Shaforostova
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| | - Anatoly A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, USA.
| | - Vasily N Popov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, Voronezh, Russia
| |
Collapse
|
32
|
Bhuvaneshwari M, Kumar D, Roy R, Chakraborty S, Parashar A, Mukherjee A, Chandrasekaran N, Mukherjee A. Toxicity, accumulation, and trophic transfer of chemically and biologically synthesized nano zero valent iron in a two species freshwater food chain. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:63-75. [PMID: 28024216 DOI: 10.1016/j.aquatox.2016.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
The impact of bio-remediation agent nZVI on environment is still inadequately understood, especially on aquatic food web. The study presented here has therefore considered both chemical (CS) and biological (BS) synthetic origins of nZVI and their effects on both algae and daphnia. The study is unique in its attempt to explore the possibility of trophic transfer from algae to its immediate higher niche (daphnia as the model). An equal weightage of the effects of both CS and BS nZVI on algae and daphnia has been explored here; hence it allows us to compare the capping of nZVI on toxicity. To examine the causes of observed lethality- ROS generation, effects on the activity of oxidative enzymes, membrane damage and biouptake of nZVI was analysed. The overall outcome of CS and BS nZVI on lethality was significantly different in algae and daphnia, where daphnia demonstrated relatively higher sensitivity against CS nZVI. Algae demonstrated considerable differences in CS and BS nZVI toxicity only at higher concentration. This study did not show a probable biomagnification and trophic transfer from algae to daphnia under the experimental conditions even at the highest exposure concentration. The study instigates the importance of trophic transfer to understand the possible biomagnification of nZVI among organisms of different trophic levels and eventually the consequences on environment.
Collapse
Affiliation(s)
- M Bhuvaneshwari
- Centre for Nanobiotechnology, VIT University, Vellore, India
| | - Deepak Kumar
- Centre for Nanobiotechnology, VIT University, Vellore, India
| | - Rajdeep Roy
- Centre for Nanobiotechnology, VIT University, Vellore, India
| | | | | | - Anita Mukherjee
- Department of Botany, University of Calcutta, Kolkata, India
| | | | | |
Collapse
|
33
|
Li F, Huang CH, Xie LN, Qu N, Shao J, Shao B, Zhu BZ. An Exceptionally Facile Two-Step Structural Isomerization and Detoxication via a Water-Assisted Double Lossen Rearrangement. Sci Rep 2016; 6:39207. [PMID: 28008985 PMCID: PMC5180244 DOI: 10.1038/srep39207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022] Open
Abstract
N-hydroxyphthalimide (NHPI), which is best known as an organocatalyst for efficient C-H activation, has been found to be oxidized by quinoid compounds to its corresponding catalytically active nitroxide-radical. Here, we found that NHPI can be isomerized into isatoic anhydride by an unusually facile two-step method using tetrachloro-1,4-benzoquinone (TCBQ, p-chloranil), accompanied by a two-step hydrolytic dechlorination of highly toxic TCBQ into the much less toxic dihydroxylation product, 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid). Interestingly, through the complementary application of oxygen-18 isotope-labeling, HPLC combined with electrospray ionization quadrupole time-of-flight and high resolution Fourier transform ion cyclotron resonance mass spectrometric studies, we determined that water was the source and origin of oxygen for isatoic anhydride. Based on these data, we proposed that nucleophilic attack with a subsequent water-assisted Lossen rearrangement coupled with rapid intramolecular addition and cyclization in two consecutive steps was responsible for this unusual structural isomerization of NHPI and concurrent hydroxylation/detoxication of TCBQ. This is the first report of an exceptionally facile double-isomerization of NHPI via an unprecedented water-assisted double-Lossen rearrangement under normal physiological conditions. Our findings may have broad implications for future research on hydroxamic acids and polyhalogenated quinoid carcinogens, two important classes of compounds of major chemical and biological interest.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Lin-Na Xie
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Na Qu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Bo Shao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, PR China
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
34
|
Mantzaris MD, Bellou S, Skiada V, Kitsati N, Fotsis T, Galaris D. Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis. Free Radic Biol Med 2016; 97:454-465. [PMID: 27387771 DOI: 10.1016/j.freeradbiomed.2016.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/15/2016] [Accepted: 07/04/2016] [Indexed: 01/14/2023]
Abstract
Hydrogen peroxide (H2O2) acts as a second messenger in signal transduction participating in several redox regulated pathways, including cytokine and growth factor stimulated signals. However, the exact molecular mechanisms underlying these processes remain poorly understood and require further investigation. In this work, using Jurkat T lymphoma cells and primary human umbilical vein endothelial cells, it was observed that changes in intracellular "labile iron" were able to modulate signal transduction in H2O2-induced apoptosis. Chelation of intracellular labile iron by desferrioxamine rendered cells resistant to H2O2-induced apoptosis. In order to identify the exact points of iron action, we investigated selected steps in H2O2-mediated apoptotic pathway, focusing on mitogen activated protein kinases (MAPKs) JNK, p38 and ERK. It was observed that spatiotemporal changes in intracellular labile iron, induced by H2O2, influenced the oxidation pattern of the upstream MAP3K ASK1 and promoted the sustained activation of JNK-p38 axis in a defined time-dependent context. Moreover, we indicate that H2O2 induced spatiotemporal changes in intracellular labile iron, at least in part, by triggering the destabilization of lysosomal compartments, promoting a concomitant early response in proteins of iron homeostasis. These results raise the possibility that iron-mediated oxidation of distinct proteins may be implicated in redox signaling processes. Since labile iron can be pharmacologically modified in vivo, it may represent a promising target for therapeutic interventions in related pathological conditions.
Collapse
Affiliation(s)
- M D Mantzaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - S Bellou
- Foundation for Research & Technology-Hellas, Institute of Molecular Biology & Biotechnology, Department of Biomedical Research, Ioannina, Greece
| | - V Skiada
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - N Kitsati
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece
| | - T Fotsis
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece; Foundation for Research & Technology-Hellas, Institute of Molecular Biology & Biotechnology, Department of Biomedical Research, Ioannina, Greece
| | - D Galaris
- Laboratory of Biological Chemistry, School of Health Sciences, Faculty of Medicine, University of Ioannina, Greece.
| |
Collapse
|
35
|
Yirsaw BD, Mayilswami S, Megharaj M, Chen Z, Naidu R. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9822-9831. [PMID: 26856861 DOI: 10.1007/s11356-016-6193-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/27/2016] [Indexed: 06/05/2023]
Abstract
In this study, the influence of soil types on the effect of the commercial form of C-nZVI on tissue concentrations, cellular component, reproduction outcome in Eisenia fetida, and the soil health was investigated. C-nZVI at concentration level of 3 g kg(-1) soil showed no effect on the survival of E. fetida in the three soil types. However, varying effects such as concentration-dependent increase in tissue iron concentration, lipid peroxidation, and damage to DNA molecules by C-nZVI were observed. C-nZVI at an exposure concentration of 60 mg kg(-1) soil induced oxidative stress in E. fetida. Tissue Fe concentration appeared correlated to the DNA damage. Oxidative stress and DNA damage may explain the toxicity mechanisms of nZVI to E. fetida. Graphical Abstract Reactive oxygen species induced by nZVI.
Collapse
Affiliation(s)
- Biruck Desalegn Yirsaw
- Division of Information Technology, Engineering, and The Environment, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, SA 5095, Australia.
| | - Srinithi Mayilswami
- Division of Information Technology, Engineering, and The Environment, University of South Australia, CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), Mawson Lakes, SA 5095, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, Australia
| | - Zuliang Chen
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, University of Newcastle, Newcastle, Australia
| |
Collapse
|
36
|
Prasad A, Kikuchi H, Inoue KY, Suzuki M, Sugiura Y, Sugai T, Tomonori A, Tada M, Kobayashi M, Matsue T, Kasai S. Simultaneous Real-Time Monitoring of Oxygen Consumption and Hydrogen Peroxide Production in Cells Using Our Newly Developed Chip-Type Biosensor Device. Front Physiol 2016; 7:109. [PMID: 27065878 PMCID: PMC4810025 DOI: 10.3389/fphys.2016.00109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
All living organisms bear its defense mechanism. Immune cells during invasion by foreign body undergoes phagocytosis during which monocyte and neutrophil produces reactive oxygen species (ROS). The ROS generated in animal cells are known to be involved in several diseases and ailments, when generated in excess. Therefore, if the ROS generated in cells can be measured and analyzed precisely, it can be employed in immune function evaluation and disease detection. The aim of the current study is to introduce our newly developed chip-type biosensor device with high specificity and sensitivity. It comprises of counter electrode and working electrodes I and II. The counter electrode is a platinum plate while the working electrodes I and II are platinum microelectrode and osmium-horseradish peroxidase modified gold electrode, respectively which acts as oxygen and hydrogen peroxide (H2O2) detection sensors. Simultaneous measurement of oxygen consumption and H2O2 generation were measured in animal cells under the effect of exogenous addition of differentiation inducer, phorbol 12-myristate 13-acetate. The results obtained showed considerable changes in reduction currents in the absence and presence of inducer. Our newly developed chip-type biosensor device is claimed to be a useful tool for real-time monitoring of the respiratory activity and precise detection of H2O2 in cells. It can thus be widely applied in biomedical research and in clinical trials being an advancement over other H2O2 detection techniques.
Collapse
Affiliation(s)
- Ankush Prasad
- Biomedical Engineering Research Center, Tohoku Institute of Technology Sendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Kumi Y Inoue
- Graduate School of Environmental Studies, School of Engineering, Advanced Institute for Materials Research, Tohoku University Sendai, Japan
| | - Makoto Suzuki
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Yamato Sugiura
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Tomoya Sugai
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Amano Tomonori
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology Sendai, Japan
| | - Mika Tada
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan; Center for General Education, Tohoku Institute of TechnologySendai, Japan
| | - Masaki Kobayashi
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan; Graduate Department of Electronics, Tohoku Institute of TechnologySendai, Japan
| | - Tomokazu Matsue
- Graduate School of Environmental Studies, School of Engineering, Advanced Institute for Materials Research, Tohoku University Sendai, Japan
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of TechnologySendai, Japan; Graduate Department of Environmental Information Engineering, Tohoku Institute of TechnologySendai, Japan
| |
Collapse
|
37
|
Zhao D, Shah NP. Synergistic Application of Black Tea Extracts and Lactic Acid Bacteria in Protecting Human Colonocytes against Oxidative Damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2238-2246. [PMID: 26790920 DOI: 10.1021/acs.jafc.5b05742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In view of the potential of lactic acid bacteria (LAB) to enhance the antioxidant activity of food products, this work explored the effectiveness of LAB fermented black tea samples in alleviating H2O2-induced oxidative stress in human colonocytes. The antioxidant capacity of tea samples was evaluated in terms of cyto-protectiveness, mitochondria membrane potential (Δψm)-stabilizing activity, ROS-inhibitory effect, and antioxidant enzyme-modulating activity. The effect on oxidative DNA damage and repair was studied in CCD 841 by comet assay. Results showed that the protective effect of tea pretreatment was more pronounced in normal cells (CCD 841) than in carcinomas (Caco-2), and fermented samples were invariably more effective. Higher cell viability and Δψm were maintained and ROS production was markedly inhibited with tea pretreatment. The fermented tea samples also remarkably stimulated DNA repair, resulting in fewer strand breaks and oxidative lesions. Our study implied that LAB fermentation may be an efficient way to enhance the antioxidative effectiveness of black tea flavonoid-enriched foods.
Collapse
Affiliation(s)
- Danyue Zhao
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong , Pokfulam Road, Hong Kong, China
| |
Collapse
|
38
|
Fustinoni-Reis AM, Arruda SF, Dourado LPS, da Cunha MSB, Siqueira EMA. Tucum-Do-Cerrado (Bactris setosa Mart.) Consumption Modulates Iron Homeostasis and Prevents Iron-Induced Oxidative Stress in the Rat Liver. Nutrients 2016; 8:38. [PMID: 26901220 PMCID: PMC4772024 DOI: 10.3390/nu8020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
This study investigated the effect of tucum-do-cerrado consumption in the oxidative status of iron-supplemented rats. Four groups of rats were treated: Control (AIN-93G), Tuc (AIN-93G added of tucum-do-cerrado), Fe (AIN-93G iron-enriched), or TucFe (AIN-93G with tucum-do-cerrado and iron-enriched) diet, for 30 days. Iron-enriched diet increased serum, liver, spleen, and intestine iron levels; transferrin saturation; liver lipid oxidation; mRNA levels of hepatic Hamp and Bmp6, and Nrf2 in the intestine. Tucum-do-cerrado consumption reduced spleen lipid and protein oxidation; mRNA levels of hepatic Hamp and Ftl, and increased serum antioxidant capacity and hepatic mRNA levels of Bmp6, Hmox1, Nqo1, and Nrf2. TucFe diet consumption abrogated the liver Hamp iron-induced up-regulation, prevented intestinal iron accumulation; hepatic lipid peroxidation; splenic protein damage, and the increase of catalase, glutathione reductase, and glutathione peroxidase activity in some tissues. These results suggest that tucum-do-cerrado protects tissues against oxidative damage, by reducing iron availability in liver and consequently inhibiting liver Hamp expression.
Collapse
Affiliation(s)
- Adriana M Fustinoni-Reis
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| | - Sandra F Arruda
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| | - Lívia P S Dourado
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| | - Marcela S B da Cunha
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| | - Egle M A Siqueira
- Department of Cell Biology, Biological Sciences Institute, Campus Universitário Darcy Ribeiro, Universidade de Brasília, 70.910-900 Brasília, DF, Brazil.
| |
Collapse
|
39
|
Ta MHT, Liuwantara D, Rangan GK. Effects of pyrrolidine dithiocarbamate on proliferation and nuclear factor-κB activity in autosomal dominant polycystic kidney disease cells. BMC Nephrol 2015; 16:212. [PMID: 26666710 PMCID: PMC4678764 DOI: 10.1186/s12882-015-0193-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/24/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Pyrrolidine dithiocarbamate (PDTC) reduces renal cyst growth in a rodent model of polycystic kidney disease (PKD) but the mechanism of action is not clear. Here, we investigated the hypothesis that PDTC reduces the proliferation of cystic epithelial cells in vitro in a nuclear factor (NF)-κB-dependent manner. METHODS Immortalized autosomal dominant PKD (ADPKD) cells that are heterozygous (WT9-7) and homozygous (WT-9-12) for a truncating Pkd1 mutation, and immortalized normal human tubular cells (HK-2), were exposed to NF-κB-inducing agents with or without PDTC. Cell proliferation and apoptosis were assessed by bromodeoxyuridine assay and Annexin V flow cytometry, respectively. NF-κB activity was assessed by luciferase reporter assay and western blotting for nuclear p65, p50, and RelB subunits and cytoplasmic phosphorylated-IκBα. RESULTS Serum-induced proliferation was similar in all cell lines over 72 h. PDTC demonstrated anti-proliferative effects that were delayed in ADPKD cells compared to HK-2. Basal NF-κB-dependent luciferase reporter activity was lower in ADPKD cells compared to normal cells. Classical NF-κB stimulants, lipopolysaccharide (LPS) and tumor necrosis factor (TNF)-α, increased NF-κB luciferase activity in HK-2, whereas in PKD cell lines, NF-κB activity was only induced by TNF-α. However, neither stimulant altered proliferation in any cell line. PDTC reduced TNF-α-stimulated NF-κB activity in HK-2 only. CONCLUSIONS PDTC reduced proliferation in ADPKD cells but did not consistently alter NF-κB activation, suggesting that other signalling pathways are likely to be involved in its ability to attenuate renal cyst growth in vivo.
Collapse
Affiliation(s)
- Michelle H T Ta
- Centre for Transplant and Renal Research, Level 5, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia.
| | - David Liuwantara
- Centre for Transplant and Renal Research, Level 5, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia.
| | - Gopala K Rangan
- Centre for Transplant and Renal Research, Level 5, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Rd, Westmead, NSW, 2145, Australia.
| |
Collapse
|
40
|
Kim HE, Nguyen TTM, Lee H, Lee C. Enhanced Inactivation of Escherichia coli and MS2 Coliphage by Cupric Ion in the Presence of Hydroxylamine: Dual Microbicidal Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14416-14423. [PMID: 26575593 DOI: 10.1021/acs.est.5b04310] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The inactivation of Escherichia coli and MS2 coliphage by Cu(II) is found to be significantly enhanced in the presence of hydroxylamine (HA). The addition of a small amount of HA (i.e., 5-20 μM) increased the inactivation efficacies of E. coli and MS2 coliphage by 5- to 100-fold, depending on the conditions. Dual effects were anticipated to enhance the biocidal activity of Cu(II) by the addition of HA, viz. (i) the accelerated reduction of Cu(II) into Cu(I) (a stronger biocide) and (ii) the production of reactive oxidants from the reaction of Cu(I) with dissolved oxygen (evidenced by the oxidative transformation of methanol into formaldehyde). Deaeration enhanced the inactivation of E. coli but slightly decreased the inactivation efficacy of MS2 coliphage. The addition of 10 μM hydrogen peroxide (H2O2) greatly enhanced the MS2 inactivation, whereas the same concentration of H2O2 did not significantly affect the inactivation efficacy of E. coli Observations collectively indicate that different biocidal actions lead to the inactivation of E. coli and MS2 coliphage. The toxicity of Cu(I) is dominantly responsible for the E. coli inactivation. However, for the MS2 coliphage inactivation, the oxidative damage induced by reactive oxidants is as important as the effect of Cu(I).
Collapse
Affiliation(s)
- Hyung-Eun Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan, 689-798, Republic of Korea
| | - Thuy T M Nguyen
- Power Engineering Consulting Joint Stock Company 2 (PECC2) , 32 Ngo Thoi Nhiem str., Ward 7, District 3, Ho Chi Minh City, Vietnam
| | - Hongshin Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan, 689-798, Republic of Korea
| | - Changha Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan, 689-798, Republic of Korea
| |
Collapse
|
41
|
Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2015; 90:1-37. [DOI: 10.1007/s00204-015-1579-5] [Citation(s) in RCA: 535] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
|
42
|
Esparza A, Gerdtzen ZP, Olivera-Nappa A, Salgado JC, Núñez MT. Iron-induced reactive oxygen species mediate transporter DMT1 endocytosis and iron uptake in intestinal epithelial cells. Am J Physiol Cell Physiol 2015; 309:C558-67. [PMID: 26289753 DOI: 10.1152/ajpcell.00412.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 08/17/2015] [Indexed: 11/22/2022]
Abstract
Recent evidence shows that iron induces the endocytosis of the iron transporter dimetal transporter 1 (DMT1) during intestinal absorption. We, and others, have proposed that iron-induced DMT1 internalization underlies the mucosal block phenomena, a regulatory response that downregulates intestinal iron uptake after a large oral dose of iron. In this work, we investigated the participation of reactive oxygen species (ROS) in the establishment of this response. By means of selective surface protein biotinylation of polarized Caco-2 cells, we determined the kinetics of DMT1 internalization from the apical membrane after an iron challenge. The initial decrease in DMT1 levels in the apical membrane induced by iron was followed at later times by increased levels of DMT1. Addition of Fe(2+), but not of Cd(2+), Zn(2+), Cu(2+), or Cu(1+), induced the production of intracellular ROS, as detected by 2',7'-dichlorofluorescein (DCF) fluorescence. Preincubation with the antioxidant N-acetyl-l-cysteine (NAC) resulted in increased DMT1 at the apical membrane before and after addition of iron. Similarly, preincubation with the hydroxyl radical scavenger dimethyl sulfoxide (DMSO) resulted in the enhanced presence of DMT1 at the apical membrane. The decrease of DMT1 levels at the apical membrane induced by iron was associated with decreased iron uptake rates. A kinetic mathematical model based on operational rate constants of DMT1 endocytosis and exocytosis is proposed. The model qualitatively captures the experimental observations and accurately describes the effect of iron, NAC, and DMSO on the apical distribution of DMT1. Taken together, our data suggest that iron uptake induces the production of ROS, which modify DMT1 endocytic cycling, thus changing the iron transport activity at the apical membrane.
Collapse
Affiliation(s)
- Andrés Esparza
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ziomara P Gerdtzen
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile; and
| | - Alvaro Olivera-Nappa
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile; and
| | - J Cristian Salgado
- Laboratory of Process Modeling and Distributed Computing, Department of Chemical Engineering and Biotechnology, University of Chile, Santiago, Chile; and
| | - Marco T Núñez
- Iron and Biology of Aging Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile;
| |
Collapse
|
43
|
Du J, Wagner BA, Buettner GR, Cullen JJ. Role of labile iron in the toxicity of pharmacological ascorbate. Free Radic Biol Med 2015; 84:289-295. [PMID: 25857216 PMCID: PMC4739508 DOI: 10.1016/j.freeradbiomed.2015.03.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 11/17/2022]
Abstract
Pharmacological ascorbate has been shown to induce toxicity in a wide range of cancer cell lines. Pharmacological ascorbate in animal models has shown promise for use in cancer treatment. At pharmacological concentrations the oxidation of ascorbate produces a high flux of H2O2 via the formation of ascorbate radical (Asc(•-)). The rate of oxidation of ascorbate is principally a function of the level of catalytically active metals. Iron in cell culture media contributes significantly to the rate of H2O2 generation. We hypothesized that increasing intracellular iron would enhance ascorbate-induced cytotoxicity and that iron chelators could modulate the catalytic efficiency with respect to ascorbate oxidation. Treatment of cells with the iron-chelators deferoxamine (DFO) or dipyridyl (DPD) in the presence of 2mM ascorbate decreased the flux of H2O2 generated by pharmacological ascorbate and reversed ascorbate-induced toxicity. Conversely, increasing the level of intracellular iron by preincubating cells with Fe-hydroxyquinoline (HQ) increased ascorbate toxicity and decreased clonogenic survival. These findings indicate that redox metal metals, e.g., Fe(3+)/Fe(2+), have an important role in ascorbate-induced cytotoxicity. Approaches that increase catalytic iron could potentially enhance the cytotoxicity of pharmacological ascorbate in vivo.
Collapse
Affiliation(s)
- Juan Du
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Brett A Wagner
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | - Garry R Buettner
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA, USA
| | - Joseph J Cullen
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa College of Medicine, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, Iowa City, IA, USA; Veterans Affairs Medical Center, Iowa City, IA, USA.
| |
Collapse
|
44
|
Rác M, Sedlářová M, Pospíšil P. The formation of electronically excited species in the human multiple myeloma cell suspension. Sci Rep 2015; 5:8882. [PMID: 25744165 PMCID: PMC4351533 DOI: 10.1038/srep08882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/10/2015] [Indexed: 01/29/2023] Open
Abstract
In this study, evidence is provided on the formation of electronically excited species in human multiple myeloma cells U266 in the growth medium exposed to hydrogen peroxide (H2O2). Two-dimensional imaging of ultra-weak photon emission using highly sensitive charge coupled device camera revealed that the addition of H2O2 to cell suspension caused the formation of triplet excited carbonyls (3)(R = O)*. The kinetics of (3)(R = O)* formation in the real time, as measured by one-dimensional ultra-weak photon emission using low-noise photomultiplier, showed immediate enhancement followed by a slow decay. In parallel to the formation of (3)(R = O)*, the formation of singlet oxygen ((1)O2) in U266 cells caused by the addition of H2O2 was visualized by the imaging of (1)O2 using the green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Additionally, the formation of (1)O2 after the addition of H2O2 to cell suspension was detected by electron paramagnetic resonance spin-trapping spectroscopy using 2,2,6,6-tetramethyl-4-piperidone. Presented results indicate that the addition of H2O2 to cell suspension results in the formation of (3)(R = O)* and (1)O2 in U266 cell suspension. The contribution of the cell-free medium to the formation of electronically excited species was discussed.
Collapse
Affiliation(s)
- Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| |
Collapse
|
45
|
Li Y, Huang CH, Liu YX, Mao L, Zhu BZ. Detoxifying Polyhalogenated Catechols through a Copper-Chelating Agent by Forming Stable and Redox-Inactive Hydrogen-Bonded Complexes with an Unusual Perpendicular Structure. Chemistry 2014; 20:13028-33. [DOI: 10.1002/chem.201402833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 06/12/2014] [Indexed: 12/13/2022]
|
46
|
Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter RJ. A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res 2014; 56:343-70. [PMID: 24628077 DOI: 10.1111/jpi.12132] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 12/31/2022]
Abstract
Metal exposure is associated with several toxic effects; herein, we review the toxicity mechanisms of cadmium, mercury, arsenic, lead, aluminum, chromium, iron, copper, nickel, cobalt, vanadium, and molybdenum as these processes relate to free radical generation. Free radicals can be generated in cells due to a wide variety of exogenous and endogenous processes, causing modifications in DNA bases, enhancing lipid peroxidation, and altering calcium and sulfhydryl homeostasis. Melatonin, an ubiquitous and pleiotropic molecule, exerts efficient protection against oxidative stress and ameliorates oxidative/nitrosative damage by a variety of mechanisms. Also, melatonin has a chelating property which may contribute in reducing metal-induced toxicity as we postulate here. The aim of this review was to highlight the protective role of melatonin in counteracting metal-induced free radical generation. Understanding the physicochemical insights of melatonin related to the free radical scavenging activity and the stimulation of antioxidative enzymes is of critical importance for the development of novel therapeutic strategies against the toxic action of these metals.
Collapse
Affiliation(s)
- Alejandro Romero
- Departamento de Toxicología y Farmacología, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Akhtar MJ, Ahamed M, Khan MAM, Alrokayan SA, Ahmad I, Kumar S. Cytotoxicity and apoptosis induction by nanoscale talc particles from two different geographical regions in human lung epithelial cells. ENVIRONMENTAL TOXICOLOGY 2014; 29:394-406. [PMID: 22331707 DOI: 10.1002/tox.21766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/16/2012] [Accepted: 01/21/2012] [Indexed: 05/31/2023]
Abstract
We have characterized the physicochemical properties of nanotalc particles from two different geographical regions and examined their toxicity mechanisms in human lung epithelial (A549) cells. Indigenous nanotalc (IN) of Indian origin and commercial nanotalc (CN) of American origin were used in this study. Physicochemical properties of nanotalc particles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), Brunauer-Emmet-Teller (BET), and dynamic light scattering (DLS). Results showed that both IN and CN particles significantly induce cytotoxicity and alteration in cell cycle phases. Both IN and CN particles were found to induce oxidative stress indicated by induction of reactive oxygen species (ROS), lipid peroxidation, and depletion of antioxidant levels. DNA fragmentation and caspase-3 enzyme activation due to IN and CN particles exposure were also observed. We further showed that after iron chelation, IN and CN particles produce significantly less cytotoxicity, oxidative stress, and genotoxicity to A549 cells as compared with nonchelated particles. In conclusion, this study demonstrated that redox active iron plays significant role in the toxicity of IN and CN particles, which may be mediated through ROS generation and oxidative stress.
Collapse
Affiliation(s)
- Mohd Javed Akhtar
- Fibre Toxicology Division, Indian Institute of Toxicology Research, Lucknow 226001, India; Department of Zoology, University of Lucknow, Lucknow 226007, India
| | | | | | | | | | | |
Collapse
|
48
|
Angelé-Martínez C, Goodman C, Brumaghim J. Metal-mediated DNA damage and cell death: mechanisms, detection methods, and cellular consequences. Metallomics 2014; 6:1358-81. [DOI: 10.1039/c4mt00057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metal ions cause various types of DNA damage by multiple mechanisms, and this damage is a primary cause of cell death and disease.
Collapse
Affiliation(s)
| | - Craig Goodman
- Department of Chemistry
- Clemson University
- Clemson, USA
| | | |
Collapse
|
49
|
Murata M, Midorikawa K, Kawanishi S. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol. Chem Res Toxicol 2013; 26:1455-63. [PMID: 24020587 DOI: 10.1021/tx400182n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.
Collapse
Affiliation(s)
- Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine , Tsu, Mie 514-8507, Japan
| | | | | |
Collapse
|
50
|
Yin R, Zhang D, Song Y, Zhu BZ, Wang H. Potent DNA damage by polyhalogenated quinones and H₂O₂ via a metal-independent and Intercalation-enhanced oxidation mechanism. Sci Rep 2013; 3:1269. [PMID: 23429247 PMCID: PMC3572447 DOI: 10.1038/srep01269] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
Polyhalogenated quinones are a class of carcinogenic intermediates. We found recently that the highly reactive and biologically/environmentally important ·OH can be produced by polyhalogenated quinones and H₂O₂ independent of transition metal ions. However, it is not clear whether this unusual metal-independent ·OH producing system can induce potent oxidative DNA damage. Here we show that TCBQ and H₂O₂ can induce oxidative damage to both dG and dsDNA; but surprisingly, it was more efficient to induce oxidative damage in dsDNA than in dG. We found that this is probably due to its strong intercalating ability to dsDNA through competitive intercalation assays. The intercalation of TCBQ in dsDNA may lead to ·OH generation more adjacent to DNA. This is the first report that polyhalogenated quinoid carcinogens and H₂O₂ can induce potent DNA damage via a metal-independent and intercalation-enhanced oxidation mechanism, which may partly explain their potential genotoxicity, mutagenesis, and carcinogenicity.
Collapse
Affiliation(s)
- Ruichuan Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | |
Collapse
|