1
|
Gřešková A, Petřivalský M. Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences. INSECTS 2024; 15:797. [PMID: 39452373 PMCID: PMC11508645 DOI: 10.3390/insects15100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.
Collapse
Affiliation(s)
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
2
|
Abbas MN, Gul I, Khosravi Z, Amarchi JI, Ye X, Yu L, Siyuan W, Cui H. Molecular characterization, immune functions and DNA protective effects of peroxiredoxin-1 gene in Antheraea pernyi. Mol Immunol 2024; 170:76-87. [PMID: 38640818 DOI: 10.1016/j.molimm.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Peroxiredoxins are antioxidant proteins that detoxify peroxynitrite, hydrogen peroxide, and organic hydroperoxides, impacting various physiological processes such as immune responses, apoptosis, cellular homeostasis, and so on. In the present study, we identified and characterized peroxiredoxin 1 from Antheraea pernyi (thereafter designated as ApPrx-1) that encodes a predicted 195 amino acid residue protein with a 21.8 kDa molecular weight. Quantitative real-time PCR analysis revealed that the mRNA level of ApPrx-1 was highest in the hemocyte, fat body, and midgut. Immune-challenged larval fat bodies and hemocytes showed increased ApPrx-1 transcript. Moreover, ApPrx-1 expression was induced in hemocytes and the whole body of A. pernyi following exogenous H2O2 administration. A DNA cleavage assay performed using recombinant ApPrx-1 protein showed that rApPrx-1 protein manifests the ability to protect supercoiled DNA damage from oxidative stress. To test the rApPrx-1 protein antioxidant activity, the ability of the rApPrx-1 protein to remove H2O2 was assessed in vitro using rApPrx-1 protein and DTT, while BSA + DDT served as a control group. The results revealed that ApPrx-1 can efficiently remove H2O2 in vitro. In the loss of function analysis, we found that ApPrx-1 significantly increased the levels of H2O2 in ApPrx-1-depleted larvae compared to the control group. We also found a significantly lower survival rate in the larvae in which ApPrx-1 was knocked down. Interestingly, the antibacterial activity was significantly higher in the ApPrx-1 depleted larvae, compared to the control. Collectively, evidence strongly suggests that ApPrx-1 may regulate physiological activities and provides a reference for further studies to validate the utility of the key genes involved in reliving oxidative stress conditions and regulating the immune responses of insects.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Resource insects, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Isma Gul
- State Key Laboratory of Resource insects, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Zahra Khosravi
- State Key Laboratory of Resource insects, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Jemirade Ifejola Amarchi
- State Key Laboratory of Resource insects, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Xiang Ye
- State Key Laboratory of Resource insects, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Lang Yu
- State Key Laboratory of Resource insects, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Wu Siyuan
- State Key Laboratory of Resource insects, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Hongjuan Cui
- State Key Laboratory of Resource insects, Southwest University, Chongqing 400716, China; Jinfeng Laboratory, Chongqing 401329, China; Chongqing engineering and Technology Research Center for Silk Biomaterials and Regenerative medicine, Chongqing 400716, China.
| |
Collapse
|
3
|
Vasquez YM, Li Z, Xue AZ, Bennett GM. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution. Mol Ecol Resour 2024; 24:e13919. [PMID: 38146900 DOI: 10.1111/1755-0998.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Leafhoppers comprise over 20,000 plant-sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts, Sulcia and Nasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal-level assembly of the aster leafhopper's genome (ALF; Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers, Nephotettix cincticeps, Homalodisca vitripennis, and Empoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont, Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with both Sulcia and its ancient partner, Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support of Sulcia and Nasuia are only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non-symbiotic functions are conserved across all species. The high-quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.
Collapse
Affiliation(s)
- Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Allen Z Xue
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
4
|
Gul I, Abbas MN, Hussaini N, Kausar S, Wu S, Cui H. Peroxiredoxin-2 gene in Antheraea pernyi modulates immune functions and protect DNA damage. Int J Biol Macromol 2024; 256:128410. [PMID: 38029918 DOI: 10.1016/j.ijbiomac.2023.128410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Peroxiredoxins have been shown to protect insects from oxidative damage and to play a role in the immune system. In the present study, we cloned and characterized the Antheraea pernyi peroxiredoxin 2 (ApPrx-2) gene, then assessed its functional roles. The ApPrx-2 gene has a 687 bp open reading frame that encodes a protein with 288 amino acid residues. Quantitative real-time PCR analysis revealed that the mRNA levels of ApPrx-2 were highest in the hemocytes. Immune challenge assay revealed that ApPrx-2 transcription could be induced after microbial challenge. A DNA cleavage assay employing recombinant ApPrx-2 protein and a metal-catalyzed oxidation system showed that rApPrx-2 protein could protect supercoiled DNA against oxidative stress. The protein antioxidant activity of rApPrx-2 was examined, and it was found that rApPrx-2 exhibited a high level of antioxidant activity by removing H2O2. In addition, ApPrx-2 knockdown larvae had higher H2O2 levels and a lower survival rate when compared to controls. Interestingly, the antibacterial activity was significantly higher in ApPrx-2 depleted larvae compared with control. Overall, our findings indicate that ApPrx-2 may be involved in a range of physiological functions of A. pernyi, as it protects supercoiled DNA from oxidative stress and regulates antibacterial activity.
Collapse
Affiliation(s)
- Isma Gul
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| | - Najibullah Hussaini
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China
| | - Saima Kausar
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China
| | - Siyuan Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, China; Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China; Jinfeng Laboratory, Chongqing, 401329, China..
| |
Collapse
|
5
|
Zhao L, Cao Y, Wang DD, Chen N, Li SG, Liu S, Li MY. A thioredoxin peroxidase protects Pieris rapae from oxidative stress induced by chlorantraniliprole exposure. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21964. [PMID: 36050844 DOI: 10.1002/arch.21964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Chlorantraniliprole (CAP) is an insecticide widely used to control the small white butterfly (SWB), Pieris rapae. Exposure to CAP can cause oxidative injury in SWB; however, it is unclear if antioxidant enzymes are involved in the defense process. In this study, a thioredoxin peroxidase (PrTPX1) gene was identified from SWB by using a homology search method. The gene encoded a 195 amino-acid PrTPX1 protein. Sequence characteristics and phylogenetic analysis indicated that PrTPX1 was a typical "2-Cys" TPX, and the PrTPX1 gene consisted of four exons and three introns. Reverse transcription-quantitative polymerase chain reaction analysis indicated that the messenger RNA levels of PrTPX1 were highest in third-, fourth- and fifth-instar larval stages and in the larval midgut. Treatment with sublethal doses (LD20 and LD50 ) of CAP for 6, 12, 18, and 24 h resulted in increased H2 O2 concentration in SWB larvae, indicating insecticide-induced oxidative stress. The transcriptional levels of PrTPX1 were significantly enhanced in larvae exposed to CAP. Recombinant PrTPX1 protein was expressed in Escherichia coli. Enzymatic assay revealed that the protein displayed antioxidant activity and was able to protect against oxidative challenge. These results indicated that PrTPX1 plays an important role in oxidative stress responses and may contribute to the CAP tolerance in SWB.
Collapse
Affiliation(s)
- Le Zhao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ye Cao
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
- The research group of insect resource utilization, Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dong-Dong Wang
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Nan Chen
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shi-Guang Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Su Liu
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Mao-Ye Li
- Anhui Provincial Key Laboratory of Integrated Pest Management on Crops, Department of Entomology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Wang Y, Zhang R, Xu C, Sun Y, Zhang J. Characterization and functional analysis of peroxiredoxin 4 gene in the Neocaridina denticulata sinensis. FISH & SHELLFISH IMMUNOLOGY 2022; 122:162-169. [PMID: 35063604 DOI: 10.1016/j.fsi.2022.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Peroxiredoxin (Prx) is an antioxidant protein family, which widely exists in organisms and plays an important role in innate immunity. In this study, the full-length cDNA of a Prx gene (NdPrx) was obtained from Neocaridina denticulata sinensis, which contains a 735 bp open reading frame (ORF) and encodes a polypeptide of 244 amino acids. It is inferred that the molecular weight of the encoded amino acid is 27261.20 Da and the theoretical isoelectric point is 6.16. Phylogenetic analysis shows that NdPrx and Prx4 have high homology, so it was named NdPrx4. Multiple alignment analysis showed that the amino acid sequence of NdPrx4 had high homology with Prx4 of other species, and the similarity with Homarus americanus was the highest, 92.86%. Quantitative real-time PCR analysis showed that NdPrx4 was expressed in various tissues of N. denticulata sinensis, and the expression in ovary was the highest. It was speculated that NdPrx4 may be related to maternal immune function. Under the stimulation of Cu2+, the expression of NdPrx4 reached the peak at 36 h, and showed a downward trend until 72 h, indicating that NdPrx4 may play an important role in the stress response of N. denticulata sinensis. Then, NdPrx4 was recombinantly expressed in E. coli, and its enzymatic characteristics of rNdPrx4 were detected. The result showed that the activity of rNdPrx4 was the highest at pH 5.0 and 55 °C. It was found that Mn2+ and Ca2+ can inhibit the activity of rNdPrx4, and Zn2+ increases the activity of rNdPrx4.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ruirui Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ce Xu
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Engineering Laboratory of Microbial Breeding and Preservation of Hebei Province, Hebei University, Baoding, 071002, China.
| |
Collapse
|
7
|
Comparative Transcriptome Analysis of Two Populations of Dastarcus helophoroides (Fairmaire) under High Temperature Stress. FORESTS 2021. [DOI: 10.3390/f13010013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The differentially expressed genes (DEGs), key genes and metabolic pathways of the parasitic beetle, Dastarcus helophoroides (Fairmaire), were compared between the fiftieth commercially reared population and the first natural population to reveal the adaptive mechanism in response to high temperature stress. The high-throughput sequencing technique was employed for transcriptome sequencing of two populations of D. helophoroides. In total, 47,763 non-redundant transcripts with the average length of 989.31 bp and the N50 of 1607 bp were obtained. Under high temperature stress, 1108 DEGs were found in the commercial population; while there were 3946 DEGs in the natural population, which were higher than those in the commercial population (3.56 times). High temperature stress of D. helophoroides promoted the expression of heat shock proteins (HSPs) and metabolism-related genes in both populations, but metabolism synthesis and hydrolysis of natural population was much higher, allowing them to produce more resistant substances (such as HSPs, superoxide dismutase (SOD), peroxiredoxin (Prx), etc.). Therefore, HSPs may play a major role in the high temperature adaptation of a commercial population, while the natural population probably respond to heat stress with more resistant substances (such as HSPs, SOD, Prx, etc.). These results provide a reference to select and domesticate a specific ecotype with stronger adaptability to the high temperature weather in the forest and further improve the efficiency of D. helophoroides as a bio-control factor.
Collapse
|
8
|
Nguyen HQ, Kim Y, Jang Y. De Novo Transcriptome Analysis Reveals Potential Thermal Adaptation Mechanisms in the Cicada Hyalessa fuscata. Animals (Basel) 2021; 11:ani11102785. [PMID: 34679807 PMCID: PMC8532856 DOI: 10.3390/ani11102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In metropolitan Seoul and its vicinity, cicadas of the species Hyalessa fuscata living in warmer areas could tolerate the heat better than those living in cooler areas, but genetic mechanisms involved in better heat tolerance remained unclear. In this study, we examined differences in gene expression of cicadas living in a warm urban area, a cool urban area and a suburban area in three experimental treatments: no heating, 10 min heating and heating until the cicadas lost their mobility. Cicadas from the warm urban area changed their gene expressions the most. Activated genes were mostly related to heat shock, energy metabolism, and detoxification. These results suggested that under heat stress, cicadas inhabiting warm areas could differentially express genes to increase their thermal tolerance. Abstract In metropolitan Seoul, populations of the cicada Hyalessa fuscata in hotter urban heat islands (“high UHIs”) exhibit higher thermal tolerance than those in cooler UHIs (“low UHIs”). We hypothesized that heat stress may activate the expression of genes that facilitate greater thermal tolerance in high-UHI cicadas than in those from cooler areas. Differences in the transcriptomes of adult female cicadas from high-UHI, low-UHI, and suburban areas were analyzed at the unheated level, after acute heat stress, and after heat torpor. No noticeable differences in unheated gene expression patterns were observed. After 10 min of acute heat stress, however, low-UHI and suburban cicadas expressed more heat shock protein genes than high-UHI counterparts. More specifically, remarkable changes in the gene expression of cicadas across areas were observed after heat torpor stimulus, as represented by a large number of up- and downregulated genes in the heat torpor groups compared with the 10 min acute heat stress and control groups. High-UHI cicadas expressed the most differentially expressed genes, followed by the low-UHI and suburban cicadas. There was a notable increase in the expression of heat shock, metabolism, and detoxification genes; meanwhile, immune-related, signal transduction, and protein turnover genes were downregulated in high-UHI cicadas versus the other cicada groups. These results suggested that under heat stress, cicadas inhabiting high-UHIs could rapidly express genes related to heat shock, energy metabolism, and detoxification to protect cells from stress-induced damage and to increase their thermal tolerance toward heat stress. The downregulation of apoptosis mechanisms in high-UHI cicadas suggested that there was less cellular damage, which likely contributed to their high tolerance of heat stress.
Collapse
Affiliation(s)
- Hoa Quynh Nguyen
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Institute of Chemistry, Vietnam Academy of Science and Technology, No. 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 10072, Vietnam
| | - Yuseob Kim
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
| | - Yikweon Jang
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Correspondence:
| |
Collapse
|
9
|
Liu Y, Zhu F, Shen Z, Moural TW, Liu L, Li Z, Liu X, Xu H. Glutaredoxins and thioredoxin peroxidase involved in defense of emamectin benzoate induced oxidative stress in Grapholita molesta. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 176:104881. [PMID: 34119223 DOI: 10.1016/j.pestbp.2021.104881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/08/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Glutaredoxins (Grxs) and thioredoxin peroxidases (Tpxs) are major antioxidant enzyme families involved in regulating cellular redox homeostasis and in defense of enhanced oxidative stress through scavenging reactive oxygen species (ROS). However, the functions of these enzymes have not been reported in the oriental fruit moth, Grapholita molesta (Busck), a worldwide pest of stone and pome fruits. Here, we identified four new antioxidant genes, GmGrx, GmGrx3, GmGrx5, and GmTpx which were induced by exposure with emamectin benzoate, a commonly used biopesticide for G. molesta control. Other environmental factors (low and high temperatures, Escherichia coli and Metarhizium anisopliae) also significantly induced the expression of these genes. After GmGrx or GmTpx silenced by RNA interference (RNAi), the percentage of larval survival to emamectin benzoate were significantly decreased, demonstrating that GmGrx and GmTpx are involved in protecting G. molesta from stresses induced by emamectin benzoate. Furthermore, silenced GmGrx, GmGrx3, GmGrx5, or GmTpx significantly enhanced the enzymatic activities of superoxide dismutase (SOD) (except GmTpx) and peroxidase (POD), as well as the contents of hydrogen peroxide and metabolites ascorbate. Taken together, our results suggest that GmGrx, GmGrx3, GmGrx5, and GmTpx may play critical roles in antioxidant defense. Specially, GmGrx and GmTpx contribute to the defense of oxidative damage induced by exposure to emamectin benzoate through scavenging excessive ROS in G. molesta. Our findings provided a theoretical basis for understanding functions of insect glutaredoxin and peroxidase systems.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China; Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Zhongjian Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Lining Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Huanli Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Vitorović J, Joković N, Radulović N, Mihajilov-Krstev T, Cvetković VJ, Jovanović N, Mitrović T, Aleksić A, Stanković N, Bernstein N. Antioxidant Activity of Hemp ( Cannabis sativa L.) Seed Oil in Drosophila melanogaster Larvae under Non-Stress and H 2O 2-Induced Oxidative Stress Conditions. Antioxidants (Basel) 2021; 10:antiox10060830. [PMID: 34067432 PMCID: PMC8224776 DOI: 10.3390/antiox10060830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
The oil extracted from hemp seeds has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. The potential of this oil for the prevention of oxidative stress and for the treatment of oxidative-stress-induced ailments is of increasing interest. Most studies of hemp seed oil were conducted in-vitro, meaning we lack information about effects and activity in vivo. In the present study, we evaluated the hypothesis that hemp seed oil at different concentrations improves the oxidative state of D. melanogaster, under non-stress as well as hydrogen-peroxide-induced stress. We analyzed the effects of hemp seed oil on oxidative stress markers and on the life cycle of D.melanogaster under non-stress and hydrogen-peroxide-induced stress conditions. D.melanogaster larvae were exposed to hemp seed oil concentrations ranging from 12.5 to 125 μL/mL. The results revealed that under non-stress conditions, oil concentrations up to 62.5 µL/mL did not induce negative effects on the life cycle of D. melanogaster and maintained the redox status of the larval cells at similar levels to the control level. Under oxidative stress conditions, biochemical parameters were significantly affected and only two oil concentrations, 18.7 and 31.2 µL/mL, provided protection against hydrogen peroxide stress effects. A higher oil concentration (125 μL/mL) exerted negative effects on the oxidative status and increased larval mortality. The tested oil was characterized chemically by NMR, transesterification, and silylation, followed by GC-MS analyses, and was shown to contain polyunsaturated fatty acid triglycerides and low levels of tocopherols. The high levels of linoleic and linolenic acids in the oil are suggested to be responsible for the observed in vivo antioxidant effects. Taken together, the results show that hemp seed oil is effective for reducing oxidative stress at the cellular level, thus supporting the hypothesis. The obtained results point to the potential of hemp seed oil for the prevention and treatment of conditions caused by the action of reactive oxygen species.
Collapse
Affiliation(s)
- Jelena Vitorović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Nataša Joković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Niko Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Tatjana Mihajilov-Krstev
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Vladimir J. Cvetković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Nikola Jovanović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Tatjana Mitrović
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia; (J.V.); (N.J.); (T.M.-K.); (V.J.C.); (N.J.); (T.M.); (A.A.)
| | | | - Nirit Bernstein
- Institute of Soil Water and Environmental Sciences, Volcani Center, Rishon LeZion 15159, Israel
- Correspondence:
| |
Collapse
|
11
|
McGinnis A, Klichko VI, Orr WC, Radyuk SN. Hyperoxidation of Peroxiredoxins and Effects on Physiology of Drosophila. Antioxidants (Basel) 2021; 10:antiox10040606. [PMID: 33920774 PMCID: PMC8071185 DOI: 10.3390/antiox10040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The catalytic activity of peroxiredoxins (Prx) is determined by the conserved peroxidatic cysteine (CysP), which reacts with peroxides to form sulfenic acid (Cys-SOH). Under conditions of oxidative stress, CysP is oxidized to catalytically inactive sulfinic (Cys-SO2) and sulfonic (Cys-SO3) forms. The Cys-SO2 form can be reduced in a reaction catalyzed by sulfiredoxin (Srx). To explore the physiological significance of peroxiredoxin overoxidation, we investigated daily variations in the oxidation state of 2-Cys peroxiredoxins in flies of different ages, or under conditions when the pro-oxidative load is high. We found no statistically significant changes in the 2-Cys Prxs monomer:dimer ratio, which indirectly reflects changes in the Prx catalytic activity. However, we found daily variations in Prx-SO2/3 that were more pronounced in older flies as well as in flies lacking Srx. Unexpectedly, the srx mutant flies did not exhibit a diminished survivorship under normal or oxidative stress conditions. Moreover, the srx mutant was characterized by a higher physiological activity. In conclusion, catalytically inactive forms of Prx-SO2/3 serve not only as a marker of cellular oxidative burden, but may also play a role in an adaptive response, leading to a positive effect on the physiology of Drosophila melanogaster.
Collapse
|
12
|
Kennedy A, Herman J, Rueppell O. Reproductive activation in honeybee ( Apis mellifera) workers protects against abiotic and biotic stress. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190737. [PMID: 33678021 DOI: 10.1098/rstb.2019.0737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Social insect reproductives exhibit exceptional longevity instead of the classic trade-off between somatic maintenance and reproduction. Even normally sterile workers experience a significant increase in life expectancy when they assume a reproductive role. The mechanisms that enable the positive relation between the antagonistic demands of reproduction and somatic maintenance are unclear. To isolate the effect of reproductive activation, honeybee workers were induced to activate their ovaries. These reproductively activated workers were compared to controls for survival and gene expression patterns after exposure to Israeli Acute Paralysis Virus or the oxidative stressor paraquat. Reproductive activation increased survival, indicating better immunity and oxidative stress resistance. After qPCR analysis confirmed our experimental treatments at the physiological level, whole transcriptome analysis revealed that paraquat treatment significantly changed the expression of 1277 genes in the control workers but only two genes in reproductively activated workers, indicating that reproductive activation preemptively protects against oxidative stress. Significant overlap between genes that were upregulated by reproductive activation and in response to paraquat included prominent members of signalling pathways and anti-oxidants known to affect ageing. Thus, while our results confirm a central role of vitellogenin, they also point to other mechanisms to explain the molecular basis of the lack of a cost of reproduction and the exceptional longevity of social insect reproductives. Thus, socially induced reproductive activation preemptively protects honeybee workers against stressors, explaining their longevity. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Anissa Kennedy
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Jacob Herman
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA
| |
Collapse
|
13
|
Santiago PB, Charneau S, Mandacaru SC, Bentes KLDS, Bastos IMD, de Sousa MV, Ricart CAO, de Araújo CN, Santana JM. Proteomic Mapping of Multifunctional Complexes Within Triatomine Saliva. Front Cell Infect Microbiol 2020; 10:459. [PMID: 32984079 PMCID: PMC7492717 DOI: 10.3389/fcimb.2020.00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022] Open
Abstract
Triatomines are hematophagous insects that transmit Trypanosoma cruzi, the etiological agent of Chagas disease. This neglected tropical disease represents a global health issue as it is spreading worldwide. The saliva of Triatominae contains miscellaneous proteins crucial for blood feeding acquisition, counteracting host's hemostasis while performing vasodilatory, anti-platelet and anti-coagulant activities, besides modulating inflammation and immune responses. Since a set of biological processes are mediated by protein complexes, here, the sialocomplexomes (salivary protein complexes) of five species of Triatominae were studied to explore the protein-protein interaction networks. Salivary multiprotein complexes from Triatoma infestans, Triatoma dimidiata, Dipetalogaster maxima, Rhodnius prolixus, and Rhodnius neglectus were investigated by Blue-Native- polyacrylamide gel electrophoresis coupled with liquid chromatography tandem mass spectrometry. More than 70 protein groups, uncovering the landscape of the Triatominae salivary interactome, were revealed. Triabin, actin, thioredoxin peroxidase and an uncharacterized protein were identified in sialocomplexes of the five species, while hexamerin, heat shock protein and histone were identified in sialocomplexes of four species. Salivary proteins related to triatomine immunity as well as those required during blood feeding process such as apyrases, antigen 5, procalins, and nitrophorins compose different complexes. Furthermore, unique proteins for each triatomine species were revealed. This study represents the first Triatominae sialocomplexome reference to date and shows that the approach used is a reliable tool for the analysis of Triatominae salivary proteins assembled into complexes.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | | | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carlos André O Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| |
Collapse
|
14
|
Kwon YS, Jung JW, Kim YJ, Park CB, Shon JC, Kim JH, Park JW, Kim SG, Seo JS. Proteomic analysis of whole-body responses in medaka ( Oryzias latipes) exposed to benzalkonium chloride. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1387-1397. [PMID: 32693679 DOI: 10.1080/10934529.2020.1796117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Benzalkonium chloride (BAC) is a cationic surfactant commonly used as a disinfectant, and is discharged into the aquatic environment by various water sources such as wastewater. BAC may also interact with potentially toxic substances such as persistent organic chemicals. Although studies of BAC contamination toxicity and bioaccumulation have been widely reported, the biochemical responses to BAC toxicity remain incompletely understood, and the detailed molecular mechanisms are largely unknown. In this study, two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry-based proteomic approaches were applied to investigate the protein profiles in Oryzias latipes (medaka) chronically exposed to BAC. Fish were exposed to three different concentrations of BAC, 0.05, 0.1, and 0.2 mg/L, for 21 days. A total of 20 proteins involved in the cytoskeleton, the oxidative stress response, the nervous and endocrine systems, signaling pathways, and cellular proteolysis were significantly upregulated by BAC exposure. The proteomic information obtained in the present study will be useful in identification of potential biomarkers for BAC toxicity, and begins to elucidate its molecular mechanisms, providing new insights into the ecotoxicity of BAC.
Collapse
Affiliation(s)
- Young Sang Kwon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jae-Woong Jung
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Yeong Jin Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Chang-Beom Park
- Ecotoxicology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong Cheol Shon
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Jong-Hwan Kim
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - June-Woo Park
- Environmental Biology Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| | - Sang Gon Kim
- Gyeongnam Oriental Anti-aging Institute, Sancheong, Republic of Korea
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Gyeongnam Branch Institute, Korea Institute of Toxicology, Jinju, Republic of Korea
| |
Collapse
|
15
|
Velázquez-Lizárraga AE, Juárez-Morales JL, Racotta IS, Villarreal-Colmenares H, Valdes-Lopez O, Luna-González A, Rodríguez-Jaramillo C, Estrada N, Ascencio F. Transcriptomic analysis of Pacific white shrimp (Litopenaeus vannamei, Boone 1931) in response to acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. PLoS One 2019; 14:e0220993. [PMID: 31408485 PMCID: PMC6692014 DOI: 10.1371/journal.pone.0220993] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by marine bacteria Vibrio Parahaemolyticus, is a huge problem in shrimp farms. The V. parahaemolyticus infecting material is contained in a plasmid which encodes for the lethal toxins PirABVp, whose primary target tissue is the hepatopancreas, causing sloughing of epithelial cells, necrosis, and massive hemocyte infiltration. To get a better understanding of the hepatopancreas response during AHPND, juvenile shrimp Litopenaeus vannamei were infected by immersion with V. parahaemolyticus. We performed transcriptomic mRNA sequencing of infected shrimp hepatopancreas, at 24 hours post-infection, to identify novel differentially expressed genes a total of 174,098 transcripts were examined of which 915 transcripts were found differentially expressed after comparative transcriptomic analysis: 442 up-regulated and 473 down-regulated transcripts. Gene Ontology term enrichment analysis for up-regulated transcripts includes metabolic process, regulation of programmed cell death, carbohydrate metabolic process, and biological adhesion, whereas for down-regulated transcripts include, microtubule-based process, cell activation, and chitin metabolic process. The analysis of protein- protein network between up and down-regulated genes indicates that the first gene interactions are connected to oxidation-processes and sarcomere organization. Additionally, protein-protein networks analysis identified 20-top highly connected hub nodes. Based on their immunological or metabolic function, ten candidate transcripts were selected to measure their mRNA relative expression levels in AHPND infected shrimp hepatopancreas by RT-qPCR. Our results indicate a close connection between the immune and metabolism systems during AHPND infection. Our RNA-Seq and RT-qPCR data provide the possible immunological and physiological scenario as well as the molecular pathways that take place in the shrimp hepatopancreas in response to an infectious disease.
Collapse
Affiliation(s)
- Adrián E. Velázquez-Lizárraga
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - José Luis Juárez-Morales
- Programa de Cátedras CONACyT, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Ilie S. Racotta
- Laboratorio de Metabolismo Energético, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Humberto Villarreal-Colmenares
- Parque de Innovación Tecnológica, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Oswaldo Valdes-Lopez
- Departamento de Bioquímica, Facultad de Estudios Superiores – Universidad Autónoma de México, Tlalnepantla de Baz, Estado de México, México
| | - Antonio Luna-González
- Departamento de Acuacultura. Instituto Politécnico Nacional-Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa (IPN-CIIDIR Sinaloa), Guasave, Sinaloa, México
| | - Carmen Rodríguez-Jaramillo
- Laboratorio de Histología, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Norma Estrada
- Programa de Cátedras CONACyT, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| | - Felipe Ascencio
- Laboratorio de Patogénesis Microbiana, Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, Baja California Sur, México
| |
Collapse
|
16
|
Dutta A, Dandapat J, Mohanty N. First report on transferrin in the silkworm, Antheraea mylitta, with a putative role in antioxidant defense: Insights from proteomic analysis and immunodetection. Comp Biochem Physiol B Biochem Mol Biol 2019; 233:23-34. [DOI: 10.1016/j.cbpb.2019.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 01/13/2023]
|
17
|
Abbas MN, Kausar S, Cui H. The biological role of peroxiredoxins in innate immune responses of aquatic invertebrates. FISH & SHELLFISH IMMUNOLOGY 2019; 89:91-97. [PMID: 30930279 DOI: 10.1016/j.fsi.2019.03.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Peroxiredoxins (Prxs) are a widespread and greatly transcribed family of antioxidant proteins, which rapidly detoxify peroxynitrite, hydrogen peroxide and organic hydroperoxides. The Prxs family members also modulate various physiological functions, including cell growth, differentiation, embryonic development, immune response, apoptosis, lipid metabolism, and cellular homeostasis. In mammals, the physiological functions of Prxs have extensively been studied; however, the knowledge is scanty in their counterpart, aquatic invertebrates. In recent years, substantial progress has been made in our knowledge of Prxs physiological functions in aquatic invertebrates, which has raised interest in defining the contribution of immune responses and removal of reactive oxygen species. In this review, we describe the recent knowledge on the Prxs physiological function in immune responses and DNA protection activity in aquatic invertebrates.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400715, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400715, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400715, Chongqing, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, 400715, Chongqing, China; Southwest University Engineering Research Center for Cancer Biomedical and Translational Medicine, 400715, Chongqing, China.
| |
Collapse
|
18
|
Zhang Y, Han R. Insight Into the Salivary Secretome of Varroa destructor and Salivary Toxicity to Apis cerana. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:505-514. [PMID: 30219905 DOI: 10.1093/jee/toy224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 06/08/2023]
Abstract
The Varroa destructor (Acari Varroidae) mite is a serious threat to honey bee due to hemolymph feeding and virus transmission. Mite salivary proteins are involved in these interactions. However, the salivary secretome has not been previously characterized. In this paper, the saliva of V. destructor was found to be toxic to the worker larvae of Apis cerana (Hymenoptera Apidae) in the absence of deformed wing virus (DWV) and to stimulate the development of deformed wings in Apis mellifera (Hymenoptera Apidae) adults in the presence of DWV. The salivary secretome was analyzed by nano-liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS). A search of the resulting data against peptide databases using the software Mascot yielded 356, 53, and 9 matched proteins from V. destructor, A. mellifera, and DWV, respectively. The saliva contained Varroa mite proteins identified as important for potential virulence to A. cerana larvae, for the inhibition of harmful microorganisms, for the utilization of bee nutrients, and for antioxidant, oxidation-reduction and detoxification functions as well as A. mellifera proteins identified as nutrients important for mite reproduction. The saliva proteins also contained viral proteins from one virus, DWV. These results provide a strong foundation for understanding the interactions among the Varroa mite, honeybee, and DWV.
Collapse
Affiliation(s)
- Yi Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Catae AF, da Silva Menegasso AR, Pratavieira M, Palma MS, Malaspina O, Roat TC. MALDI-imaging analyses of honeybee brains exposed to a neonicotinoid insecticide. PEST MANAGEMENT SCIENCE 2019; 75:607-615. [PMID: 30393944 DOI: 10.1002/ps.5226] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/27/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Toxicological studies evaluating the possible harmful effects of pesticides on bees are important and allow the emergence of protection and pollinator conservation strategies. This study aimed to evaluate the effects of exposure to a sublethal concentration of imidacloprid (LC50/100 : 0.014651 ng imidacloprid µL-1 diet) on the distribution of certain proteins identified in the brain of Apis mellifera worker bees using a MALDI-imaging approach. This technique enables proteomic analysis of tissues in situ by monitoring the spatiotemporal dynamics of the biochemical processes occurring at a specific time in specific brain neuropils. For this purpose, foraging bees were exposed to an 8-day diet containing a sublethal concentration of imidacloprid corresponding to the LC50/100 . Bees were collected on day 8 of exposure, and their brains analyzed using protein density maps. RESULTS The results showed that exposure to imidacloprid led to a series of biochemical changes, including alterations in synapse regulation, apoptosis regulation and oxidative stress, which may adversely impair the physiology of these colony bees. CONCLUSION Worker bee contact with even tiny amounts of imidacloprid had potent effects leading to the overexpression of a series of proteins related to important cellular processes that were possibly damaged by the insecticide. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aline F Catae
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Anally R da Silva Menegasso
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Marcel Pratavieira
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Mario S Palma
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Osmar Malaspina
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Thaisa C Roat
- Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
20
|
Jing T, Wang F, Qi F, Wang Z. Insect anal droplets contain diverse proteins related to gut homeostasis. BMC Genomics 2018; 19:784. [PMID: 30376807 PMCID: PMC6208037 DOI: 10.1186/s12864-018-5182-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Insects share similar fundamental molecular principles with mammals in innate immunity. For modulating normal gut microbiota, insects produce phenoloxidase (PO), which is absent in all vertebrates, and reactive nitrogen species (ROS) and antimicrobial proteins (AMPs). However, reports on insect gut phagocytosis are very few. Furthermore, most previous studies measure gene expression at the transcription level. In this study, we provided proteomic evidence on gut modulation of normal microorganisms by investigating the anal droplets from a weevil, Cryptorhynchus lapathi. RESULTS The results showed that the anal droplets contained diverse proteins related to physical barriers, epithelium renewal, pattern recognition, phenoloxidase activation, oxidative defense and phagocytosis, but AMPs were not detected. According to annotations, Scarb1, integrin βν, Dscam, spondin or Thbs2s might mediate phagocytosis. As a possible integrin βν pathway, βν activates Rho by an unknown mechanism, and Rho induces accumulation of mDia, which then promotes actin polymerization. CONCLUSIONS Our results well demonstrated that insect anal droplets can be used as materials to investigate the defense of a host to gut microorganisms and supported to the hypothesis that gut phagocytosis occurs in insects.
Collapse
Affiliation(s)
- Tianzhong Jing
- School of Forestry, Northeast Forestry University, Harbin, 150040, China.
| | - Fuxiao Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Fenghui Qi
- School of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhiying Wang
- School of Forestry, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
21
|
Cao Y, Yang Q, Tu XH, Li SG, Liu S. Molecular characterization of a typical 2-Cys thioredoxin peroxidase from the Asiatic rice borer Chilo suppressalis and its role in oxidative stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 99:e21476. [PMID: 29873106 DOI: 10.1002/arch.21476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In insects, thioredoxin peroxidase (TPX) plays an important role in protecting against oxidative damage. However, studies on the molecular characteristics of TPXs in the Asiatic rice borer, Chilo suppressalis, are limited. In this work, a cDNA sequence (CsTpx3) encoding a TPX was identified from C. suppressalis. The deduced CsTPX3 protein shares high sequence identity and two positionally conserved cysteines with orthologs from other insect species, and was classified as a typical 2-Cys TPX. CsTpx3 was expressed most highly during the fifth-instar larval stage, and transcripts were most abundant in the midgut. Recombinant CsTPX3 protein expressed in Escherichia coli displayed the expected peroxidase activity by removing H2 O2 . Furthermore, CsTPX3 protected DNA from oxidative damage, and E. coli cells overexpressing CsTPX3 exhibited long-term resistance to oxidative stress. Exposure to various oxidative stressors, such as cold (8°C), heat (35°C), bacteria (E. coli), and two insecticides (chlorpyrifos and lambda-cyhalothrin), significantly upregulated transcription of CsTpx3. However, exposure to abamectin had no such effect. Our results provide valuable information for future studies on the antioxidant mechanism in this insect species.
Collapse
Affiliation(s)
- Ye Cao
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Qing Yang
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiao-Hui Tu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Shi-Guang Li
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - Su Liu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
22
|
Detienne G, De Haes W, Mergan L, Edwards SL, Temmerman L, Van Bael S. Beyond ROS clearance: Peroxiredoxins in stress signaling and aging. Ageing Res Rev 2018; 44:33-48. [PMID: 29580920 DOI: 10.1016/j.arr.2018.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Antioxidants were long predicted to have lifespan-promoting effects, but in general this prediction has not been well supported. While some antioxidants do seem to have a clear effect on longevity, this may not be primarily as a result of their role in the removal of reactive oxygen species, but rather mediated by other mechanisms such as the modulation of intracellular signaling. In this review we discuss peroxiredoxins, a class of proteinaceous antioxidants with redox signaling and chaperone functions, and their involvement in regulating longevity and stress resistance. Peroxiredoxins have a clear role in the regulation of lifespan and survival of many model organisms, including the mouse, Caenorhabditis elegans and Drosophila melanogaster. Recent research on peroxiredoxins - in these models and beyond - has revealed surprising new insights regarding the interplay between peroxiredoxins and longevity signaling, which will be discussed here in detail. As redox signaling is emerging as a potentially important player in the regulation of longevity and aging, increased knowledge of these fascinating antioxidants and their mode(s) of action is paramount.
Collapse
Affiliation(s)
- Giel Detienne
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Wouter De Haes
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Lucas Mergan
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Samantha L Edwards
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Liesbet Temmerman
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| | - Sven Van Bael
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Identification and characterization of six peroxiredoxin transcripts from mud crab Scylla paramamosain: The first evidence of peroxiredoxin gene family in crustacean and their expression profiles under biotic and abiotic stresses. Mol Immunol 2017; 93:223-235. [PMID: 29220745 DOI: 10.1016/j.molimm.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 01/18/2023]
Abstract
The peroxiredoxins (Prxs) define a novel and evolutionarily conserved superfamily of peroxidases able to protect cells from oxidative damage by catalyzing the reduction of a wide range of cellular peroxides. Prxs have been identified in prokaryotes as well as in eukaryotes, however, the composition and number of Prxs family members vary in different species. In this study, six Prxs were firstly identified from the mud crab Scylla paramamosain by RT-PCR and RACE methods. Six SpPrxs can be subdivided into three classes: (a) three typical 2-Cys enzymes denominated as Prx1/2, 3, 4, (b) two atypical 2-Cys enzymes known as Prx5-1 and Prx5-2, and (c) a 1-Cys isoform named Prx6. The evolutionarily conserved signatures of peroxiredoxin catalytic center were identified in all six SpPrxs. Phylogenetic analysis revealed that SpPrx3, SpPrx4, SpPrx5s and SpPrx6 were clearly classified into Prx3-6 subclasses, respectively. Although SpPrx1/2 could not be grouped into any known Prx subclasses, SpPrx1/2 clustered together with other arthropods Prx1 or unclassified Prx and could be classified into the typical 2-Cys class. The comparative and evolutionary analysis of the Prx gene family in invertebrates and vertebrates were also conducted for the first time. Tissue-specific expression analysis revealed that these six SpPrxs were expressed in different transcription patterns while the highest expression levels were almost all in the hepatopancreas. Quantitative RT-PCR analysis exhibited that the gene expression profiles of six SpPrxs were distinct when crabs suffered biotic and abiotic stresses including the exposures of Vibrio alginolyticus, poly (I:C), cadmium and hypoosmotic salinity, suggesting that the SpPrxs might play different roles in response to various stresses. The recombinant proteins including the SpPrx1/2, SpPrx4, SpPrx5-1 and SpPrx6 were purified and the peroxidase activity assays indicated that all these proteins can reduce H2O2 in a typical DTT-dependent manner. To our knowledge, this is the first study about the comprehensive characterization of Prx gene family in Scylla paramamosain and even in crustaceans. These results would broaden the current knowledge of the whole Prx family as well as be helpful to understand and clarify the evolutionary pattern of Prx family in invertebrate and vertebrate taxa.
Collapse
|
24
|
Zhou M, Abbas MN, Kausar S, Jiang CX, Dai LS. Transcriptome profiling of red swamp crayfish (Procambarus clarkii) hepatopancreas in response to lipopolysaccharide (LPS) infection. FISH & SHELLFISH IMMUNOLOGY 2017; 71:423-433. [PMID: 29056487 DOI: 10.1016/j.fsi.2017.10.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/05/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
The RNA-sequencing followed by de novo assembly generated 61,912 unigene sequences of P. clarkii hepatopancreas. Comparison of gene expression between LPS challenged and PBS control samples revealed 2552 differentially expressed genes (DEGs). Of these sequences, 1162 DEGs were differentially up-regulated and 1360 DEGs differentially down-regulated. The DEGs were then annotated against gene ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Some immune-related pathways such as PPAR signaling pathway, lysosome, Chemical carcinogenesis, Peroxisome were predicted by canonical pathways analysis. The reliability of transcriptome data was validated by quantitative real time polymerase chain reaction (qRT-PCR) for the selected genes. The data presented here shed light into antibacterial immune responses of crayfish. In addition, these results suggest that transcriptomic data provides valuable sequence resource for immune-related gene identification and helps to understand P. clarkii immune functions.
Collapse
Affiliation(s)
- Miao Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Muhammad Nadeem Abbas
- Department of Zoology and Fisheries, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saima Kausar
- Department of Zoology and Fisheries, University of Agriculture, Faisalabad 38000, Pakistan
| | - Cheng-Xi Jiang
- Life Sciences Institute, Wenzhou University, Wenzhou 325035, PR China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
25
|
Song W, Mu C, Li R, Wang C. Peroxiredoxin 1 from cuttlefish (Sepiella maindroni): Molecular characterization of development and its immune response against Vibrio alginolyticus. FISH & SHELLFISH IMMUNOLOGY 2017; 67:596-603. [PMID: 28619362 DOI: 10.1016/j.fsi.2017.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was constructive to understand the function of peroxiredoxin (PRDX) family member Peroxiredoxin 1 in Sepiella maindroni (SmPrx1) through molecular mechanisms of reproduction, embryonic development and immune responses to Vibrio alginolyticus. The full-length cDNA of SmPrx1 was of 1062 bp, contains a 5' untranslated region (UTR) of 79bp, a 3' UTR of 359 bp, an open reading frame of 624 bp encoding 207 amino acids. The conserved peroxidase catalytic center "FYPLDFTFVCPTEI" and "GEVCPA" were observed in the sequence of SmPrx1; this indicated that it was a member of 2-Cys Prx. Quantitative real-time (qRT)-PCR assays revealed that SmPrx1 was ubiquitously expressed in all examined tissues, muscle, ink sac, liver, ovary, testis, intestine, gill and totally blood cells, and showed high levels in testis. SmPrx1 mRNA was ubiquitously detected in all tested tissues, and the expression was comparatively high in testis, hemocyte, liver and ovary. Moreover, the SmPrx1 gene transcript was detected at all five stages of embryonic development phases that were respectively the zygote stage, the pre-embryonic stage, the organogenesis stage, the morphological integrity stage, the pre-hatching stage. The general tendency of expression was gradually increased and rapidly decreased. High expressed in progenitive tissues and embryonic development exhibit the proliferation-associated protein characterization like in mammal. The expression levels of SmPrx1 in liver and hemocytes grew swiftly and quickly reached peak value after Vibrio alginolyticus challenge. As hours passed by, the expression level began to reduce and resumed to normal levels after 48 h. The antioxidant activity and peroxidase activity of SmPrx1 were 6.17 U/mg. The results showed that the recombined protein of SmPrx1 had antioxidant activity and was the importance part of the antioxidant system in Sepiella maindroni. This study provides useful information to help further understand the functional mechanism of Prx 1 in marine cephalopod immunity.
Collapse
Affiliation(s)
- Weiwei Song
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
Yang XH, Yang SF, Wang RM. Comparative proteomic analysis provides insight into 10-hydroxy-2-decenoic acid biosynthesis in honey bee workers. Amino Acids 2017; 49:1177-1192. [DOI: 10.1007/s00726-017-2418-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 04/08/2017] [Indexed: 12/01/2022]
|
27
|
Gurung AB, Das AK, Bhattacharjee A. Disruption of redox catalytic functions of peroxiredoxin-thioredoxin complex in Mycobacterium tuberculosis H37Rv using small interface binding molecules. Comput Biol Chem 2017; 67:69-83. [DOI: 10.1016/j.compbiolchem.2016.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/19/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
|
28
|
Tasaki E, Kobayashi K, Matsuura K, Iuchi Y. An Efficient Antioxidant System in a Long-Lived Termite Queen. PLoS One 2017; 12:e0167412. [PMID: 28076409 PMCID: PMC5226355 DOI: 10.1371/journal.pone.0167412] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
The trade-off between reproduction and longevity is known in wide variety of animals. Social insect queens are rare organisms that can achieve a long lifespan without sacrificing fecundity. The extended longevity of social insect queens, which contradicts the trade-off, has attracted much attention because it implies the existence of an extraordinary anti-aging mechanism. Here, we show that queens of the termite Reticulitermes speratus incur significantly lower oxidative damage to DNA, protein and lipid and have higher activity of antioxidant enzymes than non-reproductive individuals (workers and soldiers). The levels of 8-hydroxy-2'-deoxyguanosine (oxidative damage marker of DNA) were lower in queens than in workers after UV irradiation. Queens also showed lower levels of protein carbonyls and malondialdehyde (oxidative damage markers of protein and lipid, respectively). The antioxidant enzymes of insects are generally composed of catalase (CAT) and peroxiredoxin (Prx). Queens showed more than two times higher CAT activity and more than seven times higher expression levels of the CAT gene RsCAT1 than workers. The CAT activity of termite queens was also markedly higher in comparison with other solitary insects and the queens of eusocial Hymenoptera. In addition, queens showed higher expression levels of the Prx gene RsPRX6. These results suggested that this efficient antioxidant system can partly explain why termite queens achieve long life. This study provides important insights into the evolutionary linkage of reproductive division of labor and the development of queens' oxidative stress resistance in social insects.
Collapse
Affiliation(s)
- Eisuke Tasaki
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, Tottori, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Kazuya Kobayashi
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kenji Matsuura
- Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihito Iuchi
- Department of Applied Bioresources Chemistry, The United Graduate School of Agriculture, Tottori University, Tottori, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
29
|
Odnokoz O, Nakatsuka K, Klichko VI, Nguyen J, Solis LC, Ostling K, Badinloo M, Orr WC, Radyuk SN. Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging. Biochim Biophys Acta Mol Basis Dis 2016; 1863:68-80. [PMID: 27770625 DOI: 10.1016/j.bbadis.2016.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/17/2016] [Accepted: 10/18/2016] [Indexed: 11/30/2022]
Abstract
Previously, we have shown that flies under-expressing the two mitochondrial peroxiredoxins (Prxs), dPrx3 and dPrx5, display increases in tissue-specific apoptosis and dramatically shortened life span, associated with a redox crisis, manifested as changes in GSH:GSSG and accumulation of protein mixed disulfides. To identify specific pathways responsible for the observed biological effects, we performed a transcriptome analysis. Functional clustering revealed a prominent group enriched for immunity-related genes, including a considerable number of NF-kB-dependent antimicrobial peptides (AMP) that are up-regulated in the Prx double mutant. Using qRT-PCR analysis we determined that the age-dependent changes in AMP levels in mutant flies were similar to those observed in controls when scaled to percentage of life span. To further clarify the role of Prx-dependent mitochondrial signaling, we expressed different forms of dPrx5, which unlike the uniquely mitochondrial dPrx3 is found in multiple subcellular compartments, including mitochondrion, nucleus and cytosol. Ectopic expression of dPrx5 in mitochondria but not nucleus or cytosol partially extended longevity under normal or oxidative stress conditions while complete restoration of life span occurred when all three forms of dPrx5 were expressed from the wild type dPrx5 transgene. When dPrx5 was expressed in mitochondria or in all three compartments, it substantially delayed the development of hyperactive immunity while expression of cytosolic or nuclear forms had no effect on the immune phenotype. The data suggest a critical role of mitochondria in development of chronic activation of the immune response triggered by impaired redox control.
Collapse
Affiliation(s)
- Olena Odnokoz
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Kyle Nakatsuka
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Vladimir I Klichko
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Jacqueline Nguyen
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Liz Calderon Solis
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Kaitlin Ostling
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Marziyeh Badinloo
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
30
|
Godahewa GI, Perera NCN, Elvitigala DAS, Jayasooriya RGPT, Kim GY, Lee J. Characterization of a 1-cysteine peroxiredoxin from big-belly seahorse (Hippocampus abdominalis); insights into host antioxidant defense, molecular profiling and its expressional response to septic conditions. FISH & SHELLFISH IMMUNOLOGY 2016; 57:186-197. [PMID: 27542613 DOI: 10.1016/j.fsi.2016.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/06/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
1-cysteine peroxiredoxin (Prx6) is an antioxidant enzyme that protects cells by detoxifying multiple peroxide species. This study aimed to describe molecular features, functional assessments and potential immune responses of Prx6 identified from the big-belly seahorse, Hippocampus abdominalis (HaPrx6). The complete ORF (666 bp) of HaPrx6 encodes a polypeptide (24 kDa) of 222 amino acids, and harbors a prominent peroxiredoxin super-family domain, a peroxidatic catalytic center, and a peroxidatic cysteine. The deduced amino acid sequence of HaPrx6 shares a relatively high amino acid sequence similarity and close evolutionary relationship with Oplegnathus fasciatus Prx6. The purified recombinant HaPrx6 protein (rHaPrx6) was shown to protect plasmid DNA in the Metal Catalyzed Oxidation (MCO) assay and, together with 1,4-Dithiothreitol (DTT), protected human leukemia THP-1 cells from extracellular H2O2-mediated cell death. In addition, quantitative real-time PCR revealed that HaPrx6 mRNA was constitutively expressed in 14 different tissues, with the highest expression observed in liver tissue. Inductive transcriptional responses were observed in liver and kidney tissues of fish after treating them with bacterial stimuli, including LPS, Edwardsiella tarda, and Streptococcus iniae. These results suggest that HaPrx6 may play an important role in the immune response of the big-belly seahorse against microbial infection. Collectively, these findings provide structural and functional insights into HaPrx6.
Collapse
Affiliation(s)
- G I Godahewa
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - N C N Perera
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Zoology, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - R G P T Jayasooriya
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
31
|
De Panis DN, Padró J, Furió-Tarí P, Tarazona S, Milla Carmona PS, Soto IM, Dopazo H, Conesa A, Hasson E. Transcriptome modulation during host shift is driven by secondary metabolites in desert Drosophila. Mol Ecol 2016; 25:4534-50. [PMID: 27483442 DOI: 10.1111/mec.13785] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/14/2016] [Accepted: 07/21/2016] [Indexed: 12/20/2022]
Abstract
High-throughput transcriptome studies are breaking new ground to investigate the responses that organisms deploy in alternative environments. Nevertheless, much remains to be understood about the genetic basis of host plant adaptation. Here, we investigate genome-wide expression in the fly Drosophila buzzatii raised in different conditions. This species uses decaying tissues of cactus of the genus Opuntia as primary rearing substrate and secondarily, the necrotic tissues of the columnar cactus Trichocereus terscheckii. The latter constitutes a harmful host, rich in mescaline and other related phenylethylamine alkaloids. We assessed the transcriptomic responses of larvae reared in Opuntia sulphurea and T. terscheckii, with and without the addition of alkaloids extracted from the latter. Whole-genome expression profiles were massively modulated by the rearing environment, mainly by the presence of T. terscheckii alkaloids. Differentially expressed genes were mainly related to detoxification, oxidation-reduction and stress response; however, we also found genes involved in development and neurobiological processes. In conclusion, our study contributes new data onto the role of transcriptional plasticity in response to alternative rearing environments.
Collapse
Affiliation(s)
- Diego N De Panis
- IEGEBA-CONICET, UNiversidad de Buenos Aires, FAcultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Ciudad Universitaria (C1428 EHA), CABA, Argentina.
| | - Julián Padró
- IEGEBA-CONICET, UNiversidad de Buenos Aires, FAcultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Ciudad Universitaria (C1428 EHA), CABA, Argentina
| | - Pedro Furió-Tarí
- Genomics of Gene Expression Lab, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Sonia Tarazona
- Genomics of Gene Expression Lab, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain.,Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Camí de Vera, Valencia, 46022, Spain
| | - Pablo S Milla Carmona
- IEGEBA-CONICET, UNiversidad de Buenos Aires, FAcultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Ciudad Universitaria (C1428 EHA), CABA, Argentina.,Laboratorio de Ecosistemas Marinos Fósiles, Instituto de Estudios Andinos Don Pablo Groeber (CONICET-UBA), Intendente Güiraldes 2160, Ciudad Universitaria (C1428 EHA), CABA, Argentina
| | - Ignacio M Soto
- IEGEBA-CONICET, UNiversidad de Buenos Aires, FAcultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Ciudad Universitaria (C1428 EHA), CABA, Argentina
| | - Hernán Dopazo
- IEGEBA-CONICET, UNiversidad de Buenos Aires, FAcultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Ciudad Universitaria (C1428 EHA), CABA, Argentina
| | - Ana Conesa
- Genomics of Gene Expression Lab, Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera 3, Valencia, 46012, Spain. .,Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida at Gainesville, Gainesville, FL, 32603, USA.
| | - Esteban Hasson
- IEGEBA-CONICET, UNiversidad de Buenos Aires, FAcultad de Ciencias Exactas y Naturales, Intendente Güiraldes 2160, Ciudad Universitaria (C1428 EHA), CABA, Argentina.
| |
Collapse
|
32
|
Wang Q, Zhou Y, Chen K, Ju X. Identification and characterization of an atypical 2-cys peroxiredoxin from the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:347-354. [PMID: 26969823 DOI: 10.1111/imb.12224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Peroxiredoxins (Prxs) play an important role in the protection of insects against the toxicity of reactive oxygen species. Here, we identified and characterized a novel, atypical 2-cysteine (Cys) peroxiredoxin (BmPrx3) from an expressed sequence tag database in a lepidopteran insect, Bombyx mori. The BmPrx3 cDNA contained an open reading frame of 684 bp that encodes a 228-amino-acid protein with a calculated molecular mass of 25 kDa. Sequence comparison revealed that BmPrx3 belongs to the atypical 2-Cys Prxs. Quantitative real-time PCR revealed that BmPrx3 can be detected in all tissues and developmental stages. Recombinant BmPrx3 purified from Escherichia coli exhibited antioxidant activity that removed hydrogen peroxide and protected DNA from oxidative damage. Disc diffusion and viability assays revealed that recombinant BmPrx3 increased bacterial survival under H2 O2 -mediated oxidative stress. In addition, quantitative real-time PCR analysis indicated that BmPrx3 transcription levels were significantly increased in response to various oxidative stresses. Furthermore, BmPrx3 transcription levels in the midgut were regulated by bacterial infection. Taken together, these results suggest that BmPrx3 acts as an antioxidant enzyme to protect the silkworm from various oxidative stresses.
Collapse
Affiliation(s)
- Q Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Y Zhou
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - K Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - X Ju
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Khoshnood B, Dacklin I, Grabbe C. Urm1: an essential regulator of JNK signaling and oxidative stress in Drosophila melanogaster. Cell Mol Life Sci 2016; 73:1939-54. [PMID: 26715182 PMCID: PMC11108535 DOI: 10.1007/s00018-015-2121-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/28/2015] [Accepted: 12/15/2015] [Indexed: 12/29/2022]
Abstract
Ubiquitin-related modifier 1 (Urm1) is a ubiquitin-like molecule (UBL) with the dual capacity to act both as a sulphur carrier and posttranslational protein modifier. Here we characterize the Drosophila melanogaster homologues of Urm1 (CG33276) and its E1 activating enzyme Uba4 (CG13090), and show that they function together to induce protein urmylation in vivo. Urm1 conjugation to target proteins in general, and to the evolutionary conserved substrate Peroxiredoxin 5 (Prx5) specifically, is dependent on Uba4. A complete loss of Urm1 is lethal in flies, although a small number of adult zygotic Urm1 (n123) mutant escapers can be recovered. These escapers display a decreased general fitness and shortened lifespan, but in contrast to their S. cerevisiae counterparts, they are resistant to oxidative stress. Providing a molecular explanation, we demonstrate that cytoprotective JNK signaling is increased in Urm1 deficient animals. In agreement, molecular and genetic evidence suggest that elevated activity of the JNK downstream target genes Jafrac1 and gstD1 strongly contributes to the tolerance against oxidative stress displayed by Urm1 (n123) null mutants. In conclusion, Urm1 is a UBL that is involved in the regulation of JNK signaling and the response against oxidative stress in the fruit fly.
Collapse
Affiliation(s)
- B Khoshnood
- Department of Molecular Biology, Umeå University, Building 6L, 901 87, Umeå, Sweden
| | - I Dacklin
- Department of Molecular Biology, Umeå University, Building 6L, 901 87, Umeå, Sweden
| | - C Grabbe
- Department of Molecular Biology, Umeå University, Building 6L, 901 87, Umeå, Sweden.
| |
Collapse
|
34
|
Baron MN, Klinger CM, Rachubinski RA, Simmonds AJ. A Systematic Cell-Based Analysis of Localization of PredictedDrosophilaPeroxisomal Proteins. Traffic 2016; 17:536-53. [DOI: 10.1111/tra.12384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew N. Baron
- Department of Cell Biology; University of Alberta; Medical Sciences Building 5-14 Edmonton AB T6G 2H7 Canada
| | - Christen M. Klinger
- Department of Cell Biology; University of Alberta; Medical Sciences Building 5-14 Edmonton AB T6G 2H7 Canada
| | - Richard A. Rachubinski
- Department of Cell Biology; University of Alberta; Medical Sciences Building 5-14 Edmonton AB T6G 2H7 Canada
| | - Andrew J. Simmonds
- Department of Cell Biology; University of Alberta; Medical Sciences Building 5-14 Edmonton AB T6G 2H7 Canada
| |
Collapse
|
35
|
Zhang S, Shen Z, Li Z, Wu F, Zhang B, Liu Y, Zhang Q, Liu X. Identification of a thioredoxin peroxidase gene involved in resistance to nucleopolyhedrovirus infection in Helicoverpa armigera with RNA interference. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:17-27. [PMID: 26238928 DOI: 10.1016/j.jinsphys.2015.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/25/2015] [Accepted: 07/30/2015] [Indexed: 06/04/2023]
Abstract
Thioredoxin peroxidases (Tpxs) play a crucial role in protection against oxidative damage in several insect species. However, studies on the characteristics and functions of Tpxs in Helicoverpa armigera are lacking. In this study, a novel 2-Cys Tpx gene from H. armigera (HaTpx) was identified. Sequence analysis revealed that HaTpx is highly conserved and shares two catalysis regions (VCP) with other insect species. HaTpx mRNA was found to be expressed in an age-dependent manner and was ubiquitous in all tissues examined. Hormone treatment showed that the expression of HaTpx is clearly induced by 20-hydroxyecdysone but repressed by Juvenile hormone. Additionally, extreme temperature, ultraviolet light, mechanical injury, Escherichia coli, Metarhizium anisopliae, nucleopolyhedrovirus (NPV) infection, and H2O2 treatment markedly induced HaTpx gene expression. Reactive oxygen species (ROS) levels in hemocytes and MDA concentrations in the hemolymph after NPV infection were evaluated, and the results indicated that NPV infection causes excessive ROS generation. After knockdown of HaTpx by RNA interference, the expression of three antioxidant genes (Cu/ZnSOD, Trx, and TrxR) was increased, whereas two antioxidant genes (CAT and GPX) showed decreased expression. Moreover, the susceptibility of H. armigera to NPV infection increased after HaTpx knockdown. These results indicated that HaTpx contributes to the susceptibility of H. armigera to NPV, and the results also provide a theoretical basis for a novel strategy for developing new chemicals and microbial pesticides that target HaTpx gene for controlling H. armigera.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhongjian Shen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Fengming Wu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Boyu Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Yanjun Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
36
|
Kumar S, Park J, Kim E, Na J, Chun YS, Kwon H, Kim W, Kim Y. Oxidative stress induced by chlorine dioxide as an insecticidal factor to the Indian meal moth, Plodia interpunctella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 124:48-59. [PMID: 26453230 DOI: 10.1016/j.pestbp.2015.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 06/05/2023]
Abstract
A novel fumigant, chlorine dioxide (ClO2) is a commercial bleaching and disinfection agent. Recent study indicates its insecticidal activity. However, its mode of action to kill insects is yet to be understood. This study set up a hypothesis that an oxidative stress induced by ClO2 is a main factor to kill insects. The Indian meal moth, Plodia interpunctella, is a lepidopteran insect pest infesting various stored grains. Larvae of P. interpunctella were highly susceptible to ClO2 gas, which exhibited an acute toxicity. Physiological damages by ClO2 were observed in hemocytes. At high doses, the larvae of P. interpunctella suffered significant reduction of total hemocytes. At low doses, ClO2 impaired hemocyte behaviors. The cytotoxicity of ClO2 was further analyzed using two insect cell lines, where Sf9 cells were more susceptible to ClO2 than High Five cells. The cells treated with ClO2 produced reactive oxygen species (ROS). The produced ROS amounts increased with an increase of the treated ClO2 amount. However, the addition of an antioxidant, vitamin E, significantly attenuated the cytotoxicity of ClO2 in a dose-dependent manner. To support the oxidative stress induced by ClO2, two antioxidant genes (superoxide dismutase (SOD) and thioredoxin-peroxidase (Tpx)) were identified from P. interpunctella EST library using ortholog sequences of Bombyx mori. Both SOD and Tpx were expressed in larvae of P. interpunctella especially under oxidative stress induced by bacterial challenge. Exposure to ClO2 gas significantly induced the gene expression of both SOD and Tpx. RNA interference of SOD or Tpx using specific double stranded RNAs significantly enhanced the lethality of P. interpunctella to ClO2 gas treatment as well as to the bacterial challenge. These results suggest that ClO2 induces the production of insecticidal ROS, which results in a fatal oxidative stress in P. interpunctella.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Jiyeong Park
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Eunseong Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Jahyun Na
- Institute of Life Science and Natural Resources, Korea University, Seoul 136-702, Republic of Korea
| | - Yong Shik Chun
- Institute of Life Science and Natural Resources, Korea University, Seoul 136-702, Republic of Korea
| | - Hyeok Kwon
- Department of Life Science and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Wook Kim
- Department of Life Science and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea.
| |
Collapse
|
37
|
Gu A, Hao P, Lv D, Zhen S, Bian Y, Ma C, Xu Y, Zhang W, Yan Y. Integrated Proteome Analysis of the Wheat Embryo and Endosperm Reveals Central Metabolic Changes Involved in the Water Deficit Response during Grain Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8478-87. [PMID: 26332669 DOI: 10.1021/acs.jafc.5b00575] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The embryo and endosperm of wheat have different physiological functions and large differences in protein level. In this study, we performed the first integrated proteome analysis of wheat embryo and endosperm in response to the water deficit during grain development. In total, 155 and 130 differentially expressed protein (DEP) spots in the embryo and endosperm, respectively, were identified by nonlinear two-dimensional electrophoresis and tandem mass spectrometry. These DEPs in the embryo were mainly involved in stress/defense responses such as heat shock-related proteins (HSP) and peroxidase, whereas those in endosperm were mainly related to starch and storage protein synthesis such as α-amylase inhibitor and the globulin-1 S allele. In particular, some storage proteins such as avenin-like proteins and high-molecular weight glutenin subunit Dy12 displayed higher expression levels in the mature endosperm under a water deficit, which might contribute to the improvement in the quality of breadmaking.
Collapse
Affiliation(s)
- Aiqin Gu
- College of Life Sciences, Capital Normal University , Beijing 100048, China
| | - Pengchao Hao
- College of Life Sciences, Capital Normal University , Beijing 100048, China
| | - Dongwen Lv
- College of Life Sciences, Capital Normal University , Beijing 100048, China
| | - Shoumin Zhen
- College of Life Sciences, Capital Normal University , Beijing 100048, China
| | - Yanwei Bian
- College of Life Sciences, Capital Normal University , Beijing 100048, China
| | - Chaoying Ma
- College of Life Sciences, Capital Normal University , Beijing 100048, China
| | - Yanhao Xu
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University , 434025 Jingzhou, China
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University , 434025 Jingzhou, China
| | - Yueming Yan
- College of Life Sciences, Capital Normal University , Beijing 100048, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University , 434025 Jingzhou, China
| |
Collapse
|
38
|
Wang L, Guo H, Zhang N, Ma Z, Jiang S, Zhang D. Molecular characterization and functional analysis of a peroxiredoxin 1 cDNA from golden pompano (Trachinotus ovatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:261-270. [PMID: 25889122 DOI: 10.1016/j.dci.2015.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/28/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Peroxiredoxin 1 (Prx 1) is an important antioxidant protein that can protect organisms against the toxicity of reactive oxygen species. In this study, a full-length Prx 1 cDNA sequence (ToPrx 1) was identified from golden pompano (Trachinotus ovatus). The ToPrx 1 cDNA was 1049 base pairs (bp) long and contained a 5'-untranslated region (UTR) of 127 nucleotides, a 3'-UTR of 328 nucleotides, and a 594 bp open reading frame (ORF) encoding a 197 amino acid polypeptide. The ToPrx 1 protein showed strong homology (79-91%) with Prx 1 proteins from other species and contained the conserved Prx domain and the signature of the peroxidase catalytic center. Phylogenetic analysis revealed that ToPrx 1 was in the fish Prx 1 subgroup, which suggests that ToPrx 1 could belong to the 2-Cys Prx subgroup. ToPrx 1 mRNA was ubiquitously detected in all tested tissues, and its expression was comparatively high in the fin, spleen, kidney, intestine, eye, gill, and blood. The expression levels of ToPrx 1 mRNA were significantly up-regulated in liver, spleen, kidney, and intestine of golden pompano injected with Photobacterium damselae. The recombinant ToPrx 1 protein (rToPrx 1) was expressed and purified through affinity chromatography and refolded successfully using ion-exchange chromatography. The antioxidant activity assay of rToPrx 1 showed that it could reduce insulin in the presence of dithiothreitol, which suggests that the antioxidant function of rToPrx 1 is thiol dependent. This study provides useful information to help further understand the functional mechanism of Prx 1 in marine fish immunity.
Collapse
Affiliation(s)
- Long Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Huayang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
| | - Zhenhua Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
| | - Shigui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China
| | - Dianchang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 Xingang Road West, Haizhu District, Guangzhou 510300, China.
| |
Collapse
|
39
|
Full-length cDNA cloning, molecular characterization and differential expression analysis of peroxiredoxin 6 from Ovis aries. Vet Immunol Immunopathol 2015; 164:208-19. [DOI: 10.1016/j.vetimm.2015.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 12/25/2022]
|
40
|
Zhang L, Lu Z. Expression, purification and characterization of an atypical 2-Cys peroxiredoxin from the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2015; 24:203-212. [PMID: 25512182 DOI: 10.1111/imb.12149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Peroxiredoxins (Prxs) play important roles in protecting organisms against damage caused by reactive oxygen species (ROS). In this study, we cloned a cDNA of Bombyx mori peroxiredoxin 5 (BmPrx5), which contained a 565-bp open reading frame for a 188-residue protein. Sequence analysis indicated that BmPrx5 belongs to the atypical 2-Cys peroxiredoxin family. Recombinant BmPrx5 purified from Escherichia coli showed antioxidant activity that removes H2 O2 and protects DNA from oxidative damage. Quantitative real-time PCR showed that the level of BmPrx5 mRNA in haemocytes increased early and decreased by 24 h after injection of H2 O2 whereas, in the fat body, the transcript level decreased at 6 h and increased at 12 h. Pseudomonas aeruginosa and Staphylococcus aureus infection resulted in higher levels of H2 O2 in the haemolymph and of BmPrx5 mRNA in haemocytes at 8 h postinfection. These data suggest that BmPrx5 acts as an antioxidant enzyme to protect the silkworm from oxidative damage induced by bacterial infection. Further study is needed to elucidate the exact role of BmPrx5 in the silkworm immune system.
Collapse
Affiliation(s)
- L Zhang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | | |
Collapse
|
41
|
Besson MT, Alegría K, Garrido-Gerter P, Barros LF, Liévens JC. Enhanced neuronal glucose transporter expression reveals metabolic choice in a HD Drosophila model. PLoS One 2015; 10:e0118765. [PMID: 25761110 PMCID: PMC4356621 DOI: 10.1371/journal.pone.0118765] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Huntington’s disease is a neurodegenerative disorder caused by toxic insertions of polyglutamine residues in the Huntingtin protein and characterized by progressive deterioration of cognitive and motor functions. Altered brain glucose metabolism has long been suggested and a possible link has been proposed in HD. However, the precise function of glucose transporters was not yet determined. Here, we report the effects of the specifically-neuronal human glucose transporter expression in neurons of a Drosophila model carrying the exon 1 of the human huntingtin gene with 93 glutamine repeats (HQ93). We demonstrated that overexpression of the human glucose transporter in neurons ameliorated significantly the status of HD flies by increasing their lifespan, reducing their locomotor deficits and rescuing eye neurodegeneration. Then, we investigated whether increasing the major pathways of glucose catabolism, glycolysis and pentose-phosphate pathway (PPP) impacts HD. To mimic increased glycolytic flux, we overexpressed phosphofructokinase (PFK) which catalyzes an irreversible step in glycolysis. Overexpression of PFK did not affect HQ93 fly survival, but protected from photoreceptor loss. Overexpression of glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the PPP, extended significantly the lifespan of HD flies and rescued eye neurodegeneration. Since G6PD is able to synthesize NADPH involved in cell survival by maintenance of the redox state, we showed that tolerance to experimental oxidative stress was enhanced in flies co-expressing HQ93 and G6PD. Additionally overexpressions of hGluT3, G6PD or PFK were able to circumvent mitochondrial deficits induced by specific silencing of genes necessary for mitochondrial homeostasis. Our study confirms the involvement of bioenergetic deficits in HD course; they can be rescued by specific expression of a glucose transporter in neurons. Finally, the PPP and, to a lesser extent, the glycolysis seem to mediate the hGluT3 protective effects, whereas, in addition, the PPP provides increased protection to oxidative stress.
Collapse
Affiliation(s)
- Marie Thérèse Besson
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| | - Karin Alegría
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile
| | - Pamela Garrido-Gerter
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, Chile; Universidad Austral de Chile, Valdivia, Chile
| | | | - Jean-Charles Liévens
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, 13344 Marseille cedex 15, Marseille, France
| |
Collapse
|
42
|
Godahewa GI, Kim Y, Dananjaya SHS, Jayasooriya RGPT, Noh JK, Lee J, De Zoysa M. Mitochondrial peroxiredoxin 3 (Prx3) from rock bream (Oplegnathus fasciatus): immune responses and role of recombinant Prx3 in protecting cells from hydrogen peroxide induced oxidative stress. FISH & SHELLFISH IMMUNOLOGY 2015; 43:131-141. [PMID: 25542382 DOI: 10.1016/j.fsi.2014.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
Pathogenic infections and environmental factors cause a variety of stresses in fish including oxidative stress by rapid elevation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Transcriptional activation and expression of antioxidant enzymes are essential for reducing the oxidative stress. In this study, we present the molecular characterization, immune responses and ROS scavenging activity of mitochondrial peroxiredoxin 3 from Oplegnathus fasciatus (RbPrx3). Coding sequence (CDS) of RbPrx3 contains 248 amino acids polypeptide which consists of highly conserved peroxiredoxin super family domain and two cysteine residues. Pairwise sequence comparison revealed that RbPrx3 has the greatest identity (94.8%) to Sparus aurata Prx3. Transcriptional analysis of RbPrx3 indicated the ubiquitously expressed mRNA in wide array of organs showing the highest expression in the liver of rock bream. Upon immune challenge of Edwardsiella tarda, Streptococcus iniae, rock bream iridovirus (RBIV) and lipopolysaccharide (LPS), RbPrx3 mRNA level was up-regulated in immunocompetent liver tissues compared to unchallenged fish. Purified recombinant RbPrx3 treated THP-1 cells showed higher survival rate against H(2)O(2) induced oxidative stress and significantly reduced the level of intracellular ROS. Overall results from our study suggest that RbPrx3 may be involved in broader functions such as regulating oxidative stresses by scavenging ROS and activating immune responses in rock bream.
Collapse
Affiliation(s)
- G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Yucheol Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - S H S Dananjaya
- College of Veterinary Medicine (BK21 Plus Program) and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - R G P T Jayasooriya
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| | - Mahanama De Zoysa
- College of Veterinary Medicine (BK21 Plus Program) and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
43
|
Wang Y, Wang D, Lin L, Wang M. Quantitative proteomic analysis reveals proteins involved in the neurotoxicity of marine medaka Oryzias melastigma chronically exposed to inorganic mercury. CHEMOSPHERE 2015; 119:1126-1133. [PMID: 25460752 DOI: 10.1016/j.chemosphere.2014.09.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 09/11/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
Mercury is a ubiquitous environmental contaminant which exerts neurotoxicity upon animals. Nevertheless, the molecular mechanisms involved in inorganic mercury neurotoxicity are unknown. We investigated protein profiles of marine medaka, chronically exposed to mercuric chloride using two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS) analysis. The mercury accumulation and ultrastructure were also examined in the brain. The results showed that mercury was significantly accumulated in the treated brain, and subsequently caused a noticeable damage. The comparison of 2D-DIGE protein profiles between the control and treatment revealed that 16 protein spots were remarkably altered in abundance, which were further submitted for MALDI-TOF-TOF MS analysis. The identified proteins indicated that inorganic mercury may cause neurotoxicity through the induction of oxidative stress, cytoskeletal assembly dysfunction and metabolic disorders. Thus, this study provided a basis for a better understanding of the molecular mechanisms involved in mercury neurotoxicity.
Collapse
Affiliation(s)
- Yuyu Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Center for Environmental Health Research, South China Institute of Environmental Sciences, Ministry of Environmental Protection of the People's Republic of China, Guangzhou 510655, China
| | - Dazhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Lin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
44
|
Wan H, Kang T, Zhan S, You H, Zhu F, Lee KS, Zhao H, Jin BR, Li J. Peroxiredoxin 5 from common cutworm (Spodoptera litura) acts as a potent antioxidant enzyme. Comp Biochem Physiol B Biochem Mol Biol 2014; 175:53-61. [DOI: 10.1016/j.cbpb.2014.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 01/12/2023]
|
45
|
|
46
|
Yan Y, Zhang Y, Huaxia Y, Wang X, Yao P, Guo X, Xu B. Identification and characterisation of a novel 1-Cys thioredoxin peroxidase gene ( AccTpx5 ) from Apis cerana cerana. Comp Biochem Physiol B Biochem Mol Biol 2014; 172-173:39-48. [DOI: 10.1016/j.cbpb.2014.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/01/2014] [Accepted: 04/09/2014] [Indexed: 12/16/2022]
|
47
|
Li B, Yu X, Gui S, Xie Y, Zhao X, Hong J, Sun Q, Sang X, Sheng L, Cheng Z, Cheng J, Hu R, Wang L, Shen W, Hong F. Molecular mechanisms of phoxim-induced silk gland damage and TiO2 nanoparticle-attenuated damage in Bombyx mori. CHEMOSPHERE 2014; 104:221-227. [PMID: 24331035 DOI: 10.1016/j.chemosphere.2013.11.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 06/03/2023]
Abstract
Phoxim is a useful organophosphate (OP) pesticide used in agriculture in China, however, exposure to this pesticide can result in a significant reduction in cocooning in Bombyx mori (B. mori). Titanium dioxide nanoparticles (TiO2 NPs) have been shown to decrease phoxim-induced toxicity in B. mori; however, very little is known about the molecular mechanisms of silk gland damage due to OP exposure and repair of gland damage by TiO2 NP pretreatment. In the present study, exposure to phoxim resulted in a significant reduction in cocooning rate in addition to silk gland damage, whereas TiO2 NP attenuated phoxim-induced gland damage, increased the antioxidant capacity of the gland, and increased cocooning rate in B. mori. Furthermore, digital gene expression data suggested that phoxim exposure led to significant alterations in the expression of 833 genes. In particular, phoxim exposure caused significant down-regulation of Fib-L, Ser2, Ser3, and P25 genes involved in silk protein synthesis, and up-regulation of SFGH, UCH3, and Salhh genes involved in silk protein hydrolysis. A combination of both phoxim and TiO2 NP treatment resulted in marked changes in the expression of 754 genes, while treatment with TiO2 NPs led to significant alterations in the expression of 308 genes. Importantly, pretreatment with TiO2 NPs increased Fib-L, Ser2, Ser3, and P25 expression, and decreased SFGH, UCH3, and Salhh expression in silk protein in the silk gland under phoxim stress. Therefore, Fib-L, Ser2, Ser3, P25, SFGH, UCH3, and Salhh may be potential biomarkers of silk gland toxicity in B. mori caused by phoxim exposure.
Collapse
Affiliation(s)
- Bing Li
- Medical College of Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk of Soochow University, Suzhou 215123, China
| | - Xiaohong Yu
- Medical College of Soochow University, Suzhou 215123, China
| | - Suxin Gui
- Medical College of Soochow University, Suzhou 215123, China
| | - Yi Xie
- Medical College of Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk of Soochow University, Suzhou 215123, China
| | - Xiaoyang Zhao
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Hong
- Medical College of Soochow University, Suzhou 215123, China
| | - Qingqing Sun
- Medical College of Soochow University, Suzhou 215123, China
| | - Xuezi Sang
- Medical College of Soochow University, Suzhou 215123, China
| | - Lei Sheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Zhe Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Jie Cheng
- Medical College of Soochow University, Suzhou 215123, China
| | - Rengping Hu
- Medical College of Soochow University, Suzhou 215123, China
| | - Ling Wang
- Medical College of Soochow University, Suzhou 215123, China
| | - Weide Shen
- Medical College of Soochow University, Suzhou 215123, China; National Engineering Laboratory for Modern Silk of Soochow University, Suzhou 215123, China.
| | - Fashui Hong
- Medical College of Soochow University, Suzhou 215123, China; Jiangsu Province Key Laboratory of Stem Cell Research, Soochow University, 708 Renmin Road, Suzhou 215007, China; Cultivation Base of State Key Laboratory of Stem Cell and Biomaterials, Ministry of Science and Technology, Suzhou 215007, Jiangsu Province, China.
| |
Collapse
|
48
|
Chen H, Yin Y, Feng E, Li Y, Xie X, Wang Z. Thioredoxin peroxidase gene is involved in resistance to biocontrol fungus Nomuraea rileyi in Spodoptera litura: gene cloning, expression, localization and function. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:76-85. [PMID: 24296440 DOI: 10.1016/j.dci.2013.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
Thioredoxin peroxidases (Tpxs) are a ubiquitous family of antioxidant enzymes that play important roles in protecting organisms against oxidative stress. Here, one Tpx was cloned from Spodoptera litura named as SlTpx. The full-length cDNA consists of 1165 bp with 588 bp open reading frame, encoding 195 amino acids. The putative amino acid sequence shared >70% identity with Tpxs from other insects. Phylogenetic analysis revealed that SlTpx is closely related to other available lepidopteran Tpxs. Real-time PCR analysis showed that SlTpx can be induced by Nomuraea rileyi infection in some detected tissues at the mRNA level. The strongest expression was found in hemocytes of unchallenged and N. rileyi-challenged S. litura. Western blotting showed SlTpx protein in the hemocytes, head and cuticle from normal S. litura. However, when N. rileyi was inoculated into the body cavity of S. litura larvae, SlTpx protein was detected in head, hemocytes, fatbody, midgut, malpighian tubule, but not in the hemolymph and cuticle. Moreover, time-course analysis showed that SlTpx mRNA/protein expression levels were up-regulated in the hemocytes, when S. litura were infected by N. rileyi or injected with H2O2. The levels of N. rileyi-induced reactive oxygen species (ROS) in hemocytes were evaluated, and revealed that N. rileyi infection caused generation of ROS, and induced changes in expression of SlTpx. In addition, the heterologously expressed protein of this gene in Escherichia coli showed antioxidant activity; it removed H2O2 and protected DNA. Knocking down SlTpx transcripts by dsRNA interference resulted in accelerated insect death with N. rileyi infection. This is believed to be the first report showing that SlTpx has a significant role in resisting oxidative stress caused by N. rileyi infection.
Collapse
Affiliation(s)
- Huan Chen
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China; Institute of Plant Physiology and Ecology, Chinese Academy of Sciences Key Laboratory of Insect Developmental and Evolutionary Biology, CAS, Shanghai 200032, China
| | - Youping Yin
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China
| | - Eryan Feng
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China
| | - Yan Li
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China
| | - Xiang Xie
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China
| | - Zhongkang Wang
- Genetic Engineering Research Centre, College of Life Science, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
49
|
Zhang Q, Huang J, Li F, Liu S, Liu Q, Wei J, Liang G, Xiang J. Molecular characterization, immune response against white spot syndrome virus infection of peroxiredoxin 4 in Fenneropenaeus chinensis and its antioxidant activity. FISH & SHELLFISH IMMUNOLOGY 2014; 37:38-45. [PMID: 24418456 DOI: 10.1016/j.fsi.2013.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/26/2013] [Accepted: 12/29/2013] [Indexed: 06/03/2023]
Abstract
Peroxiredoxins (Prx) are a family of antioxidant proteins and perform important functions in intracellular signal transduction. Here, we report a Prx gene from Chinese shrimp Fenneropenaeus chinensis. The full-length cDNA of FcPrx gene contained an open reading frame of 735 bp encoding a polypeptide of 275 amino acids. The molecular mass of the deduced amino acid of FcPrx is 27445.43 Da with an estimated pI of 5.71. Sequence comparison showed that the FcPrx shares high identities with Prx IVs and it was named FcPrx4. A real-Time PCR (qRT-PCR) assay was developed to assess the mRNA expression of FcPrx4 in different tissues and temporal expression in hemocytes and hepatopancreas of F. chinensis challenged by white spot syndrome virus (WSSV). Transcripts of FcPrx4 can be detected in all tissues examined. The expression of FcPrx4 showed significant up-regulation in shrimp hemocytes and hepatopancreas after artificial infection with WSSV. A fusion protein containing FcPrx4 was produced in vitro and was confirmed by Matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) assay. And activity analysis indicated that the recombinant FcPrx4 proteins can reduce H2O2 in the presence of dithiothreitol.
Collapse
Affiliation(s)
- Qingli Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Jie Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Fuhua Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Shuang Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qinghui Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Jiankai Wei
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Gaofeng Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Jianhai Xiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
50
|
Favrin G, Bean DM, Bilsland E, Boyer H, Fischer BE, Russell S, Crowther DC, Baylis HA, Oliver SG, Giannakou ME. Identification of novel modifiers of Aβ toxicity by transcriptomic analysis in the fruitfly. Sci Rep 2013; 3:3512. [PMID: 24336499 PMCID: PMC3863820 DOI: 10.1038/srep03512] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022] Open
Abstract
The strongest risk factor for developing Alzheimer's Disease (AD) is age. Here, we study the relationship between ageing and AD using a systems biology approach that employs a Drosophila (fruitfly) model of AD in which the flies overexpress the human Aβ42 peptide. We identified 712 genes that are differentially expressed between control and Aβ-expressing flies. We further divided these genes according to how they change over the animal's lifetime and discovered that the AD-related gene expression signature is age-independent. We have identified a number of differentially expressed pathways that are likely to play an important role in the disease, including oxidative stress and innate immunity. In particular, we uncovered two new modifiers of the Aβ phenotype, namely Sod3 and PGRP-SC1b.
Collapse
Affiliation(s)
- G. Favrin
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- These authors contributed equally to this work
| | - D. M. Bean
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
- These authors contributed equally to this work
| | - E. Bilsland
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - H. Boyer
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - B. E. Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - S. Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - D. C. Crowther
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - H. A. Baylis
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - S. G. Oliver
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, CB2 1GA, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - M. E. Giannakou
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|