1
|
Cosottini L, Geri A, Ghini V, Mannelli M, Zineddu S, Di Paco G, Giachetti A, Massai L, Severi M, Gamberi T, Rosato A, Turano P, Messori L. Unlocking the Power of Human Ferritin: Enhanced Drug Delivery of Aurothiomalate in A2780 Ovarian Cancer Cells. Angew Chem Int Ed Engl 2024; 63:e202410791. [PMID: 38949226 DOI: 10.1002/anie.202410791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Aurothiomalate (AuTM) is an FDA-approved antiarthritic gold drug with unique anticancer properties. To enhance its anticancer activity, we prepared a bioconjugate with human apoferritin (HuHf) by attaching some AuTM moieties to surface protein residues. The reaction of apoferritin with excess AuTM yielded a single adduct, that was characterized by ESI MS and ICP-OES analysis, using three mutant ferritins and trypsinization experiments. The adduct contains ~3 gold atoms per ferritin subunit, arranged in a small cluster bound to Cys90 and Cys102. MD simulations provided a plausible structural model for the cluster. The adduct was evaluated for its pharmacological properties and was found to be significantly more cytotoxic than free AuTM against A2780 cancer cells mainly due to higher gold uptake. NMR-metabolomics showed that AuTM bound to HuHf and free AuTM induced qualitatively similar changes in treated cancer cells, indicating that the effects on cell metabolism are approximately the same, in agreement with independent biochemical experiments. In conclusion, we have demonstrated here that a molecularly precise bioconjugate formed between AuTM and HuHf exhibits anticancer properties far superior to the free drug, while retaining its key mechanistic features. Evidence is provided that human ferritin can serve as an excellent carrier for this metallodrug.
Collapse
Affiliation(s)
- Lucrezia Cosottini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Geri
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Veronica Ghini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Michele Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Stefano Zineddu
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Giorgio Di Paco
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Andrea Giachetti
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), 50019, Sesto Fiorentino, FI, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134, Florence, Italy
| | - Antonio Rosato
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
- Magnetic Resonance Center, University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Paola Turano
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
- Magnetic Resonance Center, University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, FI, Italy
| |
Collapse
|
2
|
Liang A, Zhou W, Zhang H, Zhang J, Zhang XE, Fang T, Li F. Effects of Individual Amino Acids on the Blood Circulation of Biosynthetic Protein Nanocages: Toward Guidance on Surface Engineering. Adv Healthc Mater 2023; 12:e2300502. [PMID: 37067183 DOI: 10.1002/adhm.202300502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Indexed: 04/18/2023]
Abstract
Protein nanocages (PNCs) hold great promise for developing multifunctional nanomedicines. Long blood circulation is a key requirement of PNCs for most in vivo application scenarios. In addition to the classical PEGylation strategy, short peptides with a specific sequence screened via phage display are also very effective in prolonging the blood half-life (t1/2 ) of PNCs. However, there is a lack of knowledge on how individual amino acids affect the circulation of PNCs. Here the effects of the 20 proteinogenic amino acids in the form of an X3 or X5 tag (X represents an amino acid) are explored on the pharmacokinetics of PNCs, which lead to the formation of a heatmap illustrating the extent of t1/2 prolongation by each proteinogenic amino acid. Significantly, oligo-lysine and oligo-arginine can effectively prolong the t1/2 of strongly negatively charged PNCs through charge neutralization, while oligo-cysteine can also do so, but via a different mechanism, mediating the covalent binding of PNCs with plasma albumin as a stealth material. These findings are extendible and offer guidance for surface-engineering biosynthetic PNCs and other nanoparticles.
Collapse
Affiliation(s)
- Ao Liang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Juan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ti Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Qiu L, Zhang Y, Wei G, Wang C, Zhu Y, Yang T, Chu Z, Gao P, Cheng G, Ma A, Kwan Wong Y, Zhang J, Xu C, Wang J, Tang H. How eluents define proteomic fingerprinting of protein corona on nanoparticles. J Colloid Interface Sci 2023; 648:497-510. [PMID: 37307606 DOI: 10.1016/j.jcis.2023.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have broad application prospects in the field of biomedicine due to their excellent physicochemical properties. When entering biological fluids, NPs inevitably encountered proteins and were subsequently surrounded by them, forming the termed protein corona (PC). As PC has been evidenced to have critical roles in deciding the biological fates of NPs, how to precisely characterize PC is vital to promote the clinical translation of nanomedicine by understanding and harnessing NPs' behaviors. During the centrifugation-based separation techniques for the PC preparation, direct elution has been most widely used to strip proteins from NPs due to its simpleness and robustness, but the roles of multifarious eluents have never been systematically declared. Herein, seven eluents composed of three denaturants, sodium dodecyl sulfate (SDS), dithiothreitol (DTT), and urea (Urea), were applied to detach PC from gold nanoparticles (AuNPs) and silica nanoparticles (SiNPs), and eluted proteins in PC have been carefully characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and chromatography coupled tandem mass spectrometry (LC-MS/MS). Our results showed that SDS and DTT were the main contributors to the efficient desorption of PC on SiNPs and AuNPs, respectively. The molecular reactions between NPs and proteins were explored and verified by SDS-PAGE analysis of PC formed in the serums pretreated with protein denaturing or alkylating agents. The proteomic fingerprinting analysis indicated the difference of the eluted proteins brought by the seven eluents was the abundance rather than the species. The enrichment of some opsonins and dysopsonins in a special elution reminds us that the possibility of biased judgments on predicting NPs' biological behaviors under different elution conditions. The synergistic effects or antagonistic effects among denaturants for eluting PC were manifested in a nanoparticle-type dependent way by integrating the properties of the eluted proteins. Collectively, this study not only underlines the urgent need of choosing the appropriate eluents for identifying PC robustly and unbiasedly, but also provides an insight into the understanding of molecular interactions during PC formation.
Collapse
Affiliation(s)
- Liangjia Qiu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong, China
| | - Ying Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Genxia Wei
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chen Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yinhua Zhu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Yang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zheng Chu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Gao
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong, China
| | - Guangqing Cheng
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ang Ma
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yin Kwan Wong
- Department of Physiological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Junzhe Zhang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chengchao Xu
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Jigang Wang
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong, China; Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China.
| | - Huan Tang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Dong Y, Yang K, Xu Z, Li X, Wang F, Zhang Y. Effective Delivery of Paclitaxel-Loaded Ferritin via Inverso CendR Peptide for Enhanced Cancer Therapy. Mol Pharm 2023; 20:942-952. [PMID: 36574345 DOI: 10.1021/acs.molpharmaceut.2c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The application of drug delivery systems based on ferritin nanocarrier has been developed as a potential strategy in cancer therapy. The limited permeability of ferritin remains a challenge for drug penetration into the deeper tumor tissues. CendR peptides have been reported to bear tumor-specific penetration by recognizing neuropilin (NRP-1) receptor that overexpressed on a wide range of cancer cells. Herein, we modified CendR peptide L(RGERPPR), its retro-inverso peptide D(RPPREGR), and inverso peptide D(RGERPPR) on the outer surface of human H chain ferritin by sulfhydryl-maleimide coupling reaction. Approximately 45 paclitaxel (PTX) molecules could be loaded into each ferritin inner cavity by a thermal-triggered method at a specific ionic strength. The penetration ability of three peptide-modified ferritin constructs showed that D(RGERPPR)-modified HFtn was able to be engulfed by A549 and MCF-7 tumor cells and spheroids at the highest level. Due to the dual-targeting effect of ferritin and modified peptides, the PTX-loaded nanocomposites could effectively enter the cells with high expression of TfR1 and NRP-1 receptors and enhanced the cytotoxicity against tumor cells. Remarkably, H-D(RGE)-PTX displayed a superior tumor growth suppression efficacy in A549 tumor-bearing nude mice. The inverso CendR peptide-modified HFtn nanocarrier was first generated and could provide an effective dual-targeting platform for treatment of cancers.
Collapse
Affiliation(s)
- Yixin Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Kun Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Zicheng Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Nanjing210009, P. R. China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Yu Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing Forestry University, Nanjing210037, P. R. China
| |
Collapse
|
5
|
Evaluation of Auranofin Loading within Ferritin Nanocages. Int J Mol Sci 2022; 23:ijms232214162. [PMID: 36430642 PMCID: PMC9695178 DOI: 10.3390/ijms232214162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Auranofin (AF), a gold(I) compound that is currently used for the treatment of rheumatoid arthritis and is in clinical trials for its promising anticancer activity, was encapsulated within the human H-chain and the horse spleen ferritin nanocages using the alkaline disassembly/reassembly protocol. The aim of the work was to highlight possible differences in their drug loading capacity and efficacy. The drug-loaded ferritins were characterized via UV-vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy to assess AF encapsulation and to define the exact amount of gold atoms trapped in the Ft cavity. The crystal structures allowed us to define the nature of AF interaction with both ferritins and to identify the gold binding sites. Moreover, the biological characterization let us to obtain preliminary information on the cytotoxic effect of AF when bound to the human H-chain.
Collapse
|
6
|
Enhanced Cellular Uptake of H-Chain Human Ferritin Containing Gold Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13111966. [PMID: 34834381 PMCID: PMC8623468 DOI: 10.3390/pharmaceutics13111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles (AuNP) capped with biocompatible layers have functional optical, chemical, and biological properties as theranostic agents in biomedicine. The ferritin protein containing in situ synthesized AuNPs has been successfully used as an effective and completely biocompatible nanocarrier for AuNPs in human cell lines and animal experiments in vivo. Ferritin can be uptaken by different cell types through receptor-mediated endocytosis. Despite these advantages, few efforts have been made to evaluate the toxicity and cellular internalization of AuNP-containing ferritin nanocages. In this work, we study the potential of human heavy-chain (H) and light-chain (L) ferritin homopolymers as nanoreactors to synthesize AuNPs and their cytotoxicity and cellular uptake in different cell lines. The results show very low toxicity of ferritin-encapsulated AuNPs on different human cell lines and demonstrate that efficient cellular ferritin uptake depends on the specific H or L protein chains forming the ferritin protein cage and the presence or absence of metallic cargo. Cargo-devoid apoferritin is poorly internalized in all cell lines, and the highest ferritin uptake was achieved with AuNP-loaded H-ferritin homopolymers in transferrin-receptor-rich cell lines, showing more than seven times more uptake than apoferritin.
Collapse
|
7
|
Wang Y, Zang J, Wang C, Zhang X, Zhao G. Structural Insights for the Stronger Ability of Shrimp Ferritin to Coordinate with Heavy Metal Ions as Compared to Human H-Chain Ferritin. Int J Mol Sci 2021; 22:ijms22157859. [PMID: 34360624 PMCID: PMC8346123 DOI: 10.3390/ijms22157859] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Although apoferritin has been widely utilized as a new class of natural protein nanovehicles for encapsulation and delivery of nutraceuticals, its ability to remove metal heavy ions has yet to be explored. In this study, for the first time, we demonstrated that the ferritin from kuruma prawns (Marsupenaeus japonicus), named MjF, has a pronouncedly larger ability to resist denaturation induced by Cd2+ and Hg2+ as compared to its analogue, human H-chain ferritin (HuHF), despite the fact that these two proteins share a high similarity in protein structure. Treatment of HuHF with Cd2+ or Hg2+ at a metal ion/protein shell ratio of 100/1 resulted in marked protein aggregation, while the MjF solution was kept constantly clear upon treatment with Cd2+ and Hg2+ at different protein shell/metal ion ratios (50/1, 100/1, 250/1, 500/1, 1000/1, and 2500/1). Structural comparison analyses in conjunction with the newly solved crystal structure of the complex of MjF plus Cd2+ or Hg2+ revealed that cysteine (Cys) is a major residue responsible for such binding, and that the large difference in the ability to resist denaturation induced by these two heavy metal ions between MjF and HuHF is mainly derived from the different positions of Cys residues in these two proteins; namely, Cys residues in HuHF are located on the outer surface, while Cys residues from MjF are buried within the protein shell. All of these findings raise the high possibility that prawn ferritin, as a food-derived protein, could be developed into a novel bio-template to remove heavy metal ions from contaminated food systems.
Collapse
Affiliation(s)
- Yingjie Wang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China;
| | - Xiuqing Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
- Correspondence: (X.Z.); (G.Z.); Tel.: +86-10-62736710 (G.Z.); Fax: +86-10-62738737 (G.Z.)
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China; (Y.W.); (J.Z.)
- Correspondence: (X.Z.); (G.Z.); Tel.: +86-10-62736710 (G.Z.); Fax: +86-10-62738737 (G.Z.)
| |
Collapse
|
8
|
Cuevas-Barragan CE, Buenrostro-Nava MT, Palos-Gómez GM, Ramirez-Padilla EA, Mendoza-Macias BI, Rivas-Caceres RR. Use of Nasoil® via intranasal to control the harmful effects of Covid-19. Microb Pathog 2020; 149:104504. [PMID: 32950636 PMCID: PMC7497547 DOI: 10.1016/j.micpath.2020.104504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
Abstract
In the absence of vaccines and antiviral drugs available to prevent and treat COVID-19, it becomes imperative to find or use all those products with the potential to fight this virus. This article is an attempt to propose ways to prevent, treat and control the COVID-19 virus, using a product based on plant extracts with the potential to reduce the symptoms caused by the SARS-CoV-2 virus. Nasoil® counts as one of its main components, Asclepias curassavica extracts, and in the present study it has been shown that it is an effective adjuvant in the treatment of Covid-19, increasing the respiratory capacity of the patients (SpO2> 90%) and reducing the symptoms from the first application, improving the patients around the fifth to the eighth application. At a preventive level, the individuals in this study who have applied it (400 individuals) only a 3.15% of these presented symptoms, disappearing when increasing the weekly applications. Nasoil® protects from the appearance of symptoms by 96% due to Covid-19. Modifying lung microenvironments reduces Covid-19 symptoms. Promoting new interactions in the elastic protein decreases the elastase activity of neutrophils. The combination of plant extracts in Nasoil® help in respiratory problems. Nasoil® is an co-adjuvant for the control and prevention of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
| | | | - Gabriela Monserrat Palos-Gómez
- Especialista en Medicina Familiar, Unidad de Medicina Familiar núm, 19, del Instituto Mexicano del Seguro Social, Colima, Colima, Mexico
| | | | | | | |
Collapse
|
9
|
Micronutrients that Affect Immunosenescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1260:13-31. [DOI: 10.1007/978-3-030-42667-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Jin Y, He J, Fan K, Yan X. Ferritin variants: inspirations for rationally designing protein nanocarriers. NANOSCALE 2019; 11:12449-12459. [PMID: 31231742 DOI: 10.1039/c9nr03823j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ferritin, a natural iron storage protein, is endowed with a unique structure, the ability to self-assemble and excellent physicochemical properties. Beyond these, genetic manipulation can easily tune the structure and functions of ferritin nanocages, which further expands the biomedical applications of ferritin. Here, we focus on human H-ferritin, a recently discovered ligand of transferrin receptor 1, to review its derived variants and related structures and properties. We hope this review will provide new insights into how to rationally design versatile protein cage nanocarriers for effective disease treatment.
Collapse
Affiliation(s)
- Yiliang Jin
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China. and University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China.
| | - Jiuyang He
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Kelong Fan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China. and University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China. and Academy of Medical Sciences, Zhengzhou University, 40 N Daxue Road, Zhengzhou 450052, China
| |
Collapse
|
11
|
Fernández-Cisnal R, García-Sevillano MA, Gómez-Ariza JL, Pueyo C, López-Barea J, Abril N. 2D-DIGE as a proteomic biomarker discovery tool in environmental studies with Procambarus clarkii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:813-827. [PMID: 28159302 DOI: 10.1016/j.scitotenv.2017.01.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
UNLABELLED A 2D-DIGE/MS approach was used to assess protein abundance differences in the red swamp crayfish Procambarus clarkii from polluted aquatic ecosystems of Doñana National Park and surrounding areas with different pollution loads. Procambarus clarkii accumulated metals in the digestive glands and gills reflecting sediment concentrations. We first stated that, probably related to elements accumulation, pollution increased oxidative damage in P. clarkii tissues, as shown by the thiol oxidation status of proteins and MDA levels. In these animals, the altered redox status might be responsible for the deregulated abundance of proteins involved in cellular responses to oxidative stress including protein folding, mitochondrial imbalance and inflammatory processes. Interestingly, polluted P. clarkii crayfish also displayed a metabolic shift to enhanced aerobic glycolysis, most likely aimed at generating ATP and reduction equivalents in an oxidative stress situation that alters mitochondrial integrity. The deregulated proteins define the physiological processes affected by pollutants in DNP and its surrounding areas and may help us to unravel the molecular mechanisms underlying the toxicity of environmental pollutants. In addition, these proteins might be used as exposure biomarkers in environmental risk assessment. The results obtained might be extrapolated to many other locations all over the world and have the added value of providing information about the molecular responses of this environmentally and economically interesting animal. SIGNIFICANCE Metal content in digestive gland and gills of P. clarkii crayfish reflects their contents in sediments at sites of Doñana National Park and its surroundings. Accumulation of essential and toxic transition metals is paralleled by clear signs of oxidative stress to lipids and proteins and by significant deregulation of many proteins involved in protein folding, mitochondrial respiratory imbalance and inflammatory response. These results indicate that P. clarkii is an excellent bioindicator to be used in aquatic ecosystems quality monitoring. Additionally, results evidence that the anthropogenic activities carried out around Doñana National Park represent an extremely serious threat to this unique Biosphere Reserve and pose a risk to the environment and their inhabitants health. The identified deregulated proteins provide information about the metabolic pathways and/or physiological processes affected by pollutant-elicited oxidative stress, may also be useful as biomarkers of environmental pollution and have the added value of providing information about the molecular responses of this environmentally and economically interesting animal.
Collapse
Affiliation(s)
- Ricardo Fernández-Cisnal
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Miguel A García-Sevillano
- Department of Chemistry and Materials Science, Faculty of Experimental Science and Agrifood Campus of International Excellence (ceiA3), University of Huelva, El Carmen Campus, 21007 Huelva, Spain
| | - José L Gómez-Ariza
- Department of Chemistry and Materials Science, Faculty of Experimental Science and Agrifood Campus of International Excellence (ceiA3), University of Huelva, El Carmen Campus, 21007 Huelva, Spain
| | - Carmen Pueyo
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Juan López-Barea
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain
| | - Nieves Abril
- Department of Biochemistry and Molecular Biology and Agrifood Campus of International Excellence (ceiA3), University of Córdoba, Severo Ochoa Building, Rabanales Campus, 14071 Córdoba, Spain..
| |
Collapse
|
12
|
Linder MC. Mobilization of stored iron in mammals: a review. Nutrients 2013; 5:4022-50. [PMID: 24152745 PMCID: PMC3820057 DOI: 10.3390/nu5104022] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
From the nutritional standpoint, several aspects of the biochemistry and physiology of iron are unique. In stark contrast to most other elements, most of the iron in mammals is in the blood attached to red blood cell hemoglobin and transporting oxygen to cells for oxidative phosphorylation and other purposes. Controlled and uncontrolled blood loss thus has a major impact on iron availability. Also, in contrast to most other nutrients, iron is poorly absorbed and poorly excreted. Moreover, amounts absorbed (~1 mg/day in adults) are much less than the total iron (~20 mg/day) cycling into and out of hemoglobin, involving bone marrow erythropoiesis and reticuloendothelial cell degradation of aged red cells. In the face of uncertainties in iron bioavailability, the mammalian organism has evolved a complex system to retain and store iron not immediately in use, and to make that iron available when and where it is needed. Iron is stored innocuously in the large hollow protein, ferritin, particularly in cells of the liver, spleen and bone marrow. Our current understanding of the molecular, cellular and physiological mechanisms by which this stored iron in ferritin is mobilized and distributed-within the cell or to other organs-is the subject of this review.
Collapse
Affiliation(s)
- Maria C Linder
- Department of Chemistry and Biochemistry, California State University, Fullerton, CA 92834-6866, USA.
| |
Collapse
|
13
|
Rocha ER, Smith CJ. Ferritin-like family proteins in the anaerobe Bacteroides fragilis: when an oxygen storm is coming, take your iron to the shelter. Biometals 2013; 26:577-91. [PMID: 23842847 DOI: 10.1007/s10534-013-9650-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 06/24/2013] [Indexed: 02/08/2023]
Abstract
Bacteroides are gram-negative anaerobes and one of the most abundant members the lower GI tract microflora where they play an important role in normal intestinal physiology. Disruption of this commensal relationship has a great impact on human health and disease. Bacteroides spp. are significant opportunistic pathogens causing infections when the mucosal barrier integrity is disrupted following predisposing conditions such as GI surgery, perforated or gangrenous appendicitis, perforated ulcer, diverticulitis, trauma and inflammatory bowel diseases. B. fragilis accounts for 60-90 % of all anaerobic infections despite being a minor component of the genus (<1 % of the flora). Clinical strains of B. fragilis are among the most aerotolerant anaerobes. When shifted from anaerobic to aerobic conditions B. fragilis responds to oxidative stress by inducing the expression of an extensive set of genes involved in protection against oxygen derived radicals and iron homeostasis. In Bacteroides, little is known about the metal/oxidative stress interactions and the mobilization of intra-cellular non-heme iron during the oxidative stress response has been largely overlooked. Here we present an overview of the work carried out to demonstrate that both oxygen-detoxifying enzymes and iron-storage proteins are essential for B. fragilis to survive an adverse oxygen-rich environment. Some species of Bacteroides have acquired multiple homologues of the iron storage and detoxifying ferritin-like proteins but some species contain none. The proteins found in Bacteroides are classical mammalian H-type non-heme ferritin (FtnA), non-specific DNA binding and starvation protein (Dps) and the newly characterized bacterial Dps-Like miniferritin protein. The full contribution of ferritin-like proteins to pathophysiology of commensal and opportunistic pathogen Bacteroides spp. still remains to be elucidated.
Collapse
Affiliation(s)
- Edson R Rocha
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
14
|
Ahmed MS, Jadhav AB, Hassan A, Meng QH. Acute phase reactants as novel predictors of cardiovascular disease. ISRN INFLAMMATION 2012; 2012:953461. [PMID: 24049653 PMCID: PMC3767354 DOI: 10.5402/2012/953461] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/01/2012] [Indexed: 12/21/2022]
Abstract
Acute phase reaction is a systemic response which usually follows a physiological condition that takes place in the beginning of an inflammatory process. This physiological change usually lasts 1-2 days. However, the systemic acute phase response usually lasts longer. The aim of this systemic response is to restore homeostasis. These events are accompanied by upregulation of some proteins (positive acute phase reactants) and downregulation of others (negative acute phase reactants) during inflammatory reactions. Cardiovascular diseases are accompanied by the elevation of several positive acute phase reactants such as C-reactive protein (CRP), serum amyloid A (SAA), fibrinogen, white blood cell count, secretory nonpancreatic phospholipase 2-II (sPLA2-II), ferritin, and ceruloplasmin. Cardiovascular disease is also accompanied by the reduction of negative acute phase reactants such as albumin, transferrin, transthyretin, retinol-binding protein, antithrombin, and transcortin. In this paper, we will be discussing the biological activity and diagnostic and prognostic values of acute phase reactants with cardiovascular importance. The potential therapeutic targets of these reactants will be also discussed.
Collapse
Affiliation(s)
- M S Ahmed
- Department of Medicine, Royal University Hospital, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5 ; Department of Pharmacology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
| | | | | | | |
Collapse
|
15
|
Braconi D, Bianchini C, Bernardini G, Laschi M, Millucci L, Spreafico A, Santucci A. Redox-proteomics of the effects of homogentisic acid in an in vitro human serum model of alkaptonuric ochronosis. J Inherit Metab Dis 2011; 34:1163-76. [PMID: 21874298 DOI: 10.1007/s10545-011-9377-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/20/2011] [Accepted: 07/18/2011] [Indexed: 01/25/2023]
Abstract
Alkaptonuria (AKU) is a rare inborn error of metabolism associated with a deficient activity of homogentisate 1,2-dioxygenase (HGO), an enzyme involved in tyrosine and phenylalanine metabolism. Such a deficiency leads to the accumulation of homogentisic acid (HGA) and its oxidized/polymerized products in connective tissues, where melanin-like pigments accumulate (ochronosis). Ochronosis involves especially joints, where an ochronotic arthropathy develops. Little is known on the molecular mechanisms leading to ochronosis and ochronotic arthropathy in AKU. Previous works of ours showed that HGA in vitro propagates oxidative stress through its conversion into benzoquinone acetate (BQA). We hence used an in vitro model consisting of human serum treated with HGA and evaluated the activities of glutathione related anti-oxidant enzymes and levels of compounds indexes of oxidative stress. Proteomics and redox-proteomics were used to identify oxidized proteins and proteins more likely able to bind BQA. Overall, we found that the production of ochronotic pigment in HGA-treated serum is accompanied by lipid peroxidation, decreased activity of the enzyme glutathione peroxidase and massive depletion of thiol groups, together with increased protein carbonylation and thiol oxidation. We also found that BQA was likely to bind carrier proteins and naturally abundant serum proteins, eventually altering their chemico-physical properties. Concluding, our work points towards a critical importance of thiol compounds in counteracting HGA- and BQA- mediated stress in AKU, so that future research for disease biomarkers and pharmacological treatments for AKU and ochronosis will be more easily addressed.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biotecnologie, Università degli Studi di Siena (SI), via Fiorentina 1, 53100, Siena, SI, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
May CA, Grady JK, Laue TM, Poli M, Arosio P, Chasteen ND. The sedimentation properties of ferritins. New insights and analysis of methods of nanoparticle preparation. Biochim Biophys Acta Gen Subj 2010; 1800:858-70. [PMID: 20307627 DOI: 10.1016/j.bbagen.2010.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 03/04/2010] [Accepted: 03/16/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND Ferritin exhibits complex behavior in the ultracentrifuge due to variability in iron core size among molecules. A comprehensive study was undertaken to develop procedures for obtaining more uniform cores and assessing their homogeneity. METHODS Analytical ultracentrifugation was used to measure the mineral core size distributions obtained by adding iron under high- and low-flux conditions to horse spleen (apoHoSF) and human H-chain (apoHuHF) apoferritins. RESULTS More uniform core sizes are obtained with the homopolymer human H-chain ferritin than with the heteropolymer horse spleen HoSF protein in which subpopulations of HoSF molecules with varying iron content are observed. A binomial probability distribution of H- and L-subunits among protein shells qualitatively accounts for the observed subpopulations. The addition of Fe(2+) to apoHuHF produces iron core particle size diameters from 3.8 + or - 0.3 to 6.2 + or - 0.3 nm. Diameters from 3.4 + or - 0.6 to 6.5 + or - 0.6 nm are obtained with natural HoSF after sucrose gradient fractionation. The change in the sedimentation coefficient as iron accumulates in ferritin suggests that the protein shell contracts approximately 10% to a more compact structure, a finding consistent with published electron micrographs. The physicochemical parameters for apoHoSF (15%/85% H/L subunits) are M=484,120 g/mol, nu=0.735 mL/g, s(20,w)=17.0 S and D(20,w)=3.21 x 10(-)(7) cm(2)/s; and for apoHuHF M=506,266 g/mol, nu=0.724 mL/g, s(20,w)=18.3S and D(20,w)=3.18 x 10(-)(7) cm(2)/s. SIGNIFICANCE The methods presented here should prove useful in the synthesis of size controlled nanoparticles of other minerals.
Collapse
Affiliation(s)
- Carrie A May
- Department of Chemistry, University of New Hampshire, Durham, NH 03824-2544, USA
| | | | | | | | | | | |
Collapse
|
17
|
Dutra F, Araki D, Bechara EJH. Aminoacetone Induces Loss of Ferritin Ferroxidase and Iron Uptake Activities. Free Radic Res 2009; 37:1113-21. [PMID: 14703801 DOI: 10.1080/10715760310001604116] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aminoacetone (AA) is a threonine and glycine metabolite overproduced and recently implicated as a contributing source of methylglyoxal (MG) in conditions of ketosis. Oxidation of AA to MG, NH4+, and H2O2 has been reported to be catalyzed by a copper-dependent semicarbazide sensitive amine oxidase (SSAO) as well as by copper- and iron ion-catalyzed reactions with oxygen. We previously demonstrated that AA-generated O2*-. and enoyl radical (AA*) induce dose-dependent Fe(II) release from horse spleen ferritin (HoSF); no reaction occurs under nitrogen. In the present study we further explored the mechanism of iron release and the effect of AA on the ferritin apoprotein. Iron chelators such as EDTA, ATP and citrate, and phosphate accelerated AA-promoted iron release from HoSF, which was faster in horse spleen isoferritins containing larger amounts of phosphate in the core. Incubation of apoferritin with AA (2.5-50 mM, after 6 h) changes the apoprotein electrophoretic behavior, suggesting a structural modification of the apoprotein by AA-generated ROS. Superoxide dismutase (SOD) was able to partially protect apoferritin from structural modification whereas catalase, ethanol, and mannitol were ineffective in protection. Incubation of apoferritin with AA (1-10 mM) produced a dose-dependent decrease in tryptophan fluorescence (13-30%, after 5 h), and a partial depletion of protein thiols (29% after 24 h). The AA promoted damage to apoferritin produced a 40% decrease in apoprotein ferroxidase activity and an 80% decrease in its iron uptake ability. The current findings of changes in ferritin and apoferritin may contribute to intracellular iron-induced oxidative stress during AA formation in ketosis and diabetes mellitus.
Collapse
Affiliation(s)
- Fernando Dutra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, CEP 05508-900, Brazil
| | | | | |
Collapse
|
18
|
Butts CA, Swift J, Kang SG, Di Costanzo L, Christianson DW, Saven JG, Dmochowski IJ. Directing Noble Metal Ion Chemistry within a Designed Ferritin Protein,. Biochemistry 2008; 47:12729-39. [DOI: 10.1021/bi8016735] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher A. Butts
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| | - Joe Swift
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| | - Seung-gu Kang
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| | - Luigi Di Costanzo
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| | - David W. Christianson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| | - Ivan J. Dmochowski
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323
| |
Collapse
|
19
|
De Zoysa M, Lee J. Two ferritin subunits from disk abalone (Haliotis discus discus): cloning, characterization and expression analysis. FISH & SHELLFISH IMMUNOLOGY 2007; 23:624-35. [PMID: 17442591 DOI: 10.1016/j.fsi.2007.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/29/2006] [Accepted: 01/11/2007] [Indexed: 05/14/2023]
Abstract
Ferritin plays a key role in cellular iron metabolism, which includes iron storage and detoxification. From disk abalone, Haliotis discus discus, the cDNA that encodes the two ferritin subunits abalone ferritin subunit 1 (Abf1) and abalone ferritin subunit 2 (Abf2) were cloned. The complete cDNA coding sequences for Abf1 and Abf2 contained 621 and 549 bp, encoding for 207 and 183 amino acid residues, respectively. The H. discus discus Abf2 subunit contained a highly conserved motif for the ferroxidase center, which consists of seven residues of a typical vertebrate heavy-chain ferritin with a typical stem-loop structure. Abf2 mRNA contains a 27 bp iron-responsive element (IRE) in the 5'UTR position. This IRE exhibited 96% similarity with pearl and Pacific oyster and 67% similarity with human H type IREs. However, the Abf1 subunit had neither ferroxidase center residues nor the IRE motif sequence; instead, it contained iron-binding region signature 2 (IBRS) residues. Recombinant Abf1 and Abf2 proteins were purified and the respective sizes were about 24 and 21 kDa. Abf1 and Abf2 exhibited iron-chelating activity 44.2% and 22.0%, respectively, at protein concentration of 6 microg/ml. Analysis of tissue-specific expression by RT-PCR revealed that Abf1 and Abf2 ferritin mRNAs were expressed in various abalone tissues, such as gill, mantle, gonad, foot and digestive tract in a wide distribution profile, but Abf2 expression was more prominent than Abf1.
Collapse
Affiliation(s)
- Mahanama De Zoysa
- Department of Marine Biotechnology, College of Ocean Science, Cheju National University, 66 Jejudaehakno, Ara-dong, Jeju 690-756, Republic of Korea
| | | |
Collapse
|
20
|
Koorts AM, Viljoen M. Ferritin and ferritin isoforms I: Structure-function relationships, synthesis, degradation and secretion. Arch Physiol Biochem 2007; 113:30-54. [PMID: 17522983 DOI: 10.1080/13813450701318583] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Ferritin is the intracellular protein responsible for the sequestration, storage and release of iron. Ferritin can accumulate up to 4500 iron atoms as a ferrihydrite mineral in a protein shell and releases these iron atoms when there is an increase in the cell's need for bioavailable iron. The ferritin protein shell consists of 24 protein subunits of two types, the H-subunit and the L-subunit. These ferritin subunits perform different functions in the mineralization process of iron. The ferritin protein shell can exist as various combinations of these two subunit types, giving rise to heteropolymers or isoferritins. Isoferritins are functionally distinct and characteristic populations of isoferritins are found depending on the type of cell, the proliferation status of the cell and the presence of disease. The synthesis of ferritin is regulated both transcriptionally and translationally. Translation of ferritin subunit mRNA is increased or decreased, depending on the labile iron pool and is controlled by an iron-responsive element present in the 5'-untranslated region of the ferritin subunit mRNA. The transcription of the genes for the ferritin subunits is controlled by hormones and cytokines, which can result in a change in the pool of translatable mRNA. The levels of intracellular ferritin are determined by the balance between synthesis and degradation. Degradation of ferritin in the cytosol results in complete release of iron, while degradation in secondary lysosomes results in the formation of haemosiderin and protection against iron toxicity. The majority of ferritin is found in the cytosol. However, ferritin with slightly different properties can also be found in organelles such as nuclei and mitochondria. Most of the ferritin produced intracellularly is harnessed for the regulation of iron bioavailability; however, some of the ferritin is secreted and internalized by other cells. In addition to the regulation of iron bioavailability ferritin may contribute to the control of myelopoiesis and immunological responses.
Collapse
Affiliation(s)
- A M Koorts
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa.
| | | |
Collapse
|
21
|
Welch KD, Hall JO, Davis TZ, Aust SD. The effect of copper deficiency on the formation of hemosiderin in sprague-dawley rats. Biometals 2007; 20:829-39. [PMID: 17235666 DOI: 10.1007/s10534-006-9046-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 11/22/2006] [Indexed: 12/26/2022]
Abstract
We demonstrated previously that loading iron into ferritin via its own ferroxidase activity resulted in damage to the ferritin while ferritin loaded by ceruloplasmin, a copper-containing ferroxidase, was not damaged and had similar characteristics to native ferritin (Welch et al. (2001) Free Radic Biol Med 31:999-1006). Interestingly, it has been suggested that the formation of hemosiderin, a proposed degradation product of ferritin, is increased in animals deficient in copper. In this study, groups of rats were fed normal diets, copper deficient diets, iron supplemented diets, or copper deficient-iron supplemented diets for 60 days. Rats fed copper-deficient diets had no detectable active serum ceruloplasmin, which indicates that they were functionally copper deficient. There was a significant increase in the amount of iron in isolated hemosiderin fractions from the livers of copper-deficient rats, even more than that found in rats fed only an iron-supplemented diet. Histological analysis showed that copper-deficient rats had iron deposits (which are indicative of hemosiderin) in their hepatocytes and Kupffer cells, whereas rats fed diets sufficient in copper only had iron deposits in their Kupffer cells. Histologic evidence of iron deposition was more pronounced in rats fed diets that were deficient in copper. Additionally, sucrose density-gradient sedimentation profiles of ferritin loaded with iron in vitro via its own ferroxidase activity was found to have similarities to that of the sedimentation profile of the hemosiderin fraction from rat livers. The implications of these data for the possible mechanism of hemosiderin formation are discussed.
Collapse
Affiliation(s)
- Kevin D Welch
- Biotechnology Center, Utah State University, Logan, UT 84322-4705, USA
| | | | | | | |
Collapse
|
22
|
Hasan MR, Koikawa S, Kotani S, Miyamoto S, Nakagawa H. Ferritin forms dynamic oligomers to associate with microtubules in vivo: Implication for the role of microtubules in iron metabolism. Exp Cell Res 2006; 312:1950-60. [PMID: 16603154 DOI: 10.1016/j.yexcr.2006.02.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 02/21/2006] [Accepted: 02/24/2006] [Indexed: 11/20/2022]
Abstract
Ferritin, a ubiquitously distributed iron storage protein, has been reported to interact with microtubules in vitro (Hasan et al., 2005, FEBS journal 272:822-831). Here, we demonstrate that ferritin binds with the microtubules in an oligomeric form and that the microtubule-bound ferritin contains more than two-fold amount of iron compared to the unbound ferritin fraction in vitro. Indirect immunofluorescence microscopy showed that a significant fraction of the ferritin molecules colocalized with the microtubules as oligomers in a wide variety of cell lines. These findings are consistent with the immediate oligomerization of rhodamine-labeled ferritin, microinjected in living human hepatoma cells. Ferritin oligomers were dynamic in the cytoplasm, and an anti-microtubule drug significantly inhibited their intracellular movement. Treatment of cells with an iron donor, ferric ammonium citrate, remarkably increased the number of cells containing ferritin oligomers. On the other hand, when the cells, such as mouse neuroblastoma cells, were deprived of iron, ferritin oligomers were localized in the microtubule dense, neurite shafts, but were disappeared from the microtubule deficient neurite tips. These data indicate that the microtubules provide a scaffold for the cytoplasmic distribution and transport of the iron-rich ferritin and implicate the role of microtubules in iron metabolism.
Collapse
Affiliation(s)
- Mohammad Rubayet Hasan
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | | | | | | | |
Collapse
|
23
|
Rocha MEM, Dutra F, Bandy B, Baldini RL, Gomes SL, Faljoni-Alário A, Liria CW, Miranda MTM, Bechara EJH. Oxidative damage to ferritin by 5-aminolevulinic acid. Arch Biochem Biophys 2003; 409:349-56. [PMID: 12504902 DOI: 10.1016/s0003-9861(02)00633-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
5-Aminolevulinic acid (ALA), a heme precursor overproduced in various porphyric disorders, has been implicated in iron-mediated oxidative damage to biomolecules and cell structures. From previous observations of ferritin iron release by ALA, we investigated the ability of ALA to cause oxidative damage to ferritin apoprotein. Incubation of horse spleen ferritin (HoSF) with ALA caused alterations in the ferritin circular dichroism spectrum (loss of a alpha-helix content) and altered electrophoretic behavior. Incubation of human liver, spleen, and heart ferritins with ALA substantially decreased antibody recognition (51, 60, and 28% for liver, spleen, and heart, respectively). Incubation of apoferritin with 1-10mM ALA produced dose-dependent decreases in tryptophan fluorescence (11-35% after 5h), and a partial depletion of protein thiols (18% after 24h) despite substantial removal of catalytic iron. The loss of tryptophan fluorescence was inhibited 35% by 50mM mannitol, suggesting participation of hydroxyl radicals. The damage to apoferritin had no effect on ferroxidase activity, but produced a 61% decrease in iron uptake ability. The results suggest a local autocatalytic interaction among ALA, ferritin, and oxygen, catalyzed by endogenous iron and phosphate, that causes site-specific damage to the ferritin protein and impaired iron sequestration. These data together with previous findings that ALA overload causes iron mobilization in brain and liver of rats may help explain organ-specific toxicities and carcinogenicity of ALA in experimental animals and patients with porphyria.
Collapse
Affiliation(s)
- Maria E M Rocha
- Departamento de Bioqui;mica, Instituto de Qui;mica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|