1
|
More DA, Mujahid M, Muthukrishnan M. Metal‐ And Light‐Free Direct C‐3 Ketoalkylation of Quinoxalin‐2(1
H
)‐Ones with Cyclopropanols in Aqueous Medium. ChemistrySelect 2022. [DOI: 10.1002/slct.202203597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Devidas A. More
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Mujahid
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - M. Muthukrishnan
- Division of Organic Chemistry CSIR - National Chemical Laboratory Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
2
|
Moazzen A, Öztinen N, Ak-Sakalli E, Koşar M. Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon 2022; 8:e10467. [PMID: 36091954 PMCID: PMC9459676 DOI: 10.1016/j.heliyon.2022.e10467] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, 11 hydroxybenzoic acids, 6 hydroxycinnamic acids, 6 flavonoids, and 2 synthetic phenolic antioxidants were evaluated according to their scavenging capacity and structure relationships. The IC50 was calculated for all compounds and the effects of the concentration of antioxidant and the length of the reaction on antioxidant capacity were taken into consideration. Based on the data of tested phenolics some structure-activity relationships were suggested and discussed in detail. Poor correspondence of the results between ABTS+• and DPPH• assays was attained, indicating that the antioxidant properties of each compound differ with regards to the applied method. Nevertheless, it can be argued that the number of electron-donating substituents (-OH and -OCH3) and their configuration has a significant impact on the antioxidant capacity. Undoubtedly, concerns about the reliability of these assays demand further in-depth investigations to give detailed insight into the structure and antioxidant activity relationships.
Collapse
|
3
|
The Phytotoxin Myrigalone A Triggers a Phased Detoxification Programme and Inhibits Lepidium sativum Seed Germination via Multiple Mechanisms including Interference with Auxin Homeostasis. Int J Mol Sci 2022; 23:ijms23094618. [PMID: 35563008 PMCID: PMC9104956 DOI: 10.3390/ijms23094618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
Molecular responses of plants to natural phytotoxins comprise more general and compound-specific mechanisms. How phytotoxic chalcones and other flavonoids inhibit seedling growth was widely studied, but how they interfere with seed germination is largely unknown. The dihydrochalcone and putative allelochemical myrigalone A (MyA) inhibits seed germination and seedling growth. Transcriptome (RNAseq) and hormone analyses of Lepidium sativum seed responses to MyA were compared to other bioactive and inactive compounds. MyA treatment of imbibed seeds triggered the phased induction of a detoxification programme, altered gibberellin, cis-(+)-12-oxophytodienoic acid and jasmonate metabolism, and affected the expression of hormone transporter genes. The MyA-mediated inhibition involved interference with the antioxidant system, oxidative signalling, aquaporins and water uptake, but not uncoupling of oxidative phosphorylation or p-hydroxyphenylpyruvate dioxygenase expression/activity. MyA specifically affected the expression of auxin-related signalling genes, and various transporter genes, including for auxin transport (PIN7, ABCG37, ABCG4, WAT1). Responses to auxin-specific inhibitors further supported the conclusion that MyA interferes with auxin homeostasis during seed germination. Comparative analysis of MyA and other phytotoxins revealed differences in the specific regulatory mechanisms and auxin transporter genes targeted to interfere with auxin homestasis. We conclude that MyA exerts its phytotoxic activity by multiple auxin-dependent and independent molecular mechanisms.
Collapse
|
4
|
Lu J, Tong Y, Hao N, Zhang L, Wei J, Zhang Z, Fu Q, Yi D, Wang J, Mu Y, Pan X, Yang L, Wei S, Zhong L. Photocatalytic redox-neutral arylation of cyclopropanols with cyanoarenes via radical-mediated C–C and C–CN bond cleavage. Org Chem Front 2022. [DOI: 10.1039/d1qo01844b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-arylated ketones widely exist in many biologically active molecules and natural products. Herein, we disrcibled a photocatalytic redox-neutral arylation of cyclopropanols with cyanoarenes via radical-mediated C–C and C–CN bond cleavage...
Collapse
|
5
|
Xue Y, Liu Y, Xie Y, Cong C, Wang G, An L, Teng Y, Chen M, Zhang L. Antioxidant activity and mechanism of dihydrochalcone C-glycosides: Effects of C-glycosylation and hydroxyl groups. PHYTOCHEMISTRY 2020; 179:112393. [PMID: 32836068 DOI: 10.1016/j.phytochem.2020.112393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Dihydrochalcones (DHCs), an important subgroup of flavonoids, have recently received much attention due to their diverse biological activities. In contrast to their O-glycosides, understanding of the antioxidant property and mechanism of DHC C-glycosides remains limited. Herein, the free radical scavenging activity and mechanism of two representative C-glycosyl DHCs, aspalathin (ASP) and nothofagin (NOT) as well as their aglycones, 3-hydroxyphloretin (HPHL) and phloretin (PHL) were evaluated using the density functional theory (DFT) calculations. The results revealed the crucial role of sugar moiety on the conformation and the activity. The o-dihydroxyl in the B-ring and the 2',6'-dihydroxyacetophenone moiety were found significant in determining the activity. Our results showed that hydrogen atom transfer (HAT) is the dominant mechanism for radical-trapping in the gas and benzene phases, while the sequential proton loss electron transfer (SPLET) is more preferable in the polar environments. Also, the results revealed the feasibility of the double HAT and double SPLET as well as the SPLHAT mechanisms, which provide alternative pathways to trap radical for the studied DHCs. These results could deepen the understanding of the antiradical activity and mechanism of DHCs, which will facilitate the design of novel efficient antioxidants.
Collapse
Affiliation(s)
- Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Yunping Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yuxin Xie
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Chunxue Cong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Guirong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Lin An
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yangxin Teng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Mohan Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No.209, Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
6
|
Liu Q, Wang Q, Xie G, Fang Z, Ding S, Wang X. Metal-Free Direct C-H β-Carbonyl Alkylation of Heteroarenes with Cyclopropanols Mediated by K2
S2
O8. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qiang Liu
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
- Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; 710049 Xi'an P. R. China
| | - Qiang Wang
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
- Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; 710049 Xi'an P. R. China
| | - Guanqun Xie
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
| | - Zeyang Fang
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
| | - Shujiang Ding
- Department of Applied Chemistry; School of Science; Xi'an Jiaotong University; 710049 Xi'an P. R. China
| | - Xiaoxia Wang
- School of Materials Science and Engineering; School of Environment and Civil Engineering; Dongguan University of Technology; 523808 Dongguan P. R. China
| |
Collapse
|
7
|
Rizk SA, Shaban S, Sallam HA. A facile synthesis and antioxidant evaluation of conjugated 8‐azacoumarins based on DFT parameters. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3833] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sameh A. Rizk
- Chemistry Department, Science FacultyAin Shams University Cairo Egypt
| | - Safa Shaban
- Chemistry Department, Science FacultyAin Shams University Cairo Egypt
| | - Hanan A. Sallam
- Chemistry Department, Science FacultyAin Shams University Cairo Egypt
| |
Collapse
|
8
|
Chen D, Fu Y, Cao X, Luo J, Wang F, Huang S. Metal-Free Cyclopropanol Ring-Opening C(sp3)–C(sp2) Cross-Couplings with Aryl Sulfoxides. Org Lett 2019; 21:5600-5605. [DOI: 10.1021/acs.orglett.9b01908] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dengfeng Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yuanyuan Fu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang 310014, P. R. China
| | - Jinyue Luo
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shenlin Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
9
|
Chlorogenic acid isomers directly interact with Keap 1-Nrf2 signaling in Caco-2 cells. Mol Cell Biochem 2019; 457:105-118. [PMID: 30895499 PMCID: PMC6548765 DOI: 10.1007/s11010-019-03516-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/08/2019] [Indexed: 11/29/2022]
Abstract
Chlorogenic acid (CGA) exists as multiple isomers (e.g., 3-CQA, 4-CQA, 5-CQA, 3,4-diCQA, 3,5-diCQA, and 4,5-diCQA) in foods such as coffee beverages, fruits and vegetables. This study aimed to investigate relative activities of these six different CGA isomers to modify redox biology in inflamed Caco-2 cells that involved Nrf2 signaling. Caco-2 cells were pre-treated with individual CGA isomers to assess the relative effectiveness to mitigate oxidative stress. Isomer-specific capacity of different CGA isomers for direct free radical scavenging activity and potential endogenous control of oxidative stress were determined using chemical assays and cell-based experiments, respectively. Molecular dynamics simulations of the CGA and Keap1-Nrf2 complex were performed to predict CGA structure-specific interactions. Results demonstrated that dicaffeoylquinic acid (diCQA including 3,4-diCQA, 3,5-diCQA, and 4,5-diCQA) isomers had greater (p < 0.05) affinity to ameliorate oxidative stress through direct free radical scavenging activity. This observation corresponded to greater (p < 0.05) capacity to activate Nrf2 signaling compared to caffeoylquinic acid (CQA including 3-CQA, 4-CQA, and 5-CQA) isomers in inflamed differentiated Caco-2 cells. Simulations revealed that differences between the ability of CQA and diCQA to interact with the Keap1-Nrf2 complex may be due to differences in relative orientation within this complex. The observed CGA isomer-specific affinity for CQA to activate Nrf2 signaling was confirmed by nuclear translocation of Nrf2 induced by CGA and greater (p < 0.05) upregulation of genes related to Nrf2 expression.
Collapse
|
10
|
Messina CM, Renda G, Laudicella VA, Trepos R, Fauchon M, Hellio C, Santulli A. From Ecology to Biotechnology, Study of the Defense Strategies of Algae and Halophytes (from Trapani Saltworks, NW Sicily) with a Focus on Antioxidants and Antimicrobial Properties. Int J Mol Sci 2019; 20:E881. [PMID: 30781640 PMCID: PMC6412379 DOI: 10.3390/ijms20040881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 11/16/2022] Open
Abstract
This study aimed at the characterization of the antioxidant power of polyphenol extracts (PE) obtained from the algae Cystoseira foeniculacea (CYS) (Phaeophyta) and from the halophyte Halocnemum strobilaceum (HAL), growing in the solar saltworks of western Sicily (Italy), and at the evaluation of their anti-microfouling properties, in order to correlate these activities to defense strategies in extreme environmental conditions. The antioxidant properties were assessed in the PE based on the total antioxidant activity test and the reducing power test; the anti-microfouling properties of the two PE were evaluated by measuring the growth inhibition of marine fish and shellfish pathogen bacteria as well as marine surface fouling bacteria and microalgae exposed to the fractions. Similar polyphenol content (CYS 5.88 ± 0.75 and HAL 6.03 ± 0.25 mg gallic acid equivalents (GAE) g-1 dried weight, DW) and similar reducing power percentage (93.91 ± 4.34 and 90.03 ± 6.19) were recorded for both species, even if they exhibited a different total antioxidant power (measured by the percentage of inhibition of the radical 2,2 diphenyl-1-picrylhydrazyl DPPH), with CYS (79.30) more active than HAL (59.90). Both PE showed anti-microfouling properties, being inhibitors of adhesion and growth of marine fish and shellfish pathogen bacteria (V. aestuarianus, V. carchariae, V. harveyi, P. elyakovii, H. aquamarina) and fouling bacteria (V. natriegens, V. proteolyticus, P. iirgensii, R. litoralis) with minimum inhibitory concentrations comparable to the commercial antifouling products used as a positive control (SEA-NINE™ 211N). Only CYS was a significant inhibitor of the microalgae strains tested, being able to reduce E. gayraliae and C. closterium growth (MIC 10 µg·mL-1) and the adhesion of all three strains tested (E. gayraliae, C. closterium and P. purpureum), suggesting its promise for use as an antifouling (AF) product.
Collapse
Affiliation(s)
- Concetta Maria Messina
- Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Università degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
| | - Giuseppe Renda
- Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Università degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
| | - Vincenzo Alessandro Laudicella
- Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Università degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy.
| | - Rozenn Trepos
- Biodimar, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539, UBO/IUEM, 29200 Brest, France.
| | - Marilyne Fauchon
- Biodimar, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539, UBO/IUEM, 29200 Brest, France.
| | - Claire Hellio
- Biodimar, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539, UBO/IUEM, 29200 Brest, France.
| | - Andrea Santulli
- Dipartimento di Scienze della terra e del Mare DiSTeM, Laboratorio di Biochimica Marina ed Ecotossicologia, Università degli Studi di Palermo, Via G. Barlotta 4, 91100 Trapani, Italy.
- Istituto di Biologia Marina, Consorzio Universitario della Provincia di Trapani, Via G. Barlotta 4, 91100 Trapani, Italy.
| |
Collapse
|
11
|
He FS, Wu Y, Li X, Xia H, Wu J. Photoredox-catalyzed sulfonylation of alkenylcyclobutanols with the insertion of sulfur dioxide through semipinacol rearrangement. Org Chem Front 2019. [DOI: 10.1039/c9qo00300b] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A photoredox-catalyzed sulfonylation of alkenylcyclobutanols with the insertion of sulfur dioxide through semipinacol rearrangement under visible light irradiation is developed.
Collapse
Affiliation(s)
- Fu-Sheng He
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310058
- China
| | - Youqian Wu
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310058
- China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Hongguang Xia
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310058
- China
| | - Jie Wu
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
12
|
A strategy for absolute quantitation of isomers using high performance liquid chromatography-ion mobility mass spectrometry and material balance principle. J Chromatogr A 2018; 1571:140-146. [DOI: 10.1016/j.chroma.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 02/01/2023]
|
13
|
A new UHPLC-MS/MS method for the determination of flavonoids in supplements and DPPH -UHPLC-UV method for the evaluation of the radical scavenging activity of flavonoids. Food Chem 2018; 256:333-341. [DOI: 10.1016/j.foodchem.2018.02.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/31/2018] [Accepted: 02/25/2018] [Indexed: 01/06/2023]
|
14
|
Li X, Chen B, Xie H, He Y, Zhong D, Chen D. Antioxidant Structure⁻Activity Relationship Analysis of Five Dihydrochalcones. Molecules 2018; 23:molecules23051162. [PMID: 29757201 PMCID: PMC6100071 DOI: 10.3390/molecules23051162] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 01/05/2023] Open
Abstract
The study determined the comparative antioxidant capacities of five similar dihydrochalcones: phloretin, phloridzin, trilobatin, neohesperidin dihydrochalcone, and naringin dihydrochalcone. In the ferric-reducing antioxidant power (FRAP) assay, the antioxidant activities of pairs of dihydrochalcones had the following relationship: phloretin > phloridzin, phloretin > trilobatin, trilobatin > phloridzin, trilobatin > naringin dihydrochalcone, and neohesperidin dihydrochalcone > naringin dihydrochalcone. Similar relative antioxidant levels were also obtained from 1,1-diphenyl-2-picryl-hydrazl radical (DPPH•)-scavenging, 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS•+)-scavenging, and superoxide radical (•O2−)-scavenging assays. Using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS) analysis for the reaction products with DPPH•, phloretin, phloridzin, and trilobatin were found to yield both dihydrochalcone-DPPH adduct and dihydrochalcone-dihydrochalcone dimer, whereas naringin dihydrochalcone gave a naringin dihydrochalcone-DPPH adduct, and neohesperidin dihydrochalcone gave a dimer. In conclusion, the five dihydrochalcones may undergo redox-based reactions (especially electron transfer (ET) and hydrogen atom transfer (HAT)), as well as radical adduct formation, to exert their antioxidant action. Methoxylation at the ortho-OH enhances the ET and HAT potential possibly via p-π conjugation, whereas the glycosylation of the –OH group not only reduces the ET and HAT potential but also hinders the ability of radical adduct formation. The 2′,6′-di-OH moiety in dihydrochalcone possesses higher ET and HAT activities than the 2′,4′-di-OH moiety because of its resonance with the adjacent keto group.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Ban Chen
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Yuhua He
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Dewei Zhong
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Waihuan East Road No. 232, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
15
|
Li H, Jiang Q, Jie X, Shang Y, Zhang Y, Goossen LJ, Su W. Rh/Cu-Catalyzed Ketone β-Functionalization by Merging Ketone Dehydrogenation and Carboxyl-Directed C–H Alkylation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00923] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongyi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Quandi Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiaoming Jie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Yuanfei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| | - Lukas J. Goossen
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
16
|
Zhu M, Du H, Li J, Zou D, Wu Y, Wu Y. Synthesis of β-heteroaryl carbonyl compounds via direct cross-coupling of allyl alcohols with heteroaryl boronic acids under cooperative bimetallic catalysis. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
17
|
Effect of Copper Sulfide Nanoparticles in Poly(vinyl chloride) Exposed to Gamma Irradiation. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0615-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Wen L, Jiang Y, Yang J, Zhao Y, Tian M, Yang B. Structure, bioactivity, and synthesis of methylated flavonoids. Ann N Y Acad Sci 2017; 1398:120-129. [DOI: 10.1111/nyas.13350] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Lingrong Wen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; Chinese Academy of Sciences; Guangzhou China
| | - Yueming Jiang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; Chinese Academy of Sciences; Guangzhou China
| | - Jiali Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; Chinese Academy of Sciences; Guangzhou China
| | - Yupeng Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; Chinese Academy of Sciences; Guangzhou China
| | - Miaomiao Tian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; Chinese Academy of Sciences; Guangzhou China
| | - Bao Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden; Chinese Academy of Sciences; Guangzhou China
| |
Collapse
|
19
|
LoPachin RM, Geohagen BC, Nordstrøm LU, Gavin T. Enolate-Forming Compounds as a Novel Approach to Cytoprotection. Chem Res Toxicol 2016; 29:2096-2107. [PMID: 27989140 DOI: 10.1021/acs.chemrestox.6b00300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Evidence from laboratory studies and clinical trials suggests that plant-derived polyphenolic compounds such as curcumin, resveratrol, or phloretin might be useful in the treatment of certain diseases (e.g., Alzheimer's disease) and acute tissue injury states (e.g., spinal cord trauma). However, despite this potential, the corresponding chemical instability, toxic potential, and low bioavailability of these compounds could limit their ultimate clinical relevance. We have shown that pharmacophores of curcumin (e.g., 2-acetylcyclopentanone) and phloretin (e.g., 2',4',6'-trihydroxyacetophenone; THA) can provide cytoprotection in cell culture and animal models of oxidative stress injury. These pharmacophores are 1,3-dicarbonyl and polyphenol derivatives, the enol groups of which can ionize in biological solutions to form an enolate. This carbanionic moiety can chelate metal ions and, as a nucleophile, can scavenge toxic electrophiles (e.g., acrolein, 4-hydroxy-2-nonenal, and N-acetyl-p-benzoquinone imine) involved in many pathogenic conditions. Aromatic derivatives such as THA can also trap free oxygen and nitrogen radicals and thereby provide another layer of cytoprotection. The multifunctional character of these enolate-forming compounds suggests an ability to block pathogenic processes (e.g., oxidative stress) at several steps. The purpose of this review is to discuss research supporting our theory that enolate formation is a significant cytoprotective property that represents a platform for development of pharmacotherapeutic approaches to a variety of toxic and pathogenic conditions. Our discussion will focus on mechanism and structure-activity studies that define enolate chemistry and their corresponding relationships to cytoprotection.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Lars Ulrik Nordstrøm
- Chemical Synthesis & Biology Core Facility, Albert Einstein College of Medicine , Bronx, New York 10461, United States
| | - Terrence Gavin
- Department of Chemistry, Iona College , New Rochelle, New York 10801, United States
| |
Collapse
|
20
|
Bhuiya S, Haque L, Pradhan AB, Das S. Inhibitory effects of the dietary flavonoid quercetin on the enzyme activity of zinc(II)-dependent yeast alcohol dehydrogenase: Spectroscopic and molecular docking studies. Int J Biol Macromol 2016; 95:177-184. [PMID: 27864057 DOI: 10.1016/j.ijbiomac.2016.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/01/2022]
Abstract
A multispectroscopic exploration was employed to investigate the interaction between the metallo-enzyme alcohol dehydrogenase (ADH) from yeast with bioflavonoid quercetin (QTN). Here, we have characterized the complex formation between QTN and Zn2+ in aqueous solution and then examined the effect of such complex formation on the enzymatic activity of a zinc(II)-dependent enzyme alcohol dehydrogenase from yeast. We have observed an inhibition of enzymatic activity of ADH in presence of QTN. Enzyme inhibition kinetic experiments revealed QTN as a non-competitive inhibitor of yeast ADH. Perturbation of Circular dichroic (CD) spectrum of ADH in presence of QTN is observed due to the structural changes of ADH on complexation with the above flavonoid. Our results indicate a conformational change of ADH due to removal of Zn2+ present in the enzyme by QTN. This was further established by molecular modeling study which shows that the flavonoid binds to the Zn2+ ion which maintains the tertiary structure of the metallo-enzyme. So, QTN abstracts only half of the Zn2+ ions present in the enzyme i.e. one Zn2+ ion per monomer. From the present study, the structural alteration and loss of enzymatic activity of ADH are attributed to the complex formation between QTN and Zn2+.
Collapse
Affiliation(s)
- Sutanwi Bhuiya
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Lucy Haque
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Ankur Bikash Pradhan
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Suman Das
- Department of Chemistry, Jadavpur University, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
21
|
Zamora R, Hidalgo FJ. The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Geohagen BC, Vydyanathan A, Kosharskyy B, Shaparin N, Gavin T, LoPachin RM. Enolate-Forming Phloretin Pharmacophores: Hepatoprotection in an Experimental Model of Drug-Induced Toxicity. J Pharmacol Exp Ther 2016; 357:476-86. [PMID: 27029584 DOI: 10.1124/jpet.115.231001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/22/2016] [Indexed: 12/12/2022] Open
Abstract
Drug-induced toxicity is often mediated by electrophilic metabolites, such as bioactivation of acetaminophen (APAP) to N-acetyl-p-benzoquinone imine (NAPQI). We have shown that APAP hepatotoxicity can be prevented by 2-acetylcyclopentanone (2-ACP). This 1,3-dicarbonyl compound ionizes to form an enolate nucleophile that scavenges NAPQI and other electrophilic intermediates. In this study, we expanded our investigation of enolate-forming compounds to include analyses of the phloretin pharmacophores, 2',4',6'-trihydroxyacetophenone (THA) and phloroglucinol (PG). Studies in a mouse model of APAP overdose showed that THA provided hepatoprotection when given either by intraperitoneal injection or oral administration, whereas PG was hepatoprotective only when given intraperitoneally. Corroborative research characterized the molecular pharmacology (efficacy, potency) of 2-ACP, THA, and PG in APAP-exposed isolated mouse hepatocytes. For comparative purposes, N-acetylcysteine (NAC) cytoprotection was also evaluated. Measurements of multiple cell parameters (e.g., cell viability, mitochondrial membrane depolarization) indicated that THA and, to a lesser extent, PG provided concentration-dependent protection against APAP toxicity, which exceeded that of 2-ACP or NAC. The enolate-forming compounds and NAC truncated ongoing APAP exposure and thereby returned intoxicated hepatocytes toward normal viability. The superior ability of THA to protect is related to multifaceted modes of action that include metal ion chelation, free radical trapping, and scavenging of NAPQI and other soft electrophiles involved in oxidative stress. The rank order of potency for the tested cytoprotectants was consistent with that determined in a parallel mouse model. These data suggest that THA or a derivative might be useful in treating drug-induced toxicities and other conditions that involve electrophile-mediated pathogenesis.
Collapse
Affiliation(s)
- Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Amaresh Vydyanathan
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Boleslav Kosharskyy
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Naum Shaparin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Terrence Gavin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| | - Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York (B.C.G., A.V., B.K., N.S., R.M.L.); and Department of Chemistry, Iona College, New Rochelle, New York (T.G.)
| |
Collapse
|
23
|
Rozmer Z, Perjési P. Naturally occurring chalcones and their biological activities. PHYTOCHEMISTRY REVIEWS 2016. [PMID: 0 DOI: 10.1007/s11101-014-9387-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
24
|
Shang X, Zhou X, Zhang W, Wan C, Chen J. Tosylhydrazine mediated conjugate reduction and sequential reductive coupling cyclization: synthesis of 2-arylchromans. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Evranos-Aksöz B, Baysal İ, Yabanoğlu-Çiftçi S, Djikic T, Yelekçi K, Uçar G, Ertan R. Synthesis and Screening of Human Monoamine Oxidase-A Inhibitor Effect of New 2-Pyrazoline and Hydrazone Derivatives. Arch Pharm (Weinheim) 2015; 348:743-56. [DOI: 10.1002/ardp.201500212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Begüm Evranos-Aksöz
- Analysis and Control Laboratories of General Directorate of Pharmaceuticals and Pharmacy; Ministry of Health of Turkey; Sıhhiye Ankara Turkey
| | - İpek Baysal
- Department of Biochemistry, Faculty of Pharmacy; Hacettepe University; Sıhhiye Ankara Turkey
| | - Samiye Yabanoğlu-Çiftçi
- Department of Biochemistry, Faculty of Pharmacy; Hacettepe University; Sıhhiye Ankara Turkey
| | - Teodora Djikic
- Department of Bioinformatics and Genetics (Head) Cibali Campus, Faculty of Engineering and Natural Sciences; Kadir Has University; Fatih Istanbul Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics (Head) Cibali Campus, Faculty of Engineering and Natural Sciences; Kadir Has University; Fatih Istanbul Turkey
| | - Gülberk Uçar
- Department of Biochemistry, Faculty of Pharmacy; Hacettepe University; Sıhhiye Ankara Turkey
| | - Rahmiye Ertan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Ankara University; Tandogan Ankara Turkey
| |
Collapse
|
26
|
Computational approach to understanding the mechanism of action of isoniazid, an anti-TB drug. Int J Mycobacteriol 2014; 3:276-82. [DOI: 10.1016/j.ijmyco.2014.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 11/20/2022] Open
|
27
|
Chougui N, Djerroud N, Naraoui F, Hadjal S, Aliane K, Zeroual B, Larbat R. Physicochemical properties and storage stability of margarine containing Opuntia ficus-indica peel extract as antioxidant. Food Chem 2014; 173:382-90. [PMID: 25466036 DOI: 10.1016/j.foodchem.2014.10.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 09/10/2014] [Accepted: 10/04/2014] [Indexed: 01/26/2023]
Abstract
This study falls within the framework of the industrial exploitation of by-products of the prickly pear (Opuntia ficus-indica). The study aims to evaluate the use of hydro-ethanolic extract of prickly pear peels as a substitute of vitamin E used as antioxidant in margarine preservation. The extract was rich in total phenolics (1512.58 mg GAE/100 g DM). HPLC-DAD-ESI-MS(n) analyses allowed the identification of sixteen compounds belonging to hydroxybenzoic acids, hydroxycinnamic acids and flavonoids. The extract displayed a reducing power and an antiradical activity that were respectively similar to and lower than the two antioxidant standards quercetin and butylated hydroxyanisole. Tests conducted at laboratory and pilot scales showed that the margarines elaborated with peel extract were more resistant to oxidation than the margarine reference with vitamin E. In addition, neither the physicochemical nor the microbiological properties were modified. Prickly pear peels contain bioactive substances that could be used in different food sectors.
Collapse
Affiliation(s)
- Nadia Chougui
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la vie, Université de Bejaia, Bejaia 06000, Algeria.
| | - Naima Djerroud
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Fatima Naraoui
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Samir Hadjal
- Cévital spa, nouveau quai, port de Bejaia, BP 334, Bejaia 06000, Algeria
| | - Khellaf Aliane
- Cévital spa, nouveau quai, port de Bejaia, BP 334, Bejaia 06000, Algeria
| | - Brahim Zeroual
- Cévital spa, nouveau quai, port de Bejaia, BP 334, Bejaia 06000, Algeria
| | - Romain Larbat
- INRA UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France; Université de Lorraine UMR 1121 "Agronomie & Environnement" Nancy-Colmar, TSA 40602, 54518 Vandoeuvre Cedex, France
| |
Collapse
|
28
|
Luan Y, Qi Y, Yu J, Gao H, Schaus SE. The development of a novel HAuCl 4@MOF catalyst and its catalytic application in the formation of dihydrochalcones. RSC Adv 2014; 4:34199-34203. [PMID: 26989477 DOI: 10.1039/c4ra05256k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel HAuCl4@UiO-66-NH2 material has been obtained and utilized as a heterogeneous Au(III) catalyst. This Au(III) catalyst was able to promote the formation of a variety of dihydrochalcones starting from 2H-chromenes in moderate to good yields. A tandem hydride shift/hydration reaction sequence has been proposed based on deuterium labeling studies, which revealed a 1,5-hydride shift reaction pathway. A flavone intermediate has been synthesized to further support the proposed mechanism. Furthermore, the HAuCl4@UiO-66-NH2 catalyst can be recycled several times without compromising the catalytic activity.
Collapse
Affiliation(s)
- Yi Luan
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China. Tel: (+86)-10-82376882
| | - Yue Qi
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China. Tel: (+86)-10-82376882
| | - Jie Yu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China. Tel: (+86)-10-82376882
| | - Hongyi Gao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China. Tel: (+86)-10-82376882
| | - Scott E Schaus
- Department of Chemistry, Boston University, Boston, Massachusetts 02215. U.S
| |
Collapse
|
29
|
Plaza M, Pozzo T, Liu J, Gulshan Ara KZ, Turner C, Nordberg Karlsson E. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3321-33. [PMID: 24650232 DOI: 10.1021/jf405570u] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Antioxidants are widely used by humans, both as dietary supplements and as additives to different types of products. The desired properties of an antioxidant often include a balance between the antioxidizing capacity, stability, and solubility. This review focuses on flavonoids, which are naturally occurring antioxidants, and different common substituent groups on flavonoids and how these affect the properties of the molecules in vitro. Hydroxyl groups on flavonoids are both important for the antioxidizing capacity and key points for further modification resulting in O-methylation, -glycosylation, -sulfation, or -acylation. The effects of O-glycosylation and acylation are discussed as these types of substitutions have been most explored in vitro concerning antioxidizing properties as well as stability and solubility. Possibilities to control the properties by enzymatic acylation and glycosylation are also reviewed, showing that depending on the choice of enzyme and substrate, regioselective results can be obtained, introducing possibilities for more targeted production of antioxidants with predesigned properties.
Collapse
Affiliation(s)
- Merichel Plaza
- Department of Chemistry, Centre for Analysis and Synthesis, and ‡Department of Chemistry, Biotechnology, Lund University , P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
30
|
Glutathione and the antioxidant potential of binary mixtures with flavonoids: synergisms and antagonisms. Molecules 2013; 18:8858-72. [PMID: 23892632 PMCID: PMC6270187 DOI: 10.3390/molecules18088858] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 11/17/2022] Open
Abstract
Polyphenols are able to trap free radicals, which contributes to their known antioxidant capacity. In plant extracts, these secondary metabolites may act in concert, in a way that their combined activities will be superior to their individual effects (synergistic interaction). Several polyphenols have demonstrated clear antioxidant properties in vitro, and many of their biological actions have been attributed to their intrinsic reducing capabilities. As so, the intake of these compounds at certain concentrations in the diet and/or supplementation may potentiate the activity of reduced form glutathione (GSH), thus better fighting oxidative stress. The aim of this work was to predict a structure-antioxidant activity relationship using different classes of flavonoids and to assess, for the first time, possible synergisms and antagonisms with GSH. For these purposes a screening microassay involving the scavenging of DPPH• was applied. In general, among the tested compounds, those lacking the catechol group in B ring showed antagonistic behaviour with GSH. Myricetin displayed additive effect, while quercetin, fisetin, luteolin, luteolin-7-O-glucoside, taxifolin and (+)-catechin demonstrated synergistic actions. Furthermore, adducts formed at C2′ and C5′ of the B ring seem to be more important for the antioxidant capacity than adducts formed at C6 and C8 of the A ring.
Collapse
|
31
|
Leung CK, Wang Y, Malany S, Deonarine A, Nguyen K, Vasile S, Choe KP. An ultra high-throughput, whole-animal screen for small molecule modulators of a specific genetic pathway in Caenorhabditis elegans. PLoS One 2013; 8:e62166. [PMID: 23637990 PMCID: PMC3639262 DOI: 10.1371/journal.pone.0062166] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/18/2013] [Indexed: 01/05/2023] Open
Abstract
High-throughput screening (HTS) is a powerful approach to drug discovery, but many lead compounds are found to be unsuitable for use in vivo after initial screening. Screening in small animals like C. elegans can help avoid these problems, but this system has been limited to screens with low-throughput or no specific molecular target. We report the first in vivo 1536-well plate assay for a specific genetic pathway in C. elegans. Our assay measures induction of a gene regulated by SKN-1, a master regulator of detoxification genes. SKN-1 inhibitors will be used to study and potentially reverse multidrug resistance in parasitic nematodes. Screens of two small commercial libraries and the full Molecular Libraries Small Molecule Repository (MLSMR) of ∼364,000 compounds validate our platform for ultra HTS. Our platform overcomes current limitations of many whole-animal screens and can be widely adopted for other inducible genetic pathways in nematodes and humans.
Collapse
Affiliation(s)
- Chi K. Leung
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Ying Wang
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Siobhan Malany
- Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, Florida, United States of America
| | - Andrew Deonarine
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Kevin Nguyen
- Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, Florida, United States of America
| | - Stefan Vasile
- Sanford-Burnham Medical Research Institute at Lake Nona, Orlando, Florida, United States of America
| | - Keith P. Choe
- Department of Biology and Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
32
|
Voegele A, Graeber K, Oracz K, Tarkowská D, Jacquemoud D, Turečková V, Urbanová T, Strnad M, Leubner-Metzger G. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5337-50. [PMID: 22821938 PMCID: PMC3431005 DOI: 10.1093/jxb/ers197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Myrigalone A (MyA) is a rare flavonoid in fruit leachates of Myrica gale, a deciduous shrub adapted to flood-prone habitats. As a putative allelochemical it inhibits seed germination and seedling growth. Using Lepidium sativum as a model target species, experiments were conducted to investigate how environmental cues modulate MyA's interference with key processes of seed germination. Time course analyses of L. sativum testa and endosperm rupture under different light conditions and water potentials were combined with quantifying testa permeability, endosperm weakening, tissue-specific gibberellin (GA) and abscisic acid (ABA) contents, as well as embryo growth and apoplastic superoxide production important for cell expansion growth. Lepidium sativum testa permeability and early water uptake by imbibition is enhanced by MyA. During late germination, MyA inhibits endosperm weakening and embryo growth, both processes required for endosperm rupture. Inhibition of embryo cell expansion by MyA depends on environmental cues, which is evident from the light-modulated severity of the MyA-mediated inhibition of apoplastic superoxide accumulation. Several important key weakening and growth processes during early and late germination are targets for MyA. These effects are modulated by light conditions and ambient water potential. It is speculated that MyA is a soil seed bank-destroying allelochemical that secures the persistence of M. gale in its flood-prone environment.
Collapse
Affiliation(s)
- Antje Voegele
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boubaker J, Sghaier MB, Skandrani I, Ghedira K, Chekir-Ghedira L. Isorhamnetin 3-O-robinobioside from Nitraria retusa leaves enhance antioxidant and antigenotoxic activity in human chronic myelogenous leukemia cell line K562. Altern Ther Health Med 2012; 12:135. [PMID: 22913434 PMCID: PMC3439276 DOI: 10.1186/1472-6882-12-135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/16/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND In this report, the isorhamnetin 3-o-robinobioside and its original extract, the ethyl acetate extract, from Nitraria retusa leaves, were evaluated for their ability to induce antioxidant and antigenotoxic effects in human chronic myelogenous leukemia cell line. METHODS Nitraria retusa products properties were carried out by firstly evaluating their effects against lipid peroxidation induced by H2O2, using the thiobarbituric acid reactive substances species (TBARS) assay, and proceeding to the assay of cellular antioxidant activity, then doing the comet assay. RESULTS The isorhamnetin 3-o-robinobioside showed a protective effect against lipid peroxidation induced by H2O2. The same natural compound and ethyl acetate extract inhibited oxidation induced by 2,2'-azobis (2-amidinopropane) dihydrochloride in human chronic myelogenous leukemia cells with respectively 50% inhibitory concentration values of 0.225 mg/ml and 0.31 mg/ml, reflecting a significant antioxidant potential. The same two products inhibited the genotoxicity induced by hydroxyl radicals in the same human cell line (by 77.77% at a concentration of 800 μg/ml and by 80.55% at a concentration of 1000 μg/ml respectively). CONCLUSIONS The isorhamnetin 3- o-robinobioside and its original extract, the ethyl acetate extract, from Nitraria retusa leaves, have a great antioxidant and antigenotoxic potential on human chronic myelogenous leukemia cell line K562.
Collapse
|
34
|
|
35
|
Oracz K, Voegele A, Tarkowská D, Jacquemoud D, Turecková V, Urbanová T, Strnad M, Sliwinska E, Leubner-Metzger G. Myrigalone A inhibits Lepidium sativum seed germination by interference with gibberellin metabolism and apoplastic superoxide production required for embryo extension growth and endosperm rupture. PLANT & CELL PHYSIOLOGY 2012; 53:81-95. [PMID: 21908442 DOI: 10.1093/pcp/pcr124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Myrica gale L. (sweet gale) fruit leachate contains myrigalone A (MyA), a rare C-methylated dihydrochalcone and putative allelochemical, which is known to be a phytotoxin impeding seedling growth. We found that MyA inhibited Lepidium sativum L. seed germination in a dose-dependent manner. MyA did not affect testa rupture, but inhibited endosperm rupture and the transition to subsequent seedling growth. MyA inhibited micropylar endosperm cap (CAP) weakening and the increase in the growth potential of the radical/hypocotyl region (RAD) of the embryo, both being key processes required for endosperm rupture. We compared the contents of abscisic acid (ABA) and gibberellins in the tissues and found that the major bioactive forms of gibberellin in L. sativum seed tissues were GA(4) and GA(6), while GA(8) and GA(13) were abundant inactive metabolites. MyA did not appreciably affect the ABA contents, but severely interfered with gibberellin metabolism and signaling by inhibiting important steps catalyzed by GA3 oxidase, as well as by interfering with the GID1-type gibberellin signaling pathway. The hormonally and developmentally regulated formation of apoplastic superoxide radicals is important for embryo growth. Specific zones within the RAD were associated with accumulation of apoplastic superoxide radicals and endoreduplication indicative of embryo cell extension. MyA negatively affected both of these processes and acted as a scavenger of apoplastic reactive oxygen species. We propose that MyA is an allelochemical with a novel mode of action on seed germination.
Collapse
Affiliation(s)
- Krystyna Oracz
- University of Freiburg, Faculty of Biology, Institute for Biology II, Botany/Plant Physiology, Freiburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Colbon P, Ruan J, Purdie M, Mulholland K, Xiao J. Double Arylation of Allyl Alcohol via a One-Pot Heck Arylation–Isomerization–Acylation Cascade. Org Lett 2011; 13:5456-9. [DOI: 10.1021/ol202144z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul Colbon
- Department of Chemistry, Liverpool Centre for Materials and Catalysis, University of Liverpool, Liverpool, L69 7ZD, U.K., and AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, U.K
| | - Jiwu Ruan
- Department of Chemistry, Liverpool Centre for Materials and Catalysis, University of Liverpool, Liverpool, L69 7ZD, U.K., and AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, U.K
| | - Mark Purdie
- Department of Chemistry, Liverpool Centre for Materials and Catalysis, University of Liverpool, Liverpool, L69 7ZD, U.K., and AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, U.K
| | - Keith Mulholland
- Department of Chemistry, Liverpool Centre for Materials and Catalysis, University of Liverpool, Liverpool, L69 7ZD, U.K., and AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, U.K
| | - Jianliang Xiao
- Department of Chemistry, Liverpool Centre for Materials and Catalysis, University of Liverpool, Liverpool, L69 7ZD, U.K., and AstraZeneca, Silk Road Business Park, Macclesfield, SK10 2NA, U.K
| |
Collapse
|
37
|
Structure of dihydrochalcones and related derivatives and their scavenging and antioxidant activity against oxygen and nitrogen radical species. Molecules 2011; 16:1749-60. [PMID: 21339710 PMCID: PMC6259755 DOI: 10.3390/molecules16021749] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/21/2010] [Accepted: 01/05/2011] [Indexed: 11/18/2022] Open
Abstract
Quantum mechanical calculations at B3LYP/6-31G** level of theory were employed to obtain energy (E), ionization potential (IP), bond dissociation enthalpy (O-H BDE) and stabilization energies (ΔEiso) in order to infer the scavenging activity of dihydrochalcones (DHC) and structurally related compounds. Spin density calculations were also performed for the proposed antioxidant activity mechanism of 2,4,6-trihydroxyacetophenone (2,4,6-THA). The unpaired electron formed by the hydrogen abstraction from the phenolic hydroxyl group of 2,4,6-THA is localized on the phenolic oxygen at 2, 6, and 4 positions, the C3 and C6 carbon atoms at ortho positions, and the C5 carbon atom at para position. The lowest phenolic oxygen contribution corresponded to the highest scavenging activity value. It was found that antioxidant activity depends on the presence of a hydroxyl at the C2 and C4 positions and that there is a correlation between IP and O-H BDE and peroxynitrite scavenging activity and lipid peroxidation. These results identified the pharmacophore group for DHC.
Collapse
|
38
|
Orlikova B, Tasdemir D, Golais F, Dicato M, Diederich M. Dietary chalcones with chemopreventive and chemotherapeutic potential. GENES AND NUTRITION 2011; 6:125-47. [PMID: 21484163 DOI: 10.1007/s12263-011-0210-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/06/2011] [Indexed: 02/07/2023]
Abstract
Chalcones are absorbed in the daily diet and appear to be promising cancer chemopreventive agents. Chalcones represent an important group of the polyphenolic family, which includes a large number of naturally occurring molecules. This family possesses an interesting spectrum of biological activities, including antioxidative, antibacterial, anti-inflammatory, anticancer, cytotoxic, and immunosuppressive potential. Compounds of this family have been shown to interfere with each step of carcinogenesis, including initiation, promotion and progression. Moreover, numerous compounds from the family of dietary chalcones appear to show activity against cancer cells, suggesting that these molecules or their derivatives may be considered as potential anticancer drugs. This review will focus primarily on prominent members of the chalcone family with an 1,3-diphenyl-2-propenon core structure. Specifically, the inhibitory effects of these compounds on the different steps of carcinogenesis that reveal interesting chemopreventive and chemotherapeutic potential will be discussed.
Collapse
Affiliation(s)
- Barbora Orlikova
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Fondation de Recherche Cancer et Sang, Hôpital Kirchberg, 9 Rue Edward Steichen, 2540, Luxembourg, Luxembourg
| | | | | | | | | |
Collapse
|
39
|
Ferreira EA, Gris EF, Felipe KB, Correia JFG, Cargnin-Ferreira E, Wilhelm Filho D, Pedrosa RC. Potent hepatoprotective effect in CCl(4)-induced hepatic injury in mice of phloroacetophenone from Myrcia multiflora. Libyan J Med 2010; 5. [PMID: 21483585 PMCID: PMC3071176 DOI: 10.3402/ljm.v5i0.4891] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/01/2010] [Accepted: 05/01/2010] [Indexed: 01/24/2023] Open
Abstract
Background This study investigated the hepatoprotective effect and antioxidant properties of phloroacetophenone (2′,4′,6′-trihydroxyacetophenone – THA), an acetophenone derived from the plant Myrcia multiflora. Material & Method The free radical scavenging activity in vitro and induction of oxidative hepatic damage by carbon tetrachloride (CCl4) (0.5 ml/kg, i.p.) were tested in male Swiss mice (25±5 g). Results This compound exhibited in vitro antioxidant effects on FeCl2–ascorbate-induced lipid peroxidation (LPO) in mouse liver homogenate, scavenging hydroxyl and superoxide radicals, and 2,2-diphenyl-1-picrylhydrazyl. The in vivo assays showed that THA significantly (p<0.01) prevented the increases of hepatic LPO as measured by the levels of thiobarbituric acid-reactive substances, mitochondrial swelling. It also protected hepatocytes against protein carbonylation and oxidative DNA damage. Consistent with these observations, THA pre-treatment normalized the activities of antioxidant enzymes, such as catalase, glutathione peroxidase, and superoxide dismutase, and increased the levels of reduced glutathione (GSH) in CCl4-treated mice. In addition, THA treatment significantly prevented the elevation of serum enzymatic activities of alanine amino transferase, aspartate amino transferase, and lactate dehydrogenase, as well as histological alterations induced by CCl4. Silymarin (SIL) (24 mg/kg), a known hepatoprotective drug used for comparison, led to a significant decrease (p<0.01) in activities of theses enzymes in way very similar to that observed in pre-treatment with THA. Conclusion These results suggest that the protective effects are due to reduction of oxidative damage induced by CCl4 resulting from the antioxidant properties of THA.
Collapse
|
40
|
Differential effects of rare specific flavonoids on compatible and incompatible strains in the Myrica gale-Frankia actinorhizal symbiosis. Appl Environ Microbiol 2010; 76:2451-60. [PMID: 20190089 DOI: 10.1128/aem.02667-09] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant secondary metabolites, and specifically phenolics, play important roles when plants interact with their environment and can act as weapons or positive signals during biotic interactions. One such interaction, the establishment of mutualistic nitrogen-fixing symbioses, typically involves phenolic-based recognition mechanisms between host plants and bacterial symbionts during the early stages of interaction. While these mechanisms are well studied in the rhizobia-legume symbiosis, little is known about the role of plant phenolics in the symbiosis between actinorhizal plants and Frankia genus strains. In this study, the responsiveness of Frankia strains to plant phenolics was correlated with their symbiotic compatibility. We used Myrica gale, a host species with narrow symbiont specificity, and a set of compatible and noncompatible Frankia strains. M. gale fruit exudate phenolics were extracted, and 8 dominant molecules were purified and identified as flavonoids by high-resolution spectroscopic techniques. Total fruit exudates, along with two purified dihydrochalcone molecules, induced modifications of bacterial growth and nitrogen fixation according to the symbiotic specificity of strains, enhancing compatible strains and inhibiting incompatible ones. Candidate genes involved in these effects were identified by a global transcriptomic approach using ACN14a strain whole-genome microarrays. Fruit exudates induced differential expression of 22 genes involved mostly in oxidative stress response and drug resistance, along with the overexpression of a whiB transcriptional regulator. This work provides evidence for the involvement of plant secondary metabolites in determining symbiotic specificity and expands our understanding of the mechanisms, leading to the establishment of actinorhizal symbioses.
Collapse
|
41
|
Vasantha Rupasinghe HP, Yasmin A. Inhibition of oxidation of aqueous emulsions of omega-3 fatty acids and fish oil by phloretin and phloridzin. Molecules 2010; 15:251-7. [PMID: 20110888 PMCID: PMC6257126 DOI: 10.3390/molecules15010251] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 12/24/2009] [Accepted: 01/08/2010] [Indexed: 11/16/2022] Open
Abstract
The antioxidant properties of two apple dihydrochalcones, namely phloretin and phloridzin, were evaluated and compared with those of alpha-tocopherol and butylated hydroxytoluene (BHT). The effects were studied in an oil-in-water emulsion system containing methyl linolenate (ML), methyl eicosapentaenoate (MEPA), and methyl docosahexaenoate (MDHA) in which oxidation was initiated by the peroxyl radical generator 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH) and in fish oil where oxidation was initiated thermally. In the emulsion system, phloretin (1 and 5 mM) completely inhibited the oxidation of ML tested as evidenced by the thiobarbituric acid reactive substances (TBARS) assay. Under the same conditions, phloridzin was less effective than phloretin, but still more effective than alpha-tocopherol. Both phloretin and phloridzin molecules had a marginal inhibitory effect against oxidation of fish oil induced by heating at 70 degrees C for 3 hours, when compared to BHT. These results indicate that phloretin and phloridzin have the potential to suppress lipid oxidation in polyunsaturated fatty acid (PUFA) containing foods.
Collapse
Affiliation(s)
- H P Vasantha Rupasinghe
- Tree Fruit Bio-product Research Program, Nova Scotia Agricultural College, P.O. Box 550, Truro, NS B2N5E3, Canada.
| | | |
Collapse
|
42
|
Mechanism of action of novel naphthofuranquinones on rat liver microsomal peroxidation. Chem Biol Interact 2009; 182:213-9. [DOI: 10.1016/j.cbi.2009.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 09/02/2009] [Indexed: 11/18/2022]
|
43
|
Kaur P, Kaur S, Kumar N, Singh B, Kumar S. Evaluation of antigenotoxic activity of isoliquiritin apioside from Glycyrrhiza glabra L. Toxicol In Vitro 2009; 23:680-6. [DOI: 10.1016/j.tiv.2009.01.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/31/2008] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
|
44
|
Subbaiah PV, Sircar D, Lankalapalli RS, Bittman R. Effect of double bond geometry in sphingosine base on the antioxidant function of sphingomyelin. Arch Biochem Biophys 2008; 481:72-9. [PMID: 18952047 DOI: 10.1016/j.abb.2008.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 10/04/2008] [Indexed: 01/20/2023]
Abstract
We previously showed that sphingomyelin (SM) inhibits peroxidation of phosphatidylcholine (PC) and cholesterol. Since SM uniquely has a trans unsaturation in its sphingosine base, we investigated whether this feature is important for its antioxidant function. Substitution of the natural trans Delta(4)-double bond with a cis double bond (cis-SM), however, increased SM's ability to inhibit Cu(2+)-mediated 16:0-18:2 PC oxidation by up to eightfold. Dihydro-SM, which lacks the double bond, was equally effective as trans-SM. In contrast to its effect in the sphingosine base, the presence of a cis double bond in the N-acyl group of trans-SM was not protective. cis-SM also inhibited the oxidation of cholesterol by FeSO_(4)/ascorbate more efficiently than the trans isomer. The enhanced protective effect of cis-SM is selective for metal ion-promoted oxidation, and appears to arise from a decrease in the effective concentration of metal ions. These studies show that the trans double bond of SM is not essential for its antioxidant effects.
Collapse
Affiliation(s)
- Papasani V Subbaiah
- Department of Medicine, Section of Endocrinology and Metabolism, University of Illinois at Chicago, 1819 West Polk Street, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
45
|
Elingold I, Isollabella MP, Casanova MB, Celentano AM, Pérez C, Cabrera JL, Diez RA, Dubin M. Mitochondrial toxicity and antioxidant activity of a prenylated flavonoid isolated from Dalea elegans. Chem Biol Interact 2008; 171:294-305. [DOI: 10.1016/j.cbi.2007.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/04/2007] [Accepted: 10/15/2007] [Indexed: 01/10/2023]
|
46
|
Alacid E, Nájera C. Arylation of Allyl Alcohols in Organic and Aqueous Media Catalyzed by Oxime-Derived Palladacycles: Synthesis of β-Arylated Carbonyl Compounds. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200700301] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Jayasinghe ULB, Ratnayake RMS, Medawala MMWS, Fujimoto Y. Dihydrochalcones with radical scavenging properties from the leaves ofSyzygium jambos. Nat Prod Res 2007; 21:551-4. [PMID: 17497426 DOI: 10.1080/14786410601132238] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Chemical investigation of the dichloromethane extract of the leaves of Syzygium jambos furnished three dihydrochalcones, phloretin 4'-O-methyl ether (2',6'-dihydroxy-4'-methoxydihydrochalcone) (1), myrigalone G (2',6'-dihydroxy-4'-methoxy-3'-methyldihydrochalcone) (2), and myrigalone B (2',6'-dihydroxy-4'-methoxy-3,5'-dimethyldihydrochalcone) (3) with radical scavenging properties towards the DPPH radical by spectrophotometric method.
Collapse
|
48
|
Choi JM, Yoon BS, Lee SK, Hwang JK, Ryang R. Antioxidant properties of neohesperidin dihydrochalcone: inhibition of hypochlorous acid-induced DNA strand breakage, protein degradation, and cell death. Biol Pharm Bull 2007; 30:324-30. [PMID: 17268074 DOI: 10.1248/bpb.30.324] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neohesperidin dihydrochalcone (NHDC), a non-nutritive sweetening agent, is simply produced by hydrogenation of neohesperidin. The aim of this study is to evaluate the antioxidant and radical scavenging properties of neohesperidin dihydrochalcone and other structurally related compounds (phloridzin, neohesperidin) toward different reactive radical and oxygen species including .ABTS+, .O2-, .OH, H2O2, and HOCl in vitro. NHDC showed remarkable radical scavenging activity against stable radical and reactive oxygen species (ROS) in concentration dependent manner. Especially, NHDC was the most potent inhibitor of H2O2 and HOCl. NHDC showed HOCl scavenging activity of 93.5% and H2O2 scavenging property of 73.5% which was more than those of all the tested compounds including ascorbic acid and BHT. Moreover, NHDC could inhibit protein degradation, plasmid DNA strand cleavage and HIT-T15, HUVEC cell death from HOCl attack while mannitol, BHT, and ascorbic acid could not protect them effectively. These results suggest that NHDC is a potent antioxidant, especially it is evaluated as a novel HOCl scavenger. This study implies the possibility of therapeutic effect of NHDC on ROS-related inflammatory diseases.
Collapse
Affiliation(s)
- Je-Min Choi
- Department of Biotechnology, College of Engineering, Yonsei University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem 2006; 15:1749-70. [PMID: 17166721 PMCID: PMC2013303 DOI: 10.1016/j.bmc.2006.11.037] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/17/2006] [Accepted: 11/27/2006] [Indexed: 10/23/2022]
Abstract
Quantitative structure-activity relationship (QSAR) models are useful in understanding how chemical structure relates to the biological activity of natural and synthetic chemicals and for design of newer and better therapeutics. In the present study, 46 flavonoids and related polyphenols were evaluated for direct/indirect antioxidant activity in three different assay systems of increasing complexity (chemical, enzymatic, and intact phagocytes). Based on these data, two different QSAR models were developed using (i) physicochemical and structural (PC&S) descriptors to generate multiparameter partial least squares (PLS) regression equations derived from optimized molecular structures of the tested compounds and (ii) a partial 3D comparison of the 46 compounds with local fingerprints obtained from fragments of the molecules by the frontal polygon (FP) method. We obtained much higher QSAR correlation coefficients (r) for flavonoid end-point antioxidant activity in all three assay systems using the FP method (0.966, 0.948, and 0.965 for datasets evaluated in the biochemical, enzymatic, and whole cell assay systems, respectively). Furthermore, high leave-one-out cross-validation coefficients (q2) of 0.907, 0.821, and 0.897 for these datasets, respectively, indicated enhanced predictive ability and robustness of the model. Using the FP method, structural fragments (submolecules) responsible for the end-point antioxidant activity in the three assay systems were also identified. To our knowledge, this is the first QSAR model derived for description of flavonoid direct/indirect antioxidant effects in a cellular system, and this model could form the basis for further drug development of flavonoid-like antioxidant compounds with therapeutic potential.
Collapse
Affiliation(s)
- Andrei I. Khlebnikov
- Department of Chemistry, Altai State Technical University, Barnaul 656038, Russia
- *Corresponding Authors: Dr. Andrei I. Khlebnikov, Department of Chemistry. Altai State Technical University. 46 Lenin Avenue. Barnaul 656038. Russia. Phone: +7-3852-245513; +7-3852-522436. Fax +7-3852-367864,
| | - Igor A. Schepetkin
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Nina G. Domina
- Department of Chemistry, Altai State Technical University, Barnaul 656038, Russia
| | - Liliya N. Kirpotina
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
| | - Mark T. Quinn
- Department of Veterinary Molecular Biology, Montana State University, Bozeman, MT 59717, USA
- *Corresponding Authors: Dr. Andrei I. Khlebnikov, Department of Chemistry. Altai State Technical University. 46 Lenin Avenue. Barnaul 656038. Russia. Phone: +7-3852-245513; +7-3852-522436. Fax +7-3852-367864,
| |
Collapse
|
50
|
Hsu CL, Yen GC. Induction of cell apoptosis in 3T3-L1 pre-adipocytes by flavonoids is associated with their antioxidant activity. Mol Nutr Food Res 2006; 50:1072-9. [PMID: 17039455 DOI: 10.1002/mnfr.200600040] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Obesity is biologically characterized at the cellular level by an increase in the number and size of adipocytes differentiated from fibroblastic pre-adipocytes in adipose tissue. In this study, we focused on the relationship between the influence of flavonoids on cell population growth and their antioxidant activity. The results showed that the inhibition of flavonoids (naringenin, rutin, hesperidin, resveratrol, naringin and quercetin) on 3T3-L1 pre-adipocytes was 28.3, 8.1, 11.1, 33.2, 5.6 and 71.5%, respectively. In oxygen radical absorbance capacity (ORAC) assay, quercetin had the highest ORAC(ROO) value among the six flavonoids tested. Apoptosis assays showed that quercetin increased apoptotic cells in time- and dose-dependent manner. Treatment of cells with quercetin decreased the mitochondrial membrane potential in the courses of time and dose. The cell apoptosis/necrosis assay showed that quercetin increased the number of apoptotic cells, but not necrotic cells. Quercetin treatment of cells caused a significant time- and dose-dependent increase in the caspase-3 activity. Western analysis indicated that treatment of quercetin markedly down-regulated PARP and Bcl-2 proteins, and activated caspase-3, Bax, and Bak proteins. These results indicate that quercetin efficiently inhibits cell population growth and induction of apoptosis in 3T3-L1 pre-adipocytes.
Collapse
Affiliation(s)
- Chin-Lin Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan. Fax: +886-4-2285-4378
| | | |
Collapse
|