1
|
Morelli E, Ribeiro CF, Rodrigues SD, Gao C, Socciarelli F, Maisano D, Favasuli V, Liu N, Todoerti K, Chakraborty C, Yao Y, Fulciniti M, Samur M, Aktas-Samur A, Amodio N, Turi M, Barello F, Penailillo J, Giallongo C, Romano A, Gulla A, Anderson KC, Inghirami G, Munshi NC, Loda M. Targeting Acetyl-CoA Carboxylase Suppresses De Novo Lipogenesis and Tumor Cell Growth in Multiple Myeloma. Clin Cancer Res 2025; 31:1975-1987. [PMID: 40053701 PMCID: PMC12081190 DOI: 10.1158/1078-0432.ccr-24-2000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/08/2025] [Accepted: 03/04/2025] [Indexed: 03/09/2025]
Abstract
PURPOSE In multiple myeloma, tumor cells reprogram metabolic pathways to sustain growth and monoclonal immunoglobulin production. This study examines acetyl-CoA carboxylase 1 (ACC1), the enzyme driving the rate-limiting step in de novo lipogenesis, in multiple myeloma metabolic reprogramming, particularly in c-MYC (MYC)-driven subtypes. EXPERIMENTAL DESIGN ACC1 expression was evaluated across multiple myeloma genetic subgroups, focusing on MYC translocations. Functional studies using ACC1 inhibitors and genetic knockdown assessed multiple myeloma cell growth, lipid synthesis, and metabolic homeostasis in vitro and in vivo. The role of MYC overexpression in ACC1 sensitivity was examined, with palmitate rescue experiments. Lipidomic analysis and assessments of endoplasmic reticulum (ER) stress, protein translation, and oxidative damage elucidated underlying mechanisms. RESULTS ACC1 was overexpressed in MYC-translocated multiple myeloma. Its inhibition or knockdown reduced multiple myeloma cell growth in vitro and in vivo, particularly in MYC-overexpressing cells. ACC1 knockdown suppressed de novo lipid synthesis, partially rescued by palmitate. Lipidomic disruptions increased cholesterol ester desaturation and altered phospholipid ratios, inducing ER stress, impaired translation, protein carbonylation, oxidative damage, and apoptosis. CONCLUSIONS ACC1 is a metabolic vulnerability in MYC-driven multiple myeloma. Inhibiting ACC1 disrupts lipid homeostasis, induces ER stress, and causes oxidative damage, impairing cell survival. Targeting lipid synthesis pathways, especially in MYC-dependent subtypes, offers a promising therapeutic strategy for multiple myeloma.
Collapse
Affiliation(s)
- Eugenio Morelli
- Candiolo Cancer Institute, FPO-IRCCS – Candiolo (TO) 10060, Italy
- Department of Oncology, University of Torino, Candiolo (TO), Italy
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine; Weill Cornell Medical College; New York, NY, 10065; USA
| | - Silvia D. Rodrigues
- Department of Pathology and Laboratory Medicine; Weill Cornell Medical College; New York, NY, 10065; USA
| | - Claire Gao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Fabio Socciarelli
- Department of Pathology and Laboratory Medicine; Weill Cornell Medical College; New York, NY, 10065; USA
| | - Domenico Maisano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Vanessa Favasuli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Na Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Katia Todoerti
- Department of Diagnostic Innovation, IRCCS Istituto Nazionale dei Tumori, G. Venezian, 1 - 20133 Milan
| | - Chandraditya Chakraborty
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yao Yao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Blood Disease Institute, Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, 221000, China
| | - Mariateresa Fulciniti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mehmet Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Anil Aktas-Samur
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nicola Amodio
- Department of Clinical and Experimental Medicine; Magna Graecia University; Catanzaro, 88100; Italy
| | - Marcello Turi
- Candiolo Cancer Institute, FPO-IRCCS – Candiolo (TO) 10060, Italy
| | | | - Johany Penailillo
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, University of Catania, Catania (CT), Italy
| | - Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania (CT), Italy
| | - Annamaria Gulla
- Candiolo Cancer Institute, FPO-IRCCS – Candiolo (TO) 10060, Italy
| | - Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine; Weill Cornell Medical College; New York, NY, 10065; USA
| | - Nikhil C Munshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine; Weill Cornell Medical College; New York, NY, 10065; USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Nuffield Department of Surgical Sciences, Lincoln College, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Walker M. Measuring Biomarkers of Oxidative Stress in ME/CFS Patients. Methods Mol Biol 2025; 2920:225-244. [PMID: 40372686 DOI: 10.1007/978-1-0716-4498-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) have a deficiency in energy production as a result of dysfunctions in their mitochondrial metabolism, defects in the complexes of the electron transport chain, and in the regulation of reactive oxygen species (ROS). This can lead to an imbalance and excess of these species with subsequent modifications of proteins, lipids, and DNA. Oxidative stress is defined as an accumulation of ROS due to a loss of regulation and the subsequent inability to detoxify them. The modifications to the cellular macromolecules by ROS can be used as biomarkers of oxidative stress and so have the potential to monitor the disease course of a condition like ME/CFS. Proteins are especially vulnerable to oxidative stress as amino acid residues are naturally modified as part of cell signaling so, in an imbalance between ROS and antioxidants, proteins become modified at multiple sites potentially altering structure and function. Protein carbonyl modifications are stable and can be measured using 2,4-dinitrophenylhydrazine using a commercial ELISA assay. This has been applied here to immune cell proteins and plasma from ME/CFS patients who had moderate functional activity before and during an exercise protocol, and was shown to have potential as a marker of oxidative stress in these patients. The methods used to measure the DNA modification, 8-hydroxy-2'-deoxyguanosine (8-OHdG) are known to give varied results depending on the technology used. Here, a commercial ELISA assay did not have the sensitivity to detect the modifications in the DNA before and during the exercise protocol of these ME/CFS patients.
Collapse
Affiliation(s)
- Max Walker
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Cropotova J, Kvangarsnes K, Rustad T, Stangeland J, Roda G, Fanzaga M, Bartolomei M, Lammi C. Effect of ultrasound treatment on quality parameters and health promoting activity of fish protein hydrolysates extracted from side streams of Atlantic mackerel ( Scomber scombrus). Front Nutr 2024; 11:1446485. [PMID: 39296503 PMCID: PMC11408299 DOI: 10.3389/fnut.2024.1446485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Fish protein hydrolysates (FPH) obtained by enzymatic hydrolysis allows for smart valorization of fish side streams. However, further treatments are normally needed to enhance bioactive and functional properties of the obtained FPH. At present, the commonly used methods to improve functional properties of FPH include chemical and enzymatic modification. Chemical treatments often cause environmental problems, while the enzymatic modification method requires the use of quite expensive enzymes. In recent years, emerging technologies such as ultrasound treatment (US-treatment) have shown great potential in protein modification with high efficiency and safety, low energy consumption, and low nutritional destructiveness. In this study, high-power ultrasound treatments were applied to fish protein hydrolysates (FPH) extracted from Atlantic mackerel (Scomber scombrus) side streams to improve their quality parameters. The effect of three different treatments of 300 W, 450 W and 600 W at the operating frequency of 20 kHz for 10 min on the physicochemical, structural, and functional characteristics of FPH, were examined. The results have shown that with an increase in ultrasound power, the protein solubility of FPH increased linearly, and the changes were significant for all US-treated samples compared to control (untreated) samples. US-treatment significantly increased the degree of hydrolysis of FPH samples treated with 450 W and 600 W compared to control samples. The carbonyl content of FPH increased (significantly for 450 W and 600 W), while thiol groups decreased (significantly for 300 W and 450 W). This indicated that some US-treatments induced oxidation of FPH, however the values of the protein oxidation were low. Amino acid composition of FPH revealed that US-treatment increased the proportion of essential amino acids in the sample treated with 300 W and 450 W, but the increase was not significant. After the US-treatment, all FPH samples became lighter and less yellowish and reddish, which suggest potentially higher attractiveness to consumers. In addition, the in vitro antioxidant activity was assessed using the DPPH, FRAP, and ABTS assays and the cell-free dipeptidyl peptidase IV (DPP-IV) inhibitory activity was also measured. Moreover, these biological activities were measured at cellular level utilizing human intestinal Caco-2 cells. Specifically, the FPH capacity to lower H2O2-induced reactive oxygen species (ROS) and lipid peroxidation levels was used to measure its antioxidant activity. The findings suggest that Scomber scombrus hydrolysates could find use as ingredients for promoting health.
Collapse
Affiliation(s)
- Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Kristine Kvangarsnes
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Melissa Fanzaga
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
4
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
5
|
Michailidou K, Palisidou C, Feidantsis K, Ainali NM, Kastrinaki G, Lambropoulou DA, Kyzas GZ, Bikiaris DN, Kaloyianni M, Bobori DC. Impact of aged and virgin polyethylene microplastics on multi end-points effects of freshwater fish tissues. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174704. [PMID: 39002604 DOI: 10.1016/j.scitotenv.2024.174704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The buildup of plastic waste in aquatic environments presents serious threats to the environment, wildlife, and ultimately to humans. Specifically, microplastics (MPs) ingestion by aquatic animals leads to adverse physiological and toxicological effects. In addition, discarded MPs undergo aging and degradation processes which affect their morphological properties and chemical composition, enhancing the absorption of environmental pollutants. Under this prism, the present research was conducted to investigate and compare the impact of 'aged' versus pristine low-density polyethylene microplastics (PE-MPs) on various toxicity endpoints as biochemical and molecular parameters in the muscle tissue and liver of the freshwater fish species Perca fluviatilis. In parallel, the morphological, physicochemical, and structural changes occurred in "aged" PE-MPs, (after being exposed to UV radiation for 120 days) were studied, significantly illustrating signs of oxidation and crack propagation at the surface of the studied MPs. Fish were exposed to artificial diet reached with virgin and "aged" PE-MPs, sized 100-180 μm, at concentrations of 1 mg/g of dry food for a period of 15-days. Thereafter, liver and muscle tissues were analyzed in relation to multi oxidative parameters. Compared to the control group, the observed changes in the examined fish included increased activities of antioxidant enzymes, as superoxide dismutase, catalase and glutathione reductase, enhanced concentrations of malondialdehyde, protein carbonylation, HSP70 levels, elevated MAPK phosphorylation, induction of ubiquitin-proteins, as well as heightened levels of Bax/Bcl-2 proteins, caspases and differentiated levels of LC3 II/I, SQSTM1/p62. From the studied biomarkers, apoptosis, ubiquitin and hsp70 levels, showed a more sensitive response against the ingested MPs, followed by autophagy, p38MAPK levels, antioxidant enzymes, MDA and carbonylation levels. The effect of "aged" PE-MPs was more pronounced compared to that of the virgin ones. When evaluating the response of all oxidative stress biomarkers across the studied tissues, the liver demonstrates the highest response for the majority of the biomarkers against both virgin and "aged" PE-MPs. These findings strongly indicate that "aged" MPs activate the antioxidant defence mechanisms and impact the cellular well-being of the examined fish species.
Collapse
Affiliation(s)
- Kostantina Michailidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Christina Palisidou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Department of Fisheries & Aquaculture, School of Agricultural Sciences, University of Patras, GR-26504, Mesolonghi, Greece.
| | - Nina Maria Ainali
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | | | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, GR-570 01 Thessaloniki, Greece.
| | - George Z Kyzas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala GR-654 04, Greece.
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Dimitra C Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
6
|
Shin S, Chae SJ, Lee S, Kim JK. Beyond homogeneity: Assessing the validity of the Michaelis-Menten rate law in spatially heterogeneous environments. PLoS Comput Biol 2024; 20:e1012205. [PMID: 38843305 PMCID: PMC11185478 DOI: 10.1371/journal.pcbi.1012205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 05/24/2024] [Indexed: 06/19/2024] Open
Abstract
The Michaelis-Menten (MM) rate law has been a fundamental tool in describing enzyme-catalyzed reactions for over a century. When substrates and enzymes are homogeneously distributed, the validity of the MM rate law can be easily assessed based on relative concentrations: the substrate is in large excess over the enzyme-substrate complex. However, the applicability of this conventional criterion remains unclear when species exhibit spatial heterogeneity, a prevailing scenario in biological systems. Here, we explore the MM rate law's applicability under spatial heterogeneity by using partial differential equations. In this study, molecules diffuse very slowly, allowing them to locally reach quasi-steady states. We find that the conventional criterion for the validity of the MM rate law cannot be readily extended to heterogeneous environments solely through spatial averages of molecular concentrations. That is, even when the conventional criterion for the spatial averages is satisfied, the MM rate law fails to capture the enzyme catalytic rate under spatial heterogeneity. In contrast, a slightly modified form of the MM rate law, based on the total quasi-steady state approximation (tQSSA), is accurate. Specifically, the tQSSA-based modified form, but not the original MM rate law, accurately predicts the drug clearance via cytochrome P450 enzymes and the ultrasensitive phosphorylation in heterogeneous environments. Our findings shed light on how to simplify spatiotemporal models for enzyme-catalyzed reactions in the right context, ensuring accurate conclusions and avoiding misinterpretations in in silico simulations.
Collapse
Affiliation(s)
- Seolah Shin
- Department of Applied Mathematics, Korea University, Sejong, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Seok Joo Chae
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| | - Seunggyu Lee
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Division of Applied Mathematical Sciences, Korea University, Sejong, Republic of Korea
| | - Jae Kyoung Kim
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Mathematical Sciences, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Ribeiro CF, Rodrigues S, Bastos DC, Fanelli GN, Pakula H, Foiani M, Zadra G, Loda M. Blocking lipid synthesis induces DNA damage in prostate cancer and increases cell death caused by PARP inhibition. Sci Signal 2024; 17:eadh1922. [PMID: 38593154 PMCID: PMC11161871 DOI: 10.1126/scisignal.adh1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Androgen deprivation therapy (ADT) is the primary treatment for prostate cancer; however, resistance to ADT invariably develops, leading to castration-resistant prostate cancer (CRPC). Prostate cancer progression is marked by increased de novo synthesis of fatty acids due to overexpression of fatty acid synthase (FASN), making this enzyme a therapeutic target for prostate cancer. Inhibition of FASN results in increased intracellular amounts of ceramides and sphingomyelin, leading to DNA damage through the formation of DNA double-strand breaks and cell death. We found that combining a FASNi with the poly-ADP ribose polymerase (PARP) inhibitor olaparib, which induces cell death by blocking DNA damage repair, resulted in a more pronounced reduction in cell growth than that caused by either drug alone. Human CRPC organoids treated with a combination of PARP and FASNi were smaller, had decreased cell proliferation, and showed increased apoptosis and necrosis. Together, these data indicate that targeting FASN increases the therapeutic efficacy of PARP inhibitors by impairing DNA damage repair, suggesting that combination therapies should be explored for CRPC.
Collapse
Affiliation(s)
| | | | | | | | - Hubert Pakula
- Weill Cornell Medical College, New York, New York, US
| | | | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council, Pavia, Italy
| | - Massimo Loda
- Weill Cornell Medical College, New York, New York, US
| |
Collapse
|
8
|
You W, Li Y, Liu K, Mi X, Li Y, Guo X, Li Z. Latest assessment methods for mitochondrial homeostasis in cognitive diseases. Neural Regen Res 2024; 19:754-768. [PMID: 37843209 PMCID: PMC10664105 DOI: 10.4103/1673-5374.382222] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mitochondria play an essential role in neural function, such as supporting normal energy metabolism, regulating reactive oxygen species, buffering physiological calcium loads, and maintaining the balance of morphology, subcellular distribution, and overall health through mitochondrial dynamics. Given the recent technological advances in the assessment of mitochondrial structure and functions, mitochondrial dysfunction has been regarded as the early and key pathophysiological mechanism of cognitive disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, mild cognitive impairment, and postoperative cognitive dysfunction. This review will focus on the recent advances in mitochondrial medicine and research methodology in the field of cognitive sciences, from the perspectives of energy metabolism, oxidative stress, calcium homeostasis, and mitochondrial dynamics (including fission-fusion, transport, and mitophagy).
Collapse
Affiliation(s)
- Wei You
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Peking University Third Clinical Medical College, Beijing, China
| | - Yue Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Kaixi Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yitong Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
- Beijing Center of Quality Control and Improvement on Clinical Anesthesia, Beijing, China
- Anesthesia and Perioperative Medicine Branch of China International Exchange and Promotive Association for Medical and Health Care (CPAM), Beijing, China
| |
Collapse
|
9
|
Vlasiuk E, Zawari M, Whitehead R, Williman J, Carr AC. A High Vitamin C Micronutrient Supplement Is Unable to Attenuate Inflammation in People with Metabolic Syndrome but May Improve Metabolic Health Indices: A Randomised Controlled Trial. Antioxidants (Basel) 2024; 13:404. [PMID: 38671852 PMCID: PMC11047647 DOI: 10.3390/antiox13040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic low-grade inflammation is a characteristic of people with metabolic syndrome and is thought to contribute to the condition progressing to the more severe type 2 diabetes and cardiovascular disease (CVD). The aim was to carry out a double-blind randomised placebo-controlled trial in people with metabolic syndrome to determine if supplementation with a micronutrient formula containing 1000 mg/d vitamin C could attenuate inflammation in people with metabolic syndrome. We recruited 72 adults aged a median of 52 years with metabolic syndrome, defined as obesity (based on waist circumference or BMI), and at least two of hyperglycaemia, raised triglycerides, lowered HDL cholesterol, hypertension, or taking medications for these conditions. A further inclusion criteria comprised C-reactive protein (CRP) concentrations ≥ 3 mg/L, i.e., high risk of CVD. The participants were randomised to daily micronutrient formula (n = 37) or matched placebo control (n = 35) for 12 weeks. The primary outcome was change in CRP concentrations and secondary outcomes included changes in vitamin C concentrations, pro-inflammatory cytokines (IL-6, TNFα), oxidative stress marker (F2isoprostanes), glycaemic indices (glucose, insulin, HbA1c), lipid markers (triglycerides, LDL and HDL cholesterol), anthropometric parameters (weight, BMI), insulin resistance and insulin sensitivity, and metabolic severity score. The participants had a low median (Q1, Q3) vitamin C status of 29 (15, 41) µmol/L and a high proportion of hypovitaminosis C (38%) and outright deficiency (19%). Following 12 weeks of micronutrient supplementation, at least 70% of the participants reached adequate vitamin C status (≥50 µmol/L), however, there was no change in CRP concentrations relative to the placebo group (Δ-0.3 [95%CI -2.7, 2.1] mg/L, p = 0.8). Similar trends were observed for IL-6, TNFα and F2isoprostanes (p > 0.05). Instead, there were small improvements in BMI, fasting glucose and HbA1c concentrations, insulin sensitivity and metabolic severity score in the micronutrient group relative to placebo (p < 0.05). Overall, 12-week micronutrient supplementation was unable to mitigate systemic inflammation in people with metabolic syndrome but may improve several metabolic health indices.
Collapse
Affiliation(s)
- Emma Vlasiuk
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (E.V.); (M.Z.); (R.W.)
| | - Masuma Zawari
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (E.V.); (M.Z.); (R.W.)
| | - Rebekah Whitehead
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (E.V.); (M.Z.); (R.W.)
| | - Jonathan Williman
- Department of Population Health, University of Otago, Christchurch 8011, New Zealand;
| | - Anitra C. Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand; (E.V.); (M.Z.); (R.W.)
| |
Collapse
|
10
|
Yu Q, Hong H, Liu Y, Monto AR, Gao R, Bao Y. Oxidation affects pH buffering capacity of myofibrillar proteins via modification of histidine residue and structure of myofibrillar proteins. Int J Biol Macromol 2024; 260:129532. [PMID: 38246447 DOI: 10.1016/j.ijbiomac.2024.129532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
The pH buffering capacity is an important functionality of muscle proteins, and muscle foods are susceptible to being oxidized during storage and processing. In order to study the effect of oxidation on the pH buffering capacity of myofibrillar proteins, myofibrils extracted from snakehead fish (Channa argus) were oxidized with H2O2. Results showed that increased oxidation led to loss of free sulfhydryl groups, formation of carbonyl groups, increased surface hydrophobicity, and aggregation of myofibrillar proteins. In addition, there was a significant reduction in the content of histidine in oxidized myofibrillar proteins. The pH buffering capacity of myofibrillar proteins significantly decreased from 3.14 ± 0.03 mM H+/(mL × ΔpH) down to 2.55 ± 0.03 mM H+/(mL × ΔpH) after oxidation with 50 mM H2O2. Both oxidized myofibrillar proteins and histidine showed a high pH buffering capacity at pH near 5.8, which is the histidine pKa value. Here, we hypothesize that oxidation-induced changes in the pH buffering capacity of myofibrillar proteins were driven by oxidative modification of histidine and structural changes of myofibrillar proteins. The significance of this study to food industry may be the awareness that protein oxidation may affect pH through changes in buffering capacity. And the use of antioxidants, especially those targeting at histidine will be promising in addressing this issue.
Collapse
Affiliation(s)
- Qingqing Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yueyue Liu
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abdul Razak Monto
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
11
|
Zhu Y, Wang K, Jia X, Fu C, Yu H, Wang Y. Antioxidant peptides, the guardian of life from oxidative stress. Med Res Rev 2024; 44:275-364. [PMID: 37621230 DOI: 10.1002/med.21986] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
Reactive oxygen species (ROS) are produced during oxidative metabolism in aerobic organisms. Under normal conditions, ROS production and elimination are in a relatively balanced state. However, under internal or external environmental stress, such as high glucose levels or UV radiation, ROS production can increase significantly, leading to oxidative stress. Excess ROS production not only damages biomolecules but is also closely associated with the pathogenesis of many diseases, such as skin photoaging, diabetes, and cancer. Antioxidant peptides (AOPs) are naturally occurring or artificially designed peptides that can reduce the levels of ROS and other pro-oxidants, thus showing great potential in the treatment of oxidative stress-related diseases. In this review, we discussed ROS production and its role in inducing oxidative stress-related diseases in humans. Additionally, we discussed the sources, mechanism of action, and evaluation methods of AOPs and provided directions for future studies on AOPs.
Collapse
Affiliation(s)
- Yiyun Zhu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Kang Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinyi Jia
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
- Department of Food Science and Technology, Food Science and Technology Center, National University of Singapore, Singapore, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, China
| | - Haining Yu
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
Khamis T, Diab AAAA, Zahra MH, El-Dahmy SE, Abd Al-Hameed BA, Abdelkhalek A, Said MA, Abdellatif H, Fericean LM, Banatean-Dunea I, Arisha AH, Attia MS. The Antiproliferative Activity of Adiantum pedatum Extract and/or Piceatannol in Phenylhydrazine-Induced Colon Cancer in Male Albino Rats: The miR-145 Expression of the PI-3K/ Akt/ p53 and Oct4/ Sox2/ Nanog Pathways. Molecules 2023; 28:5543. [PMID: 37513415 PMCID: PMC10383735 DOI: 10.3390/molecules28145543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Colon cancer is one of the most common types of cancer worldwide, and its incidence is increasing. Despite advances in medical science, the treatment of colon cancer still poses a significant challenge. This study aimed to investigate the potential protective effects of Adiantum pedatum (AP) extract and/or piceatannol on colon cancer induced via phenylhydrazine (PHZ) in terms of the antioxidant and apoptotic pathways and histopathologic changes in the colons of male albino rats. The rats were randomly divided into eight groups: control, AP extract, piceatannol (P), PHZ, PHZ and AP treatments, PHZ and P treatments, PHZ and both AP and P, and PHZ and prophylaxis with both AP and P. The results demonstrated that PHZ induced oxidative damage, apoptosis, and histopathological changes compared to the control group. However, the administration of AP or P or AP + P as therapy or prophylaxis significantly ameliorated these changes and upregulated the colonic mir-145 and mRNA expression of P53 and PDCD-4 while downregulating the colonic mRNA expression of PI3K, AKT, c-Myc, CK-20, SOX-2, OCT-4, and NanoG compared to the PHZ group. These findings suggest that the candidate drugs may exert their anti-cancer effects through multiple mechanisms, including antioxidant and apoptotic activities.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Mansour H Zahra
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Samih Ebrahim El-Dahmy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | | | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
| | - Mahmoud A Said
- Zagazig University Hospital, Zagazig University, Zagazig 44511, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Liana Mihaela Fericean
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I" from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I" from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mai S Attia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
13
|
Kvangarsnes K, Dauksas E, Tolstorebrov I, Rustad T, Bartolomei M, Xu R, Lammi C, Cropotova J. Physicochemical and functional properties of rainbow trout ( Oncorhynchus mykiss) hydrolysate. Heliyon 2023; 9:e17979. [PMID: 37449127 PMCID: PMC10336833 DOI: 10.1016/j.heliyon.2023.e17979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Due to the continuous growth of the world population, there is an urgent need to find sustainable sources of high-quality protein. Fish side streams rich in essential nutrients and accounting for 60-70% of the whole fish, represent a sustainable source for recovery of valuable protein compounds. The present study aimed at extensive characterization of physicochemical, antioxidant and techno-functional properties of fish protein hydrolysate (FPH) obtained from farmed rainbow trout (Oncorhynchus mykiss). The FPH was produced from a minced rainbow trout raw material by enzymatic hydrolysis performed at 50 °C with addition of 0.05% w/w papain and 0.05% w/w bromelain. After inactivation of the proteases at 90 °C for 10 min, the content of the bioreactor was centrifuged, and the soluble protein fraction (FPH) was collected and freeze-dried. The total protein content of the FPH with 17.24% degree of hydrolysis was high (88.9%) and mainly represented by water-soluble proteins, while the lipid content was below 1%. In addition to the high protein content, trout hydrolysate had low protein oxidation values characterized by a relatively low total carbonyl content together with high amount of thiol groups (3.64 ± 0.31 and 20.7 ± 0.6 nmol/mg protein, respectively). No glass transition was detected in the differential scanning calorimetry (DSC) heat flow curves, suggesting lack of unfreezable solution formation in the FPH at freezing temperatures. The viscosity of FPH showed typical Newtonian behaviour. A peptidomic investigation (using HPLC-MS/MS technique) displayed chemical composition of the trout hydrolysate and identified peptide sequences which are present in the hydrolysate mixture, as well as proteins to which each peptide belongs to. In conclusion, it was suggested to use the obtained trout hydrolysate as a functional ingredient in the food and nutraceutical industry.
Collapse
Affiliation(s)
- Kristine Kvangarsnes
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Egidijus Dauksas
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| | - Ignat Tolstorebrov
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, Varmeteknisk, 247, Gløshaugen, Trondheim, Norway
| | - Turid Rustad
- Department of Biotechnology and Food Science, Kjemi 3, Gløshaugen, Sem Sælands vei 8, Trondheim, Norway
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133, Milano, Italy
| | - Ruoxian Xu
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133, Milano, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via Luigi Mangiagalli, 25, 20133, Milano, Italy
| | - Janna Cropotova
- Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, Ålesund, Norway
| |
Collapse
|
14
|
Lesiewska H, Woźniak A, Reisner P, Czosnyka K, Stachura J, Malukiewicz G. Is Cataract in Patients under 60 Years Associated with Oxidative Stress? Biomedicines 2023; 11:biomedicines11051286. [PMID: 37238957 DOI: 10.3390/biomedicines11051286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Oxidative stress is considered as a possible factor in the genesis of cataract. The study aimed to determine the systemic antioxidant status in cataract patients under 60 years. We studied 28 consecutive cataract patients, mean of 53 years (SD = 9.2), a range of 22-60 and 37 controls. In erythrocytes, activity of antioxidant enzymes was determined: superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), in contrast with plasma concentrations of vitamin A and E. Conjugated dienes (CD) level and protein carbonyls (PC) concentration were also determined in plasma. Malondialdehyde (MDA) concentrations in erythrocytes and plasma were also measured. SOD and GPx activity and vitamin A and E concentrations were lower in cataract patients (p = 0.000511, 0.02, 0.022, and 0.000006, respectively). MDA plasma and erythrocytes concentrations were higher in cataract patients (p = 0.000001 and 0.0000001, respectively). PC concentration was higher in cataract patients than in controls (p = 0.00000013). There were statistically significant correlations between oxidative stress markers both in the cataract patients group as well as in the control group. Cataract incidence in patients under 60 years seems to be accompanied by enhanced lipid peroxidation and protein oxidation, as well as antioxidant defense depletion. Thus, supplementation with antioxidants could be beneficial in this group of patients.
Collapse
Affiliation(s)
- Hanna Lesiewska
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Paweł Reisner
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Krzysztof Czosnyka
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Joanna Stachura
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| | - Grażyna Malukiewicz
- Department of Ophthalmology, The Nicolaus Copernicus University, Ludwik Rydygier's Collegium Medicum, 85-094 Bydgoszcz, Poland
| |
Collapse
|
15
|
Kharmyssov C, Sekerbayev K, Nurekeyev Z, Gaipov A, Utegulov ZN. Mechano-Chemistry across Phase Transitions in Heated Albumin Protein Solutions. Polymers (Basel) 2023; 15:polym15092039. [PMID: 37177189 PMCID: PMC10180835 DOI: 10.3390/polym15092039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
The presence of certain proteins in biofluids such as synovial fluid, blood plasma, and saliva gives these fluids non-Newtonian viscoelastic properties. The amount of these protein macromolecules in biofluids is an important biomarker for the diagnosis of various health conditions, including Alzheimer's disease, cardiovascular disorders, and joint quality. However, existing technologies for measuring the behavior of macromolecules in biofluids have limitations, such as long turnaround times, complex protocols, and insufficient sensitivity. To address these issues, we propose non-contact, optical Brillouin and Raman spectroscopy to assess the viscoelasticity and chemistry of non-Newtonian solutions, respectively, at different temperatures in several minutes. In this work, bovine and human serum albumin solution-based biopolymers were studied to obtain both their collective dynamics and molecular chemical evolution across heat-driven phase transitions at various protein concentrations. The observed phase transitions at elevated temperatures could be fully delayed in heated biopolymers by appropriately raising the level of protein concentration. The non-contact optical monitoring of viscoelastic and chemical property evolution could represent novel potential mechano-chemical biomarkers for disease diagnosis and subsequent treatment applications, including hyperthermia.
Collapse
Affiliation(s)
- Chingis Kharmyssov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
- Science Department, Astana IT University, 010000 Astana, Kazakhstan
| | - Kairolla Sekerbayev
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Zhangatay Nurekeyev
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
- Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Abduzhappar Gaipov
- Department of Medicine, School of Medicine, Nazarbayev University, 010000 Astana, Kazakhstan
| | - Zhandos N Utegulov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, 010000 Astana, Kazakhstan
| |
Collapse
|
16
|
Williamson-Reisdorph CM, Quindry TS, Christison KS, Gurney SC, Tiemessen KG, Cuddy J, Hailes W, Slivka D, Ruby BC, Quindry JC. Training in a Hot Environment Fails to Elicit Changes in the Blood Oxidative Stress Response. J Hum Kinet 2023; 87:81-92. [PMID: 37229416 PMCID: PMC10203834 DOI: 10.5114/jhk/161586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/14/2022] [Indexed: 05/27/2023] Open
Abstract
Environmental temperature can impact exercise-induced blood oxidative stress; however, the effects of heat acclimation on this response have not been fully elucidated. The purpose of the study was to investigate the effects of hot (33°C) and room temperature (20°C) environments on post-exercise blood oxidative stress responses following 15 temperature acclimation sessions. Untrained participants (n = 38, 26 ± 7 years, VO2peak = 38.0 ± 7.2 years) completed 15 temperature acclimation sessions of a cycling bout at an intensity perceived as "hard" in either a hot (33°C) or room temperature (20°C) environment. Pre and post acclimation exercise tolerance trials were conducted, which involved cycling at 50% Wpeak for one hour. Blood sampling occurred before exercise, immediately after, two hours, and four hours after the exercise tolerance trials. Blood samples were analyzed for oxidative stress markers including lipid hydroperoxides, 8-isoprostanes, protein carbonyls, 3-nitrotyrosine, ferric-reducing ability of plasma, and Trolox-equivalent antioxidant capacity. Exercise-dependent increases were observed in lipid hydroperoxides, Trolox-equivalent antioxidant capacity, and ferric-reducing ability of plasma (p < 0.001). Considering exercise-induced elevations in markers of blood oxidative stress, there were no differences observed between environmental temperatures before or after the acclimation training period.
Collapse
Affiliation(s)
| | - Tiffany S. Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Katherine S. Christison
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Shae C. Gurney
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Kathryn G. Tiemessen
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - John Cuddy
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Walter Hailes
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Dustin Slivka
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Brent C. Ruby
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - John C. Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| |
Collapse
|
17
|
Schweizer U, Wirth EK, Klopstock T, Hölter SM, Becker L, Moskovitz J, Grune T, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Köhrle J, Schomburg L. Seizures, ataxia and parvalbumin-expressing interneurons respond to selenium supply in Selenop-deficient mice. Redox Biol 2022; 57:102490. [PMID: 36182809 PMCID: PMC9526222 DOI: 10.1016/j.redox.2022.102490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Mice with constitutive disruption of the Selenop gene have been key to delineate the importance of selenoproteins in neurobiology. However, the phenotype of this mouse model is exquisitely dependent on selenium supply and timing of selenium supplementation. Combining biochemical, histological, and behavioral methods, we tested the hypothesis that parvalbumin-expressing interneurons in the primary somatosensory cortex and hippocampus depend on dietary selenium availability in Selenop-/- mice. Selenop-deficient mice kept on adequate selenium diet (0.15 mg/kg, i.e. the recommended dietary allowance, RDA) developed ataxia, tremor, and hyperexcitability between the age of 4-5 weeks. Video-electroencephalography demonstrated epileptic seizures in Selenop-/- mice fed the RDA diet, while Selenop± heterozygous mice behaved normally. Both neurological phenotypes, hyperexcitability/seizures and ataxia/dystonia were successfully prevented by selenium supplementation from birth or transgenic expression of human SELENOP under a hepatocyte-specific promoter. Selenium supplementation with 10 μM selenite in the drinking water on top of the RDA diet increased the activity of glutathione peroxidase in the brains of Selenop-/- mice to control levels. The effects of selenium supplementation on the neurological phenotypes were dose- and time-dependent. Selenium supplementation after weaning was apparently too late to prevent ataxia/dystonia, while selenium withdrawal from rescued Selenop-/- mice eventually resulted in ataxia. We conclude that SELENOP expression is essential for preserving interneuron survival under limiting Se supply, while SELENOP appears dispensable under sufficiently high Se status.
Collapse
Affiliation(s)
- Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Uniklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Eva K Wirth
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institute, Department of Neurology, University Hospital, Ludwig Maximilian University of Munich, Ziemssenstraße 1a, 80336, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabine M Hölter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jackob Moskovitz
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, USA
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße. 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Alte Akademie 8, 85354, Freising, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Landstraße. 1, 85764, Neuherberg, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lutz Schomburg
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
18
|
Guo C, Chadwick RJ, Foulis A, Bedendi G, Lubskyy A, Rodriguez KJ, Pellizzoni MM, Milton RD, Beveridge R, Bruns N. Peroxidase Activity of Myoglobin Variants Reconstituted with Artificial Cofactors. Chembiochem 2022; 23:e202200197. [PMID: 35816250 PMCID: PMC9545363 DOI: 10.1002/cbic.202200197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Indexed: 02/02/2023]
Abstract
Myoglobin (Mb) can react with hydrogen peroxide (H2 O2 ) to form a highly active intermediate compound and catalyse oxidation reactions. To enhance this activity, known as pseudo-peroxidase activity, previous studies have focused on the modification of key amino acid residues of Mb or the heme cofactor. In this work, the Mb scaffold (apo-Mb) was systematically reconstituted with a set of cofactors based on six metal ions and two ligands. These Mb variants were fully characterised by UV-Vis spectroscopy, circular dichroism (CD) spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and native mass spectrometry (nMS). The steady-state kinetics of guaiacol oxidation and 2,4,6-trichlorophenol (TCP) dehalogenation catalysed by Mb variants were determined. Mb variants with iron chlorin e6 (Fe-Ce6) and manganese chlorin e6 (Mn-Ce6) cofactors were found to have improved catalytic efficiency for both guaiacol and TCP substrates in comparison with wild-type Mb, i. e. Fe-protoporphyrin IX-Mb. Furthermore, the selected cofactors were incorporated into the scaffold of a Mb mutant, swMb H64D. Enhanced peroxidase activity for both substrates were found via the reconstitution of Fe-Ce6 into the mutant scaffold.
Collapse
Affiliation(s)
- Chao Guo
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Robert J. Chadwick
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Adam Foulis
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Giada Bedendi
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Andriy Lubskyy
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Kyle J. Rodriguez
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Michela M. Pellizzoni
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
| | - Rebecca Beveridge
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK
| | - Nico Bruns
- Department of Pure and Applied ChemistryUniversity of Strathclyde295 Cathedral StreetG1 1XLGlasgowUK,Department of ChemistryTechnical University of DarmstadtAlarich-Weiss-Str. 464287DarmstadtGermany
| |
Collapse
|
19
|
Casetta J, Gasparino E, Isabela da Silva C, Ribeiro RP, Braccini GL, Refundini G, de Souza Khatlab A, Lala B, Claudino-Silva S. Immune response in sexual inverted and non-inverted Nile tilapia fingerlings supplemented with organic acid and essential oil. FISH & SHELLFISH IMMUNOLOGY 2022; 127:975-981. [PMID: 35863539 DOI: 10.1016/j.fsi.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The development and intensification of tilapia farming depends on the manipulation of some physiological functions, such as the sexual inversion of larvae using a synthetic androgen (17α-methyltestosterone). This inversion, however, may represent a potential oxidative stress factor and cause damage to animals in the short, medium, and long term. Dietary supplementation of natural antioxidant compounds is an interesting alternative to combat such damage. To test this hypothesis, an experimental trial was carried out involving sexual inverted and non-inverted Nile tilapia fingerlings, both supplemented and not supplemented with a blend of organic acids and essential oils protected by microencapsulation. Animals were divided into four experimental groups: NI (non-inverted animals), I (sexual inverted animals), NI + M (non-inverted animals supplemented with microcapsules), and I + M (sexual inverted animals supplemented with microcapsules). Blood parameters (WBC - white blood cells; LY - lymphocytes; RBC - red blood cells; HGB - hemoglobin; HCT - hematocrit number; MCH - mean corpuscular hemoglobin; MCV - mean corpuscular volume and MCHC - mean corpuscular hemoglobin concentration), as well as oxidative stress markers (enzymatic activity of superoxide dismutase - SOD and catalase - CAT; and total antioxidant capacity - 2,2-diphenyl-1-picryl-hydrazyl (DPPH)) and gene expression (heat shock protein 70 kDa - HSP70) were evaluated. The HGB (p < 0.001) and HCT (p = 0.005) parameters were reduced beyond the recommended limits for the animals in group I. The MCV varied statistically between the groups (p < 0.001). However, all values were within the recommended range for the species, jointly indicating normocytic anemia in group I fingerlings at the time of collection. The activity of CAT and SOD, as well as DPPH differed statistically between the experimental groups (p < 0.001), with the lowest SOD and CAT activity, as well as the highest DPPH registered in animals supplemented with microcapsules. The expression of HSP70 was lower in I + MI animals (p < 0.001). The synergistic evaluation of the results indicates that animals sexual inverted during the larval stage have a lower total antioxidant capacity in the fingerling stage, which reflects a worsening in hematological and enzymatic parameters related to immunity; and that dietary supplementation with blend of organic acids and essential oils protected by microencapsulation is sufficient to improve the immunological response both in sexual inverted and non-inverted fingerlings.
Collapse
Affiliation(s)
- Jaísa Casetta
- Department of Animal Science, State University of Maringá, Maringá, Brazil
| | - Eliane Gasparino
- Department of Animal Science, State University of Maringá, Maringá, Brazil
| | | | | | | | | | | | - Bruno Lala
- Department of Agronomy, Federal Rural University of Amazon, Capitão Poço, Brazil; Department of Animal Breeding and Nutrition, College of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, Brazil.
| | | |
Collapse
|
20
|
Del Giudice F, Barnes C. Rapid Temperature-Dependent Rheological Measurements of Non-Newtonian Solutions Using a Machine-Learning Aided Microfluidic Rheometer. Anal Chem 2022; 94:3617-3628. [PMID: 35167252 DOI: 10.1021/acs.analchem.1c05208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biofluids such as synovial fluid, blood plasma, and saliva contain several proteins which impart non-Newtonian properties to the biofluids. The concentration of such protein macromolecules in biofluids is regarded as an important biomarker for the diagnosis of several health conditions, including cardiovascular disorders, joint quality, and Alzheimer's. Existing technologies for the measurements of macromolecules in biofluids are limited; they require a long turnaround time, or require complex protocols, thus calling for alternative, more suitable, methodologies aimed at such measurements. According to the well-established relations for polymer solutions, the concentration of macromolecules in solutions can also be derived via measurement of rheological properties such as shear-viscosity and the longest relaxation time. We here introduce a microfluidic rheometer for rapid simultaneous measurement of shear viscosity and longest relaxation time of non-Newtonian solutions at different temperatures. At variance with previous technologies, our microfluidic rheometer provides a very short turnaround time of around 2 min or less thanks to the implementation of a machine-learning algorithm. We validated our platform on several aqueous solutions of poly(ethylene oxide). We also performed measurements on hyaluronic acid solutions in the clinical range for joint grade assessment. We observed monotonic behavior with the concentration for both rheological properties, thus speculating on their use as potential rheo-markers, i.e., rheological biomarkers, across several disease states.
Collapse
Affiliation(s)
- Francesco Del Giudice
- Department of Chemical Engineering, Faculty of Science and Engineering, School of Engineering and Applied Science, Swansea University Fabian Way, Swansea, SA1 8EN, United Kingdom
| | - Claire Barnes
- Department of Biomedical Engineering, Faculty of Science and Engineering, School of Engineering and Applied Science, Swansea University Fabian Way, Swansea, SA1 8EN, United Kingdom
| |
Collapse
|
21
|
Cotinat P, Fricano C, Toullec G, Röttinger E, Barnay-Verdier S, Furla P. Intrinsically High Capacity of Animal Cells From a Symbiotic Cnidarian to Deal With Pro-Oxidative Conditions. Front Physiol 2022; 13:819111. [PMID: 35222085 PMCID: PMC8867213 DOI: 10.3389/fphys.2022.819111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
The cnidarian-dinoflagellate symbiosis is a mutualistic intracellular association based on the photosynthetic activity of the endosymbiont. This relationship involves significant constraints and requires co-evolution processes, such as an extensive capacity of the holobiont to counteract pro-oxidative conditions induced by hyperoxia generated during photosynthesis. In this study, we analyzed the capacity of Anemonia viridis cells to deal with pro-oxidative conditions by in vivo and in vitro approaches. Whole specimens and animal primary cell cultures were submitted to 200 and 500 μM of H2O2 during 7 days. Then, we monitored global health parameters (symbiotic state, viability, and cell growth) and stress biomarkers (global antioxidant capacity, oxidative protein damages, and protein ubiquitination). In animal primary cell cultures, the intracellular reactive oxygen species (ROS) levels were also evaluated under H2O2 treatments. At the whole organism scale, both H2O2 concentrations didn’t affect the survival and animal tissues exhibited a high resistance to H2O2 treatments. Moreover, no bleaching has been observed, even at high H2O2 concentration and after long exposure (7 days). Although, the community has suggested the role of ROS as the cause of bleaching, our results indicating the absence of bleaching under high H2O2 concentration may exculpate this specific ROS from being involved in the molecular processes inducing bleaching. However, counterintuitively, the symbiont compartment appeared sensitive to an H2O2 burst as it displayed oxidative protein damages, despite an enhancement of antioxidant capacity. The in vitro assays allowed highlighting an intrinsic high capacity of isolated animal cells to deal with pro-oxidative conditions, although we observed differences on tolerance between H2O2 treatments. The 200 μM H2O2 concentration appeared to correspond to the tolerance threshold of animal cells. Indeed, no disequilibrium on redox state was observed and only a cell growth decrease was measured. Contrarily, the 500 μM H2O2 concentration induced a stress state, characterized by a cell viability decrease from 1 day and a drastic cell growth arrest after 7 days leading to an uncomplete recovery after treatment. In conclusion, this study highlights the overall high capacity of cnidarian cells to cope with H2O2 and opens new perspective to investigate the molecular mechanisms involved in this peculiar resistance.
Collapse
Affiliation(s)
- Pauline Cotinat
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
| | - Clara Fricano
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
| | - Gaëlle Toullec
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
| | - Eric Röttinger
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
| | - Stéphanie Barnay-Verdier
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
- UFR 927, Sorbonne Université, Paris, France
| | - Paola Furla
- CNRS, INSERM, Institute for Research on Cancer and Aging, Nice, Université Côte d’Azur, Nice, France
- Institut Fédératif de Recherche – Ressources Marines (MARRES), Université Côte d’Azur, Nice, France
- *Correspondence: Paola Furla,
| |
Collapse
|
22
|
Spencer E, Rosengrave P, Williman J, Shaw G, Carr AC. Circulating protein carbonyls are specifically elevated in critically ill patients with pneumonia relative to other sources of sepsis. Free Radic Biol Med 2022; 179:208-212. [PMID: 34818575 DOI: 10.1016/j.freeradbiomed.2021.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Septic shock is a life-threatening dysregulated response to severe infection and is associated with elevated oxidative stress. We aimed to assess protein carbonyls in critically ill patients with different sources of sepsis and determine the effect of vitamin C intervention on protein carbonyl concentrations. METHODS Critically ill patients with septic shock (n = 40) were recruited, and sources of sepsis and ICU severity scores were recorded. The patients were randomised to receive either intravenous vitamin C (100 mg/kg body weight/day) or placebo infusions. Blood samples were collected at baseline and daily for up to three days for measurement of cell counts, vitamin C concentrations, protein carbonyls, C-reactive protein, and myeloperoxidase concentrations. RESULTS Protein carbonyl concentrations increased 2.2-fold in the cohort over the duration of the study (from 169 to 369 pmol/mg protein; p = 0.03). There were significant correlations between protein carbonyl concentrations and ICU severity scores (APACHE III r = 0.47 and SOFA r = 0.37; p < 0.05) at baseline. At study admission, the patients with pneumonia had nearly 3-fold higher protein carbonyl concentrations relative to the patients with other sources of sepsis (435 vs 157 pmol/mg protein, p < 0.0001). The septic patients had deficient vitamin C status at baseline (9.8 ± 1.4 μmol/L). This increased to 456 ± 90 μmol/L following three days of intravenous vitamin C intervention. Vitamin C intervention did not attenuate the increase in protein carbonyl concentrations. CONCLUSIONS Circulating protein carbonyls are specifically elevated in critically ill patients with pneumonia relative to other sources of sepsis. The reasons for this are currently unclear and may indicate a mechanism unique to pulmonary sources of sepsis. Intravenous vitamin C administration did not attenuate the increase in protein carbonyls over time.
Collapse
Affiliation(s)
- Emma Spencer
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Patrice Rosengrave
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand; Centre for Postgraduate Nursing Studies, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Jonathan Williman
- Department of Population Health, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| | - Geoff Shaw
- Department of Intensive Care Medicine, Christchurch Hospital, Private Bag 4710, Christchurch, 8140, New Zealand
| | - Anitra C Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| |
Collapse
|
23
|
Ciacka K, Tyminski M, Gniazdowska A, Krasuska U. Nitric Oxide as a Remedy against Oxidative Damages in Apple Seeds Undergoing Accelerated Ageing. Antioxidants (Basel) 2021; 11:antiox11010070. [PMID: 35052574 PMCID: PMC8772863 DOI: 10.3390/antiox11010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/02/2022] Open
Abstract
Seed ageing is associated with a high concentration of reactive oxygen species (ROS). Apple (Malus domestica Borkh.) seeds belong to the orthodox type. Due to a deep dormancy, they may be stored in dry condition at 5 °C for a long time, without viability loss. In the laboratory, artificial ageing of apple seeds is performed by imbibition in wet sand at warm temperature (33 °C). The aim of the work was to study nitric oxide (NO) as a seed vigour preservation agent. Embryos isolated from apple seeds subjected to accelerated ageing for 7, 14, 21 or 40 days were fumigated with NO. Embryo quality was estimated by TTC and MDA tests. ROS level was confirmed by NBT staining. We analysed the alteration in transcript levels of CAT, SOD and POX. NO fumigation of embryos of seeds aged for 21 days stimulated germination and increased ROS level which correlated to the elevated expression of RBOH. The increased total antioxidant capacity after NO fumigation was accompanied by the increased transcript levels of genes encoding enzymatic antioxidants, that could protect against ROS overaccumulation. Moreover, post-aged NO application diminished the nitro-oxidative modification of RNA, proving NO action as a remedy in oxidative remodelling after seeds ageing.
Collapse
|
24
|
Kaloyianni M, Bobori DC, Xanthopoulou D, Malioufa G, Sampsonidis I, Kalogiannis S, Feidantsis K, Kastrinaki G, Dimitriadi A, Koumoundouros G, Lambropoulou DA, Kyzas GZ, Bikiaris DN. Toxicity and Functional Tissue Responses of Two Freshwater Fish after Exposure to Polystyrene Microplastics. TOXICS 2021; 9:289. [PMID: 34822680 PMCID: PMC8625933 DOI: 10.3390/toxics9110289] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 02/04/2023]
Abstract
Microplastics (MPs)' ingestion has been demonstrated in several aquatic organisms. This process may facilitate the hydrophobic waterborne pollutants or chemical additives transfer to biota. In the present study the suitability of a battery of biomarkers on oxidative stress, physiology, tissue function and metabolic profile was investigated for the early detection of adverse effects of 21-day exposure to polystyrene microplastics (PS-MPs, sized 5-12 μm) in the liver and gills of zebrafish Danio rerio and perch, Perca fluviatilis, both of which are freshwater fish species. An optical volume map representation of the zebrafish gill by Raman spectroscopy depicted 5 μm diameter PS-MP dispersed in the gill tissue. Concentrations of PS-MPs close to the EC50 of each fish affected fish physiology in all tissues studied. Increased levels of biomarkers of oxidative damage in exposed fish in relation to controls were observed, as well as activation of apoptosis and autophagy processes. Malondialdehyde (MDA), protein carbonyls and DNA damage responses differed with regard to the sensitivity of each tissue of each fish. In the toxicity cascade gills seemed to be more liable to respond to PS-MPs than liver for the majority of the parameters measured. DNA damage was the most susceptible biomarker exhibiting greater response in the liver of both species. The interaction between MPs and cellular components provoked metabolic alterations in the tissues studied, affecting mainly amino acids, nitrogen and energy metabolism. Toxicity was species and tissue specific, with specific biomarkers responding differently in gills and in liver. The fish species that seemed to be more susceptible to MPs at the conditions studied, was P. fluviatilis compared to D. rerio. The current findings add to a holistic approach for the identification of small sized PS-MPs' biological effects in fish, thus aiming to provide evidence regarding PS-MPs' environmental impact on wild fish populations and food safety and adequacy.
Collapse
Affiliation(s)
- Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Dimitra C. Bobori
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Xanthopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
- Laboratory of Ichthyology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Glykeria Malioufa
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Ioannis Sampsonidis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57001 Thessaloniki, Greece; (I.S.); (S.K.)
| | - Stavros Kalogiannis
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57001 Thessaloniki, Greece; (I.S.); (S.K.)
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.K.); (D.X.); (G.M.); (K.F.)
| | - Georgia Kastrinaki
- Laboratory of Inorganic Materials, CERTH/CPERI, 57001 Thessaloniki, Greece;
| | - Anastasia Dimitriadi
- Biology Department, University of Crete, 70013 Herakleion, Greece; (A.D.); (G.K.)
| | - George Koumoundouros
- Biology Department, University of Crete, 70013 Herakleion, Greece; (A.D.); (G.K.)
| | - Dimitra A. Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
25
|
Wigner P, Szymańska B, Bijak M, Sawicka E, Kowal P, Marchewka Z, Saluk-Bijak J. Oxidative stress parameters as biomarkers of bladder cancer development and progression. Sci Rep 2021; 11:15134. [PMID: 34302052 PMCID: PMC8302678 DOI: 10.1038/s41598-021-94729-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/09/2021] [Indexed: 12/09/2022] Open
Abstract
The epidemiological studies confirm that the overproduction of free radical is an important factor of cancer induction as well as development, and loss of antioxidant systems efficiency is associated with an increased risk of carcinogenesis. While bladder cancer is the fourth most common type of cancer all over the world, there is little evidence of the advancing changes in oxidative/nitrative stress during the progression of bladder cancer. Our study aimed to investigate the plasma levels of typical markers of oxidative/nitrative stress depending on the clinical classification of bladder cancer differentiation and infiltration degree. We examined 40 patients with newly diagnosed bladder cancer and 20 healthy volunteers as a control group. We analysed the plasma levels of protein carbonyls, thiol groups, 3-nitrotyrosine, lipid peroxidation, as well as non-enzymatic plasma antioxidant capacity using DPPH· and ABTS·+ radicals. We confirmed that all analysed biomarkers are higher in enrolled BC patients than in healthy subjects. Furthermore, our findings demonstrate a positive correlation between the degree of bladder cancer progression and the level of oxidative stress, but no correlation in the case of NT-3. Based on obtained results, we might conclude that during carcinogenesis of the bladder increased oxidative damage of biomolecules is manifested. This indicates the participation of oxidative stress in the development of bladder cancer, and it is important the ensure the proper antioxidant protection.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Beata Szymańska
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136, Lodz, Poland
| | - Ewa Sawicka
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Paweł Kowal
- Department and Clinic of Urology and Urological Oncology, Faculty of Postgraduate Medical Training, Wroclaw Medical University, Kamieńskiego 73a, 51-124, Wrocław, Poland
| | - Zofia Marchewka
- Department of Toxicology, Faculty of Pharmacy and Division of Laboratory, Wroclaw Medical University, Borowska 211, 50-556, Wrocław, Poland
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
26
|
Pappa A, Papadimitriou-Tsantarliotou A, Kaloyianni M, Kastrinaki G, Dailianis S, Lambropoulou DA, Christodoulou E, Kyzas GZ, Bikiaris DN. Insights into the toxicity of biomaterials microparticles with a combination of cellular and oxidative biomarkers. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125335. [PMID: 33930942 DOI: 10.1016/j.jhazmat.2021.125335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Considering that the extensive biomedical, pharmaceutics, cosmetic and other industrial applications of biomaterials (BMs) is of great concern nowadays, regarding their environmental risk, the present study aimed to investigate the effects of four BMs, poly(ε-caprolactone) (PCL), poly(butylene succinate) (PBSu), chitosan (CS) and modified chitosan (succinic acid grafted chitosan) (CS-Suc) in the form of microplastics (particle sizes less than 1 mm) on biochemical parameters of snails Cornu aspersum hemocytes. Due to the absence of knowledge about the environmentally relevant concentrations of BMs, snails were initially treated through their food with a wide range of nominal concentrations of each BM to define the half maximal effective concentration (NRRT50), according to the destabilization degree of hemocytes' lysosomal membranes (by mean of neutral red retention time/NRRT assay). Thereafter, snails were treated with each BM, at concentrations lower than the estimated NRRT50 values in all cases, for periods up to 15 days. After the end of the exposure period, a battery of stress indices were measured in hemocytes of challenged snails. According to the results, all parameters tested in BMs-treated snails statistically differed from those measured in BMs-free snails, thus indicating the pro-oxidant potential of BMs, as well as their ability to affect animals' physiology. The most considerable effect in most cases seems to be caused by modified chitosan and PCL, while chitosan appears to be the least toxic. A common response mechanism of snails' blood cells against the 4 BMs used in the present study was shown. After exposure to each of the studied BMs a significant augmentation in protein carbonyls, MDA equivalents and DNA damage, while a significant reduction in NRRT values was determined in the snails hemocytes, in relation to the unexposed animals. From the biochemical parameters examined, MDA equivalents and DNA damage seem to be more susceptible than the other parameters studied, to respond to BMs effect, with MDA to react with more sensitivity to PCL and CS, while DNA damage to CS-Suc and PBSu. Our results could suggest the simultaneous use of the latter biomarkers in biomonitoring studies of terrestrial ecosystems against the specific BMs.
Collapse
Affiliation(s)
- Anna Pappa
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Aliki Papadimitriou-Tsantarliotou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | | | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras 26 500, Greece
| | - Dimitra A Lambropoulou
- Laboratory of Environmental Pollution Control, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - George Z Kyzas
- Department of Chemistry, International Hellenic University, Kavala GR-654 04, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
27
|
Papatheodorou I, Galatou E, Panagiotidis GD, Ravingerová T, Lazou A. Cardioprotective Effects of PPARβ/δ Activation against Ischemia/Reperfusion Injury in Rat Heart Are Associated with ALDH2 Upregulation, Amelioration of Oxidative Stress and Preservation of Mitochondrial Energy Production. Int J Mol Sci 2021; 22:6399. [PMID: 34203800 PMCID: PMC8232596 DOI: 10.3390/ijms22126399] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence support the cardioprotective properties of the nuclear receptor peroxisome proliferator activated receptor β/δ (PPARβ/δ); however, the underlying mechanisms are not yet fully elucidated. The aim of the study was to further investigate the mechanisms underlying PPARβ/δ-mediated cardioprotection in the setting of myocardial ischemia/reperfusion (I/R). For this purpose, rats were treated with PPARβ/δ agonist GW0742 and/or antagonist GSK0660 in vivo and hearts were subjected to ex vivo global ischemia followed by reperfusion. PPARβ/δ activation improved left ventricular developed pressure recovery, reduced infarct size (IS) and incidence of reperfusion-induced ventricular arrhythmias while it also up-regulated superoxide dismutase 2, catalase and uncoupling protein 3 resulting in attenuation of oxidative stress as evidenced by the reduction in 4-hydroxy-2-nonenal protein adducts and protein carbonyl formation. PPARβ/δ activation also increased both mRNA expression and enzymatic activity of aldehyde dehydrogenase 2 (ALDH2); inhibition of ALDH2 abrogated the IS limiting effect of PPARβ/δ activation. Furthermore, upregulation of PGC-1α and isocitrate dehydrogenase 2 mRNA expression, increased citrate synthase activity as well as mitochondrial ATP content indicated improvement in mitochondrial content and energy production. These data provide new mechanistic insight into the cardioprotective properties of PPARβ/δ in I/R pointing to ALDH2 as a direct downstream target and suggesting that PPARβ/δ activation alleviates myocardial I/R injury through coordinated stimulation of the antioxidant defense of the heart and preservation of mitochondrial function.
Collapse
Affiliation(s)
- Ioanna Papatheodorou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.G.); (G.-D.P.)
| | - Eleftheria Galatou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.G.); (G.-D.P.)
| | - Georgios-Dimitrios Panagiotidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.G.); (G.-D.P.)
| | - Táňa Ravingerová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dúbravská cesta, 84104 Bratislava, Slovakia;
| | - Antigone Lazou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.P.); (E.G.); (G.-D.P.)
| |
Collapse
|
28
|
How Robust is the Evidence for a Role of Oxidative Stress in Autism Spectrum Disorders and Intellectual Disabilities? J Autism Dev Disord 2021; 51:1428-1445. [PMID: 32929662 PMCID: PMC8084796 DOI: 10.1007/s10803-020-04611-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growing interest in the pathogenesis of autism spectrum disorders (ASDs) and other intellectual and developmental disabilities (IDD) has led to emerging evidence implicating a role for oxidative stress. However, understanding the strength of this association is made challenging by the use of a variety of purported biomarkers of oxidative stress, many of which have either uncertain specificity or flawed methods of analysis. This review aims to address this issue, which is widespread in the ASD and IDD literature, by providing readers with information concerning the strengths and limitations of the choice and analysis of biomarkers of oxidative stress. We highlight that biomarkers and assays should be specific, sensitive, reproducible, precise, robust, and chosen with careful consideration. Future studies should be sufficiently powered and address sample collection, processing, and storage which are, additionally, poorly considered, sources of bad practice, and potential errors. Only with these issues considered, will the data lead to conclusions as to the precise role of oxidative stress in ASDs and IDD.
Collapse
|
29
|
Kehm R, Baldensperger T, Raupbach J, Höhn A. Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol 2021; 42:101901. [PMID: 33744200 PMCID: PMC8113053 DOI: 10.1016/j.redox.2021.101901] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Generation of reactive oxygen species and related oxidants is an inevitable consequence of life. Proteins are major targets for oxidation reactions, because of their rapid reaction rates with oxidants and their high abundance in cells, extracellular tissues, and body fluids. Additionally, oxidative stress is able to degrade lipids and carbohydrates to highly reactive intermediates, which eventually attack proteins at various functional sites. Consequently, a wide variety of distinct posttranslational protein modifications is formed by protein oxidation, glycoxidation, and lipoxidation. Reversible modifications are relevant in physiological processes and constitute signaling mechanisms ("redox signaling"), while non-reversible modifications may contribute to pathological situations and several diseases. A rising number of publications provide evidence for their involvement in the onset and progression of diseases as well as aging processes. Certain protein oxidation products are chemically stable and formed in large quantity, which makes them promising candidates to become biomarkers of oxidative damage. Moreover, progress in the development of detection and quantification methods facilitates analysis time and effort and contributes to their future applicability in clinical routine. The present review outlines the most important classes and selected examples of oxidative protein modifications, elucidates the chemistry beyond their formation and discusses available methods for detection and analysis. Furthermore, the relevance and potential of protein modifications as biomarkers in the context of disease and aging is summarized.
Collapse
Affiliation(s)
- Richard Kehm
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Tim Baldensperger
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
30
|
Sharma S, Advani D, Das A, Malhotra N, Khosla A, Arora V, Jha A, Yadav M, Ambasta RK, Kumar P. Pharmacological intervention in oxidative stress as a therapeutic target in neurological disorders. J Pharm Pharmacol 2021; 74:461-484. [PMID: 34050648 DOI: 10.1093/jpp/rgab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Oxidative stress is a major cellular burden that triggers reactive oxygen species (ROS) and antioxidants that modulate signalling mechanisms. Byproducts generated from this process govern the brain pathology and functions in various neurological diseases. As oxidative stress remains the key therapeutic target in neurological disease, it is necessary to explore the multiple routes that can significantly repair the damage caused due to ROS and consequently, neurodegenerative disorders (NDDs). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the critical player of oxidative stress that can also be used as a therapeutic target to combat NDDs. KEY FINDINGS Several antioxidants signalling pathways are found to be associated with oxidative stress and show a protective effect against stressors by increasing the release of various cytoprotective enzymes and also exert anti-inflammatory response against this oxidative damage. These pathways along with antioxidants and reactive species can be the defined targets to eliminate or reduce the harmful effects of neurological diseases. SUMMARY Herein, we discussed the underlying mechanism and crucial role of antioxidants in therapeutics together with natural compounds as a pharmacological tool to combat the cellular deformities cascades caused due to oxidative stress.
Collapse
Affiliation(s)
- Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Nishtha Malhotra
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Akanksha Khosla
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Vanshika Arora
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Megha Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
31
|
Kramer BH, Nehring V, Buttstedt A, Heinze J, Korb J, Libbrecht R, Meusemann K, Paxton RJ, Séguret A, Schaub F, Bernadou A. Oxidative stress and senescence in social insects: a significant but inconsistent link? Philos Trans R Soc Lond B Biol Sci 2021; 376:20190732. [PMID: 33678022 PMCID: PMC7938172 DOI: 10.1098/rstb.2019.0732] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 12/29/2022] Open
Abstract
The life-prolonging effects of antioxidants have long entered popular culture, but the scientific community still debates whether free radicals and the resulting oxidative stress negatively affect longevity. Social insects are intriguing models for analysing the relationship between oxidative stress and senescence because life histories differ vastly between long-lived reproductives and the genetically similar but short-lived workers. Here, we present the results of an experiment on the accumulation of oxidative damage to proteins, and a comparative analysis of the expression of 20 selected genes commonly involved in managing oxidative damage, across four species of social insects: a termite, two bees and an ant. Although the source of analysed tissue varied across the four species, our results suggest that oxidative stress is a significant factor in senescence and that its manifestation and antioxidant defenses differ among species, making it difficult to find general patterns. More detailed and controlled investigations on why responses to oxidative stress may differ across social species may lead to a better understanding of the relations between oxidative stress, antioxidants, social life history and senescence. This article is part of the theme issue 'Ageing and sociality: why, when and how does sociality change ageing patterns?'
Collapse
Affiliation(s)
- Boris H. Kramer
- Faculty of Science and Engineering, Theoretical Research in Evolutionary Life Sciences, RUG, 9747 AG Groningen, The Netherlands
| | - Volker Nehring
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Anja Buttstedt
- Institute for Biology - Molecular Ecology, Martin-Luther-University Halle-Saale, Hoher Weg 4, 06099 Halle, Germany
| | - Jürgen Heinze
- Zoology, Department of Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Judith Korb
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Romain Libbrecht
- Institute of Organismic and Molecular Evolution (IOME), Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Karen Meusemann
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Robert J. Paxton
- Institute for Biology - General Zoology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Alice Séguret
- Institute for Biology - General Zoology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Florentine Schaub
- Department of Evolutionary Biology and Ecology, Institute of Biology I (Zoology), University of Freiburg, Hauptstraße 1, 79104 Freiburg (Brsg.), Germany
| | - Abel Bernadou
- Zoology, Department of Evolutionary Biology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
32
|
Kvangarsnes K, Kendler S, Rustad T, Aas GH. Induced oxidation and addition of antioxidant before enzymatic hydrolysis of heads of rainbow trout ( Oncorhynchus mykiss) - effect on the resulting oil and protein fraction. Heliyon 2021; 7:e06816. [PMID: 33997377 PMCID: PMC8093460 DOI: 10.1016/j.heliyon.2021.e06816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
The effect of freshness of heads of rainbow trout (Onchorhynchus mykiss) for hydrolysing fish protein was investigated. To simulate storage and transportation, hydrogen peroxide and iron was added to minced heads to induce oxidation in the raw material prior to one week of storage. The effect of antioxidant in retarding oxidative changes during hydrolysis or to the raw material was investigated by adding butylated hydroxy toluene (BHT) prior to hydrolysis or storage. Enzymatic hydrolysis was carried out using bromelain and papain. The oil fraction was separated from the water soluble proteins, and the soluble phase was freeze dried. Both the oil fraction and protein fraction from enzymatic hydrolysis was affected by oxidative state of raw material. FFA was significantly higher in those FPH made from raw material added pro-oxidants, addition of antioxidant did not affect the level of FFA. The solubility of proteins in dried fish protein hydrolysates (FPH) decreased significantly when using oxidized raw material. Although addition of antioxidant improved the solubility, it was still significantly lower compared to those FPHs not added pro-oxidants. The FPH with decreased solubility also had higher levels of carbonyl groups which indicate protein oxidation. However, the oxidative state of raw material did not affect fatty acid composition in oil fraction or the amino acid composition in the FPH.
Collapse
Affiliation(s)
- Kristine Kvangarsnes
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), PO Box 1517, 6025 Aalesund, Norway
| | - Sophie Kendler
- Faculty of Natural Sciences, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Turid Rustad
- Faculty of Natural Sciences, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Grete Hansen Aas
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), PO Box 1517, 6025 Aalesund, Norway
| |
Collapse
|
33
|
Czubak-Prowizor K, Trelinski J, Stelmach P, Stelmach P, Madon A, Zbikowska HM. Increased Oxidative Stress in Acute Myeloid Leukemia Patients after Red Blood Cell Transfusion, but Not Platelet Transfusion, Results Mainly from the Oxidative/Nitrative Protein Damage: An Exploratory Study. J Clin Med 2021; 10:jcm10071349. [PMID: 33805857 PMCID: PMC8037785 DOI: 10.3390/jcm10071349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/31/2023] Open
Abstract
Chronic oxidative stress (OS) can be an important factor of acute myeloid leukemia (AML) progression; however, there are no data on the extent/consequence of OS after transfusion of packed red blood cells (pRBCs) and platelet concentrates (PCs), which are commonly used in the treatment of leukemia-associated anemia and thrombocytopenia. We aimed to investigate the effects of pRBC/PC transfusion on the OS markers, i.e., thiol and carbonyl (CO) groups, 3-nitrotyrosine (3-NT), thiobarbituric acid reactive substances (TBARS), advanced glycation end products (AGE), total antioxidant capacity (TAC), SOD, GST, and LDH, in the blood plasma of AML patients, before and 24 h post-transfusion. In this exploratory study, 52 patients were examined, of which 27 were transfused with pRBCs and 25 with PCs. Age-matched healthy subjects were also enrolled as controls. Our results showed the oxidation of thiols, increased 3-NT, AGE levels, and decreased TAC in AML groups versus controls. After pRBC transfusion, CO groups, AGE, and 3-NT significantly increased (by approximately 30, 23, and 35%; p < 0.05, p < 0.05, and p < 0.01, respectively) while thiols reduced (by 18%; p < 0.05). The PC transfusion resulted in the raise of TBARS and AGE (by 45%; p < 0.01 and 31%; p < 0.001), respectively). Other variables showed no significant post-transfusion changes. In conclusion, transfusion of both pRBCs and PCs was associated with an increased OS; however, transfusing the former may have more severe consequences, since it is associated with the irreversible oxidative/nitrative modifications of plasma proteins.
Collapse
Affiliation(s)
- Kamila Czubak-Prowizor
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
- Department of Cytobiology and Proteomics, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
- Correspondence: or
| | - Jacek Trelinski
- Department of Coagulation Disorders, Medical University of Lodz, Ciolkowskiego 2, 93-510 Lodz, Poland;
| | - Paulina Stelmach
- Department of Haematology, Medical University of Lodz, Copernicus Memorial Hospital, Ciolkowskiego 2, 93-510 Lodz, Poland; (P.S.); (P.S.)
| | - Piotr Stelmach
- Department of Haematology, Medical University of Lodz, Copernicus Memorial Hospital, Ciolkowskiego 2, 93-510 Lodz, Poland; (P.S.); (P.S.)
| | - Agnieszka Madon
- Laboratory of Transfusion Serology and Blood Bank, Copernicus Memorial Hospital, Pabianicka 62, 93-513 Lodz, Poland;
| | - Halina Malgorzata Zbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| |
Collapse
|
34
|
Wang Y, Zhao X, Zhang M, Sun X, Bai J, Peng Y, Li S, Han D, Ren S, Wang J, Han T, Gao Y, Ning B, Gao Z. Immunosorbent assay based on upconversion nanoparticles controllable assembly for simultaneous detection of three antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124703. [PMID: 33307451 DOI: 10.1016/j.jhazmat.2020.124703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The abuse of antibiotics leads to an increase in resistant strains, which in turn leads to the development of superbugs that pose great difficulties for the treatment of human diseases. A high-throughput and highly sensitive avidin biotin complex immunosorbent assay based on upconversion nanoparticles controllable assembly (ABC-ULISA) for the detection of antibiotics was developed, which enabled accurate quantitative detection in a shorter period of time. Streptavidin and biotin-labeled upconversion nanoparticles form avidin-biotin-upconversion complex, which was then combined with biotinylated antibody to achieve double amplification of the signal, further improving detection sensitivity. Upconversion nanoparticles with 808 nm excitation provide better penetration without the need for an external source. The 96-well enzyme-linked plate was used as a detection platform to meet the high-throughput needs. ABC-ULISA was used to simultaneously detect three antibiotics with a limit of detection of 0.15 ng/mL for sulfamethazine, 0.03 ng/mL for sarafloxacin, and 0.05 ng/mL for tetracycline. The detection limit of ABC-ULISA was much lower than the traditional ELISA and ordinary ULISA. Moreover, ABC-ULISA was also versatile, and the corresponding target can be detected by changing different antibodies. The results were stable and reliable, and the equipment could be miniaturized, which was expected to be commercialized and on-site.
Collapse
Affiliation(s)
- Yu Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Xudong Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Man Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China; School of Medical Instrument and Food engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Xuan Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Jiang Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Yifei Gao
- School of chemistry, University of New South Wales, Sydney, Australia
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, PR China.
| |
Collapse
|
35
|
Lack of the antioxidant enzyme methionine sulfoxide reductase A in mice impairs RPE phagocytosis and causes photoreceptor cone dysfunction. Redox Biol 2021; 42:101918. [PMID: 33674251 PMCID: PMC8113033 DOI: 10.1016/j.redox.2021.101918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 12/17/2022] Open
Abstract
Methionine sulfoxide reductase A (MsrA) is a widely expressed antioxidant enzyme that counteracts oxidative protein damage and contributes to protein regulation by reversing oxidation of protein methionine residues. In retinal pigment epithelial (RPE) cells in culture, MsrA overexpression increases phagocytic capacity by supporting mitochondrial ATP production. Here, we show elevated retinal protein carbonylation indicative of oxidation, decreased RPE mitochondrial membrane potential, and attenuated RPE phagocytosis in msra−/− mice. Moreover, electroretinogram recordings reveal decreased light responses specifically of cone photoreceptors despite normal expression and localization of cone opsins. Impairment in msra−/− cone-driven responses is similar from 6 weeks to 13 months of age. These functional changes match dramatic decreases in lectin-labeled cone sheaths and reduction in cone arrestin in msra−/− mice. Strikingly, cone defects in light response and in lectin-labeled cone sheath are completely prevented by dark rearing. Together, our data show that msra−/− mice provide a novel small animal model of preventable cone-specific photoreceptor dysfunction that may have future utility in analysis of cone dystrophy disease mechanisms and testing therapeutic approaches aiming to alleviate cone defects.
Collapse
|
36
|
Kvangarsnes K, Rustad T, Barnung T, Emblem Larssen W, Aas GH. Effect of Rosemary on Stabilization of Proteins during Frozen Storage of Mackerel ( Scomber scombrus). JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2020.1869128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Kristine Kvangarsnes
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), Norway
| | - Turid Rustad
- Faculty of Natural Sciences, Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | - Grete Hansen Aas
- Faculty of Natural Sciences, Department of Biological Sciences Ålesund, Norwegian University of Science and Technology (NTNU), Norway
| |
Collapse
|
37
|
Vona R, Pallotta L, Cappelletti M, Severi C, Matarrese P. The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. Antioxidants (Basel) 2021; 10:201. [PMID: 33573222 PMCID: PMC7910878 DOI: 10.3390/antiox10020201] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of many diseases. The imbalance between the production of reactive oxygen species (ROS) and the antioxidant systems has been extensively studied in pulmonary, neurodegenerative cardiovascular disorders; however, its contribution is still debated in gastrointestinal disorders. Evidence suggests that oxidative stress affects gastrointestinal motility in obesity, and post-infectious disorders by favoring the smooth muscle phenotypic switch toward a synthetic phenotype. The aim of this review is to gain insight into the role played by oxidative stress in gastrointestinal pathologies (GIT), and the involvement of ROS in the signaling underlying the muscular alterations of the gastrointestinal tract (GIT). In addition, potential therapeutic strategies based on the use of antioxidants for the treatment of inflammatory gastrointestinal diseases are reviewed and discussed. Although substantial progress has been made in identifying new techniques capable of assessing the presence of oxidative stress in humans, the biochemical-molecular mechanisms underlying GIT mucosal disorders are not yet well defined. Therefore, further studies are needed to clarify the mechanisms through which oxidative stress-related signaling can contribute to the alteration of the GIT mucosa in order to devise effective preventive and curative therapeutic strategies.
Collapse
Affiliation(s)
- Rosa Vona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Martina Cappelletti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy; (L.P.); (M.C.); (C.S.)
| | - Paola Matarrese
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
38
|
Cammisotto V, Nocella C, Bartimoccia S, Sanguigni V, Francomano D, Sciarretta S, Pastori D, Peruzzi M, Cavarretta E, D’Amico A, Castellani V, Frati G, Carnevale R, Group SM. The Role of Antioxidants Supplementation in Clinical Practice: Focus on Cardiovascular Risk Factors. Antioxidants (Basel) 2021; 10:146. [PMID: 33498338 PMCID: PMC7909411 DOI: 10.3390/antiox10020146] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress may be defined as an imbalance between reactive oxygen species (ROS) and the antioxidant system to counteract or detoxify these potentially damaging molecules. This phenomenon is a common feature of many human disorders, such as cardiovascular disease. Many of the risk factors, including smoking, hypertension, hypercholesterolemia, diabetes, and obesity, are associated with an increased risk of developing cardiovascular disease, involving an elevated oxidative stress burden (either due to enhanced ROS production or decreased antioxidant protection). There are many therapeutic options to treat oxidative stress-associated cardiovascular diseases. Numerous studies have focused on the utility of antioxidant supplementation. However, whether antioxidant supplementation has any preventive and/or therapeutic value in cardiovascular pathology is still a matter of debate. In this review, we provide a detailed description of oxidative stress biomarkers in several cardiovascular risk factors. We also discuss the clinical implications of the supplementation with several classes of antioxidants, and their potential role for protecting against cardiovascular risk factors.
Collapse
Affiliation(s)
- Vittoria Cammisotto
- Department of General Surgery and Surgical Specialty Paride Stefanini, Sapienza University of Rome, 00185 Rome, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (S.B.); (D.P.); (V.C.)
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (S.B.); (D.P.); (V.C.)
| | - Valerio Sanguigni
- Unit of Internal Medicine and Endocrinology, Madonna delle Grazie Hospital, Velletri, 00049 Rome, Italy; (V.S.); (D.F.)
- Department of Internal Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Davide Francomano
- Unit of Internal Medicine and Endocrinology, Madonna delle Grazie Hospital, Velletri, 00049 Rome, Italy; (V.S.); (D.F.)
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Daniele Pastori
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (S.B.); (D.P.); (V.C.)
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy
| | - Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| | - Valentina Castellani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (S.B.); (D.P.); (V.C.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (S.S.); (M.P.); (E.C.); (G.F.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy
| | - SMiLe Group
- Faculty of Medicine and Surgery, Sapienza University of Rome, 04100 Latina, Italy;
| |
Collapse
|
39
|
Williamson-Reisdorph CM, Quindry TS, Tiemessen KG, Cuddy J, Hailes W, Slivka D, Ruby BC, Quindry JC. Blood oxidative stress and post-exercise recovery are unaffected byhypobaric and hypoxic environments. J Sports Sci 2021; 39:1356-1365. [PMID: 33423613 DOI: 10.1080/02640414.2021.1872960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Hypobaria and hypoxia exert independent effects on oxidative stress during exercise, while combined effectson the post-exercise recovery period remain unclear.Accordingly, this study examined the recovery period during lab-simulated hypoxic and hypobaric conditions following exercise-induced oxidative stress. Participants (n=13) performed 60-minutes of cycling (70% watts max) in a normobaric normoxic environment followed by a four-hour recovery under three conditions; 1000m normobaric normoxia (NN, 675mmHg), 4400m normobaric hypoxia (NH, 675mmHg), or 4400m hypobaric hypoxia (HH, 440mmHg). Blood samples collected at Pre, Post, 2-Hours (2-HR), and 4-Hours (4-HR) post-exercise were analyzed fora potential increase in biochemical modifications of proteins(protein carbonyls, PC; 3-nitrotyrosines, 3NT) lipids (lipid hydroperoxides, LOOH; 8-isoprostanes, 8-ISO), and antioxidant capacity (FRAP, TEAC). Gene transcripts (EPAS, HMOX1, SOD2, NFE2L2) were quantified by qRT-PCR from muscle biopsies taken Pre and Post exercise. Hypoxia and hypobaria had no effect throughout recovery. Post-exercise TEAC (p=0.041), FRAP (p=0.013), and 8-ISO (p=0.044) increased, while PC (p=0.002) and 3-NT (p=0.032) were decreased. LOOH was lower in Post (p=0.018) NH trial samples. Exercise-dependent increases occurred in NFE2L2 (p=0.003), HMXO1 (p<0.001), SOD2 (p=0.046), and EPAS (p=0.038). Exercise recovery under conditions of NH and HH did not impact blood oxidative stress or redox-sensitive gene transcripts.
Collapse
Affiliation(s)
| | - Tiffany S Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Kathryn G Tiemessen
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - John Cuddy
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Walter Hailes
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - Dustin Slivka
- School of Health and Kinesiology, University of Nebraska - Omaha, Omaha, NE, USA
| | - Brent C Ruby
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| | - John C Quindry
- School of Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
| |
Collapse
|
40
|
Xiong YL, Guo A. Animal and Plant Protein Oxidation: Chemical and Functional Property Significance. Foods 2020; 10:E40. [PMID: 33375649 PMCID: PMC7824645 DOI: 10.3390/foods10010040] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Protein oxidation, a phenomenon that was not well recognized previously but now better understood, is a complex chemical process occurring ubiquitously in food systems and can be induced by processing treatments as well. While early research concentrated on muscle protein oxidation, later investigations included plant, milk, and egg proteins. The process of protein oxidation involves both radicals and nonradicals, and amino acid side chain groups are usually the site of initial oxidant attack which generates protein carbonyls, disulfide, dityrosine, and protein radicals. The ensuing alteration of protein conformational structures and formation of protein polymers and aggregates can result in significant changes in solubility and functionality, such as gelation, emulsification, foaming, and water-holding. Oxidant dose-dependent effects have been widely reported, i.e., mild-to-moderate oxidation may enhance the functionality while strong oxidation leads to insolubilization and functionality losses. Therefore, controlling the extent of protein oxidation in both animal and plant protein foods through oxidative and antioxidative strategies has been of wide interest in model system as well in in situ studies. This review presents a historical perspective of food protein oxidation research and provides an inclusive discussion of the impact of chemical and enzymatic oxidation on functional properties of meat, legume, cereal, dairy, and egg proteins based on the literature reports published in recent decades.
Collapse
Affiliation(s)
- Youling L. Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA;
| | | |
Collapse
|
41
|
Abstract
Oxidative stress (OS) plays a key role in the pathophysiology of preterm infants. Accurate assessment of OS remains an analytical challenge that has been partially addressed during the last few decades. A plethora of approaches have been developed to assess preterm biofluids to demonstrate a link postnatally with preterm OS, giving rise to a set of widely employed biomarkers. However, the vast number of different analytic methods and lack of standardization hampers reliable comparison of OS-related biomarkers. In this chapter, we discuss approaches for the study of OS in prematurity with respect to methodologic considerations, the metabolic source of different biomarkers and their role in clinical studies.
Collapse
|
42
|
Ruggerone B, Colombo G, Paltrinieri S. Identification of Protein Carbonyls (PCOs) in Canine Serum by Western Blot Technique and Preliminary Evaluation of PCO Concentration in Dogs With Systemic Inflammation. Front Vet Sci 2020; 7:566402. [PMID: 33363227 PMCID: PMC7755998 DOI: 10.3389/fvets.2020.566402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
In people, serum Protein Carbonyls (PCOs) increase during oxidative stress (OS) due to oxidative damage to proteins. OS is often associated with inflammation and especially with sepsis, a condition hard to diagnose in veterinary medicine because reliable markers are lacking. The aim of this study was to assess whether PCOs in canine serum may be detected by antibody-based methods such as Western Blotting (WB), and to preliminarily investigate the possible utility of this marker in dogs with inflammation. A serum sample oxidized in vitro was used to set up the method; the coefficient of variation obtained by repeated analysis varied from 24 to 36%. In order to assess whether the technique may cover the range of PCOs concentration detectable in routine practice, PCOs were measured in 4 healthy dogs and in 15 with inflammatory diseases, in some cases potentially associated with sepsis, as suggested by the results of other inflammatory markers such as C-Reactive Protein (CRP) and the anti-oxidant enzyme Paraoxonase 1 (PON-1): the concentration of PCOs was low in dogs with normal PON-1 activity, moderately increased in the majority of dogs with low-normal PON-1 activity, and severely increased in dogs with very low PON-1 activity. In conclusion this study demonstrates that PCOs, may be detected in canine serum, using antibody-based techniques such as WB. The preliminary results in dogs with and without systemic inflammation encourage further studies on the possible role of PCOs as inflammatory markers.
Collapse
Affiliation(s)
- Beatrice Ruggerone
- Department of Veterinary Medicine, University of Milan, Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| | | | - Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, Milan, Italy.,Veterinary Teaching Hospital, University of Milan, Lodi, Italy
| |
Collapse
|
43
|
Reading patterns of proteome damage by glycation, oxidation and nitration: quantitation by stable isotopic dilution analysis LC-MS/MS. Essays Biochem 2020; 64:169-183. [PMID: 32065835 DOI: 10.1042/ebc20190047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/25/2022]
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides a high sensitivity, high specificity multiplexed method for concurrent detection of adducts formed by protein glycation, oxidation and nitration, also called AGEomics. Combined with stable isotopic dilution analysis, it provides for robust quantitation of protein glycation, oxidation and nitration adduct analytes. It is the reference method for such measurements. LC-MS/MS has been used to measure glycated, oxidized and nitrated amino acids - also called glycation, oxidation and nitration free adducts, with a concurrent quantitation of the amino acid metabolome in physiological fluids. Similar adduct residues in proteins may be quantitated with prior exhaustive enzymatic hydrolysis. It has also been applied to quantitation of other post-translation modifications, such as citrullination and formation of Nε-(γ-glutamyl)lysine crosslink by transglutaminases. Application to cellular and extracellular proteins gives estimates of the steady-state levels of protein modification by glycation, oxidation and nitration, and measurement of the accumulation of glycation, oxidation and nitration adducts in cell culture medium and urinary excretion gives an indication of flux of adduct formation. Measurement of glycation, oxidation and nitration free adducts in plasma and urine provides for estimates of renal clearance of free adducts. Diagnostic potential in clinical studies has been enhanced by the combination of estimates of multiple adducts in optimized diagnostic algorithms by machine learning. Recent applications have been in early-stage detection of metabolic, vascular and renal disease, and arthritis, metabolic control and risk of developing vascular complication in diabetes, and a blood test for autism.
Collapse
|
44
|
Plasma Protein Carbonyls as Biomarkers of Oxidative Stress in Chronic Kidney Disease, Dialysis, and Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2975256. [PMID: 33299524 PMCID: PMC7707964 DOI: 10.1155/2020/2975256] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that oxidative stress plays a role in the pathophysiology of chronic kidney disease (CKD) and its progression; during renal replacement therapy, oxidative stress-derived oxidative damage also contributes to the development of CKD systemic complications, such as cardiovascular disease, hypertension, atherosclerosis, inflammation, anaemia, and impaired host defence. The main mechanism underlying these events is the retention of uremic toxins, which act as a substrate for oxidative processes and elicit the activation of inflammatory pathways targeting endothelial and immune cells. Due to the growing worldwide spread of CKD, there is an overwhelming need to find oxidative damage biomarkers that are easy to measure in biological fluids of subjects with CKD and patients undergoing renal replacement therapy (haemodialysis, peritoneal dialysis, and kidney transplantation), in order to overcome limitations of invasive monitoring of CKD progression. Several studies investigated biomarkers of protein oxidative damage in CKD, including plasma protein carbonyls (PCO), the most frequently used biomarker of protein damage. This review provides an up-to-date overview on advances concerning the correlation between plasma protein carbonylation in CKD progression (from stage 1 to stage 5) and the possibility that haemodialysis, peritoneal dialysis, and kidney transplantation improve plasma PCO levels. Despite the fact that the role of plasma PCO in CKD is often underestimated in clinical practice, emerging evidence highlights that plasma PCO can serve as good biomarkers of oxidative stress in CKD and substitutive therapies. Whether plasma PCO levels merely serve as biomarkers of CKD-related oxidative stress or whether they are associated with the pathogenesis of CKD complications deserves further evaluation.
Collapse
|
45
|
Carr AC, Spencer E, Mackle D, Hunt A, Judd H, Mehrtens J, Parker K, Stockwell Z, Gale C, Beaumont M, Kaur S, Bihari S, Young PJ. The effect of conservative oxygen therapy on systemic biomarkers of oxidative stress in critically ill patients. Free Radic Biol Med 2020; 160:13-18. [PMID: 32768569 DOI: 10.1016/j.freeradbiomed.2020.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Supplemental oxygen is delivered to critically ill patients who require mechanical ventilation. Oxidative stress is a potential complication of oxygen therapy, resulting in damage to essential biomolecules such as proteins, lipids, and nucleic acids. Whether plasma levels of oxidative stress biomarkers vary based on how liberally oxygen therapy is applied during mechanical ventilation is unknown. METHODS We carried out an oxidative stress substudy nested within a large multi-centre randomized controlled trial in which critically ill adults were randomized to receive either conservative oxygen therapy or standard oxygen therapy. Blood samples were collected at enrolment, and daily thereafter for up to three days. The antioxidant ascorbate (vitamin C) was assessed using HPLC with electrochemical detection and protein oxidation using a sensitive protein carbonyl ELISA. We also assessed whether critically ill patients with different disease states exhibited varying levels of oxidative stress biomarkers. RESULTS A total of 125 patients were included. Mean ascorbate concentrations decreased over time (from 25 ± 9 μmol/L to 14 ± 2 μmol/L, p < 0.001), however, there was no significant difference between the conservative oxygen group and standard care (p = 0.2), despite a significantly lower partial pressure of oxygen (PaO2) in the conservative oxygen group (p = 0.03). Protein carbonyl concentrations increased over time (from 208 ± 30 μmol/L to 249 ± 29 μmol/L; p = 0.016), however, there was no significant difference between the conservative and standard oxygen groups (p = 0.3). Patients with sepsis had significantly higher protein carbonyl concentrations than the other critically ill patients (293 ± 92 μmol/L vs 184 ± 24 μmol/L, p = 0.03). Within the septic subgroup, there were no significant differences in protein carbonyl concentrations between the two interventions (p = 0.4). CONCLUSIONS Conservative oxygen therapy does not alter systemic markers of oxidative stress in critically ill ventilated patients compared with standard oxygen therapy. Patients with sepsis exhibited elevated protein carbonyls compared with the other critically ill patients implying increased oxidative stress in this patient subgroup.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Emma Spencer
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Diane Mackle
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Anna Hunt
- Medical Research Institute of New Zealand, Wellington, New Zealand; Wellington Hospital Intensive Care Unit, Wellington, New Zealand
| | - Harriet Judd
- Wellington Hospital Intensive Care Unit, Wellington, New Zealand
| | - Jan Mehrtens
- Christchurch Hospital Intensive Care Unit, Christchurch, New Zealand
| | - Kim Parker
- Christchurch Hospital Intensive Care Unit, Christchurch, New Zealand
| | - Zoe Stockwell
- Centre for Postgraduate Nursing Studies, University of Otago, Christchurch, New Zealand
| | - Caitlin Gale
- Centre for Postgraduate Nursing Studies, University of Otago, Christchurch, New Zealand
| | - Megan Beaumont
- Centre for Postgraduate Nursing Studies, University of Otago, Christchurch, New Zealand
| | - Simran Kaur
- Centre for Postgraduate Nursing Studies, University of Otago, Christchurch, New Zealand
| | - Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, Australia; College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Paul J Young
- Medical Research Institute of New Zealand, Wellington, New Zealand; Wellington Hospital Intensive Care Unit, Wellington, New Zealand
| |
Collapse
|
46
|
Takizawa M, Nakano M, Fukami T, Nakajima M. Decrease in ADAR1 expression by exposure to cigarette smoke enhances susceptibility to oxidative stress. Toxicol Lett 2020; 331:22-32. [PMID: 32439581 DOI: 10.1016/j.toxlet.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is the most frequent type of post-transcriptional nucleotide conversion in humans. It is known that innate abnormalities of A-to-I RNA editing are associated with the risk of certain diseases, such as amyotrophic lateral sclerosis. Extrinsic factors that modulate ADAR-mediated RNA editing remain to be clarified. In this study, we investigated the possibility that cigarette smoking may influence the expression of ADAR and that the changes may be biologically significant. Treatment of human lung adenocarcinoma A549 cells with cigarette smoke extract (CSE) induced a significant 50% decrease in ADAR1 protein levels. Since the decrease was counteracted by cotreatment with chloroquine, the CSE-dependent decrease in the ADAR1 protein levels may be due to the activation of autophagy. In addition to the in vitro study, we performed an in vivo study in mice and found a decrease in pulmonary Adar1 protein expression induced by cigarette smoking. Then, we investigated the biological significance of decreased ADAR1 expression. We found that knockdown of ADAR1 in A549 cells by siRNA resulted in an increase in the levels of protein carbonyl, a marker of oxidative stress. Moreover, knockdown of ADAR1 triggered a decrease in super oxide dismutase activity and heme oxygenase-1 expression, suggesting that ADAR1 plays a role to suppress oxidative stress. In conclusion, we show that ADAR1 expression is decreased by cigarette smoking and is a factor that contributes to the enhanced intracellular oxidative stress caused by cigarette smoking.
Collapse
Affiliation(s)
- Masashi Takizawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
47
|
Feidantsis K, Kalogiannis S, Marinoni A, Vasilogianni AM, Gkanatsiou C, Kastrinaki G, Dendrinou-Samara C, Kaloyianni M. Toxicity assessment and comparison of the land snail's Cornu aspersum responses against CuO nanoparticles and ZnO nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol 2020; 236:108817. [PMID: 32502603 DOI: 10.1016/j.cbpc.2020.108817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 11/21/2022]
Abstract
The goal of the present study was to examine the effects of ZnO NPs and CuO NPs on Cornu aspersum land snail, enlightening their cytotoxic profile. ZnO NPs and CuO NPs were synthesized and thoroughly characterized. Α series of concentrations of either ZnO NPs or CuO NPs were administered in the feed of snails for 20 days. Thereafter, neutral red retention assay was conducted, in order to estimate NRRT50 values. Subsequently, snails were fed with NPs concentrations slightly lower than the concentrations that were corresponding to the NRRT50 values, i.e. 3 mg·L-1 ZnO NPs and 6 mg·L-1 CuO NPs, for 1, 5, 10 and 20 days. Both NPs agglomerates were detected in hemocytes by Transmission Electron Microscopy. Moreover, both effectors resulted to toxicity in the snails' hemocytes. The latter was shown by changes in the NRRT50 values, increased reactive oxygen species (ROS) production, lipid peroxidation, DNA integrity loss, protein carbonyl content, ubiquitin conjugates and cleaved caspases conjugates levels compared to the untreated animals. Although ZnO NPs exhibited higher toxicity, as indicated by the NRRT50 values, both NPs affected similarly a wide range of the cellular parameters mentioned above. The latter parameters could constitute sensitive biomarkers in biomonitoring studies of terrestrial environment against nanoparticles.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stavros Kalogiannis
- Department of Sciences of Nutrition and Dietetics, International Hellenic University, Thessaloniki 57400, Greece
| | - Angela Marinoni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Areti-Maria Vasilogianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Gkanatsiou
- Inorganic Chemistry Lab, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgia Kastrinaki
- Aerosol & Particle Technology Laboratory, CERTH/CPERI, P.O. Box 60361, 57001 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Inorganic Chemistry Lab, Chemistry Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Martha Kaloyianni
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
48
|
Etomidate is devoid of genotoxicty and mutagenicity in human lymphocytes and in the Salmonella typhimurium/microsomal activation test. Toxicol In Vitro 2020; 68:104946. [DOI: 10.1016/j.tiv.2020.104946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
|
49
|
Spencer ES, Pitcher T, Veron G, Hannam T, MacAskill M, Anderson T, Dalrymple-Alford J, Carr AC. Positive Association of Ascorbate and Inverse Association of Urate with Cognitive Function in People with Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9100906. [PMID: 32977491 PMCID: PMC7598173 DOI: 10.3390/antiox9100906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress is thought to contribute to the aetiology of neurological disorders such as Parkinson’s disease. Ascorbate (vitamin C) is a potent antioxidant and is associated with neurological and cognitive function. In this study we assessed the ascorbate status of a cohort of people with Parkinson’s disease (n = 215), aged 50–90 years, compared with a cohort of age matched healthy controls (n = 48). The study sample’s cognitive status ranged from normal to mild cognitive impairment and dementia. There was no difference between the Parkinson’s disease and healthy control groups with respect to mean ascorbate status, however, a higher proportion of participants with Parkinson’s disease had hypovitaminosis C (i.e., <23 μmol/L) compared with healthy controls (20% vs. 8%, respectively). Within the Parkinson’s disease group, Montreal Cognitive Assessment (MoCA) scores correlated positively with ascorbate concentrations, with higher ascorbate status associated with better cognitive function (r = 0.14, p = 0.045). Participants with hypovitaminosis C had significantly lower MoCA scores relative to participants with ascorbate concentrations >23 µmol/L (p = 0.014). Ascorbate concentrations were significantly lower in the cognitively impaired subgroup compared with the normal cognition subgroup in the Parkinson’s disease cohort (p = 0.03). In contrast, urate showed an inverse correlation with cognitive function (r = −0.19, p = 0.007), with higher urate concentrations observed in the cognitively impaired subgroup compared with the normal cognition subgroup (p = 0.015). There was an inverse association between ascorbate status and urate concentrations (r = −0.15, p = 0.017). Plasma protein carbonyls, a measure of systemic oxidative stress, were not significantly different between the Parkinson’s disease cohort and healthy controls, and there was no association with cognitive function (r = 0.09, p = 0.19) or with ascorbate status (r = −0.05, p = 0.45). Overall, our study showed ascorbate status was positively associated with cognitive function in Parkinson’s disease, suggesting that longitudinal studies investigating the temporal sequence of cognitive decline and ascorbate status are warranted.
Collapse
Affiliation(s)
- Emma S. Spencer
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand;
| | - Toni Pitcher
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand; (T.P.); (M.M.); (T.A.); (J.D.-A.)
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | - Gabriel Veron
- Centre for Postgraduate Nursing Studies, University of Otago, Christchurch 8011, New Zealand; (G.V.); (T.H.)
| | - Tracey Hannam
- Centre for Postgraduate Nursing Studies, University of Otago, Christchurch 8011, New Zealand; (G.V.); (T.H.)
| | - Michael MacAskill
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand; (T.P.); (M.M.); (T.A.); (J.D.-A.)
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | - Tim Anderson
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand; (T.P.); (M.M.); (T.A.); (J.D.-A.)
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | - John Dalrymple-Alford
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand; (T.P.); (M.M.); (T.A.); (J.D.-A.)
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- School of Psychology, Speech, and Hearing, University of Canterbury, Christchurch 8140, New Zealand
| | - Anitra C. Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8011, New Zealand;
- Correspondence: ; Tel.: +64-3364-0649
| |
Collapse
|
50
|
Fisher E, Wood SJ, Elsworthy RJ, Upthegrove R, Aldred S. Exercise as a protective mechanism against the negative effects of oxidative stress in first-episode psychosis: a biomarker-led study. Transl Psychiatry 2020; 10:254. [PMID: 32709912 PMCID: PMC7382474 DOI: 10.1038/s41398-020-00927-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 12/23/2022] Open
Abstract
First-episode psychosis (FEP) is a psychiatric disorder, characterised by positive and negative symptoms, usually emerging during adolescence and early adulthood. FEP represents an early intervention opportunity for intervention in psychosis. Redox disturbance and subsequent oxidative stress have been linked to the pathophysiology of FEP. Exercise training can perturb oxidative stress and rebalance the antioxidant system and thus represents an intervention with the potential to interact with a mechanism of disease. The aim of this study was to assess the effect of exercise on markers of redox status in FEP. Twenty-two young men were recruited from Birmingham Early Intervention services and randomised to either a 12-week exercise programme or treatment as usual (control). Measures of blood and brain glutathione (GSH), markers of oxidative damage, inflammation, neuronal health, symptomology and habitual physical activity were assessed. Exercise training was protective against changes related to continued psychosis. Symptomatically, those in the exercise group showed reductions in positive and general psychopathology, and stable negative symptoms (compared to increased negative symptoms in the control group). Peripheral GSH was increased by 5.6% in the exercise group, compared to a significant decrease (24.4%) (p = 0.04) in the control group. Exercise attenuated negative changes in markers of neuronal function (brain-derived neurotrophic factor), lipid damage (thiobarbituric acid-reactive substances) and total antioxidant capacity. C-reactive protein and tumour necrosis factor-α also decreased in the exercise group, although protein and DNA oxidation were unchanged. Moderate-intensity exercise training has the ability to elicit changes in markers of oxidative stress and antioxidant concentration, with subsequent improvements in symptoms of psychosis.
Collapse
Affiliation(s)
- Emily Fisher
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B15 2TT UK
| | - Stephen J. Wood
- grid.488501.0Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, VIC 3052 Australia ,grid.1008.90000 0001 2179 088XSchool of Psychology, University of Melbourne, Melbourne, VIC 3010 Australia ,grid.1008.90000 0001 2179 088XCentre for Youth Mental Health, University of Melbourne, Melbourne, VIC 3010 Australia
| | - Richard J. Elsworthy
- grid.6572.60000 0004 1936 7486School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B15 2TT UK
| | - Rachel Upthegrove
- grid.6572.60000 0004 1936 7486Institute for Mental Health, University of Birmingham, Edgbaston, B15 2TT UK ,grid.6572.60000 0004 1936 7486Department of Psychiatry, University of Birmingham, Edgbaston, B15 2TT UK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, B15 2TT, UK. .,Institute for Mental Health, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|