1
|
Pinky PD, Bloemer J, Smith WD, Du Y, Heslin RT, Setti SE, Pfitzer JC, Chowdhury K, Hong H, Bhattacharya S, Dhanasekaran M, Dityatev A, Reed MN, Suppiramaniam V. Prenatal Cannabinoid Exposure Elicits Memory Deficits Associated with Reduced PSA-NCAM Expression, Altered Glutamatergic Signaling, and Adaptations in Hippocampal Synaptic Plasticity. Cells 2023; 12:2525. [PMID: 37947603 PMCID: PMC10648717 DOI: 10.3390/cells12212525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023] Open
Abstract
Cannabis is now one of the most commonly used illicit substances among pregnant women. This is particularly concerning since developmental exposure to cannabinoids can elicit enduring neurofunctional and cognitive alterations. This study investigates the mechanisms of learning and memory deficits resulting from prenatal cannabinoid exposure (PCE) in adolescent offspring. The synthetic cannabinoid agonist WIN55,212-2 was administered to pregnant rats, and a series of behavioral, electrophysiological, and immunochemical studies were performed to identify potential mechanisms of memory deficits in the adolescent offspring. Hippocampal-dependent memory deficits in adolescent PCE animals were associated with decreased long-term potentiation (LTP) and enhanced long-term depression (LTD) at hippocampal Schaffer collateral-CA1 synapses, as well as an imbalance between GluN2A- and GluN2B-mediated signaling. Moreover, PCE reduced gene and protein expression of neural cell adhesion molecule (NCAM) and polysialylated-NCAM (PSA-NCAM), which are critical for GluN2A and GluN2B signaling balance. Administration of exogenous PSA abrogated the LTP deficits observed in PCE animals, suggesting PSA mediated alterations in GluN2A- and GluN2B- signaling pathways may be responsible for the impaired hippocampal synaptic plasticity resulting from PCE. These findings enhance our current understanding of how PCE affects memory and how this process can be manipulated for future therapeutic purposes.
Collapse
Affiliation(s)
- Priyanka D. Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Jenna Bloemer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10036, USA
| | - Warren D. Smith
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Yifeng Du
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Ryan T. Heslin
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Sharay E. Setti
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Jeremiah C. Pfitzer
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Kawsar Chowdhury
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Hao Hong
- Key Laboratory of Neuropsychiatric Diseases, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Subhrajit Bhattacharya
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
- Keck Graduate Institute, School of Pharmacy and Health Sciences, Claremont Colleges, Claremont, CA 91711, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 37075 Magdeburg, Germany
| | - Alexander Dityatev
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 37075 Magdeburg, Germany
- Medical Faculty, Otto-von-Guericke University, 39106 Magdeburg, Germany
| | - Miranda N. Reed
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Center for Neuroscience Initiative, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Persistent proteomic changes in glutamatergic and GABAergic signaling in the amygdala of adolescent rats exposed to chlorpyrifos as juveniles. Neurotoxicology 2021; 85:234-244. [PMID: 34058248 DOI: 10.1016/j.neuro.2021.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 12/25/2022]
Abstract
Chlorpyrifos (CPF) remains one of the most widely used organophosphorus insecticides (OPs) despite the concerns about its developmental neurotoxicity. Developmental exposure to CPF has long-lasting negative impacts, including abnormal emotional behaviors. These negative impacts are observed at exposure levels do not cause inhibition of acetylcholinesterase, the canonical target of OPs. Exposure to CPF at these levels inhibits the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) but it is not clear what the persistent effects of this inhibition are. To investigate this, male rat pups were exposed orally to either corn oil, 0.75 mg/kg CPF, or 0.02 mg/kg PF-04457845 (PF; a specific inhibitor of FAAH) daily from postnatal day 10 (PND10) - PND16. This dosage of CPF does not inhibit brain cholinesterase activity but inhibits FAAH activity. On PND38 (adolescence), the protein expression in the amygdala was determined using a label-free shotgun proteomic approach. The analysis of control vs CPF and control vs PF led to the identification of 44 and 142 differentially regulated proteins, respectively. Gene ontology enrichment analysis revealed that most of the proteins with altered expression in both CPF and PF treatment groups were localized in the synapse-related regions, such as presynaptic membrane, postsynaptic density, and synaptic vesicle. The different biological processes affected by both treatment groups included persistent synaptic potentiation, glutamate receptor signaling, protein phosphorylation, and chemical synaptic transmission. These results also indicated disturbances in the balance between glutamatergic (↓ Glutamate AMPA receptor 2, ↓ Excitatory amino acid transporter 2, and ↑ vesicular glutamate transporter 2) and GABAergic signaling (↑ GABA transporter 3 and ↑ glutamate decarboxylase 2). This imbalance could play a role in the abnormal emotional behavior that we have previously reported. These results suggest that there is a similar pattern of expression between CPF and PF, and both these chemicals can persistently alter emotional behavior as a consequence of inhibition of FAAH.
Collapse
|
3
|
Bloomfield MAP, Ashok AH, Volkow ND, Howes OD. The effects of Δ 9-tetrahydrocannabinol on the dopamine system. Nature 2016; 539:369-377. [PMID: 27853201 PMCID: PMC5123717 DOI: 10.1038/nature20153] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
The effects of Δ9-tetrahydrocannabinol (THC), the main psychoactive ingredient in cannabis, are a pressing concern for global mental health. Patterns of cannabis use are changing drastically owing to legalization, the availability of synthetic analogues (commonly termed spice), cannavaping and an emphasis on the purported therapeutic effects of cannabis. Many of the reinforcing effects of THC are mediated by the dopamine system. Owing to the complexity of the cannabinoid-dopamine interactions that take place, there is conflicting evidence from human and animal studies concerning the effects of THC on the dopamine system. Acute THC administration causes increased dopamine release and neuron activity, whereas long-term use is associated with blunting of the dopamine system. Future research must examine the long-term and developmental dopaminergic effects of THC.
Collapse
Affiliation(s)
- Michael A P Bloomfield
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Division of Psychiatry, University College London, 6th Floor, Maple House, 149 Tottenham Court Road, London WC1T 7NF, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
- Clinical Psychopharmacology Unit, Research Department of Clinical, Educational and Health Psychology, University College London, 1-19 Torrington Place, London WC1E 6BT, UK
| | - Abhishekh H Ashok
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| | - Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, 6001 Executive Boulevard, Bethesda, Maryland 20892-9561, USA
| | - Oliver D Howes
- Psychiatric Imaging Group, Robert Steiner MR Unit, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology &Neuroscience, Kings College London, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
4
|
Carr RL, Graves CA, Mangum LC, Nail CA, Ross MK. Low level chlorpyrifos exposure increases anandamide accumulation in juvenile rat brain in the absence of brain cholinesterase inhibition. Neurotoxicology 2013; 43:82-89. [PMID: 24373905 DOI: 10.1016/j.neuro.2013.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022]
Abstract
The prevailing dogma is that chlorpyrifos (CPF) mediates its toxicity through inhibition of cholinesterase (ChE). However, in recent years, the toxicological effects of developmental CPF exposure have been attributed to an unknown non-cholinergic mechanism of action. We hypothesize that the endocannabinoid system may be an important target because of its vital role in nervous system development. We have previously reported that repeated exposure to CPF results in greater inhibition of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide (AEA), than inhibition of either forebrain ChE or monoacylglycerol lipase (MAGL), the enzyme that metabolizes the endocannabinoid 2-arachidonylglycerol (2-AG). This exposure resulted in the accumulation of 2-AG and AEA in the forebrain of juvenile rats; however, even at the lowest dosage level used (1.0mg/kg), forebrain ChE inhibition was still present. Thus, it is not clear if FAAH activity would be inhibited at dosage levels that do not inhibit ChE. To determine this, 10 day old rat pups were exposed daily for 7 days to either corn oil or 0.5mg/kg CPF by oral gavage. At 4 and 12h post-exposure on the last day of administration, the activities of serum ChE and carboxylesterase (CES) and forebrain ChE, MAGL, and FAAH were determined as well as the forebrain AEA and 2-AG levels. Significant inhibition of serum ChE and CES was present at both 4 and 12h. There was no significant inhibition of the activities of forebrain ChE or MAGL and no significant change in the amount of 2-AG at either time point. On the other hand, while no statistically significant effects were observed at 4h, FAAH activity was significantly inhibited at 12h resulting in a significant accumulation of AEA. Although it is not clear if this level of accumulation impacts brain maturation, this study demonstrates that developmental CPF exposure at a level that does not inhibit brain ChE can alter components of endocannabinoid signaling.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Casey A Graves
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Lee C Mangum
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Carole A Nail
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Matthew K Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
5
|
Trezza V, Campolongo P, Manduca A, Morena M, Palmery M, Vanderschuren LJMJ, Cuomo V. Altering endocannabinoid neurotransmission at critical developmental ages: impact on rodent emotionality and cognitive performance. Front Behav Neurosci 2012; 6:2. [PMID: 22291624 PMCID: PMC3265033 DOI: 10.3389/fnbeh.2012.00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/04/2012] [Indexed: 12/20/2022] Open
Abstract
The endocannabinoid system shows functional activity from early stages of brain development: it plays an important role in fundamental developmental processes such as cell proliferation, migration, and differentiation, thus shaping brain organization during pre- and postnatal life. Cannabis sativa preparations are among the illicit drugs most commonly used by young people, including pregnant women. The developing brain can be therefore exposed to cannabis preparations during two critical periods: first, in offspring of cannabis-using mothers through perinatal and/or prenatal exposure; second, in adolescent cannabis users during neural maturation. In the last decade, it has become clear that the endocannabinoid system critically modulates memory processing and emotional responses. Therefore, it is well possible that developmental exposure to cannabinoid compounds induces enduring changes in behaviors and neural processes belonging to the cognitive and emotional domains. We address this issue by focusing on rodent studies, in order to provide a framework for understanding the impact of cannabinoid exposure on the developing brain.
Collapse
Affiliation(s)
- Viviana Trezza
- Department of Biology, University "Roma Tre" Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Schubart CD, van Gastel WA, Breetvelt EJ, Beetz SL, Ophoff RA, Sommer IEC, Kahn RS, Boks MPM. Cannabis use at a young age is associated with psychotic experiences. Psychol Med 2011; 41:1301-1310. [PMID: 20925969 DOI: 10.1017/s003329171000187x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cannabis use is associated with psychosis and a range of subclinical psychiatric symptoms. The strength of this association depends on dosage and age at first use. The current study investigates whether level of cannabis exposure and starting age are associated with specific profiles of subclinical symptoms. METHOD We collected cross-sectional data from a young adult population sample by administering an online version of the Community Assessment of Psychic Experiences (CAPE). Cannabis exposure was quantified as the amount of Euros spent on cannabis per week and the age of initial cannabis use. The primary outcome measure was the odds ratio (OR) to belong to the highest 10% of scores on the total CAPE and the positive-, negative- and depressive symptom dimensions. RESULTS In 17 698 adolescents (mean age 21.6, s.d.=4.2 years), cannabis use at age 12 years or younger was strongly associated with a top 10% score on psychotic experiences [OR 3.1, 95% confidence interval (CI) 2.1-4.3] and to a lesser degree with negative symptoms (OR 1.7, 95% CI 1.1-2.5). The OR of heavy users (>€25/week) for negative symptoms was 3.4 (95% CI 2.9-4.1), for psychotic experiences 3.0 (95% CI 2.4-3.6), and for depressive symptoms 2.8 (95% CI 2.3-3.3). CONCLUSIONS Early start of cannabis use is strongly associated with subclinical psychotic symptoms and to a lesser degree with negative symptoms, while smoking high amounts of cannabis is associated with increased levels of all three symptom dimensions: psychotic, negative and depressive. These results support the hypothesis that the impact of cannabis use is age specific.
Collapse
Affiliation(s)
- C D Schubart
- Department of Psychiatry, University Medical Centre Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Carr RL, Borazjani A, Ross MK. Effect of developmental chlorpyrifos exposure, on endocannabinoid metabolizing enzymes, in the brain of juvenile rats. Toxicol Sci 2011; 122:112-20. [PMID: 21507991 DOI: 10.1093/toxsci/kfr081] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The endogenous cannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoyl ethanolamide (AEA or anandamide) play vital roles during nervous system development including regulating axonal guidance and synaptogenesis. The enzymatic degradation of 2-AG and AEA is highly susceptible to inhibition by organophosphate compounds in vitro. Furthermore, acute in vivo exposure of adult animals to the agricultural insecticide chlorpyrifos (CPS) caused moderate inhibition of both 2-AG and AEA hydrolysis. However, the effects of repeated exposure to lower levels of CPS, especially during development, on endocannabinoid metabolism in the brain is not known. To examine this, rat pups were orally exposed daily from postnatal days 10-16 to either 1.0, 2.5, or 5.0 mg/kg CPS. Body weight gain was reduced by 5.0 mg/kg on all days of treatment whereas 2.5 mg/kg reduced the weight gain only on the last two days of treatment. At 4-h postexposure on day 16, forebrain cholinesterase (ChE) activity and hydrolysis of 2-AG and AEA were inhibited in a dose-related manner, and the extent of inhibition from highest to lowest level was AEA hydrolysis > ChE activity > 2-AG hydrolysis. The extent of inhibition of AEA hydrolysis was approximately twice than that of ChE activity with AEA hydrolysis being virtually eliminated by 2.5 and 5.0 mg/kg and 1.0 mg/kg causing 40% inhibition. The sensitivity of AEA hydrolysis, compared with canonical targets such as ChE activity, suggests a potential alternative developmental target for CPS. Inhibition of AEA hydrolysis could result in accumulation of endocannabinoids, which could alter normal endocannabinoid transmission during brain maturation.
Collapse
Affiliation(s)
- Russell L Carr
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762-6100, USA.
| | | | | |
Collapse
|
8
|
Casadio P, Fernandes C, Murray RM, Di Forti M. Cannabis use in young people: the risk for schizophrenia. Neurosci Biobehav Rev 2011; 35:1779-87. [PMID: 21530584 DOI: 10.1016/j.neubiorev.2011.04.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 03/09/2011] [Accepted: 04/06/2011] [Indexed: 12/13/2022]
Abstract
Cannabis is one of the most commonly used illicit drugs, and despite the widely held belief that it is a safe drug, its long-term use has potentially harmful consequences. To date, the research on the impact of its use has largely been epidemiological in nature and has consistently found that cannabis use is associated with schizophrenia outcomes later in life, even after controlling for several confounding factors. While the majority of users can continue their use without adverse effects, it is clear from studies of psychosis that some individuals are more vulnerable to its effects than others. In addiction, evidence from both epidemiological and animal studies indicates that cannabis use during adolescence carries particular risk. Further studies are warranted given the increase in the concentration of the main active ingredient (Δ(9)-tetrahydrocannabinol) in street preparations of cannabis and a decreasing age of first-time exposure to cannabis.
Collapse
Affiliation(s)
- Paola Casadio
- Mental Health Department, AUSL Ravenna, Via Baliatico 3, Faenza (RA), Italy.
| | | | | | | |
Collapse
|
9
|
Campolongo P, Trezza V, Ratano P, Palmery M, Cuomo V. Developmental consequences of perinatal cannabis exposure: behavioral and neuroendocrine effects in adult rodents. Psychopharmacology (Berl) 2011; 214:5-15. [PMID: 20556598 PMCID: PMC3045519 DOI: 10.1007/s00213-010-1892-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/14/2010] [Indexed: 12/30/2022]
Abstract
RATIONALE Cannabis is the most commonly used illicit drug among pregnant women. Since the endocannabinoid system plays a crucial role in brain development, maternal exposure to cannabis derivatives might result in long-lasting neurobehavioral abnormalities in the exposed offspring. It is difficult to detect these effects, and their underlying neurobiological mechanisms, in clinical cohorts, because of their intrinsic methodological and interpretative issues. OBJECTIVES The present paper reviews relevant rodent studies examining the long-term behavioral consequences of exposure to cannabinoid compounds during pregnancy and/or lactation. RESULTS Maternal exposure to even low doses of cannabinoid compounds results in atypical locomotor activity, cognitive impairments, altered emotional behavior, and enhanced sensitivity to drugs of abuse in the adult rodent offspring. Some of the observed behavioral abnormalities might be related to alterations in stress hormone levels induced by maternal cannabis exposure. CONCLUSIONS There is increasing evidence from animal studies showing that cannabinoid drugs are neuroteratogens which induce enduring neurobehavioral abnormalities in the exposed offspring. Several preclinical findings reviewed in this paper are in line with clinical studies reporting hyperactivity, cognitive impairments and altered emotionality in humans exposed in utero to cannabis. Conversely, genetic, environmental and social factors could also influence the neurobiological effects of early cannabis exposure in humans.
Collapse
Affiliation(s)
- Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Viviana Trezza
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands ,Department of Biology, University Roma Tre, Rome, Italy
| | - Patrizia Ratano
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Vincenzo Cuomo
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Ferraro L, Tomasini MC, Beggiato S, Gaetani S, Cassano T, Cuomo V, Amoroso S, Tanganelli S, Antonelli T. Short- and long-term consequences of prenatal exposure to the cannabinoid agonist WIN55,212-2 on rat glutamate transmission and cognitive functions. J Neural Transm (Vienna) 2009; 116:1017-27. [DOI: 10.1007/s00702-009-0230-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 04/17/2009] [Indexed: 01/08/2023]
|
11
|
Chapter 9 Developmental Exposure to Cannabinoids Causes Subtle and Enduring Neurofunctional Alterations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 85:117-33. [DOI: 10.1016/s0074-7742(09)85009-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Trezza V, Cuomo V, Vanderschuren LJMJ. Cannabis and the developing brain: insights from behavior. Eur J Pharmacol 2008; 585:441-52. [PMID: 18413273 DOI: 10.1016/j.ejphar.2008.01.058] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 12/20/2007] [Accepted: 01/22/2008] [Indexed: 02/05/2023]
Abstract
The isolation and identification, in 1964, of delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound in cannabis, opened the door to a whole new field of medical research. The exploration of the therapeutic potential of THC and other natural and synthetic cannabinoid compounds was paralleled by the discovery of the endocannabinoid system, comprising cannabinoid receptors and their endogenous ligands, which offered exciting new insights into brain function. Besides its well-known involvement in specific brain functions, such as control of movement, memory and emotions, the endocannabinoid system plays an important role in fundamental developmental processes such as cell proliferation, migration and differentiation. For this reason, changes in its activity during stages of high neuronal plasticity, such as the perinatal and the adolescent period, can have long-lasting neurobehavioral consequences. Here, we summarize human and animal studies examining the behavioral and neurobiological effects of in utero and adolescent exposure to cannabis. Since cannabis preparations are widely used and abused by young people, including pregnant women, understanding how cannabinoid compounds affect the developing brain, leading to neurobehavioral alterations or neuropsychiatric disorders later in life, is a serious health issue. In addition, since the endocannabinoid system is emerging as a novel therapeutic target for the treatment of several neuropsychiatric diseases, a detailed investigation of possible adverse effects of cannabinoid compounds on the central nervous system (CNS) of immature individuals is warranted.
Collapse
Affiliation(s)
- Viviana Trezza
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | |
Collapse
|
13
|
Castaldo P, Magi S, Gaetani S, Cassano T, Ferraro L, Antonelli T, Amoroso S, Cuomo V. Prenatal exposure to the cannabinoid receptor agonist WIN 55,212-2 increases glutamate uptake through overexpression of GLT1 and EAAC1 glutamate transporter subtypes in rat frontal cerebral cortex. Neuropharmacology 2007; 53:369-78. [PMID: 17631920 DOI: 10.1016/j.neuropharm.2007.05.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 05/10/2007] [Accepted: 05/24/2007] [Indexed: 11/30/2022]
Abstract
Prenatal exposure to the CB1 receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)-pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone) mesylate (WIN) at a daily dose of 0.5 mg/kg, and Delta9-tetrahydrocannabinol (Delta9-THC) at a daily dose of 5 mg/kg, reduced dialysate glutamate levels in frontal cerebral cortex of adolescent offspring (40-day-old) with respect to those born from vehicle-treated mothers. WIN treatment induced a statistically significant enhancement of Vmaxl-[3H]glutamate uptake, whereas it did not modify glutamate Km, in frontal cerebral cortex synaptosomes of adolescent rats. Western blotting analysis, performed either in membrane proteins derived from homogenates and in proteins extracted from synaptosomes of frontal cerebral cortex, revealed that prenatal WIN exposure enhanced the expression of glutamate transporter 1 (GLT1) and excitatory amino acid carrier 1 (EAAC1). Moreover, immunocytochemical analyses of frontal cortex area revealed a more intense GLT1 and EAAC1 immunoreactivity (ir) distribution in the WIN-treated group. Collectively these results show that prenatal exposure to the cannabinoid CB1 receptor agonist WIN increases expression and functional activity of GLT1 and EAAC1 glutamate transporters (GluTs) associated to a decrease of cortical glutamate outflow, in adolescent rats. These findings may contribute to explain the mechanism underlying the cognitive impairment observed in the offspring of mothers who used marijuana during pregnancy.
Collapse
Affiliation(s)
- Pasqualina Castaldo
- Section of Pharmacology, Department of Neuroscience, School of Medicine, Università Politecnica delle Marche, Via Tronto 10/A, 60020 Ancona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Economidou D, Mattioli L, Ubaldi M, Lourdusamy A, Soverchia L, Hardiman G, Campolongo P, Cuomo V, Ciccocioppo R. Role of cannabinoidergic mechanisms in ethanol self-administration and ethanol seeking in rat adult offspring following perinatal exposure to Delta9-tetrahydrocannabinol. Toxicol Appl Pharmacol 2007; 223:73-85. [PMID: 17618662 DOI: 10.1016/j.taap.2007.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 05/04/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
The present study evaluated the consequences of perinatal Delta(9)-tetrahydrocannabinol (Delta(9)-THC) treatment (5 mg/kg/day by gavage), either alone or combined with ethanol (3% v/v as the only fluid available), on ethanol self-administration and alcohol-seeking behavior in rat adult offspring. Furthermore, the effect of the selective cannabinoid CB(1) receptor antagonist, SR-141716A, on ethanol self-administration and on reinstatement of ethanol-seeking behavior induced either by stress or conditioned drug-paired cues was evaluated in adult offspring of rats exposed to the same perinatal treatment. Lastly, microarray experiments were conducted to evaluate if perinatal treatment with Delta(9)-tetrahydrocannabinol, ethanol or their combination causes long-term changes in brain gene expression profile in rats. The results of microarray data analysis showed that 139, 112 and 170 genes were differentially expressed in the EtOH, Delta(9)-THC, or EtOH+Delta(9)-THC group, respectively. No differences in alcohol self-administration and alcohol seeking were observed between rat groups. Intraperitoneal (IP) administration of SR-141716A (0.3-3.0 mg/kg) significantly reduced lever pressing for ethanol and blocked conditioned reinstatement of alcohol seeking. At the same doses SR-141716A failed to block foot-shock stress-induced reinstatement of alcohol seeking. The results reveal that perinatal exposure to Delta(9)-THC ethanol or their combination results in evident changes in gene expression patterns. However, these treatments do not significantly affect vulnerability to ethanol abuse in adult offspring. On the other hand, the results obtained with SR-141716A emphasize that endocannabinoid mechanisms play a major role in ethanol self-administration, as well as in the reinstatement of ethanol-seeking behavior induced by conditioned cues, supporting the idea that cannabinoid CB(1) receptor antagonists may represent interesting agents for the pharmacotherapy of alcoholism.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Animals, Newborn
- Behavior, Animal/drug effects
- Central Nervous System Depressants/administration & dosage
- Choice Behavior/drug effects
- Conditioning, Operant/drug effects
- Dronabinol/toxicity
- Drug Therapy, Combination
- Ethanol/administration & dosage
- Female
- Gene Expression Profiling
- Oligonucleotide Array Sequence Analysis/methods
- Piperidines/pharmacology
- Pregnancy
- Psychotropic Drugs/toxicity
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Rimonabant
- Self Administration
Collapse
Affiliation(s)
- Daina Economidou
- Department of Experimental Medicine and Public Health, University of Camerino, Via Scalzino 3, 62032 Camerino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Antonelli T, Tomasini MC, Tattoli M, Cassano T, Tanganelli S, Finetti S, Mazzoni E, Trabace L, Steardo L, Cuomo V, Ferraro L. Prenatal Exposure to the CB1 Receptor Agonist WIN 55,212-2 Causes Learning Disruption Associated with Impaired Cortical NMDA Receptor Function and Emotional Reactivity Changes in Rat Offspring. Cereb Cortex 2005; 15:2013-20. [PMID: 15788701 DOI: 10.1093/cercor/bhi076] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to investigate whether prenatal exposure to the cannabinoid CB1 receptor agonist WIN 55,212-2 (WIN) at a daily dose devoid of overt signs of toxicity and/or gross malformations (0.5 mg/kg, gestation days 5-20), influences cortical glutamatergic neurotransmission, learning and emotional reactivity in rat offspring. Basal and K+-evoked extracellular glutamate levels were significantly lower in cortical cell cultures obtained from pups exposed to WIN during gestation with respect to those measured in cultures obtained from neonates born from vehicle-treated dams. The addition of NMDA to cortical cell cultures from neonates born from vehicle-treated dams concentration-dependently increased glutamate levels, and this was absent in cell cultures obtained from WIN-exposed pups. WIN-exposed rats also revealed a poorer performance in homing (10-12 days of age) and active avoidance tests (80 days of age) as well as a decrease in the rate of separation-induced ultrasonic emission (10 days of age). Finally, prenatal exposure to WIN induced a reduction in the number of cortical neuronal population. These findings (i) provide evidence for a deficit in cortical glutamatergic neurotransmission and behaviour in the rat neonate following prenatal exposure to WIN; and (ii) suggest that the reduction in cortical glutamatergic neurotransmission, NMDA receptor activity and alterations in neuronal development might underlie, at least in part, the learning deficit and decreased emotional reactivity observed in the offspring.
Collapse
Affiliation(s)
- Tiziana Antonelli
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Antonelli T, Tanganelli S, Tomasini MC, Finetti S, Trabace L, Steardo L, Sabino V, Carratu MR, Cuomo V, Ferraro L. Long-term effects on cortical glutamate release induced by prenatal exposure to the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone: an in vivo microdialysis study in the awake rat. Neuroscience 2004; 124:367-75. [PMID: 14980386 DOI: 10.1016/j.neuroscience.2003.10.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2003] [Indexed: 11/29/2022]
Abstract
The aim of the present in vivo microdialysis study was to investigate whether prenatal exposure to the CB(1) receptor agonist WIN55,212-2 mesylate (WIN; (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinyl-methyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone), at a dose of 0.5 mg/kg (s.c. from the fifth to the 20th day of gestation), that causes neither malformations nor overt signs of toxicity, influences cortical glutamate extracellular levels in adult (90-day old) rats. Dam weight gain, pregnancy length and litter size at birth were not significantly affected by prenatal treatment with WIN. Basal and K(+)-evoked dialysate glutamate levels were lower in the cerebral cortex of adult rats exposed to WIN during gestation than in those born from vehicle-treated mothers. In both group of animals WIN (0.1 mg/kg, i.p.) increased dialysate glutamate levels. However, while the blockade of the CB1 receptors with the selective receptor antagonist SR141716A completely counteracted the WIN-induced increase in those rats exposed to vehicle during gestation, it failed to antagonise the increase in those born from WIN-treated dams. These findings suggest that prenatal exposure to the CB1 receptor agonist WIN, at a concentration which is not associated with gross malformations and/or overt signs of toxicity, induces permanent alterations in cortical glutamatergic function. The possibility that these effects might underlie, at least in part, some of the cognitive deficits affecting the offspring of marijuana users is discussed.
Collapse
Affiliation(s)
- T Antonelli
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mereu G, Fà M, Ferraro L, Cagiano R, Antonelli T, Tattoli M, Ghiglieri V, Tanganelli S, Gessa GL, Cuomo V. Prenatal exposure to a cannabinoid agonist produces memory deficits linked to dysfunction in hippocampal long-term potentiation and glutamate release. Proc Natl Acad Sci U S A 2003; 100:4915-20. [PMID: 12679519 PMCID: PMC153655 DOI: 10.1073/pnas.0537849100] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 12/23/2002] [Indexed: 11/18/2022] Open
Abstract
To investigate the possible long-term consequences of gestational exposure to cannabinoids on cognitive functions, pregnant rats were administered with the CB1 receptor agonist WIN 55,212-2 (WIN), at a dose (0.5 mgkg) that causes neither malformations nor overt signs of toxicity. Prenatal WIN exposure induced a disruption of memory retention in 40- and 80-day-old offspring subjected to a passive avoidance task. A hyperactive behavior at the ages of 12 and 40 days was also found. The memory impairment caused by the gestational exposure to WIN was correlated with alterations of hippocampal long-term potentiation (LTP) and glutamate release. LTP induced in CA3-CA1 synapses decayed faster in brain slices of rats born from WIN-treated dams, whereas posttetanic and short-term potentiation were similar to the control group. In line with LTP shortening, in vivo microdialysis showed a significant decrease in basal and K(+)-evoked extracellular glutamate levels in the hippocampus of juvenile and adult rats born from WIN-treated dams. A similar reduction in glutamate outflow was also observed in primary cell cultures of hippocampus obtained from pups born from mothers exposed to WIN. The decrease in hippocampal glutamate outflow appears to be the cause of LTP disruption, which in turn might underlie, at least in part, the long-lasting impairment of cognitive functions caused by the gestational exposure to this cannabinoid agonist. These findings could provide an explanation of cognitive alterations observed in children born from women who use marijuana during pregnancy.
Collapse
Affiliation(s)
- Giampaolo Mereu
- Department of Experimental Biology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cesa R, Guastalla A, Cottone E, Mackie K, Beltramo M, Franzoni MF. Relationships between CB1 cannabinoid receptors and pituitary endocrine cells in Xenopus laevis: an immunohistochemical study. Gen Comp Endocrinol 2002; 125:17-24. [PMID: 11825030 DOI: 10.1006/gcen.2001.7720] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of the cannabinoid CB1 receptor and its relationships with individual endocrine cell types were investigated by immunohistochemistry in the anterior lobe of the Xenopus adenohypophysis. By use of a specific primary antibody raised in rabbit against the amino terminus of the rat CB1, we have found numerous CB1-like-immunoreactive cells distributed throughout all of the pituitary anterior lobe with the exception of the ventrocranial area adjacent to the median eminence of the neurohypophysis. Aided by both double-immunostaining on consecutive serial sections and double-simultaneous immunofluorescence on the same section of the gland, the CB1-like immunoreactivity was compared to some specific hormone immunoreactive cells. CB1 labelings were mainly codistributed, and even colocalized, with lactotrophs and thyrotrophs. Gonadotrophs containing CB1 receptors were also observed. In contrast, corticotrophs, which are located mainly in the ventrocranial pole of the anterior lobe, were generally devoid of CB1. Since nerve terminals immunoreactive to the CB1 antibody were observed within the vascular zone of the median eminence, the possibility that endocannabinoids are involved in the control of some secretory activities of Xenopus pituitary, either indirectly via hypothalamic neurosecretory mechanisms or directly on the pituitary cells, was envisaged. In particular, the present study suggests the occurrence of a direct cannabinergic modulation of the prolactin, gonadotrophin, and thyrotrophin secretions through the CB1 receptor.
Collapse
Affiliation(s)
- R Cesa
- Dipartimento di Biologia Animale e dell'Uomo, Laboratorio di Anatomia Comparata, Università degli Studi di Torino, Via Accademia Albertina, 13, 10123 Torino, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Wenger T, Tóth BE, Juanéda C, Leonardelli J, Tramu G. The effects of cannabinoids on the regulation of reproduction. Life Sci 1999; 65:695-701. [PMID: 10462070 DOI: 10.1016/s0024-3205(99)00292-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It has been shown that the main psychoactive component of marihuana, delta9-tetrahydrocannabinol (THC) has mainly inhibitory effects on the regulation of reproduction. Recently, the purification and availability of the endogenous ligand of the cannabinoid receptor, arachidonyl ethanolamide, anandamide, (ANA) and its specific long lasting antagonist, the SR 141716 (SR) provided us the opportunity to compare the effects of THC and ANA on the neuroendocrine regulation of reproduction. ANA decreases serum luteinizing hormone (LH) and prolactin (PRL) levels in rats of both sexes. It has no action on serum follicle stimulating hormone (FSH) level. When ANA was administered to pregnant rats it resulted in an increase of the duration of pregnancy and in the frequency of stillbirths. The postnatal development of hypothalamo-pituitary axis in offspring was temporarily inhibited. In conclusion, we found that exogenous and endogenous cannabinoids have only slightly different effects on the reproductive parameters. These effects may occur via the central cannabinoid receptor. It is possible that the sites of action are at both hypothalamic and pituitary levels. The results further support the view that ANA may be a central neurotransmitter or neuromodulator.
Collapse
Affiliation(s)
- T Wenger
- Department of Human Morphology and Developmental Biology, Semmelweis University of Medicine, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
20
|
Meyer JS, Kunkle R. Behavioral responses to a D1 dopamine agonist in weanling rats treated neonatally with cocaine and delta9-tetrahydrocannabinol. Neurotoxicol Teratol 1999; 21:375-80. [PMID: 10440481 DOI: 10.1016/s0892-0362(98)00061-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We determined whether neonatal exposure to cocaine with or without delta9-tetrahydrocannabinol (THC) altered the behavioral responses of weanling rats to the full D1 dopamine (DA) agonist SKF 81297. Rats were injected SC once daily from postnatal day (PD) 1 through 5 with cocaine (20 mg/kg), the same dose of cocaine plus THC (10 mg/kg), or drug vehicle. On PDs 24, 25, or 26, male and female littermates were administered 3 or 10 mg/kg of SKF 81297 or saline vehicle, and then tested 15 min later in an open-field apparatus. Neither neonatal drug treatment nor gender influenced the behavioral responses to SKF 81297. The drug challenge did, however, produce several dose-dependent behavioral effects, including increases in locomotor activity, line crossing, sniffing, and headshakes, and a decreased incidence of rearing, grooming, and stationary behavior. Furthermore, even though earlier administration of cocaine and THC failed to alter D1 receptor sensitivity, animals in both neonatal treatment groups exhibited an overall increase in grooming behavior and a decrease in sniffing compared to controls when the results were combined across doses of SKF 81297. These findings indicate that early postnatal exposure to cocaine can alter certain behaviors independently of functional changes in the D1 receptor system.
Collapse
Affiliation(s)
- J S Meyer
- Department of Psychology, Neuroscience and Behavior Program, University of Massachusetts, Amherst 01003-7710, USA.
| | | |
Collapse
|
21
|
García-Gil L, Ramos JA, Rubino T, Parolaro D, Fernández-Ruiz JJ. Perinatal delta9-tetrahydrocannabinol exposure did not alter dopamine transporter and tyrosine hydroxylase mRNA levels in midbrain dopaminergic neurons of adult male and female rats. Neurotoxicol Teratol 1998; 20:549-53. [PMID: 9761594 DOI: 10.1016/s0892-0362(98)00012-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have recently demonstrated that the magnitude of L-3,4-dihydroxyphenylacetic acid (DOPAC) lowering effect caused by amphetamine in midbrain dopaminergic neurons of adult rats was lesser in animals that had been perinatally exposed to delta9-tetrahydrocannabinol (delta9-THC) than controls. In the present study, we have examined whether this loss in the responsiveness to amphetamine might be due to changes at the level of dopamine transporter (DAT), the main molecular site for the action of amphetamine, following the perinatal exposure to delta9-THC. To this end, we have analyzed DAT mRNA levels, by using in situ hybridization, in the substantia nigra and ventral tegmental area, the areas where cell bodies of DAT-containing midbrain neurons are located, of adult male and female rats that had been perinatally exposed to delta9-THC. In addition, we also analyzed mRNA levels of tyrosine hydroxylase (TH), the rate-limiting enzyme in DA synthesis. Results were as follows. Both adult male and female rats that had been perinatally exposed to delta9-THC exhibited similar mRNA levels to controls for both DAT and TH in the substantia nigra as well as in the ventral tegmental area. This observation makes it difficult to support the idea that the differences found in adulthood after pharmacological challenges were caused by irreversible changes at the level of gene expression for these two key proteins.
Collapse
Affiliation(s)
- L García-Gil
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | | | | | | | | |
Collapse
|