1
|
Alanazi IS, Emam M, Elsabagh M, Alkahtani S, Abdel-Daim MM. The protective effects of 18β-glycyrrhetinic acid against acrylamide-induced cellular damage in diabetic rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58322-58330. [PMID: 34117542 DOI: 10.1007/s11356-021-14742-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed at elucidating the protective effects of 18β-glycyrrhetinic acid (18βGA) against acrylamide (Acr)-induced cellular damage in diabetic rats. Rats were randomly assigned into eight groups (n = 8) following 12 h of fasting: control group, a single dose of 50 mg/kg streptozotocin (STZ) intraperitoneally (diabetic group), 50 mg/kg 18βGA orally after 2 weeks from STZ injection (18βGA group), 20 mg/kg Acr after 1month from STZ injection (Acr group), STZ plus Acr (STZ-Acr group), STZ plus 18βGA (STZ-18βGA group), Acr plus 18βGA (Acr-18βGA group), or STZ plus Acr plus 18βGA (STZ-Acr-18βGA group). Administration of 18βGA alone increased GSH, GSH-PX, SOD, and CAT in both liver and kidneys. While STZ injection was associated with diabetic and oxidative stress changes as indicated by the higher serum glucose, cholesterol, creatinine, IL-1β, IL-6, TNF-α, and antioxidant enzyme activities, together with increased lipid peroxides and decreased antioxidant biomarkers in the liver and kidneys. Similarly, the co-administration of STZ and Acr was associated with similar, more augmented effects, compared to STZ alone. The administration of 18βGA normalized STZ and Acr-induced elevations in oxidative defense variables in the liver and kidney tissues and blood biomarkers. Thus, our study demonstrated that the damaging effects of Acr were more exaggerated in diabetic rats. Furthermore, it showed the ability of 18βGA to inhibit reactive oxygen species generation and restore the antioxidant defenses in diabetic rats with Acr-induced liver and kidney cytotoxicity.
Collapse
Affiliation(s)
- Ibtesam S Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Mohamed Emam
- Department of Nutrition and Veterinary Clinical Nutrition, Faculty of Veterinary Medicine, Damanhour University, El Beheira, Damanhour, Egypt
| | - Mabrouk Elsabagh
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafr El-sheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
2
|
Li F, Dong Y, Lu R, Yang B, Wang S, Xing G, Jiang Y. Susceptibility to the acute toxicity of acrylonitrile in streptozotocin-induced diabetic rats: protective effect of phenethyl isothiocyanate, a phytochemical CYP2E1 inhibitor. Drug Chem Toxicol 2019; 44:130-139. [PMID: 31258002 DOI: 10.1080/01480545.2019.1566354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Diabetes mellitus is a significant global public health issue. The diabetic state not only precipitates chronic disease but also has the potential to change the toxicity of drugs and chemicals. Acrylonitrile (AN) is a potent neurotoxin widely used in industrial products. This study used a streptozotocin (STZ)-induced diabetic rat model to examine the role of cytochrome P450 2E1 (CYP2E1) in acute AN toxicity. The protective effect of phenethyl isothiocyanate (PEITC), a phytochemical inhibitor of CYP2E1, was also investigated. A higher incidence of convulsions and loss of the righting reflex, and decreased rates of survival, as well as elevated CYP2E1 activity, were observed in diabetic rats treated with AN when compared to those in non-diabetic rats, suggesting that diabetes confers susceptibility to the acute toxicity of AN. Pretreatment with PEITC (20-80 mg/kg) followed by AN injection alleviated the acute toxicity of AN in diabetic rats as evidenced by the decreased incidence of convulsions and loss of righting reflex, and increased rates of survival. PEITC pretreatment at 40 and 80 mg/kg decreased hepatic CYP2E1 activity in AN-exposed diabetic rats. PEITC pretreatment (20 mg/kg) increased the glutathione (GSH) content and glutathione S-transferase (GST) activity and further decreased ROS levels in AN-exposed diabetic rats. Collectively, STZ-induced diabetic rats were more sensitive to AN-induced acute toxicity mainly due to CYP2E1 induction, and PEITC pretreatment significantly alleviated the acute toxicity of AN in STZ-induced diabetic rats. PEITC might be considered as a potential effective chemo-preventive agent against AN-induced acute toxicity in individuals with an underlying diabetic condition.
Collapse
Affiliation(s)
- Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Ying Dong
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Yuanyue Jiang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, PR China
| |
Collapse
|
3
|
Karimani A, Hosseinzadeh H, Mehri S, Jafarian AH, Kamali SA, Hooshang Mohammadpour A, Karimi G. Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1566263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Asieh Karimani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Jafarian
- Cancer Molecular Pathology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Li F, Dong Y, Shen H, Lu R, Yin S, Tian W, Wang S, Xing G. Tolerance to dichloroacetonitrile-induced neurotoxicity in streptozotocin-induced diabetic rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:61-67. [PMID: 28886427 DOI: 10.1016/j.etap.2017.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Diabetes mellitus has potential to alter the toxicity of hazardous chemicals. Dichloroacetonitrile (DCAN) is one of high-risk nitrogenous disinfection by-products. This study evaluated the neurotoxicity of DCAN (11, 44 and 88mg/kg) in normoglycaemic and streptozotocin (STZ)-induced diabetic rats via orally for 28days. STZ diabetes prolonged the median survival time and total lethal time after DCAN (88mg/kg) exposure when compared with that observed in normoglycaemic rats. DCAN altered motor activity and induced anxiety behaviour in normoglycaemic rats; but it did not exaggerate behavioural changes in STZ diabetic rats. DCAN -induced brain oxidative damage by compensatory increase glutathione content and decrease malonaldehyde levels; but it did not induce oxidative damage in diabetic rats. STZ diabetes slowed down the pathological pace of DCAN-induced brain mitochondrial dysfunction by decreasing reactive oxygen species and increasing cytochrome C oxidase activity. In conclusion, the present study indicated that STZ diabetic rats are resistant to DCAN-induced neurotoxicity at the dosage and with the dosage schedule in 28-day subacute toxicity test.
Collapse
Affiliation(s)
- Fang Li
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Ying Dong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haijun Shen
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Rongzhu Lu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Siqi Yin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Weihong Tian
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Fricker B, Muller A, René F. Evaluation Tools and Animal Models of Peripheral Neuropathies. NEURODEGENER DIS 2008; 5:72-108. [DOI: 10.1159/000112835] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/12/2007] [Indexed: 11/19/2022] Open
|
6
|
Ling B, Authier N, Balayssac D, Eschalier A, Coudore F. Assessment of nociception in acrylamide-induced neuropathy in rats. Pain 2005; 119:104-112. [PMID: 16298070 DOI: 10.1016/j.pain.2005.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 08/05/2005] [Accepted: 09/19/2005] [Indexed: 11/20/2022]
Abstract
Acrylamide was intraperitoneally administered to male Sprague-Dawley rats at four different doses (5, 10, 20 and 30 mg/kg) three times a week for 5 consecutive weeks. Because of motor dysfunction, the 30 mg/kg dose was not used for behavioral pain tests. Clinical status remained good throughout the experiment and no motor deficit was observed at the other doses. We showed that acrylamide administration at low doses and cumulative dose (CD) range of 35-140 mg/kg produced mechanical allodynia and rapid, marked heat (42 degrees C) and cold (10 degrees C) allodynia after tail immersion test. Mechanical and thermal hyperalgesia appeared after higher cumulative doses (70-280 mg/kg), except for cold (4 degrees C) hyperalgesia (20-80 mg/kg). All the modifications persisted throughout all study, except the mechanical hyperalgia. All the cumulative doses tested were lower than those generally reported to induce motor dysfunction (CD>250 mg/kg), confirming that CD may be considered to be a suitable index in assessing neurological signs and suggesting that early detection of acrylamide neurotoxicity would be possible using the sensory tests, especially those for detecting allodynia thresholds.
Collapse
Affiliation(s)
- Bing Ling
- Laboratoire de Toxicologie, Faculté de Pharmacie, EA 3848, 28 place Henri-Dunant, BP 38, 63001 Clermont-Ferrand, France Laboratoire de Pharmacologie Médicale, Faculté de Médecine, EA 3848, 28 place Henri-Dunant, BP 38, 63001 Clermont-Ferrand, France Laboratoire de Pharmacologie-Toxicologie, CHU Gabriel-Montpied, 30 place Henri-Dunant, 63001 Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|
7
|
Coleman E, Judd R, Hoe L, Dennis J, Posner P. Effects of diabetes mellitus on astrocyte GFAP and glutamate transporters in the CNS. Glia 2005; 48:166-78. [PMID: 15378652 DOI: 10.1002/glia.20068] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. The cellular mechanisms responsible for the increased risk of these disorders are incompletely understood. Astrocytes are proving critical for normal CNS function, and alterations in their activity could contribute to diabetes-related disturbances in the brain. We examined the effects of streptozotocin (STZ)-induced diabetes in rats on the level of the astrocyte intermediate filament protein, glial fibrillary acidic protein (GFAP), number of astrocytes, and levels of the astrocyte glutamate transporters, glutamate transporter-1 (GLT-1) and glutamate/aspartate transporter (GLAST), in the cerebral cortex, hippocampus, and cerebellum by Western blotting (WB) and immunohistochemistry (IH). Studies were carried out at 4 and 8 weeks of diabetes duration. Diabetes resulted in a significant decrease in GFAP protein levels (WB) in the hippocampus and cerebellum at 4 weeks and in the cerebral cortex, hippocampus and cerebellum by 8 weeks. Attenuated GFAP immunoreactivity (IH) was evident in the hippocampus, cerebellum and white matter regions such as the corpus callosum and external capsule at both 4 and 8 weeks of diabetes. Astrocyte cell counts of adjacent sections immunoreactive for S-100B were not different between control and diabetic animals. No significant differences were noted in astrocyte glutamate transporter levels in the cerebral cortex, hippocampus, or cerebellum at either time period (WB, IH). With the expanding list of astrocyte functions in the CNS, the role of astrocytes in diabetes-induced CNS disorders clearly warrants further investigation.
Collapse
Affiliation(s)
- Elaine Coleman
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, USA.
| | | | | | | | | |
Collapse
|
8
|
Song C, Kim K, Park Y, Kim J, Koh S, Kim J, Kim Y, Kim S, Kim Y, Yang K, Jung H. Neurotoxicity Study of 1,3-Dichloro-2-Propanol in Rats. J Toxicol Pathol 2004. [DOI: 10.1293/tox.17.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Chiwon Song
- Department of General Toxicology, National Institute of Toxicological Research
| | - Kisok Kim
- Department of General Toxicology, National Institute of Toxicological Research
| | - Younjoo Park
- Department of General Toxicology, National Institute of Toxicological Research
| | - Jungyu Kim
- Department of General Toxicology, National Institute of Toxicological Research
| | - Seongho Koh
- Department of General Toxicology, National Institute of Toxicological Research
| | - Juwhan Kim
- Department of General Toxicology, National Institute of Toxicological Research
| | - Yongsoon Kim
- Department of General Toxicology, National Institute of Toxicological Research
| | - Sunyoun Kim
- Department of General Toxicology, National Institute of Toxicological Research
| | - Youngchul Kim
- Department of General Toxicology, National Institute of Toxicological Research
| | - Kihwa Yang
- Department of General Toxicology, National Institute of Toxicological Research
| | - Haikwan Jung
- Department of General Toxicology, National Institute of Toxicological Research
| |
Collapse
|
9
|
Shukla PK, Khanna VK, Ali MM, Maurya RR, Handa SS, Srimal RC. Protective effect of acorus calamus against acrylamide induced neurotoxicity. Phytother Res 2002; 16:256-60. [PMID: 12164272 DOI: 10.1002/ptr.854] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Exposure of rats to acrylamide (ACR) caused hind limb paralysis in 58% of the animals on day 10 and decreased behavioural parameters, namely distance travelled, ambulatory time, stereotypic time and basal stereotypic movements compared with the control group. These rats also had a decrease in the reduced glutathione (GSH) content and glutathione-S-transferase (GST) activity in the corpus striatum and an increase in striatal dopamine receptors, as evident by an increase in the binding of 3H-spiperone to striatal membranes. Treatment with the ethanol:water (1:1) extract of the rhizomes of Acorus calamus (AC-002) increased the GSH content and GST activity in the corpus striatum while insignificant changes were observed in other parameters. Rats treated with ACR and AC-002 in combination had a lower incidence of paralysis (18%) compared with those treated with ACR alone on day 10 of the experiment. The rats also showed a partial recovery in other behavioural parameters. The levels of GSH content and GST activity increased in the corpus striatum, while the dopamine receptors decreased compared with the ACR treated rats. The results suggest that the neurobehavioural changes produced by ACR may be prevented following treatment with Acorus calamus rhizomes.
Collapse
|
10
|
Abstract
The mechanism of inhibition of creatine kinase (CK) by acrylamide (Acr) has been examined (in vitro). Within the concentration range of 0 to 1 M, Acr markedly inhibited CK and depleted the protein thiols. Both inactivation and thiol depletion were time- and Acr concentration-dependent. Addition of dithiothreitol (DTT) did not reactivate CK inactivated by Acr. However, CK with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) pre-blocked thiols can be reactivated by DTT after incubation with Acr. The transition-state analogue also had a significant protective effect on CK against Acr inhibition. We conclude that thiol alkylation is a critical event in inactivation of CK by Acr. Furthermore, Acr binding to CK changed its surface charge, which may be the same effect for the toxicity of Acr towards other proteins.
Collapse
Affiliation(s)
- F G Meng
- Department of Biological Sciences and Biotechnology, School of Life Science and Engineering, Tsinghua University, 100084, Beijing, People's Republic of China
| | | | | |
Collapse
|