1
|
Eapen BR. Molecular biology of botulinum neurotoxin serotype A: a cosmetic perspective. J Cosmet Dermatol 2008; 7:221-5. [PMID: 18789058 DOI: 10.1111/j.1473-2165.2008.00392.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cosmetic use of botulinum neurotoxin serotype A (BoNT/A) involves low doses of toxin administered for facial wrinkles and hyperhidrosis. The structural and functional properties of BoNT/A can affect the degree and duration of effect. Actively using the injected muscle is favorable as it exposes more receptors to BoNT/A. Divided doses of BoNT/A at an interval of more than 3 days may be longer lasting than single dose by blocking nascent neuronal sprouts. Antibodies are unlikely to be effective in BoNT/A neutralization because of the large area of receptor interaction. Several commonly used drugs including zinc and chloroquine can interact with BoNT/A, necessitating dosage adjustment for optimum effect. Serotype E (BoNT/E) can emerge as an antidote for BoNT/A for cosmetic use.
Collapse
|
2
|
Abstract
Neurotransmission in the nervous system is initiated at presynaptic terminals by fusion of synaptic vesicles with the plasma membrane and subsequent exocytic release of chemical transmitters. Currently, there are multiple methods to detect neurotransmitter release from nerve terminals, each with their own particular advantages and disadvantages. For instance, most commonly employed methods monitor actions of released chemical substances on postsynaptic receptors or artificial substrates such as carbon fibers. These methods are closest to the physiological setting because they have a rapid time resolution and they measure the action of the endogenous neurotransmitters rather than the signals emitted by exogenous probes. However, postsynaptic receptors only indirectly report neurotransmitter release in a form modified by the properties of receptors themselves, which are often nonlinear detectors of released substances. Alternatively, released chemical substances can be detected biochemically, albeit on a time scale slower than electrophysiological methods. In addition, in certain preparations, where presynaptic terminals are accessible to whole cell recording electrodes, fusion of vesicles with the plasma membrane can be monitored using capacitance measurements. In the last decade, in addition to electrophysiological and biochemical methods, several fluorescence imaging modalities have been introduced which report synaptic vesicle fusion, endocytosis, and recycling. These methods either take advantage of styryl dyes that can be loaded into recycling vesicles or exogenous expression of synaptic vesicle proteins tagged with a pH-sensitive GFP variant at regions facing the vesicle lumen. In this chapter, we will provide an overview of these methods with particular emphasis on their relative strengths and weaknesses and discuss the types of information one can obtain from them.
Collapse
|
3
|
Aravanis AM, Pyle JL, Harata NC, Tsien RW. Imaging single synaptic vesicles undergoing repeated fusion events: kissing, running, and kissing again. Neuropharmacology 2003; 45:797-813. [PMID: 14529718 DOI: 10.1016/s0028-3908(03)00310-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
At synapses of the mammalian central nervous system, release of neurotransmitter occurs at rates transiently as high as 100 Hz, putting extreme demands on nerve terminals with only tens of functional vesicles at their disposal. Thus, the presynaptic vesicle cycle is particularly critical to maintain neurotransmission. To understand vesicle cycling at the most fundamental level, we studied single vesicles undergoing exo/endocytosis and tracked the fate of newly retrieved vesicles. This was accomplished by minimally stimulating boutons in the presence of the membrane-fluorescent styryl dye FM1-43, then selecting for terminals that contained only one dye-filled vesicle. We then observed the kinetics of dye release during single action potential stimulation. We found that most vesicles lost only a portion of their total dye during a single fusion event, but were able to fuse again soon thereafter. We interpret this as direct evidence of "kiss-and-run" followed by rapid reuse. Other interpretations such as "partial loading" and "endosomal splitting" were largely excluded on the basis of multiple lines of evidence. Our data placed an upper bound of <1.4 s on the lifetime of the kiss-and-run fusion event, based on the assumption that aqueous departitioning is rate limiting. The repeated use of individual vesicles held over a range of stimulus frequencies up to 30 Hz and was associated with neurotransmitter release. A small percentage of fusion events did release a whole vesicle's worth of dye in one action potential, consistent with a classical picture of exocytosis as fusion followed by complete collapse or at least very slow retrieval.
Collapse
Affiliation(s)
- A M Aravanis
- Department of Molecular and Cellular Physiology, B105 Beckman Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
4
|
Covernton POJ, Lester RAJ. Prolonged stimulation of presynaptic nicotinic acetylcholine receptors in the rat interpeduncular nucleus has differential effects on transmitter release. Int J Dev Neurosci 2002; 20:247-58. [PMID: 12175860 DOI: 10.1016/s0736-5748(02)00036-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alterations in nicotinic acetylcholine (nAChR) receptor number can be induced by chronic exposure to nicotine possibly by stabilization of the desensitized state(s) of the receptor. Since within the central nervous system (CNS), many nAChRs are localized presynaptically, we have investigated the physiological consequences of prolonged nicotine applications on spontaneous transmitter release. In the presence of glutamate receptor antagonists, bicuculline-sensitive spontaneous GABA inhibitory synaptic currents (IPSCs) could be readily resolved in whole-cell recordings from neurons in the interpeduncular nucleus (IPN) maintained as brain slices. Nicotine (300nM) caused a marked enhancement in the frequency of spontaneous events. During a 15min exposure to nicotine, the time course of changes in IPSC frequency could be divided into two groups. In most neurons, there was a fast increase in event frequency followed by a decline to a lower steady-state level that remained above baseline. In the remaining neurons, the effect of nicotine was more slowly developing and outlasted the application. Interestingly, the rapid effect was associated with a shift to higher amplitude events, whereas, no change in the IPSC amplitude histogram was observed during the slow onset effect. These data show that prolonged stimulation of presynaptic nicotinic receptors can have different outcomes that could potentially contribute to the diverse effects of nicotine on central information processing.
Collapse
Affiliation(s)
- Patrick O J Covernton
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
5
|
Synaptojanin 1 contributes to maintaining the stability of GABAergic transmission in primary cultures of cortical neurons. J Neurosci 2002. [PMID: 11717343 DOI: 10.1523/jneurosci.21-23-09101.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory synapses in the CNS can exhibit a considerable stability of neurotransmission over prolonged periods of high-frequency stimulation. Previously, we showed that synaptojanin 1 (SJ1), a presynaptic polyphosphoinositide phosphatase, is required for normal synaptic vesicle recycling (Cremona et al., 1999). We asked whether the stability of inhibitory synaptic responses was dependent on SJ1. Whole-cell patch-clamp recordings of unitary IPSCs were obtained in primary cortical cultures between cell pairs containing a presynaptic, fast-spiking inhibitory neuron (33.5-35 degrees C). Prolonged presynaptic stimulation (1000 stimuli, 2-20 Hz) evoked postsynaptic responses that decreased in size with a bi-exponential time course. A fast component developed within a few stimuli and was quantified with paired-pulse protocols. Paired-pulse depression (PPD) appeared to be independent of previous GABA release at intervals of >/=100 msec. The characteristics of PPD, and synaptic depression induced within the first approximately 80 stimuli in the trains, were unaltered in SJ1-deficient inhibitory synapses. A slow component of depression developed within hundreds of stimuli, and steady-state depression showed a sigmoidal dependence on stimulation frequency, with half-maximal depression at 6.0 +/- 0.5 Hz. Slow depression was increased when release probability was augmented, and there was a small negative correlation between consecutive synaptic amplitudes during steady-state depression, consistent with a presynaptic depletion process. Slow depression was increased in SJ1-deficient synapses, with half-maximal depression at 3.3 +/- 0.9 Hz, and the recovery was retarded approximately 3.6-fold. Our studies establish a link between a distinct kinetic component of physiologically monitored synaptic depression and a molecular modification known to affect synaptic vesicle reformation.
Collapse
|
6
|
Neves G, Gomis A, Lagnado L. Calcium influx selects the fast mode of endocytosis in the synaptic terminal of retinal bipolar cells. Proc Natl Acad Sci U S A 2001; 98:15282-7. [PMID: 11734626 PMCID: PMC65021 DOI: 10.1073/pnas.261311698] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Indexed: 11/18/2022] Open
Abstract
To investigate the regulation of endocytosis by Ca(2+), we have made capacitance measurements in the synaptic terminal of depolarizing bipolar cells from the retina of goldfish. After a brief depolarization, all of the excess membrane was retrieved rapidly (tau approximately 1 s). But when the rise in free [Ca(2+)] was reduced by the introduction of Ca(2+) buffers [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate (BAPTA) or EGTA], a large fraction of the membrane was retrieved by a second, slower mechanism (tau > or = 10 s). The block of fast endocytosis by EGTA could be overcome by increasing the amplitude of the Ca(2+) current, demonstrating that Ca(2+) influx was the trigger for fast endocytosis. These manipulations of the Ca(2+) signal altered the relative proportions of fast and slow endocytosis but did not modulate the rate constants of these processes. A brief stimulus that triggered fast endocytosis did not generate a significant rise in the spatially averaged [Ca(2+)], indicating that Ca(2+) regulated endocytosis through an action close to the active zone. The slow mode of retrieval occurred at the resting [Ca(2+)]. These results demonstrate that Ca(2+) influx couples fast endocytosis and exocytosis at this synapse.
Collapse
Affiliation(s)
- G Neves
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | |
Collapse
|
7
|
Abstract
After synaptic vesicle exocytosis, synaptic vesicle proteins must be retrieved from the plasma membrane, sorted away from other membrane proteins, and reconstituted into a functional synaptic vesicle. The nematode Caenorhabditis elegans is an organism well suited for a genetic analysis of this process. In particular, three types of genetic studies have contributed to our understanding of synaptic vesicle endocytosis. First, screens for mutants defective in synaptic vesicle recycling have identified new proteins that function specifically in neurons. Second, RNA interference has been used to quickly confirm the roles of known proteins in endocytosis. Third, gene targeting techniques have elucidated the roles of genes thought to play modulatory or subtle roles in synaptic vesicle recycling. We describe a molecular model for synaptic vesicle recycling and discuss how protein disruption experiments in C. elegans have contributed to this model.
Collapse
Affiliation(s)
- T W Harris
- University of Utah, Department of Biology, 257 South 1400 East, Salt Lake City, UT 84112-1840, USA
| | | | | |
Collapse
|
8
|
Pamidimukkala J, Hay M. Frequency dependence of endocytosis in aortic baroreceptor neurons and role of group III mGluRs. Am J Physiol Heart Circ Physiol 2001; 281:H387-95. [PMID: 11406507 DOI: 10.1152/ajpheart.2001.281.1.h387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptic transmission between baroreceptor afferents and the nucleus tractus solitarius (NTS) is known to exhibit frequency-dependent depression. Reductions in neurotransmitter release and alterations in mechanisms regulating synaptic transmission are hypothesized to be involved in the activity-dependent depression observed in baroreceptor afferent neurons. The present study utilized cultured aortic baroreceptor neurons and the fluorescent dyes FM1-43 and FM2-10 to characterize the process of endocytosis or vesicle retrieval and its dependence on 1) frequency of neuronal activation, 2) metabotropic glutamate receptor (mGluR) activation, and 3) calcium concentrations inside and outside the cell. Endocytosis per spike, measured in fluorescence units after a 10-s stimulus applied at frequencies of 0.5 (53 +/- 4), 1.0 (23 +/- 1), and 10.0 Hz (2.7 +/- 0.2), was significantly depressed at higher frequencies. Blockade of group III mGluRs with (RS)-cyclopropyl-4-phosphonophenylglycine (CPPG) facilitated endocytosis at all frequencies, suggesting that this receptor subtype may be involved in the inhibition of endocytosis. Manipulating the extracellular and intracellular calcium concentrations subsequent to exocytosis had no effect on endocytosis. These results suggest that frequency-dependent depression of endocytosis observed in vitro could contribute to the frequency-dependent depression of baroreceptor afferent neurotransmission and that group III mGluRs inhibit endocytosis.
Collapse
Affiliation(s)
- J Pamidimukkala
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
9
|
Yuste R, Miller RB, Holthoff K, Zhang S, Miesenböck G. Synapto-pHluorins: chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. Methods Enzymol 2001; 327:522-46. [PMID: 11045007 DOI: 10.1016/s0076-6879(00)27300-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- R Yuste
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
10
|
Cousin MA, Tan TC, Robinson PJ. Protein phosphorylation is required for endocytosis in nerve terminals: potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin. J Neurochem 2001; 76:105-16. [PMID: 11145983 DOI: 10.1046/j.1471-4159.2001.00049.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dynamin I and at least five other nerve terminal proteins, amphiphysins I and II, synaptojanin, epsin and eps15 (collectively called dephosphins), are coordinately dephosphorylated by calcineurin during endocytosis of synaptic vesicles. Here we have identified a new dephosphin, the essential endocytic protein AP180. Blocking dephosphorylation of the dephosphins is known to inhibit endocytosis, but the role of phosphorylation has not been determined. We show that the protein kinase C (PKC) antagonists Ro 31-8220 and Go 7874 block the rephosphorylation of dynamin I and synaptojanin that occurs during recovery from an initial depolarizing stimulus (S1). The rephosphorylation of AP180 and amphiphysins 1 and 2, however, were unaffected by Ro 31-8220. Although these dephosphins share a single phosphatase, different protein kinases phosphorylated them after nerve terminal stimulation. The inhibitors were used to selectively examine the role of dynamin I and/or synaptojanin phosphorylation in endocytosis. Ro 31-8220 and Go 7874 did not block the initial S1 cycle of endocytosis, but strongly inhibited endocytosis following a second stimulus (S2). Therefore, phosphorylation of a subset of dephosphins, which includes dynamin I and synaptojanin, is required for the next round of stimulated synaptic vesicle retrieval.
Collapse
Affiliation(s)
- M A Cousin
- Cell Signalling Unit, Children's Medical Research Institute, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
11
|
Sankaranarayanan S, Ryan TA. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nat Cell Biol 2000; 2:197-204. [PMID: 10783237 DOI: 10.1038/35008615] [Citation(s) in RCA: 354] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following the fusion of synaptic vesicles with the presynaptic plasma membrane of nerve terminals by the process of exocytosis, synaptic-vesicle components are recycled to replenish the vesicle pool. Here we use a pH-sensitive green fluorescent protein to measure the residence time of VAMP, a vesicle-associated SNARE protein important for membrane fusion, on the surfaces of synaptic terminals of hippocampal neurons following exocytosis. The time course of VAMP retrieval depends linearly on the amount of VAMP that is added to the plasma membrane, with retrieval occurring between about 4 seconds and 90 seconds after exocytosis, and newly internalized vesicles are rapidly acidified. These data are well described by a model in which endocytosis appears to be saturable, but proceeds with an initial maximum velocity of about one vesicle per second. We also find that, following exocytosis, a portion of the newly inserted VAMP appears on the surface of the axon.
Collapse
Affiliation(s)
- S Sankaranarayanan
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
12
|
Abstract
Ca(2+) entry into nerve terminals through clusters of voltage-dependent Ca(2+) channels (VDCCs) at active zones creates a microdomain of elevated intracellular free Ca(2+) concentration ([Ca(2+)](i)) that stimulates exocytosis. We show that this VDCC-mediated [Ca(2+)](i) elevation has no specific role in stimulating endocytosis but can inhibit endocytosis evoked by three different methods in isolated mammalian nerve terminals. The inhibition can be relieved by using either VDCC antagonists or fast, but not slow, binding intracellular Ca(2+) chelators. The Ca(2+)-dependent inhibition of endocytosis is mimicked in vitro by a low-affinity inhibition of dynamin I vesiculation of phospholipids. Increased [Ca(2+)](i) also inhibits dynamin II GTPase activity and receptor-mediated endocytosis in non-neuronal cells. VDCC-meditated Ca(2+) entry inhibits dynamin-mediated endocytosis at the active zone and provides neurons with a mechanism to clear recycling vesicles to nonactive zone regions during periods of high activity.
Collapse
|
13
|
Neale EA, Bowers LM, Jia M, Bateman KE, Williamson LC. Botulinum neurotoxin A blocks synaptic vesicle exocytosis but not endocytosis at the nerve terminal. J Cell Biol 1999; 147:1249-60. [PMID: 10601338 PMCID: PMC2168097 DOI: 10.1083/jcb.147.6.1249] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The supply of synaptic vesicles in the nerve terminal is maintained by a temporally linked balance of exo- and endocytosis. Tetanus and botulinum neurotoxins block neurotransmitter release by the enzymatic cleavage of proteins identified as critical for synaptic vesicle exocytosis. We show here that botulinum neurotoxin A is unique in that the toxin-induced block in exocytosis does not arrest vesicle membrane endocytosis. In the murine spinal cord, cell cultures exposed to botulinum neurotoxin A, neither K(+)-evoked neurotransmitter release nor synaptic currents can be detected, twice the ordinary number of synaptic vesicles are docked at the synaptic active zone, and its protein substrate is cleaved, which is similar to observations with tetanus and other botulinal neurotoxins. In marked contrast, K(+) depolarization, in the presence of Ca(2+), triggers the endocytosis of the vesicle membrane in botulinum neurotoxin A-blocked cultures as evidenced by FM1-43 staining of synaptic terminals and uptake of HRP into synaptic vesicles. These experiments are the first demonstration that botulinum neurotoxin A uncouples vesicle exo- from endocytosis, and provide evidence that Ca(2+) is required for synaptic vesicle membrane retrieval.
Collapse
Affiliation(s)
- E A Neale
- Laboratory of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
The recycling of synaptic vesicles in nerve terminals involves multiple steps, underlies all aspects of synaptic transmission, and is a key to understanding the basis of synaptic plasticity. The development of styryl dyes as fluorescent molecules that label recycling synaptic vesicles has revolutionized the way in which synaptic vesicle recycling can be investigated, by allowing an examination of processes in neurons that have long been inaccessible. In this review, we evaluate the major aspects of synaptic vesicle recycling that have been revealed and advanced by studies with styryl dyes, focussing upon synaptic vesicle fusion, retrieval, and trafficking. The greatest impact of styryl dyes has been to allow the routine visualization of endocytosis in central nerve terminals for the first time. This has revealed the kinetics of endocytosis, its underlying sequential steps, and its regulation by Ca2+. In studies of exocytosis, styryl dyes have helped distinguish between different modes of vesicle fusion, provided direct support for the quantal nature of exocytosis and endocytosis, and revealed how the probability of exocytosis varies enormously from one nerve terminal to another. Synaptic vesicle labelling with styryl dyes has helped our understanding of vesicle trafficking by allowing better understanding of different synaptic vesicle pools within the nerve terminal, vesicle intermixing, and vesicle clustering at release sites. Finally, the dyes are now being used in innovative ways to reveal further insights into synaptic plasticity.
Collapse
Affiliation(s)
- M A Cousin
- Cell Signalling Unit, Children's Medical Research Institute, Wentworthville, New South Wales, Australia
| | | |
Collapse
|
15
|
Zoccarato F, Cavallini L, Alexandre A. The pH-sensitive dye acridine orange as a tool to monitor exocytosis/endocytosis in synaptosomes. J Neurochem 1999; 72:625-33. [PMID: 9930734 DOI: 10.1046/j.1471-4159.1999.0720625.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We introduce the use of the pH-sensitive dye acridine orange (AO) to monitor exo/endocytosis of acidic neurotransmitter-containing vesicles in synaptosomes. AO is accumulated exclusively in acidic v-ATPase-dependent bafilomycin (Baf)-sensitive compartments. A fraction of the accumulated AO is rapidly released (fluorescence increase) upon depolarization with KCl in the presence of Ca2+. The release (completed in 5-6 s) is followed by reuptake to values below the predepolarization baseline. The reuptake, but not the release, is inhibited by Baf added 5 s prior to KCl. In a similar protocol, Baf does not affect the initial fast phase of glutamate release measured enzymatically, but it abolishes the subsequent slow phase. Thus, the fast AO release corresponds to the rapid phase of glutamate release and the slow phase depends on vesicle cycling. AO reuptake depends in part on the progressive accumulation of acid-loaded vesicles during cycling. Stopping exocytosis at selected times after KCl by Ca2+ removal with EGTA evidences endocytosis: Its T(1/2) was 12 +/- 0.6 s. The K(A)+, channel inhibitors 4-aminopyridine (100 microM) and alpha-dendrotoxin (10-100 nM) are known to induce glutamate release by inducing the firing of Na+ channels; their action is potentiated by the activation of protein kinase C. Also these agents promote a Ca2+-dependent AO release, which is prevented by the Na+ channel inhibitor tetrodotoxin and potentiated by 4beta-phorbol 12-myristate 13-acetate (PMA). With alpha-dendrotoxin, endocytosis was monitored by stopping exocytosis at selected times with EGTA or alternatively with Cd2+ or tetrodotoxin. The T(1/2) of endocytosis, which was unaffected by PMA, was 12 +/- 0.4 s with EGTA and Cd2+ and 9.5 +/- 0.5 s with tetrodotoxin. Protein kinase C activation appeared to facilitate vesicle turnover.
Collapse
Affiliation(s)
- F Zoccarato
- Department of Biological Chemistry, University of Padova, Italy
| | | | | |
Collapse
|
16
|
Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part I: trans-Golgi network-derived organelles undergo regulated exocytosis. J Neurosci 1998. [PMID: 9712651 DOI: 10.1523/jneurosci.18-17-06803.1998] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exocytosis is a widely observed cellular mechanism for delivering transmembrane proteins to the cell surface and releasing signaling molecules into the extracellular space. Calcium-evoked exocytosis, traditionally thought to be restricted to presynaptic specializations in neurons, has been described recently in many cells. Here, calcium-evoked dendritic exocytosis (CEDE) is visualized in living cultured hippocampal neurons. Organelles that undergo CEDE are in somata, dendrites, and perisynaptic regions, identified by using immunocytochemistry and correlative light and electron microscopy. CEDE is regulated developmentally: neurons <9 d in vitro do not show CEDE. In addition, CEDE is blocked by tetanus toxin, an inhibitor of regulated exocytosis, and nocodazole, an inhibitor of microtubule polymerization. Organelles that undergo CEDE often are found on the base of spines, putative sites of synaptic plasticity. CEDE therefore could be involved in structural and functional modification of spines and could play a role in synaptic plasticity, where it might involve changes in receptor/channel density, release of active compounds having effect on pre- and postsynaptic function, and/or growth of synaptic structures.
Collapse
|
17
|
Gad H, Löw P, Zotova E, Brodin L, Shupliakov O. Dissociation between Ca2+-triggered synaptic vesicle exocytosis and clathrin-mediated endocytosis at a central synapse. Neuron 1998; 21:607-16. [PMID: 9768846 DOI: 10.1016/s0896-6273(00)80570-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have tested whether action potential-evoked Ca2+ influx is required to initiate clathrin-mediated synaptic vesicle endocytosis in the lamprey reticulospinal synapse. Exo- and endocytosis were temporally separated by a procedure involving tonic action potential stimulation and subsequent removal of extracellular Ca2+ (Ca2+e). A low concentration of Ca2+ ([Ca2+]e of 11 microM) was found to be required for the induction of early stages of endocytosis. However, the entire endocytic process, from the formation of clathrin-coated membrane invaginations to the generation of synaptic vesicles, proceeded in the absence of action potential-mediated Ca2+ entry. Our results indicate that the membrane of synaptic vesicles newly incorporated in the plasma membrane is a sufficient trigger of clathrin-mediated synaptic vesicle endocytosis.
Collapse
Affiliation(s)
- H Gad
- The Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
18
|
Abstract
1. Changes in cell capacitance were monitored in whole-cell patch-clamp recordings from calf adrenal chromaffin cells using a software-based phase-tracking technique. Rapid endocytosis and exocytosis were observed in extracellular solutions containing either Ca2+ or Ba2+. 2. There was no significant difference in the magnitude or the time course of rapid endocytosis of cells stimulated in Ca2+ as compared to Ba2+. When cells were pretreated with caffeine and thapsigargin in order to deplete intracellular Ca2+ stores, rapid endocytosis in Ba2+ was not affected. This indicates that Ba2+ itself is capable of supporting rapid endocytosis. 3. The application of the calmodulin inhibitor calmidazolium via the intracellular pipette solution did not inhibit rapid endocytosis. Although our findings are inconsistent with an immediate requirement for calmodulin in rapid endocytosis, they do not rule out an involvement on a longer time scale. 4. While rapid endocytosis was not affected by the substitution of Ca2+ with Ba2+, the maximum rate of exocytosis was higher in cells stimulated in Ca2+ than in Ba2+. Since Ba2+ currents were much larger than Ca2+ currents during depolarizations to +10 mV (the test potential used in these experiments), Ba2+ appears to be less efficient at promoting exocytosis than Ca2+.
Collapse
Affiliation(s)
- P G Nucifora
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 East 58th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
19
|
Brodin L, Löw P, Gad H, Gustafsson J, Pieribone VA, Shupliakov O. Sustained neurotransmitter release: new molecular clues. Eur J Neurosci 1997; 9:2503-11. [PMID: 9517455 DOI: 10.1111/j.1460-9568.1997.tb01679.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemical synapses convey impulses at high frequency by exocytosis of synaptic vesicles. To avoid failure of synaptic transmission, rapid replenishment of synaptic vesicles must occur. Recent molecular perturbation studies have confirmed that the recycling of synaptic vesicles involves clathrin-mediated endocytosis. The rate of exocytosis would thus be limited by the capacity of the synaptic clathrin machinery unless vesicles could be drawn from existing pools. The mobilization of vesicles from the pool clustered at the release sites appears to provide a mechanism by which the rate of exocytosis can intermittently exceed the rate of recycling. Perturbation of synapsins causes disruption of vesicle clusters and impairment of synaptic transmission at high but not at low frequencies. Both clathrin-mediated recycling and mobilization of vesicles from the reserve pool are thus important in the replenishment of synaptic vesicles. The efficacy of each mechanism appears to differ between synapses which operate with different patterns of activity.
Collapse
Affiliation(s)
- L Brodin
- Department of Neuroscience, Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Rapid membrane recycling in nerve terminals is required to maintain rapid synaptic transmission. Following the fusion of synaptic vesicles with synaptic plasma membranes, recycling can occur via clathrin-coated vesicles (CCVs) [1-3]. The fate of these vesicles is uncertain: they could simply uncoat and acquire other proteins from the cytosol to regenerate synaptic vesicles or they may fuse with endosomal structures from which synaptic vesicles could then bud. We have purified both CCVs and synaptic vesicles from rat brain, and measured the ability of these vesicle fractions to take up the excitatory neurotransmitter glutamic acid. We found that the normalized levels of glutamate uptake by the two types of vesicle were very similar. For each vesicle fraction, uptake required ATP and Cl- and could be fully inhibited by the specific vacuolar proton pump (v-ATPase) inhibitor concanamycin. We suggest that this ability to refill vesicles with neurotransmitter at the earliest intermediate on the recycling pathway - the CCV - may allow uncoated vesicles to immediately enter the releasable pool without sacrificing the quantal nature of neurotransmitter release.
Collapse
Affiliation(s)
- I A Prior
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | | |
Collapse
|