1
|
Liang SL, Liao WL, Chen RS. Perinatal blockade of neuronal glutamine transport sex-differentially alters glutamatergic synaptic transmission and organization of neurons in the ventrolateral ventral media hypothalamus of adult rats. J Neuroendocrinol 2023; 35:e13253. [PMID: 36949648 DOI: 10.1111/jne.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Compared to male pups, perinatal female rats rely heavily on neuronal glutamine (Gln) transport for sustaining glutamatergic synaptic release in neurons of the ventrolateral ventral media nucleus of the hypothalamus (vlVMH). VMH mainly regulates female sexual behavior and increases glutamate release of perinatal hypothalamic neurons, permanently enhances dendrite spine numbers and is associated with brain and behavioral defeminization. We hypothesized that perinatal interruption of neuronal Gln transport may alter the glutamatergic synaptic transmission during adulthood. Perinatal rats of both sexes received an intracerebroventricular injection of a neuronal Gln uptake blocker, alpha-(methylamino) isobutyric acid (MeAIB, 5 mM), and were raised until adulthood. Whole-cell voltage-clamp recordings of miniature excitatory postsynaptic currents (mEPSCs) and evoked EPSCs (eEPSCs) of vlVMH neurons in adult rats with the perinatal pretreatment were conducted and neuron morphology was subjected to post hoc examination. Perinatal MeAIB treatment sex-differentially increased mEPSC frequency in males, but decreased mEPSC amplitude and synaptic Glu release in females. The pretreatment sex-differentially decreased eEPSC amplitude in males but increased AMPA/NMDA current ratio in females, and changed the morphology of vlVMH neurons of adult rats to that of the opposite sex. Most alterations in the glutamatergic synaptic transmission resembled the changes occurring during MeAIB acute exposure in perinatal rats of both sexes. We conclude that perinatal blockade of neuronal Gln transport mediates changes via different presynaptic and postsynaptic mechanisms to induce sex-differential alterations of the glutamatergic synaptic transmission and organization of vlVMH neurons in adult rats. These changes may be permanent and associated with brain and behavior feminization and/or defeminization in rats.
Collapse
Affiliation(s)
- Shu-Ling Liang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Wen-Lin Liao
- Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
2
|
Vesicular neurotransmitter transporters in Drosophila melanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183308. [PMID: 32305263 DOI: 10.1016/j.bbamem.2020.183308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
Drosophila melanogaster express vesicular transporters for the storage of neurotransmitters acetylcholine, biogenic amines, GABA, and glutamate. The large array of powerful molecular-genetic tools available in Drosophila enhances the use of this model organism for studying transporter function and regulation.
Collapse
|
3
|
A Poly-Glutamine Region in the Drosophila VAChT Dictates Fill-Level of Cholinergic Synaptic Vesicles. eNeuro 2019; 6:eN-NWR-0477-18. [PMID: 30847389 PMCID: PMC6402538 DOI: 10.1523/eneuro.0477-18.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 01/08/2023] Open
Abstract
While the primary role of vesicular transporters is to load neurotransmitters into synaptic vesicles (SVs), accumulating evidence suggests that these proteins also contribute to additional aspects of synaptic function, including vesicle release. In this study, we extend the role of the VAChT to include regulating the transmitter content of SVs. We report that manipulation of a C-terminal poly-glutamine (polyQ) region in the Drosophila VAChT is sufficient to influence transmitter content, and release frequency, of cholinergic vesicles from the terminals of premotor interneurons. Specifically, we find that reduction of the polyQ region, by one glutamine residue (13Q to 12Q), results in a significant increase in both amplitude and frequency of spontaneous cholinergic miniature EPSCs (mEPSCs) recorded in the aCC and RP2 motoneurons. Moreover, this truncation also results in evoked synaptic currents that show increased duration: consistent with increased ACh release. By contrast, extension of the polyQ region by one glutamine (13Q to 14Q) is sufficient to reduce mEPSC amplitude and frequency and, moreover, prevents evoked SV release. Finally, a complete deletion of the polyQ region (13Q to 0Q) has no obvious effects to mEPSCs, but again evoked synaptic currents show increased duration. The mechanisms that ensure SVs are filled to physiologically-appropriate levels remain unknown. Our study identifies the polyQ region of the insect VAChT to be required for correct vesicle transmitter loading and, thus, provides opportunity to increase understanding of this critical aspect of neurotransmission.
Collapse
|
4
|
Mulvihill KG. Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters. Neurochem Int 2018; 122:94-105. [PMID: 30465801 DOI: 10.1016/j.neuint.2018.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/28/2018] [Accepted: 11/08/2018] [Indexed: 01/23/2023]
Abstract
The signaling dynamics of the neurotransmitter dopamine has been established to have an important role in a variety of behavioural processes including motor control, cognition, and emotional processing. Key regulators of transmitter release and the signaling dynamics of dopamine are the plasma membrane reuptake transporter (DAT) and the vesicular monoamine transporter (VMAT2). These proteins serve to remove dopamine molecules from the extracellular and cytosolic space, respectively and both determine the amount of transmitter released from synaptic vesicles. This review provides an overview of how these transporter proteins are involved in molecular regulation and function together to govern the dynamics of vesicular release with opposing effects on the quantal size and extracellular concentration of dopamine. These transporter proteins are both focal points of convergence for a variety of regulatory molecular cascades as well as targets for many pharmacological agents. The ratio between these transporters is argued to be useful as a molecular marker for delineating dopamine functional subsystems that may differ in transmitter release patterns.
Collapse
Affiliation(s)
- Kevin G Mulvihill
- Department of Psychology, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
5
|
Liang SL. The glutamine-glutamate cycle regulates synaptic glutamate release in the ventrolateral ventromedial nucleus of the hypothalamus of perinatal female rats. J Neuroendocrinol 2018; 30:e12642. [PMID: 30168642 DOI: 10.1111/jne.12642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
The astrocytic glutamine (Gln)-glutamate (Glu) cycle (GGC) supplies Gln for the regulation of glutamatergic synaptic transmission (GST) in the adult hippocampus. Increased synaptic Glu release in the perinatal ventrolateral ventromedial nucleus of the hypothalamus (vlVMH) modulates sexual differentiation, however, whether GGC regulates GST in the perinatal vlVMH has not been determined. Sex differences in oestradiol (E2 ) levels exist in the neonatal hypothalamus, and E2 increases levels of glutamine synthetase and glutaminase, two key enzymes involved in the GGC. Thus, it is hypothesised that sexually dimorphic phenotypes may exist in glutamatergic synapses associated with the GGC in the vlVMH in perinatal rats. Whole-cell voltage-clamp recordings in vlVMH neurones in brain slices from male and female pups revealed that pharmacological disruption of the GGC by α-(methylamino) isobutyric acid (5 mmol L-1 ), which blocks neuronal Gln uptake; or by l-methionine sulphoximine (1.5 mmol L-1 ), which inhibits astrocytic Gln synthesis, decreased miniature excitatory postsynaptic current (mEPSC) amplitudes in female but not male pups. By contrast, GGC interruptions decreased evoked (e)EPSC amplitudes in both sexes following increased synaptic activity produced by a period of stimulation. In male pups, the decreased eEPSCs were attributable to reduced Glu release, as assessed by paired-pulse stimulations, whereas, in female pups, they were attributable to decreased Glu content in the synaptic vesicles, as measured by strontium-evoked mEPSCs. The l-methionine sulphoximine-mediated decrease in eEPSCs was rapidly rescued by exogenous Gln in female but not male pups. The reductions in mEPSCs and eEPSCs in female pups were accompanied by enhanced blocking effects of the low-affinity Glu AMPA receptor antagonist, γ-d-glutamylglycine, consistent with diminished Glu release. In conclusion, female, but not male pups, rely on constitutive astrocytic Gln for sustained synaptic Glu release in the vlVMH. This glutamatergic synaptic phenotype may be associated with brain and behaviour feminisation and/or defeminisation in rats.
Collapse
Affiliation(s)
- Shu-Ling Liang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Linkou, Tao-Yuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| |
Collapse
|
6
|
Vernon SW, Goodchild J, Baines RA. The VAChTY49N mutation provides insecticide-resistance but perturbs evoked cholinergic neurotransmission in Drosophila. PLoS One 2018; 13:e0203852. [PMID: 30204788 PMCID: PMC6133381 DOI: 10.1371/journal.pone.0203852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/28/2018] [Indexed: 12/05/2022] Open
Abstract
Global agriculture and the control of insect disease vectors have developed with a heavy reliance on insecticides. The increasing incidence of resistance, for virtually all insecticides, threatens both food supply and effective control of insect borne disease. CASPP ((5-chloro-1’-[(E)-3-(4-chlorophenyl)allyl]spiro[indoline-3,4’-piperidine]-1-yl}-(2-chloro-4-pyridyl)methanone)) compounds are a potential new class of neuroactive insecticide specifically targeting the Vesicular Acetylcholine Transporter (VAChT). Resistance to CASPP, under laboratory conditions, has been reported following either up-regulation of wildtype VAChT expression or the presence of a specific point mutation (VAChTY49N). However, the underlying mechanism of CASPP-resistance, together with the consequence to insect viability of achieving resistance, is unknown. In this study, we use electrophysiological characterisation of cholinergic release at Drosophila larval interneuron→motoneuron synapses to investigate the physiological implications of these two identified modes of CASPP resistance. We show that both VAChT up-regulation or the expression of VAChTY49N increases miniature (mini) release frequency. Mini frequency appears deterministic of CASPP activity. However, maintenance of SV release is not indicative of resistance in all cases. This is evidenced through expression of syntaxin or complexin mutants (sytx3-61/cpxSH1) that show similarly high mini release frequency but are not resistant to CASPP. The VAChTY49N mutation additionally disrupts action potential-evoked cholinergic release and fictive locomotor patterning through depletion of releasable synaptic vesicles. This observation suggests a functional trade-off for this point mutation, which is not seen when wildtype VAChT is up-regulated.
Collapse
Affiliation(s)
- Samuel W. Vernon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jim Goodchild
- Syngenta Crop Protection Research, Bracknell, Berkshire, United Kingdom
| | - Richard A. Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Cash F, Vernon SW, Phelan P, Goodchild J, Baines RA. Central cholinergic synaptic vesicle loading obeys the set-point model in Drosophila. J Neurophysiol 2016; 115:843-50. [PMID: 26655826 DOI: 10.1152/jn.01053.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/09/2015] [Indexed: 11/22/2022] Open
Abstract
Experimental evidence shows that neurotransmitter release, from presynaptic terminals, can be regulated by altering transmitter load per synaptic vesicle (SV) and/or through change in the probability of vesicle release. The vesicular acetylcholine transporter (VAChT) loads acetylcholine into SVs at cholinergic synapses. We investigated how the VAChT affects SV content and release frequency at central synapses in Drosophila melanogaster by using an insecticidal compound, 5Cl-CASPP, to block VAChT and by transgenic overexpression of VAChT in cholinergic interneurons. Decreasing VAChT activity produces a decrease in spontaneous SV release with no change to quantal size and no decrease in the number of vesicles at the active zone. This suggests that many vesicles are lacking in neurotransmitter. Overexpression of VAChT leads to increased frequency of SV release, but again with no change in quantal size or vesicle number. This indicates that loading of central cholinergic SVs obeys the "set-point" model, rather than the "steady-state" model that better describes loading at the vertebrate neuromuscular junction. However, we show that expression of a VAChT polymorphism lacking one glutamine residue in a COOH-terminal polyQ domain leads to increased spontaneous SV release and increased quantal size. This effect spotlights the poly-glutamine domain as potentially being important for sensing the level of neurotransmitter in cholinergic SVs.
Collapse
Affiliation(s)
- Francesca Cash
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Samuel W Vernon
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Pauline Phelan
- School of Biosciences, University of Kent, Kent, United Kingdom; and
| | - Jim Goodchild
- Syngenta Crop Protection Research, Bracknell, Berkshire, United Kingdom
| | - Richard A Baines
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
8
|
Optogenetic acidification of synaptic vesicles and lysosomes. Nat Neurosci 2015; 18:1845-1852. [PMID: 26551543 PMCID: PMC4869830 DOI: 10.1038/nn.4161] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
Abstract
Acidification is required for the function of many intracellular organelles, but methods
to acutely manipulate their intraluminal pH have not been available. Here we
present a targeting strategy to selectively express the light-driven proton pump
Arch3 on synaptic vesicles. Our new tool, pHoenix, can functionally replace
endogenous proton pumps, enabling optogenetic control of vesicular acidification
and neurotransmitter accumulation. Under physiological conditions, glutamatergic
vesicles are nearly full, as additional vesicle acidification with pHoenix only
slightly increased the quantal size. By contrast, we found that incompletely
filled vesicles exhibited a lower release probability than full vesicles,
suggesting preferential exocytosis of vesicles with high transmitter content.
Our subcellular targeting approach can be transferred to other organelles, as
demonstrated for a pHoenix variant that allows light-activated acidification of
lysosomes.
Collapse
|
9
|
Klockow JL, Hettie KS, Secor KE, Barman DN, Glass TE. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters. Chemistry 2015; 21:11446-51. [DOI: 10.1002/chem.201501379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jessica L. Klockow
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Kenneth S. Hettie
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Kristen E. Secor
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Dipti N. Barman
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Timothy E. Glass
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| |
Collapse
|
10
|
Guzman RE, Alekov AK, Filippov M, Hegermann J, Fahlke C. Involvement of ClC-3 chloride/proton exchangers in controlling glutamatergic synaptic strength in cultured hippocampal neurons. Front Cell Neurosci 2014; 8:143. [PMID: 24904288 PMCID: PMC4033211 DOI: 10.3389/fncel.2014.00143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/03/2014] [Indexed: 01/01/2023] Open
Abstract
ClC-3 is a member of the CLC family of anion channels and transporters that localizes to early and late endosomes as well as to synaptic vesicles (SV). Its genetic disruption in mouse models results in pronounced hippocampal and retinal neurodegeneration, suggesting that ClC-3 might be important for normal excitatory and/or inhibitory neurotransmission in central neurons. To characterize the role of ClC-3 in glutamate accumulation in SV we compared glutamatergic synaptic transmission in cultured hippocampal neurons from WT and Clcn3-/- mice. In Clcn3-/- neurons the amplitude and frequency of miniature as well as the amplitudes of action-potential evoked EPSCs were significantly increased as compared to WT neurons. The low-affinity competitive AMPA receptor antagonist γ-DGG reduced the quantal size of synaptic events more effectively in WT than in Clcn3-/- neurons, whereas no difference was observed for the high-affinity competitive non-NMDA antagonist NBQX. Paired pulse ratios of evoked EPSCs were significantly reduced, whereas the size of the readily releasable pool was not affected by the genetic ablation of ClC-3. Electron microscopy revealed increased volumes of SV in hippocampi of Clcn3-/- mice. Our findings demonstrate that ClC-3 controls fast excitatory synaptic transmission by regulating the amount of neurotransmitter as well as the release probability of SV. These results provide novel insights into the role of ClC-3 in synaptic transmission and identify excessive glutamate release as a likely basis of neurodegeneration in Clcn3-/-.
Collapse
Affiliation(s)
- Raul E Guzman
- Institute of Complex Systems, Zelluläre Biophysik (Institute of Complex Systems-4), Forschungszentrum Jülich Jülich, Germany
| | - Alexi K Alekov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany
| | - Mikhail Filippov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany ; Laboratory for Brain Extracellular Matrix Research, University of Nizhny Novgorod Nizhny Novgorod, Russia
| | - Jan Hegermann
- Institut für Funktionelle und Angewandte Anatomie, Medizinische Hochschule Hannover Hannover, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (Institute of Complex Systems-4), Forschungszentrum Jülich Jülich, Germany
| |
Collapse
|
11
|
VGLUTs in Peripheral Neurons and the Spinal Cord: Time for a Review. ISRN NEUROLOGY 2013; 2013:829753. [PMID: 24349795 PMCID: PMC3856137 DOI: 10.1155/2013/829753] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/25/2013] [Indexed: 02/07/2023]
Abstract
Vesicular glutamate transporters (VGLUTs) are key molecules for the incorporation of glutamate in synaptic vesicles across the nervous system, and since their discovery in the early 1990s, research on these transporters has been intense and productive. This review will focus on several aspects of VGLUTs research on neurons in the periphery and the spinal cord. Firstly, it will begin with a historical account on the evolution of the morphological analysis of glutamatergic systems and the pivotal role played by the discovery of VGLUTs. Secondly, and in order to provide an appropriate framework, there will be a synthetic description of the neuroanatomy and neurochemistry of peripheral neurons and the spinal cord. This will be followed by a succinct description of the current knowledge on the expression of VGLUTs in peripheral sensory and autonomic neurons and neurons in the spinal cord. Finally, this review will address the modulation of VGLUTs expression after nerve and tissue insult, their physiological relevance in relation to sensation, pain, and neuroprotection, and their potential pharmacological usefulness.
Collapse
|
12
|
Rapid, activity-independent turnover of vesicular transmitter content at a mixed glycine/GABA synapse. J Neurosci 2013; 33:4768-81. [PMID: 23486948 DOI: 10.1523/jneurosci.5555-12.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The release of neurotransmitter via the fusion of transmitter-filled, presynaptic vesicles is the primary means by which neurons relay information. However, little is known regarding the molecular mechanisms that supply neurotransmitter destined for vesicle filling, the endogenous transmitter concentrations inside presynaptic nerve terminals, or the dynamics of vesicle refilling after exocytosis. We addressed these issues by recording from synaptically coupled pairs of glycine/GABA coreleasing interneurons (cartwheel cells) of the mouse dorsal cochlear nucleus. We find that the plasma membrane transporter GlyT2 and the intracellular enzyme glutamate decarboxylase supply the majority of glycine and GABA, respectively. Pharmacological block of GlyT2 or glutamate decarboxylase led to rapid and complete rundown of transmission, whereas increasing GABA synthesis via intracellular glutamate uncaging dramatically potentiated GABA release within 1 min. These effects were surprisingly independent of exocytosis, indicating that prefilled vesicles re-equilibrated upon acute changes in cytosolic transmitter. Titration of cytosolic transmitter with postsynaptic responses indicated that endogenous, nonvesicular glycine/GABA levels in nerve terminals are 5-7 mm, and that vesicular transport mechanisms are not saturated under basal conditions. Thus, cytosolic transmitter levels dynamically set the strength of inhibitory synapses in a release-independent manner.
Collapse
|
13
|
GABA metabolism and transport: effects on synaptic efficacy. Neural Plast 2012; 2012:805830. [PMID: 22530158 PMCID: PMC3316990 DOI: 10.1155/2012/805830] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/19/2011] [Indexed: 11/17/2022] Open
Abstract
GABAergic inhibition is an important regulator of excitability in neuronal networks. In addition, inhibitory synaptic signals contribute crucially to the organization of spatiotemporal patterns of network activity, especially during coherent oscillations. In order to maintain stable network states, the release of GABA by interneurons must be plastic in timing and amount. This homeostatic regulation is achieved by several pre- and postsynaptic mechanisms and is triggered by various activity-dependent local signals such as excitatory input or ambient levels of neurotransmitters. Here, we review findings on the availability of GABA for release at presynaptic terminals of interneurons. Presynaptic GABA content seems to be an important determinant of inhibitory efficacy and can be differentially regulated by changing synthesis, transport, and degradation of GABA or related molecules. We will discuss the functional impact of such regulations on neuronal network patterns and, finally, point towards pharmacological approaches targeting these processes.
Collapse
|
14
|
Brumovsky PR, Robinson DR, La JH, Seroogy KB, Lundgren KH, Albers KM, Kiyatkin ME, Seal RP, Edwards RH, Watanabe M, Hökfelt T, Gebhart GF. Expression of vesicular glutamate transporters type 1 and 2 in sensory and autonomic neurons innervating the mouse colorectum. J Comp Neurol 2012; 519:3346-66. [PMID: 21800314 DOI: 10.1002/cne.22730] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) have been extensively studied in various neuronal systems, but their expression in visceral sensory and autonomic neurons remains to be analyzed in detail. Here we studied VGLUTs type 1 and 2 (VGLUT(1) and VGLUT(2) , respectively) in neurons innervating the mouse colorectum. Lumbosacral and thoracolumbar dorsal root ganglion (DRG), lumbar sympathetic chain (LSC), and major pelvic ganglion (MPG) neurons innervating the colorectum of BALB/C mice were retrogradely traced with Fast Blue, dissected, and processed for immunohistochemistry. Tissue from additional naïve mice was included. Previously characterized antibodies against VGLUT(1) , VGLUT(2) , and calcitonin gene-related peptide (CGRP) were used. Riboprobe in situ hybridization, using probes against VGLUT(1) and VGLUT(2) , was also performed. Most colorectal DRG neurons expressed VGLUT(2) and often colocalized with CGRP. A smaller percentage of neurons expressed VGLUT(1) . VGLUT(2) -immunoreactive (IR) neurons in the MPG were rare. Abundant VGLUT(2) -IR nerves were detected in all layers of the colorectum; VGLUT(1) -IR nerves were sparse. A subpopulation of myenteric plexus neurons expressed VGLUT2 protein and mRNA, but VGLUT1 mRNA was undetectable. In conclusion, we show 1) that most colorectal DRG neurons express VGLUT(2) , and to a lesser extent, VGLUT(1) ; 2) abundance of VGLUT2-IR fibers innervating colorectum; and 3) a subpopulation of myenteric plexus neurons expressing VGLUT(2). Altogether, our data suggests a role for VGLUT(2) in colorectal glutamatergic neurotransmission, potentially influencing colorectal sensitivity and motility.
Collapse
Affiliation(s)
- Pablo R Brumovsky
- Pittsburgh Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Brunk I, Höltje M, von Jagow B, Winter S, Sternberg J, Blex C, Pahner I, Ahnert-Hilger G. Regulation of vesicular monoamine and glutamate transporters by vesicle-associated trimeric G proteins: new jobs for long-known signal transduction molecules. Handb Exp Pharmacol 2007:305-25. [PMID: 16722242 DOI: 10.1007/3-540-29784-7_15] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters of neurons and neuroendocrine cells are concentrated first in the cytosol and then in either small synaptic vesicles ofpresynaptic terminals or in secretory vesicles by the activity of specific transporters of the plasma and the vesicular membrane, respectively. In the central nervous system the postsynaptic response depends--amongst other parameters-on the amount of neurotransmitter stored in a given vesicle. Neurotransmitter packets (quanta) vary over a wide range which may be also due to a regulation of vesicular neurotransmitter filling. Vesicular filling is regulated by the availability of transmitter molecules in the cytoplasm, the amount of transporter molecules and an electrochemical proton-mediated gradient over the vesicular membrane. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq. Galphao2 and Galphaq regulate vesicular monoamine transporter (VMAT) activities in brain and platelets, respectively. Galphao2 also regulates vesicular glutamate transporter (VGLUT) activity by changing its chloride dependence. It appears that the vesicular content activates the G protein, suggesting a signal transduction from the luminal site which might be mediated by a vesicular G protein-coupled receptor or as an alternative possibility by the transporter itself. Thus, G proteins control transmitter storage and thereby probablylink the regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- I Brunk
- AG Funktionelle Zellbiologie, Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kashani A, Lepicard E, Poirel O, Videau C, David JP, Fallet-Bianco C, Simon A, Delacourte A, Giros B, Epelbaum J, Betancur C, El Mestikawy S. Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol Aging 2007; 29:1619-30. [PMID: 17531353 DOI: 10.1016/j.neurobiolaging.2007.04.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 04/02/2007] [Accepted: 04/08/2007] [Indexed: 12/20/2022]
Abstract
Several lines of evidence suggest that the glutamatergic system is severely impaired in Alzheimer disease (AD). Here, we assessed the status of glutamatergic terminals in AD using the first available specific markers, the vesicular glutamate transporters VGLUT1 and VGLUT2. We quantified VGLUT1 and VGLUT2 in the prefrontal dorsolateral cortex (Brodmann area 9) of controls and AD patients using specific antiserums. A dramatic decrease in VGLUT1 and VGLUT2 was observed in AD using Western blot. Similar decreases were observed in an independent group of subjects using immunoautoradiography. The VGLUT1 reduction was highly correlated with the degree of cognitive impairment, assessed with the clinical dementia rating (CDR) score. A significant albeit weaker correlation was also observed with VGLUT2. These findings provide evidence indicating that glutamatergic systems are severely impaired in the A9 region of AD patients and that this impairment is strongly correlated with the progression of cognitive decline. Our results suggest that VGLUT1 expression in the prefrontal cortex could be used as a valuable neurochemical marker of dementia in AD.
Collapse
|
17
|
Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R. Molecular anatomy of a trafficking organelle. Cell 2006; 127:831-46. [PMID: 17110340 DOI: 10.1016/j.cell.2006.10.030] [Citation(s) in RCA: 1727] [Impact Index Per Article: 95.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 07/27/2006] [Accepted: 10/12/2006] [Indexed: 02/08/2023]
Abstract
Membrane traffic in eukaryotic cells involves transport of vesicles that bud from a donor compartment and fuse with an acceptor compartment. Common principles of budding and fusion have emerged, and many of the proteins involved in these events are now known. However, a detailed picture of an entire trafficking organelle is not yet available. Using synaptic vesicles as a model, we have now determined the protein and lipid composition; measured vesicle size, density, and mass; calculated the average protein and lipid mass per vesicle; and determined the copy number of more than a dozen major constituents. A model has been constructed that integrates all quantitative data and includes structural models of abundant proteins. Synaptic vesicles are dominated by proteins, possess a surprising diversity of trafficking proteins, and, with the exception of the V-ATPase that is present in only one to two copies, contain numerous copies of proteins essential for membrane traffic and neurotransmitter uptake.
Collapse
Affiliation(s)
- Shigeo Takamori
- Department of Neurobiology, Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The regulation of quantal size through pre- rather than postsynaptic mechanisms has recently received considerable attention as a potential mechanism for plasticity. Vesicular transporters catalyze the filling of synaptic vesicles with transmitter and are thus potential substrates for such presynaptic regulation. In this issue of Neuron, Prado et al. pursue this line of investigation and show that changes in transporter expression that alter quantal size can affect behavior.
Collapse
Affiliation(s)
- Thomas S Hnasko
- Department of Neurology, School of Medicine, University of California-San Francisco, 600 16th Street, GH-N272B, San Francisco, CA 94158, USA
| | | |
Collapse
|
19
|
Liang SL, Carlson GC, Coulter DA. Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J Neurosci 2006; 26:8537-48. [PMID: 16914680 PMCID: PMC2471868 DOI: 10.1523/jneurosci.0329-06.2006] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vesicular GABA and intraterminal glutamate concentrations are in equilibrium, suggesting inhibitory efficacy may depend on glutamate availability. Two main intraterminal glutamate sources are uptake by neuronal glutamate transporters and glutamine synthesized through the astrocytic glutamate-glutamine cycle. We examined the involvement of the glutamate-glutamine cycle in modulating GABAergic synaptic efficacy. In the absence of neuronal activity, disruption of the glutamate-glutamine cycle by blockade of neuronal glutamine transport with alpha-(methylamino) isobutyric acid (MeAIB; 5 mM) or inhibition of glutamine synthesis in astrocytes with methionine sulfoximine (MSO; 1.5 mM) had no effect on miniature IPSCs recorded in hippocampal area CA1 pyramidal neurons. However, after a period of moderate synaptic activity, application of MeAIB, MSO, or dihydrokainate (250 microM; an astrocytic glutamate transporter inhibitor) significantly reduced evoked IPSC (eIPSC) amplitudes. The MSO effect could be reversed by exogenous application of glutamine (5 mM), whereas glutamine could not rescue the eIPSC decreases induced by the neuronal glutamine transporter inhibitor MeAIB. The activity-dependent reduction in eIPSCs by glutamate-glutamine cycle blockers was accompanied by an enhanced blocking effect of the low-affinity GABA(A) receptor antagonist, TPMPA [1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid], consistent with diminished GABA release. We further corroborated this hypothesis by examining MeAIB effects on minimal stimulation-evoked quantal IPSCs (meIPSCs). We found that, in MeAIB-containing medium, moderate stimulation induced depression in potency of meIPSCs but no change in release probability, consistent with reduced vesicular GABA content. We conclude that the glutamate-glutamine cycle is a major contributor to synaptic GABA release under physiological conditions, which dynamically regulates inhibitory synaptic strength.
Collapse
|
20
|
Takamori S. VGLUTs: 'exciting' times for glutamatergic research? Neurosci Res 2006; 55:343-51. [PMID: 16765470 DOI: 10.1016/j.neures.2006.04.016] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 04/11/2006] [Accepted: 04/25/2006] [Indexed: 11/19/2022]
Abstract
Glutamate is the principal excitatory neurotransmitter in the mammalian central nervous system (CNS). Glutamate is first synthesized in the cytoplasm of presynaptic terminals before being loaded into synaptic vesicles, which fuse with the plasma membrane, releasing their contents, in response to neuronal activity. The important process of synaptic vesicle loading is mediated by a transport protein, collectively known as vesicular glutamate transporter (VGLUT). Controlling the activity of these transporters could potentially modulate the efficacy of glutamatergic neurotransmission. In recent years, three isoforms of mammalian VGLUTs have been cloned and molecularly characterized in detail. Probing these three VGLUTs has been proven to be the most reliable way of visualizing sites of glutamate release in the mammalian CNS. Immunohistochemical studies on VGLUTs suggest that glutamatergic neurons are categorized into subgroups depending on which VGLUT isoform they contain. Recent studies on VGLUT1-deficient mice have led various models to be postulated concerning the possible roles of VGLUTs in synaptic physiology, such as presynaptic regulation of quantal size and activity-dependent short-term plasticity.
Collapse
Affiliation(s)
- Shigeo Takamori
- Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
21
|
Germain D, Maysinger D, Glavinovic MI. Vesicular roundness and compound release in PC-12 cells. J Neurosci Methods 2006; 153:27-42. [PMID: 16290198 DOI: 10.1016/j.jneumeth.2005.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 09/22/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022]
Abstract
The principal goals of this study were to establish a quantitative morphological analysis of spatial and regional properties of dense core vesicles, and to use this analysis to assess whether homotypic fusion is prominent in chronically treated PC-12 cells at elevated release levels. Simple computerized image processing of electron-micrographs provided the binary images of vesicular dense cores, whilst the artificial intelligence methods were needed to determine the vesicular membranes. As in the past, the presence of large, highly irregular vesicles, provided the morphological evidence of fused vesicles, but the irregularity of vesicular shape was assessed quantitatively-from its roundness. Free space of each vesicle was determined from the distance to its nearest-neighbor, or from the size of its Voronoi polygon. Within a Voronoi polygon, each point is closer to that vesicle than to any other vesicle. Large vesicles were not less round and did not have larger free space, as expected if they result from fusion of several smaller vesicles. In conclusion, we present a novel and rigorous morphological analysis of spatial and regional properties of dense core vesicles. The results demonstrate that the homotypic fusion is not prominent in PC-12 cells, before or following a chronic treatment that enhances release.
Collapse
Affiliation(s)
- D Germain
- Department of Computer Engineering, McGill University, Montreal, Canada
| | | | | |
Collapse
|
22
|
Erickson JD, De Gois S, Varoqui H, Schafer MKH, Weihe E. Activity-dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. Neurochem Int 2006; 48:643-9. [PMID: 16546297 DOI: 10.1016/j.neuint.2005.12.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 12/21/2005] [Indexed: 11/28/2022]
Abstract
The functional balance of glutamatergic and GABAergic signaling in neuronal cortical circuits is under homeostatic control. That is, prolonged alterations of global network activity leads to opposite changes in quantal amplitude at glutamatergic and GABAergic synapses. Such scaling of excitatory and inhibitory transmission within cortical circuits serves to restore and maintain a constant spontaneous firing rate of pyramidal neurons. Our recent work shows that this includes alterations in the levels of expression of vesicular glutamate (VGLUT1 and VGLUT2) and GABA (VIAAT) transporters. Other vesicle markers, such as synaptophysin or synapsin, are not regulated in this way. Endogenous regulation at the level of mRNA and synaptic protein controls the number of transporters per vesicle and hence, the level of vesicle filling with transmitter. Bidirectional and opposite activity-dependent regulation of VGLUT1 and VIAAT expression would serve to adjust the balance of glutamate and GABA release and therefore the level of postsynaptic receptor saturation. In some excitatory neurons and synapses, co-expression of VGLUT1 and VGLUT2 occurs. Bidirectional and opposite changes in the levels of two excitatory vesicular transporters would enable individual neocortical neurons to scale up or scale down the level of vesicular glutamate storage, and thus, the amount available for release at individual synapses. Regulated vesicular transmitter storage and release via selective changes in the level of expression of vesicular glutamate and GABA transporters indicates that homeostatic plasticity of synaptic strength at cortical synapses includes presynaptic elements.
Collapse
Affiliation(s)
- Jeffrey D Erickson
- Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, 70112, USA.
| | | | | | | | | |
Collapse
|
23
|
De Gois S, Schäfer MKH, Defamie N, Chen C, Ricci A, Weihe E, Varoqui H, Erickson JD. Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. J Neurosci 2006; 25:7121-33. [PMID: 16079394 PMCID: PMC6725238 DOI: 10.1523/jneurosci.5221-04.2005] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeostatic control of pyramidal neuron firing rate involves a functional balance of feedforward excitation and feedback inhibition in neocortical circuits. Here, we reveal a dynamic scaling in vesicular excitatory (vesicular glutamate transporters VGLUT1 and VGLUT2) and inhibitory (vesicular inhibitory amino acid transporter VIAAT) transporter mRNA and synaptic protein expression in rat neocortical neuronal cultures, using a well established in vitro protocol to induce homeostatic plasticity. During the second and third week of synaptic differentiation, the predominant vesicular transporters expressed in neocortical neurons, VGLUT1 and VIAAT, are both dramatically upregulated. In mature cultures, VGLUT1 and VIAAT exhibit bidirectional and opposite regulation by prolonged activity changes. Endogenous coregulation during development and homeostatic scaling of the expression of the transporters in functionally differentiated cultures may serve to control vesicular glutamate and GABA filling and adjust functional presynaptic excitatory/inhibitory balance. Unexpectedly, hyperexcitation in differentiated cultures triggers a striking increase in VGLUT2 mRNA and synaptic protein, whereas decreased excitation reduces levels. VGLUT2 mRNA and protein are expressed in subsets of VGLUT1-encoded neocortical neurons that we identify in primary cultures and in neocortex in situ and in vivo. After prolonged hyperexcitation, downregulation of VGLUT1/synaptophysin intensity ratios at most synapses is observed, whereas a subset of VGLUT1-containing boutons selectively increase the expression of VGLUT2. Bidirectional and opposite regulation of VGLUT1 and VGLUT2 by activity may serve as positive or negative feedback regulators for cortical synaptic transmission. Intracortical VGLUT1/VGLUT2 coexpressing neurons have the capacity to independently modulate the level of expression of either transporter at discrete synapses and therefore may serve as a plastic interface between subcortical thalamic input (VGLUT2) and cortical output (VGLUT1) neurons.
Collapse
Affiliation(s)
- Stéphanie De Gois
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Daniels RW, Collins CA, Gelfand MV, Dant J, Brooks ES, Krantz DE, DiAntonio A. Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 2005; 24:10466-74. [PMID: 15548661 PMCID: PMC6730318 DOI: 10.1523/jneurosci.3001-04.2004] [Citation(s) in RCA: 267] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantal size is a fundamental parameter controlling the strength of synaptic transmission. The transmitter content of synaptic vesicles is one mechanism that can affect the physiological response to the release of a single vesicle. At glutamatergic synapses, vesicular glutamate transporters (VGLUTs) are responsible for filling synaptic vesicles with glutamate. To investigate how VGLUT expression can regulate synaptic strength in vivo, we have identified the Drosophila vesicular glutamate transporter, which we name DVGLUT. DVGLUT mRNA is expressed in glutamatergic motoneurons and a large number of interneurons in the Drosophila CNS. DVGLUT protein resides on synaptic vesicles and localizes to the presynaptic terminals of all known glutamatergic neuromuscular junctions as well as to synapses throughout the CNS neuropil. Increasing the expression of DVGLUT in motoneurons leads to an increase in quantal size that is accompanied by an increase in synaptic vesicle volume. At synapses confronted with increased glutamate release from each vesicle, there is a compensatory decrease in the number of synaptic vesicles released that maintains normal levels of synaptic excitation. These results demonstrate that (1) expression of DVGLUT determines the size and glutamate content of synaptic vesicles and (2) homeostatic mechanisms exist to attenuate the excitatory effects of excess glutamate release.
Collapse
Affiliation(s)
- Richard W Daniels
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Packaging and storage of glutamate into glutamatergic neuronal vesicles require ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. Three vesicular glutamate transporters (VGLUT1-3) have been recently identified from neuronal tissue where they play a key role to maintain the vesicular glutamate level. Recently, it has been demonstrated that glutamate signaling is also functional in peripheral neuronal and non-neuronal tissues, and occurs in sites of pituitary, adrenal, pineal glands, bone, GI tract, pancreas, skin, and testis. The glutamate receptors and VGLUTs in digestive system have been found in both neuronal and endocrinal cells. The glutamate signaling in the digestive system may have significant relevance to diabetes and GI tract motility disorders. This review will focus on the most recent update of molecular physiology of digestive VGLUTs.
Collapse
Affiliation(s)
- Tao Li
- Departments of Pediatrics, Room 3325, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
26
|
Andersen SS. Expression and purification of recombinant vesicular glutamate transporter VGLUT1 using PC12 cells and High Five insect cells. Biol Proced Online 2004; 6:105-112. [PMID: 15192755 PMCID: PMC420455 DOI: 10.1251/bpo78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 05/31/2004] [Accepted: 05/18/2004] [Indexed: 11/23/2022] Open
Abstract
In synaptic vesicles, the estimated concentration of the excitatory amino acid glutamate is 100-150 mM. It was recently discovered that VGLUT1, previously characterized as an inorganic phosphate transporter (BNPI) with 9-11 predicted transmembrane spanning domains, is capable of transporting glutamate. The expression and His-tag based purification of recombinant VGLUT1 from PC12 cells and High Five insect cells is described. Significantly better virus and protein expression was obtained using High Five rather than Sf9 insect cells. PC12 cell expressed VGLUT1 is functional but not the Baculovirus expressed protein. The lack of functionality of the Baculovirus expressed VGLUT1 is discussed. The data indicate that VGLUT1 readily oligomerizes/dimerizes. The data are discussed in the context of developing this system further in order to reconstitute vesicular glutamate uptake in vitro using lipid-detergent vesicles.
Collapse
Affiliation(s)
- Søren S.L. Andersen
- Department of Neurology and Neurological Sciences, Stanford University. Stanford, CA 94305-5489. USA
| |
Collapse
|
27
|
Ahnert-Hilger G, Höltje M, Pahner I, Winter S, Brunk I. Regulation of vesicular neurotransmitter transporters. Rev Physiol Biochem Pharmacol 2004; 150:140-60. [PMID: 14517724 DOI: 10.1007/s10254-003-0020-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotransmitters are key molecules of neurotransmission. They are concentrated first in the cytosol and then in small synaptic vesicles of presynaptic terminals by the activity of specific neurotransmitter transporters of the plasma and the vesicular membrane, respectively. It has been shown that postsynaptic responses to single neurotransmitter packets vary over a wide range, which may be due to a regulation of vesicular neurotransmitter filling. Vesicular filling depends on the availability of transmitter molecules in the cytoplasm and the active transport into secretory vesicles relying on a proton gradient. In addition, it is modulated by vesicle-associated heterotrimeric G proteins, Galphao2 and Galphaq, which regulate VMAT activities in brain and platelets, respectively, and may also be involved in the regulation of VGLUTs. It appears that the vesicular content activates the G protein, suggesting a signal transduction form the luminal site which might be mediated by a vesicular G-protein coupled receptor or, as an alternative, possibly by the transporter itself. These novel functions of G proteins in the control of transmitter storage may link regulation of the vesicular content to intracellular signal cascades.
Collapse
Affiliation(s)
- G Ahnert-Hilger
- Institut für Anatomie und Neurowissenschaftliches Zentrum der Charité, Humboldt-Universität zu Berlin, Philippstr. 12, 10115 Berlin, Germany.
| | | | | | | | | |
Collapse
|
28
|
Wojcik SM, Rhee JS, Herzog E, Sigler A, Jahn R, Takamori S, Brose N, Rosenmund C. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc Natl Acad Sci U S A 2004; 101:7158-63. [PMID: 15103023 PMCID: PMC406482 DOI: 10.1073/pnas.0401764101] [Citation(s) in RCA: 389] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantal neurotransmitter release at excitatory synapses depends on glutamate import into synaptic vesicles by vesicular glutamate transporters (VGLUTs). Of the three known transporters, VGLUT1 and VGLUT2 are expressed prominently in the adult brain, but during the first two weeks of postnatal development, VGLUT2 expression predominates. Targeted deletion of VGLUT1 in mice causes lethality in the third postnatal week. Glutamatergic neurotransmission is drastically reduced in neurons from VGLUT1-deficient mice, with a specific reduction in quantal size. The remaining activity correlates with the expression of VGLUT2. This reduction in glutamatergic neurotransmission can be rescued and enhanced with overexpression of VGLUT1. These results show that the expression level of VGLUTs determines the amount of glutamate that is loaded into vesicles and released and thereby regulates the efficacy of neurotransmission.
Collapse
Affiliation(s)
- S M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute for Experimental Medicine, Hermann-Rein Strasse 3, D-37075 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Axmacher N, Stemmler M, Engel D, Draguhn A, Ritz R. Transmitter Metabolism as a Mechanism of Synaptic Plasticity: A Modeling Study. J Neurophysiol 2004; 91:25-39. [PMID: 13679396 DOI: 10.1152/jn.00797.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nervous system adapts to experience by changes in synaptic strength. The mechanisms of synaptic plasticity include changes in the probability of transmitter release and in postsynaptic responsiveness. Experimental and neuropharmacological evidence points toward a third variable in synaptic efficacy: changes in presynaptic transmitter concentration. Several groups, including our own, have reported changes in the amplitude and frequency of postsynaptic (miniature) events indicating that alterations in transmitter content cause alterations in vesicular transmitter content and vesicle dynamics. It is, however, not a priori clear how transmitter metabolism will affect vesicular transmitter content and how this in turn will affect pre- and postsynaptic functions. We therefore have constructed a model of the presynaptic terminal incorporating vesicular transmitter loading and the presynaptic vesicle cycle. We hypothesize that the experimentally observed synaptic plasticity after changes in transmitter metabolism puts predictable restrictions on vesicle loading, cytoplasmic–vesicular transmitter concentration gradient, and on vesicular cycling or release. The results of our model depend on the specific mechanism linking presynaptic transmitter concentration to vesicular dynamics, that is, alteration of vesicle maturation or alteration of release. It also makes a difference whether differentially filled vesicles are detected and differentially processed within the terminal or whether vesicle filling acts back onto the terminal by presynaptic autoreceptors. Therefore, the model allows one to decide, at a given synapse, how transmitter metabolism is linked to presynaptic function and efficacy.
Collapse
Affiliation(s)
- Nikolai Axmacher
- Johannes-Müller-Institut für Physiologie, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
30
|
Van der Kloot W. Loading and recycling of synaptic vesicles in the Torpedo electric organ and the vertebrate neuromuscular junction. Prog Neurobiol 2003; 71:269-303. [PMID: 14698765 DOI: 10.1016/j.pneurobio.2003.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In vertebrate motor nerve terminals and in the electromotor nerve terminals of Torpedo there are two major pools of synaptic vesicles: readily releasable and reserve. The electromotor terminals differ in that the reserve vesicles are twice the diameter of the readily releasable vesicles. The vesicles contain high concentrations of ACh and ATP. Part of the ACh is brought into the vesicle by the vesicular ACh transporter, VAChT, which exchanges two protons for each ACh, but a fraction of the ACh seems to be accumulated by different, unexplored mechanisms. Most of the vesicles in the terminals do not exchange ACh or ATP with the axoplasm, although ACh and ATP are free in the vesicle interior. The VAChT is controlled by a multifaceted regulatory complex, which includes the proteoglycans that characterize the cholinergic vesicles. The drug (-)-vesamicol binds to a site on the complex and blocks ACh exchange. Only 10-20% of the vesicles are in the readily releasable pool, which therefore is turned over fairly rapidly by spontaneous quantal release. The turnover can be followed by the incorporation of false transmitters into the recycling vesicles, and by the rate of uptake of FM dyes, which have some selectivity for the two recycling pathways. The amount of ACh loaded into recycling vesicles in the readily releasable pool decreases during stimulation. The ACh content of the vesicles can be varied over eight-fold range without changing vesicle size.
Collapse
Affiliation(s)
- William Van der Kloot
- Department of Physiology and Biophysics, SUNY at Stony Brook, 8661 SUNT, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
31
|
Shimizu H, Kawamura S, Ozaki K. An essential role of Rab5 in uniformity of synaptic vesicle size. J Cell Sci 2003; 116:3583-90. [PMID: 12876219 DOI: 10.1242/jcs.00676] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rab5 small GTPase is a famous regulator of endocytic vesicular transport from plasma membrane to early endosomes. In neurons, Rab5 is found not only on endocytic vesicles in cell bodies but also on synaptic vesicles in nerve terminals. However, the function of Rab5 on synaptic vesicles remains unclear. Here, we elucidate the function of Rab5 on synaptic vesicles with in vivo and in vitro experiments using Drosophila photoreceptor cells. Functional inhibition of Rab5 with Rab5N142I, a dominant negative version of Drosophila Rab5, induced enlargement of synaptic vesicles. This enlargement was, however, suppressed by enhancing synaptic vesicle recycling under light illumination. In addition, synaptic vesicles prepared from Rab5N142I-expressing flies exhibited homotypic fusion in vitro. These results indicate that Rab5 functions to keep the size of synaptic vesicles uniform by preventing their homotypic fusion. By contrast, Rab5 was not involved in the endocytic reformation of synaptic vesicles, contrary to expectation from its conventional function. Furthermore, we electrophysiologically and behaviourally showed that the function of Rab5 is essential for efficient signal transmission across synapses.
Collapse
Affiliation(s)
- Hideyuki Shimizu
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
32
|
Pahner I, Höltje M, Winter S, Takamori S, Bellocchio EE, Spicher K, Laake P, Nürnberg B, Ottersen OP, Ahnert-Hilger G, Nümberg B. Functional G-protein heterotrimers are associated with vesicles of putative glutamatergic terminals: implications for regulation of transmitter uptake. Mol Cell Neurosci 2003; 23:398-413. [PMID: 12837624 DOI: 10.1016/s1044-7431(03)00059-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Changes in the vesicular transmitter content modulate synaptic strength and may contribute to synaptic plasticity. Several transporters mediating transmitter uptake into small synaptic vesicles (SSVs) have been identified but their regulation is largely unknown. Here we show by quantitative immunoelectron microscopy that the heterotrimeric G-protein subunits Galphao(2), Galpha(q/11), Gbeta(2), and Ggamma(7) are associated with vesicle-containing areas in terminals of cerebellar parallel fibers. These terminals also contain the vesicular glutamate transporter 1 (VGLUT1). In contrast, SSVs of climbing fiber terminals that contain VGLUT2 express one of the Gbeta-subunits Gbeta(1), Gbeta(3), or Gbeta(4), Ggamma(7), and one Galpha-subunit, probably Galphao(2). Glutamate uptake into cerebellar SSVs was inhibited by more than 50% by GMppNp, an activator of G proteins. Thus, vesicle populations with different subtypes of vesicular glutamate transporters contain functional G proteins with distinct subunit profiles. Heterotrimeric G proteins may play an important role in the control of vesicular filling.
Collapse
Affiliation(s)
- Ingrid Pahner
- Institut für Anatomie/Neurowissenschaftliches Zentrum der Charité, Humboldt-Universität zu Berlin, Philippstrasse 12, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Neurons must maintain a supply of neurotransmitter in their presynaptic terminals to fill synaptic vesicles. GABA is taken up into inhibitory terminals by transporters or is synthesized from glutamate by glutamic acid decarboxylase. Here we report that glutamate transporters supply GABAergic terminals in the hippocampus with glutamate, which is then used to synthesize GABA for filling synaptic vesicles. Glutamate transporter antagonists reduced IPSC and miniature IPSC (mIPSC) amplitudes, consistent with a reduction in the amount of GABA packaged into each synaptic vesicle. This reduction occurred rapidly and independently of synaptic activity, suggesting that modulation of vesicular GABA content does not require vesicle release and refilling. Raising extracellular glutamate levels increased mIPSC amplitudes by enhancing glutamate uptake and, consequently, GABA synthesis. These results indicate that neuronal glutamate transporters strengthen inhibitory synapses in response to extracellular glutamate. This modulation appears to occur under normal conditions and may constitute a negative feedback mechanism to combat hyperexcitability.
Collapse
|
34
|
Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses. J Neurosci 2002. [PMID: 12451127 DOI: 10.1523/jneurosci.22-23-10267.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quantal size and variation at chemical synapses could be determined presynaptically by the amount of neurotransmitter released from synaptic vesicles or postsynaptically by the number of receptors available for activation. We investigated these possibilities at Drosophila glutamatergic neuromuscular synapses formed by two separate motor neurons innervating the same muscle cell. At wild-type synapses of the two neurons we found a difference in quantal size corresponding to a difference in mean synaptic vesicle volume. The same finding applied to two mutants (dlg and lap) in which synaptic vesicle size was altered. Quantal variances at wild-type and mutant synapses were similar and could be accounted for by variation in vesicular volume. The linear relationship between quantal size and vesicular volume for several different genotypes indicates that glutamate is regulated homeostatically to the same intravesicular concentration in all cases. Thus functional differences in synaptic strength among glutamatergic neurons of Drosophila result in part from intrinsic differences in vesicle size.
Collapse
|
35
|
Bravo D, Parsons SM. Microscopic kinetics and structure-function analysis in the vesicular acetylcholine transporter. Neurochem Int 2002; 41:285-9. [PMID: 12176068 DOI: 10.1016/s0197-0186(02)00058-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vesicular acetylcholine transporter (VAChT) resides in synaptic vesicles of cholinergic nerve terminals. It carries out vesicular storage of ACh. The amount of ACh stored determines, along with other factors, the amount of ACh released. Knowledge of the structure-function relationship in VAChT might enable pharmacological regulation of ACh storage and release at the level of VAChT. To this end, a quantitative model for the individual steps in the overall transport cycle of VAChT has been developed. Because of the particular values of the microscopic rate constants in the model, structure-function analysis of VAChT can be misleading. Attempts to devise a pro-storage strategy to increase ACh release from cholinergic nerve terminals should take into account the microscopic kinetics of this transporter.
Collapse
Affiliation(s)
- Dawn Bravo
- Department of Chemistry and Biochemistry, The Neuroscience Research Institute, University of California, 93106-9510, Santa Barbara, CA, USA
| | | |
Collapse
|
36
|
Pahner I, Höltje M, Winter S, Nürnberg B, Ottersen OP, Ahnert-Hilger G. Subunit composition and functional properties of G-protein heterotrimers on rat chromaffin granules. Eur J Cell Biol 2002; 81:449-56. [PMID: 12234016 DOI: 10.1078/0171-9335-00269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric G-proteins at the plasma membrane serve as switches between heptahelical receptors and intracellular signal cascades. Likewise endomembrane associated G-proteins may transduce signals from intracellular compartments provided they consist of a functional trimer. Using quantitative immunoelectron microscopy we found heterotrimeric G-protein subunits Galpha2, Galpha(q/11), Gbeta2 and Gbeta5 to reside on secretory granules in chromaffin cells of rat adrenal glands. Thus rat chromaffin granules are equipped with functional G-proteins that consist of a specific alpha-, beta- and probably gamma-subunit combination. Serotonin uptake into a crude rat chromaffin granule preparation was inhibited by activated Galphao2 (10 nM) to nearly the same extent as by GMppNp (50 microM) whereas GDPbetaS was ineffective. The data support the idea that vesicular G-proteins directly regulate the transmitter content of secretory vesicles. In this respect Galphao2 appears to be the main regulator of vesicular momoamine transporter activity.
Collapse
Affiliation(s)
- Ingrid Pahner
- Institut für Anatomie/Neurowissenschaftliches Zentrum der Charité, Humboldt Universität zu Berlin, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Van der Kloot W, Molgó J, Cameron R, Colasante C. Vesicle size and transmitter release at the frog neuromuscular junction when quantal acetylcholine content is increased or decreased. J Physiol 2002; 541:385-93. [PMID: 12042346 PMCID: PMC2290324 DOI: 10.1113/jphysiol.2001.014407] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We investigated whether the synaptic vesicles at the neuromuscular junction change size when their acetylcholine (ACh) content is altered. The size of the miniature endplate potential (MEPP) increased 3- or 4-fold in preparations pre-treated in a hypertonic solution in which the anion was gluconate. We measured the dimensions of synaptic vesicles in such preparations and in controls. The size of the vesicles and size distribution were indistinguishable. Quanta contained about half of the usual amount of ACh in preparations stimulated in the presence of hemicholinium-3, an inhibitor of choline uptake, or in NH(4)(+), which diminishes the proton gradient for ACh uptake into the vesicles. Neither treatment changed the size of the synaptic vesicles. ACh content and vesicle size were both decreased in preparations stimulated in (-)-vesamicol, an inhibitor of ACh uptake in vesicles. Since the other inhibitors decreased ACh content by a similar amount without altering vesicle size, (-)-vesamicol may decrease vesicle size by acting on another target. We also found that a hypertonic solution in which the anion was aspartate increased quantal size similar to gluconate. Both anions have high hydration energy and a large volume. When these treatments increased quantal size the mean 20-80 % rise time of MEPPs recorded with an extracellular electrode was 170 micros. In the controls it was 97 micros. Perhaps some of the added ACh is bound within the vesicles, which slows the rise. Our major conclusion is that ACh content can change notably without any change in the size of the synaptic vesicles.
Collapse
Affiliation(s)
- William Van der Kloot
- Department of Physiology and Biophysics, SUNY at Stony Brook, Stony Brook, NY 11794-8661, USA.
| | | | | | | |
Collapse
|
38
|
Rehavi M, Roz N, Weizman A. Chronic clozapine, but not haloperidol, treatment affects rat brain vesicular monoamine transporter 2. Eur Neuropsychopharmacol 2002; 12:261-8. [PMID: 12007678 DOI: 10.1016/s0924-977x(02)00021-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We compared the effect of chronic clozapine and haloperidol treatment on the expression of rat brain vesicular monoamine transporter (VMAT(2)) as well as on the membranal presynaptic transporters for serotonin, dopamine and noradrenaline. Rats were treated for 21 days with clozapine (25 mg/kg), haloperidol (0.5 mg/kg) or saline. VMAT(2) expression was assessed on the protein level by high affinity [3H]dihydrotetrabenazine binding using autoradiography, and on the mRNA level by in situ hybridization. The densities of the monoamine transporters were evaluated by autoradiography using specific ligands. Clozapine administration led to an increase in [3H]TBZOH binding in the nucleus accumbens, prefrontal cortex and striatum, whereas haloperidol had no effect on VMAT(2) binding capacity. The clozapine-induced increase in VMAT(2) was accompanied by a parallel increase in the membrane serotonin transporter in the prefrontal cortex and the striatum. Haloperidol induced an increase in the serotonin transporter in the striatum and the core of the nucleus accumbens. The special effect of clozapine on VMAT(2) expression may be relevant to its unique therapeutic advantages.
Collapse
Affiliation(s)
- Moshe Rehavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
39
|
Kriebel ME, Keller B, Silver RB, Fox GQ, Pappas GD. Porocytosis: a new approach to synaptic function. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2001; 38:20-32. [PMID: 11750925 DOI: 10.1016/s0165-0173(01)00066-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We propose a new approach to address the question of how a single quantum of neurotransmitter is secreted from a presynaptic terminal whose clustered secretory vesicles are locally bathed in high levels of calcium ions [Proceedings of the Symposium on Bioelectrogenesis (1961) 297-309; The Physiology of Synapses (1964) Chapters 1, 4, 5, 6; How the Self Controls its Brain (1994) Chapters 1, 4, 5, 6; Science 256 (1992) 677-679]. This hypothesis, which we term 'porocytosis', posits that the post-synaptic quantal response results from transmitter secreted through an array of docked vesicle/secretory pore complexes. The transient increase in calcium ions, which results from the voltage activated calcium channels, stimulates the array of secretory pores to simultaneously flicker open to pulse transmitter. Porocytosis is consistent with the quantal nature of presynaptic secretion and transmission, and with available biochemical, morphological and physiological evidence. It explains the frequency dependency of quantal size as a function of the secretion process. It permits a signature amount of transmitter release for different frequencies allowing a given synapse to be employed in different behavioral responses. The porocytosis hypothesis permits fidelity of secretion and the seemingly apposed characteristic of synaptic plasticity. The dynamics inherent in an array insure a constant quantal size as a function of the number of units within the array. In this hypothesis, plasticity is a consequence of concurrent pre- and post-synaptic changes due to a change in array size. Changes in the number of docked vesicle-secretory pore complexes composing the array can explain facilitation, depletion, graded excitation-secretion and long term plasticity.
Collapse
Affiliation(s)
- M E Kriebel
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
40
|
Tabares L, Alés E, Lindau M, Alvarez de Toledo G. Exocytosis of catecholamine (CA)-containing and CA-free granules in chromaffin cells. J Biol Chem 2001; 276:39974-9. [PMID: 11524425 DOI: 10.1074/jbc.m106498200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent evidence suggests that endocytosis in neuroendocrine cells and neurons can be tightly coupled to exocytosis, allowing rapid retrieval from the plasma membrane of fused vesicles for future use. This can be a much faster mechanism for membrane recycling than classical clathrin-mediated endocytosis. During a fast exo-endocytotic cycle, the vesicle membrane does not fully collapse into the plasma membrane; nevertheless, it releases the vesicular contents through the fusion pore. Once the vesicle is depleted of transmitter, its membrane is recovered without renouncing its identity. In this report, we show that chromaffin cells contain catecholamine-free granules that retain their ability to fuse with the plasma membrane. These catecholamine-free granules represent 7% of the total population of fused vesicles, but they contributed to 47% of the fusion events when the cells were treated with reserpine for several hours. We propose that rat chromaffin granules that transiently fuse with the plasma membrane preserve their exocytotic machinery, allowing another round of exocytosis.
Collapse
Affiliation(s)
- L Tabares
- Department of Physiology and Biophysics, School of Medicine, University of Seville, Avenida Sánchez Pizjuán 4, 41009 Seville, Spain
| | | | | | | |
Collapse
|
41
|
Kunugi H, Ishida S, Akahane A, Nanko S. Exon/intron boundaries, novel polymorphisms, and association analysis with schizophrenia of the human synaptic vesicle monoamine transporter (SVMT) gene. Mol Psychiatry 2001; 6:456-60. [PMID: 11443533 DOI: 10.1038/sj.mp.4000895] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Revised: 01/25/2001] [Accepted: 01/29/2001] [Indexed: 11/09/2022]
Abstract
The synaptic vesicular monoamine transporter (SVMT), alternatively vesicular monoamine transporter 2 (VMAT2), pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Altered functions of SVMT have been implicated in the pathogensis of several neuropsychiatric diseases. We determined exon/intron boundaries of the human SVMT gene and performed mutational analysis for the exonic and neighboring intronic regions of the gene. Detected polymorphisms were subject to association analysis with schizophrenia in a family-based design. The human SVMT gene consists, of 16 exons and 15 introns, which is consistent with the murine SVMT gene. When mutational analysis was performed by the single strand conformational polymorphism (SSCP) analysis, we found two and four single nucleotide polymorphisms (SNPs) in exons and neighboring introns, respectively. Neither exonic SNP results in an amino acid change. In family-based association analyses in a sample of 50 Japanese schizophrenics and their parents, no significant association was found for the intronic polymorphisms. Our data suggest that there is no common polymorphism in the SVMT gene affecting the primary structure of the human SVMT protein. Furthermore, we obtained no evidence for the major effect of the novel polymorphisms on susceptibility to schizophrenia.
Collapse
Affiliation(s)
- H Kunugi
- Department of Psychiatry, Teikyo University School of Medicine 11-1, Kaga 2 Chome, Itabashi-ku, Tokyo, 173-8605, Japan.
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- T S Otis
- Department of Neurobiology, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095, USA.
| |
Collapse
|
43
|
Abstract
Sequence-related vesicular acetylcholine transporter (VAChT) and vesicular monoamine transporter (VMAT) transport neurotransmitter substrates into secretory vesicles. This review seeks to identify shared and differentiated aspects of the transport mechanisms. VAChT and VMAT exchange two protons per substrate molecule with very similar initial velocity kinetics and pH dependencies. However, vesicular gradients of ACh in vivo are much smaller than the driving force for uptake and vesicular gradients of monoamines, suggesting the existence of a regulatory mechanism in ACh storage not found in monoamine storage. The importance of microscopic rather than macroscopic kinetics in structure-function analysis is described. Transporter regions affecting binding or translocation of substrates, inhibitors, and protons have been found with photoaffinity labeling, chimeras, and single-site mutations. VAChT and VMAT exhibit partial structural and mechanistic homology with lactose permease, which belongs to the same sequence-defined superfamily, despite opposite directions of substrate transport. The vesicular transporters translocate the first proton using homologous aspartates in putative transmembrane domain X (ten), but they translocate the second proton using unknown residues that might not be conserved between them. Comparative analysis of the VAChT and VMAT transport mechanisms will aid understanding of regulation in neurotransmitter storage.
Collapse
Affiliation(s)
- S M Parsons
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
44
|
Abstract
We have studied the origin of quantal variability for small synaptic vesicles (SSVs) and large dense-cored vesicles (LDCVs). As a model, we used serotonergic Retzius neurons of leech that allow for combined amperometrical and morphological analyses of quantal transmitter release. We find that the transmitter amount released by a SSV varies proportionally to the volume of the vesicle, suggesting that serotonin is stored at a constant intravesicular concentration and is completely discharged during exocytosis. Transmitter discharge from LDCVs shows a higher degree of variability than is expected from their size distribution, and bulk release from LDCVs is slower than release from SSVs. On average, differences in the transmitter amount released from SSVs and LDCVs are proportional to the size differences of the organelles, suggesting that transmitter is stored at similar concentrations in SSVs and LDCVs.
Collapse
Affiliation(s)
- D Bruns
- Max-Planck Institute for Biophysical Chemistry, Department of Neurobiology, Göttingen, Germany.
| | | | | | | |
Collapse
|
45
|
Krantz DE, Waites C, Oorschot V, Liu Y, Wilson RI, Tan PK, Klumperman J, Edwards RH. A phosphorylation site regulates sorting of the vesicular acetylcholine transporter to dense core vesicles. J Cell Biol 2000; 149:379-96. [PMID: 10769030 PMCID: PMC2175167 DOI: 10.1083/jcb.149.2.379] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vesicular transport proteins package classical neurotransmitters for regulated exocytotic release, and localize to at least two distinct types of secretory vesicles. In PC12 cells, the vesicular acetylcholine transporter (VAChT) localizes preferentially to synaptic-like microvesicles (SLMVs), whereas the closely related vesicular monoamine transporters (VMATs) localize preferentially to large dense core vesicles (LDCVs). VAChT and the VMATs contain COOH-terminal, cytoplasmic dileucine motifs required for internalization from the plasma membrane. We now show that VAChT undergoes regulated phosphorylation by protein kinase C on a serine (Ser-480) five residues upstream of the dileucine motif. Replacement of Ser-480 by glutamate, to mimic the phosphorylation event, increases the localization of VAChT to LDCVs. Conversely, the VMATs contain two glutamates upstream of their dileucine-like motif, and replacement of these residues by alanine conversely reduces sorting to LDCVs. The results provide some of the first information about sequences involved in sorting to LDCVs. Since the location of the transporters determines which vesicles store classical neurotransmitters, a change in VAChT trafficking due to phosphorylation may also influence the mode of transmitter release.
Collapse
Affiliation(s)
- David E. Krantz
- Department of Neurology, University of California at San Francisco School of Medicine, San Francisco, California 94143-0435
- Department of Psychiatry, University of California at San Francisco School of Medicine, San Francisco, California 94143-0435
| | - Clarissa Waites
- Graduate Programs in Neuroscience, Cell Biology, and Biomedical Sciences, University of California at San Francisco School of Medicine, San Francisco, California 94143-0435
| | - Viola Oorschot
- Department of Cell Biology, University Medical Center and Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Yongjian Liu
- Department of Neurology, University of California at San Francisco School of Medicine, San Francisco, California 94143-0435
| | - Rachel I. Wilson
- Department of Physiology, University of California at San Francisco School of Medicine, San Francisco, California 94143-0435
| | - Philip K. Tan
- Department of Neurology, University of California at San Francisco School of Medicine, San Francisco, California 94143-0435
| | - Judith Klumperman
- Department of Cell Biology, University Medical Center and Institute of Biomembranes, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Robert H. Edwards
- Graduate Programs in Neuroscience, Cell Biology, and Biomedical Sciences, University of California at San Francisco School of Medicine, San Francisco, California 94143-0435
- Department of Neurology, University of California at San Francisco School of Medicine, San Francisco, California 94143-0435
- Department of Physiology, University of California at San Francisco School of Medicine, San Francisco, California 94143-0435
| |
Collapse
|
46
|
Abstract
Monoamines such as noradrenaline and serotonin are stored in secretory vesicles and released by exocytosis. Two related monoamine transporters, VMAT1 and VMAT2, mediate vesicular transmitter uptake. Previously we have reported that in the rat pheochromocytoma cell line PC 12 VMAT1, localized to peptide-containing secretory granules, is controlled by the heterotrimeric G-protein Go(2). We now show that in BON cells, a human serotonergic neuroendocrine cell line derived from a pancreatic tumor expressing both transporters on large, dense-core vesicles, VMAT2 is even more sensitive to G-protein regulation than VMAT1. The activity of both transporters is only downregulated by Galphao(2), whereas comparable concentrations of Galphao(1) are without effect. In serotonergic raphe neurons in primary culture VMAT2 is also downregulated by pertussis toxin-sensitive Go(2). By electron microscopic analysis from prefrontal cortex we show that VMAT2 and Galphao(2) associate preferentially to locally recycling small synaptic vesicles in serotonergic terminals. In addition, Go(2)-dependent modulation of VMAT2 also works when using a crude synaptic vesicle preparation from this brain area. We conclude that regulation of monoamine uptake by the heterotrimeric G proteins is a general feature of monoaminergic neurons that controls the content of both large, dense-core and small synaptic vesicles.
Collapse
|
47
|
Van der Kloot W, Colasante C, Cameron R, Molgó J. Recycling and refilling of transmitter quanta at the frog neuromuscular junction. J Physiol 2000; 523 Pt 1:247-58. [PMID: 10673559 PMCID: PMC2269784 DOI: 10.1111/j.1469-7793.2000.00247.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Fluorescent dyes have been used at the frog neuromuscular junction to label synaptic vesicular membrane. Retrieved membrane is reformed into vesicles, which are released along with pre-existing vesicles. Consequently, if vesicular refilling with acetylcholine (ACh) is depressed by inhibitors, two sizes of quanta should be released: normal and smaller. As recycling continues the fraction of smaller size quanta should increase exponentially. 2. We enhanced the rate of quantal release by elevating the K+ concentration. The principal inhibitors were (-)-vesamicol (VES), hemicholinium-3 (HC3), and NH4+. Quantal size measurements were fitted to one and to two cumulative lognormal probability distribution functions. When two fitted better, the statistical significance assessment took into account the three additional parameters used in calculating the fit. 3. After recycling in the presence of inhibitor, many sets were fitted better by two lognormal functions. As recycling continued, the fraction of the miniature endplate potential voltage-time integrals ( MEPPs) in the larger sub-population decreased exponentially. 4. The size of the releasable pool was estimated by counting the quanta released by carbonyl cyanide m-chlorophenylhydrazone (CCCP). This was compared to pool sizes calculated from the inhibitor experiments. The two estimates of pool size were indistinguishable, with mean values ranging from about 170,000 to 270,000. 5. With all of the treatments tested, the means of the sizes in the smaller sub-population of MEPPs were about 1/3 those of the larger sub-populations. 6. Recycling synaptic vesicles appear to be incorporated into the releasable pool from which they have roughly the same probability of release as the pre-existing vesicles.
Collapse
Affiliation(s)
- W Van der Kloot
- Department of Physiology and Biophysics, SUNY, Stony Brook, NY 11794-8661, USA.
| | | | | | | |
Collapse
|
48
|
Travis ER, Wang YM, Michael DJ, Caron MG, Wightman RM. Differential quantal release of histamine and 5-hydroxytryptamine from mast cells of vesicular monoamine transporter 2 knockout mice. Proc Natl Acad Sci U S A 2000; 97:162-7. [PMID: 10618388 PMCID: PMC26633 DOI: 10.1073/pnas.97.1.162] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent availability of mice lacking the neuronal form of the vesicular monoamine transporter 2 (VMAT2) affords the opportunity to study its roles in storage and release. Carbon fiber microelectrodes were used to measure individual secretory events of histamine and 5-hydroxytryptamine (5-HT) from VMAT2-expressing mast cells as a model system for quantal release. VMAT2 is indispensable for monoamine storage because mast cells from homozygous (VMAT2(-/-)) mice, while undergoing granule-cell fusion, do not release monoamines. Cells from heterozygous animals (VMAT2(+/-)) secrete lower amounts of monoamine per granule than cells from wild-type controls. Investigation of corelease of histamine and 5-HT from granules in VMAT2(+/-) cells revealed 5-HT quantal size was reduced more than that of histamine. Thus, although vesicular transport is the limiting factor determining quantal size of 5-HT and histamine release, intragranular association with the heparin matrix also plays a significant role.
Collapse
Affiliation(s)
- E R Travis
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
Synaptic vesicles, which have been a paradigm for the fusion of a vesicle with its target membrane, also serve as a model for understanding the formation of a vesicle from its donor membrane. Synaptic vesicles, which are formed and recycled at the periphery of the neuron, contain a highly restricted set of neuronal proteins. Insight into the trafficking of synaptic vesicle proteins has come from studying not only neurons but also neuroendocrine cells, which form synaptic-like microvesicles (SLMVs). Formation and recycling of synaptic vesicles/SLMVs takes place from the early endosome and the plasma membrane. The cytoplasmic machinery of synaptic vesicle/SLMV formation and recycling has been studied by a variety of experimental approaches, in particular using cell-free systems. This has revealed distinct machineries for membrane budding and fission. Budding is mediated by clathrin and clathrin adaptors, whereas fission is mediated by dynamin and its interacting protein SH3p4, a lysophosphatidic acid acyl transferase.
Collapse
Affiliation(s)
- M J Hannah
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| | | | | |
Collapse
|
50
|
Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci U S A 1999; 96:1716-21. [PMID: 9990090 PMCID: PMC15571 DOI: 10.1073/pnas.96.4.1716] [Citation(s) in RCA: 413] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian protein ZnT3 resides on synaptic vesicle membranes of zinc-containing neurons, suggesting its possible role in vesicular zinc transport. We show here that histochemically reactive zinc, corresponding to the zinc found within synaptic vesicles, was undetectable in the brains of mice with targeted disruption of the ZnT3 gene. Total zinc levels in the hippocampus and cortex of these mice were reduced by about 20%. The ultrastructure of mossy fiber boutons, which normally store the highest levels of vesicular zinc, was unaffected. Mice with one normal ZnT3 allele had reduced levels of ZnT3 protein on synaptic vesicle membranes and had intermediate amounts of vesicular zinc. These results demonstrate that ZnT3 is required for transport of zinc into synaptic vesicles and suggest that vesicular zinc concentration is determined by the abundance of ZnT3.
Collapse
Affiliation(s)
- T B Cole
- Department of Biochemistry, The University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|