1
|
Argunsah AÖ, Israely I. Homosynaptic plasticity induction causes heterosynaptic changes at the unstimulated neighbors in an induction pattern and location-specific manner. Front Cell Neurosci 2023; 17:1253446. [PMID: 37829671 PMCID: PMC10564986 DOI: 10.3389/fncel.2023.1253446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023] Open
Abstract
Dendritic spines are highly dynamic structures whose structural and functional fluctuations depend on multiple factors. Changes in synaptic strength are not limited to synapses directly involved in specific activity patterns. Unstimulated clusters of neighboring spines in and around the site of stimulation can also undergo alterations in strength. Usually, when plasticity is induced at single dendritic spines with glutamate uncaging, neighboring spines do not show any significant structural fluctuations. Here, using two-photon imaging and glutamate uncaging at single dendritic spines of hippocampal pyramidal neurons, we show that structural modifications at unstimulated neighboring spines occur and are a function of the temporal pattern of the plasticity-inducing stimulus. Further, the relative location of the unstimulated neighbors within the local dendritic segment correlates with the extent of heterosynaptic plasticity that is observed. These findings indicate that naturalistic patterns of activity at single spines can shape plasticity at nearby clusters of synapses, and may play a role in priming local inputs for further modifications.
Collapse
Affiliation(s)
- Ali Özgür Argunsah
- Laboratory of Neuronal Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Zurich, Switzerland
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Türkiye
| | - Inbal Israely
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
2
|
Argunsah AÖ, Israely I. The temporal pattern of synaptic activation determines the longevity of structural plasticity at dendritic spines. iScience 2023; 26:106835. [PMID: 37332599 PMCID: PMC10272476 DOI: 10.1016/j.isci.2023.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 01/18/2023] [Accepted: 05/04/2023] [Indexed: 06/20/2023] Open
Abstract
Learning is thought to involve physiological and structural changes at individual synapses. Synaptic plasticity has predominantly been studied using regular stimulation patterns, but neuronal activity in the brain normally follows a Poisson distribution. We used two-photon imaging and glutamate uncaging to investigate the structural plasticity of single dendritic spines using naturalistic activation patterns sampled from a Poisson distribution. We showed that naturalistic activation patterns elicit structural plasticity that is both NMDAR and protein synthesis-dependent. Furthermore, we uncovered that the longevity of structural plasticity is dependent on the temporal structure of the naturalistic pattern. Finally, we found that during the delivery of the naturalistic activity, spines underwent rapid structural growth that predicted the longevity of plasticity. This was not observed with regularly spaced activity. These data reveal that different temporal organizations of the same number of synaptic stimulations can produce rather distinct short and long-lasting structural plasticity.
Collapse
Affiliation(s)
- Ali Özgür Argunsah
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
- Laboratory of Neuronal Circuit Assembly, Brain Research Institute (HiFo), University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Neuroscience Center Zurich (ZNZ), Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Inbal Israely
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
- Department of Pathology and Cell Biology, Department of Neuroscience, in the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3
|
Mondal Y, Pena RFO, Rotstein HG. Temporal filters in response to presynaptic spike trains: interplay of cellular, synaptic and short-term plasticity time scales. J Comput Neurosci 2022; 50:395-429. [DOI: 10.1007/s10827-022-00822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 10/16/2022]
|
4
|
Feedforward Thalamocortical Connectivity Preserves Stimulus Timing Information in Sensory Pathways. J Neurosci 2019; 39:7674-7688. [PMID: 31270157 DOI: 10.1523/jneurosci.3165-17.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/26/2019] [Accepted: 05/10/2019] [Indexed: 11/21/2022] Open
Abstract
Reliable timing of cortical spikes in response to visual events is crucial in representing visual inputs to the brain. Spikes in the primary visual cortex (V1) need to occur at the same time within a repeated visual stimulus. Two classical mechanisms are employed by the cortex to enhance reliable timing. First, cortical neurons respond reliably to a restricted set of stimuli through their preference for certain patterns of membrane potential due to their intrinsic properties. Second, intracortical networking of excitatory and inhibitory neurons induces lateral inhibition that, through the timing and strength of IPSCs and EPSCs, produces sparse and reliably timed cortical neuron spike trains to be transmitted downstream. Here, we describe a third mechanism that, through preferential thalamocortical synaptic connectivity, enhances the trial-to-trial timing precision of cortical spikes in the presence of spike train variability within each trial that is introduced between LGN neurons in the retino-thalamic pathway. Applying experimentally recorded LGN spike trains from the anesthetized cat to a detailed model of a spiny stellate V1 neuron, we found that output spike timing precision improved with increasing numbers of convergent LGN inputs. The improvement was consistent with the predicted proportionality of [Formula: see text] for n LGN source neurons. We also found connectivity configurations that maximize reliability and that generate V1 cell output spike trains quantitatively similar to the experimental recordings. Our findings suggest a general principle, namely intra-trial variability among converging inputs, that increases stimulus response precision and is widely applicable to synaptically connected spiking neurons.SIGNIFICANCE STATEMENT The early visual pathway of the cat is favorable for studying the effects of trial-to-trial variability of synaptic inputs and intra-trial variability of thalamocortical connectivity on information transmission into the visual cortex. We have used a detailed model to show that there are preferred combinations of the number of thalamic afferents and the number of synapses per afferent that maximize the output reliability and spike-timing precision of cortical neurons. This provides additional insights into how synchrony in thalamic spike trains can reduce trial-to-trial variability to produce highly reliable reporting of sensory events to the cortex. The same principles may apply to other converging pathways where temporally jittered spike trains can reliably drive the downstream neuron and improve temporal precision.
Collapse
|
5
|
Schmidt M, Bakker R, Shen K, Bezgin G, Diesmann M, van Albada SJ. A multi-scale layer-resolved spiking network model of resting-state dynamics in macaque visual cortical areas. PLoS Comput Biol 2018; 14:e1006359. [PMID: 30335761 PMCID: PMC6193609 DOI: 10.1371/journal.pcbi.1006359] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/12/2018] [Indexed: 11/28/2022] Open
Abstract
Cortical activity has distinct features across scales, from the spiking statistics of individual cells to global resting-state networks. We here describe the first full-density multi-area spiking network model of cortex, using macaque visual cortex as a test system. The model represents each area by a microcircuit with area-specific architecture and features layer- and population-resolved connectivity between areas. Simulations reveal a structured asynchronous irregular ground state. In a metastable regime, the network reproduces spiking statistics from electrophysiological recordings and cortico-cortical interaction patterns in fMRI functional connectivity under resting-state conditions. Stable inter-area propagation is supported by cortico-cortical synapses that are moderately strong onto excitatory neurons and stronger onto inhibitory neurons. Causal interactions depend on both cortical structure and the dynamical state of populations. Activity propagates mainly in the feedback direction, similar to experimental results associated with visual imagery and sleep. The model unifies local and large-scale accounts of cortex, and clarifies how the detailed connectivity of cortex shapes its dynamics on multiple scales. Based on our simulations, we hypothesize that in the spontaneous condition the brain operates in a metastable regime where cortico-cortical projections target excitatory and inhibitory populations in a balanced manner that produces substantial inter-area interactions while maintaining global stability. The mammalian cortex fulfills its complex tasks by operating on multiple temporal and spatial scales from single cells to entire areas comprising millions of cells. These multi-scale dynamics are supported by specific network structures at all levels of organization. Since models of cortex hitherto tend to concentrate on a single scale, little is known about how cortical structure shapes the multi-scale dynamics of the network. We here present dynamical simulations of a multi-area network model at neuronal and synaptic resolution with population-specific connectivity based on extensive experimental data which accounts for a wide range of dynamical phenomena. Our model elucidates relationships between local and global scales in cortex and provides a platform for future studies of cortical function.
Collapse
Affiliation(s)
- Maximilian Schmidt
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Wako-Shi, Saitama, Japan
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
| | - Rembrandt Bakker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Kelly Shen
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | - Gleb Bezgin
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Markus Diesmann
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Sacha Jennifer van Albada
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany
- * E-mail:
| |
Collapse
|
6
|
Papaleonidopoulos V, Trompoukis G, Koutsoumpa A, Papatheodoropoulos C. A gradient of frequency-dependent synaptic properties along the longitudinal hippocampal axis. BMC Neurosci 2017; 18:79. [PMID: 29233091 PMCID: PMC5727934 DOI: 10.1186/s12868-017-0398-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
Background The hippocampus is a functionally heterogeneous brain structure and specializations of the intrinsic neuronal network may crucially support the functional segregation along the longitudinal axis of the hippocampus. Short-term synaptic plasticity plays fundamental roles in information processing and may be importantly involved in diversifying the properties of local neuronal network along the hippocampus long axis. Therefore, we aimed to examine the properties of the cornu ammonis 1 (CA1) synapses along the entire dorsoventral axis of the rat hippocampus using field excitatory postsynaptic potentials from transverse rat hippocampal slices and a frequency stimulation paradigm. Results Applying a ten-pulse stimulus train at frequencies from 0.1 to 100 Hz to the Schaffer collaterals we found a gradually diversified pattern of frequency-dependent synaptic effects along the dorsoventral hippocampus axis. The first conditioned response was facilitated along the whole hippocampus for stimulus frequencies 10–40 Hz. However, steady-state responses or averaged responses generally ranged from maximum synaptic facilitation in the most dorsal segment of the hippocampus to maximum synaptic depression in the most ventral segment of the hippocampus. In particular, dorsal synapses facilitated for stimulus frequency up to 50 Hz while they depressed at higher frequencies (75–100 Hz). Facilitation at dorsal synapses was maximal at stimulus frequency of 20 Hz. On the contrary, the most ventral synapses showed depression regardless of the stimulus frequency, only displaying a transient facilitation at the beginning of 10–50 Hz stimulation. Importantly, the synapses in the medial hippocampus displayed a transitory behavior. Finally, as a whole the hippocampal synapses maximally facilitated at 20 Hz and increasingly depressed at 50–100 Hz. Conclusion The short-term synaptic dynamics change gradually along the hippocampal long axis in a frequency-dependent fashion conveying distinct properties of information processing to successive segments of the structure, thereby crucially supporting functional segregation along the dorsoventral axis of the hippocampus.
Collapse
Affiliation(s)
| | - George Trompoukis
- Department of Medicine, Laboratory of Physiology, University of Patras, 26504, Rion, Greece
| | - Andriana Koutsoumpa
- Department of Medicine, Laboratory of Physiology, University of Patras, 26504, Rion, Greece
| | | |
Collapse
|
7
|
Hu Y, Zeng F, Chang C, Dong W, Li X, Pan F, Li G. Diverse Synaptic Plasticity Induced by the Interplay of Ionic Polarization and Doping at Salt-Doped Electrolyte/Semiconducting Polymer Interface. ACS OMEGA 2017; 2:746-754. [PMID: 30023614 PMCID: PMC6044774 DOI: 10.1021/acsomega.6b00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/14/2017] [Indexed: 06/08/2023]
Abstract
Pt/Ca2+-polyethylene oxide/polymer poly[3-hexylthiophene-2,5-diyl]/Pt devices were fabricated, and their pulse responses were studied. The discharging peak, represented by the postsynaptic current (PSC), first increases and then decreases with increasing input number in a pulse train. The weight of the PSC decreased for low-frequency stimulations but increased for high-frequency stimulations. However, the peak of the negative differential resistance during the charging process varied following the opposite trend. These behaviors suggested the ability for transferring the signal bidirectionally, confirming the equivalence between the ionic kinetics of our device and the transmitter kinetics of one kind of synapse. A facilitation (F)-depression (D) interplay model corresponding to the ionic polarization and doping interplay at the electrolyte/semiconducting polymer interface was adopted to successfully mimic the weight modification of the PSC. The simulation results showed that the observed synaptic plasticity was caused by the great disparity between the recovery time constants of F and D (τ F and τ D ). Moreover, such an interplay could inspire the features of responses to post-tetanic stimulations. Our study suggested a means to realize synaptic computation.
Collapse
Affiliation(s)
- Yuandong Hu
- Laboratory
of Advanced Materials (MOE), School of Materials Science
and Engineering, and Center for Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing 100084, People’s
Republic of China
| | - Fei Zeng
- Laboratory
of Advanced Materials (MOE), School of Materials Science
and Engineering, and Center for Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing 100084, People’s
Republic of China
- Key
Laboratory of Microelectronic Devices & Integrated Technology,
Institute of Microelectronics, Chinese Academy
of Sciences, Beijing 100029, People’s Republic of China
| | - Chiating Chang
- Laboratory
of Advanced Materials (MOE), School of Materials Science
and Engineering, and Center for Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing 100084, People’s
Republic of China
| | - Wenshuai Dong
- Laboratory
of Advanced Materials (MOE), School of Materials Science
and Engineering, and Center for Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing 100084, People’s
Republic of China
| | - Xiaojun Li
- Laboratory
of Advanced Materials (MOE), School of Materials Science
and Engineering, and Center for Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing 100084, People’s
Republic of China
| | - Feng Pan
- Laboratory
of Advanced Materials (MOE), School of Materials Science
and Engineering, and Center for Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing 100084, People’s
Republic of China
| | - Guoqi Li
- Laboratory
of Advanced Materials (MOE), School of Materials Science
and Engineering, and Center for Brain Inspired Computing Research (CBICR), Tsinghua University, Beijing 100084, People’s
Republic of China
| |
Collapse
|
8
|
Deng PY, Klyachko VA. The diverse functions of short-term plasticity components in synaptic computations. Commun Integr Biol 2014. [DOI: 10.4161/cib.15870] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Ricoy UM, Frerking ME. Distinct roles for Cav2.1-2.3 in activity-dependent synaptic dynamics. J Neurophysiol 2014; 111:2404-13. [PMID: 24523520 DOI: 10.1152/jn.00335.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic transmission throughout most of the CNS is steeply dependent on presynaptic calcium influx through the voltage-gated calcium channels Cav2.1-Cav2.3. In addition to triggering exocytosis, this calcium influx also recruits short-term synaptic plasticity. During the complex patterns of presynaptic activity that occur in vivo, several forms of plasticity combine to generate a synaptic output that is dynamic, in which the size of a given excitatory postsynaptic potential (EPSP) in response to a given spike depends on the short-term history of presynaptic activity. It remains unclear whether the different Cav2 channels play distinct roles in defining these synaptic dynamics and, if so, under what conditions different Cav2 family members most effectively determine synaptic output. We examined these questions by measuring the effects of calcium channel-selective toxins on synaptic transmission at the Schaffer collateral synapse in hippocampal slices from adult mice in response to both low-frequency stimulation and complex stimulus trains derived from in vivo recordings. Blockade of Cav2.1 had a greater inhibitory effect on synaptic transmission during low-frequency components of the stimulus train than on synaptic transmission during high-frequency components of the train, indicating that Cav2.1 had a greater fractional contribution to synaptic transmission at low frequencies than at high frequencies. Relative to Cav2.1, Cav2.2 had a disproportionately reduced contribution to synaptic transmission at frequencies >20 Hz, while Cav2.3 had a disproportionately increased contribution to synaptic transmission at frequencies >1 Hz. These activity-dependent effects of different Cav2 family members shape the filtering characteristics of GABAB receptor-mediated presynaptic inhibition. Thus different Cav2 channels vary in their coupling to synaptic transmission over different frequency ranges, with consequences for the frequency tuning of both synaptic dynamics and presynaptic neuromodulation.
Collapse
Affiliation(s)
- Ulises M Ricoy
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Matthew E Frerking
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
10
|
Horikawa Y. Exponential transient propagating oscillations in a ring of spiking neurons with unidirectional slow inhibitory synaptic coupling. J Theor Biol 2011; 289:151-9. [PMID: 21893072 DOI: 10.1016/j.jtbi.2011.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/13/2011] [Accepted: 08/20/2011] [Indexed: 11/15/2022]
Abstract
Transient oscillations in a ring of spiking neuron models unidirectionally coupled with slow inhibitory synapses are studied. There are stable spatially fixed steady firing-resting states and unstable symmetric propagating firing-resting states. In transients, firing-resting patterns rotate in the direction of coupling (propagating oscillations), the duration of which increases exponentially with the number of neurons (exponential transients). Further, the duration of randomly generated transient propagating oscillations is distributed in a power law form and spatiotemporal noise of intermediate strength sustains propagating oscillations. These properties agree with those of transient propagating waves in a ring of sigmoidal neuron models.
Collapse
Affiliation(s)
- Yo Horikawa
- Faculty of Engineering, Kagawa University, Takamatsu 761-0396, Japan.
| |
Collapse
|
11
|
Deng PY, Klyachko VA. The diverse functions of short-term plasticity components in synaptic computations. Commun Integr Biol 2011; 4:543-8. [PMID: 22046457 DOI: 10.4161/cib.4.5.15870] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/17/2011] [Indexed: 01/18/2023] Open
Abstract
Short-term plasticity (STP) comprises several rapid synaptic processes that operate on millisecond-to-minute timescales and modulate synaptic efficacy in an activity-dependent manner. Facilitation and augmentation are two major STP components in central synapses that work to enhance synaptic strength, while various forms of short-term depression work to decrease it. These multiple components of STP interact to perform a variety of synaptic computations. Using a modeling approach in excitatory hippocampal synapses, we recently described the contributions of individual STP components to synaptic operations. In this mini-review, we summarize the recent findings that revealed a wide palette of functions that STP components play in neural operations and discuss their roles in information processing, working memory and decision making.
Collapse
Affiliation(s)
- Pan-Yue Deng
- Department of Biomedical Engineering, Cell Biology and Physiology; Center for Investigation of Membrane Excitability Disorders; Washington University School of Medicine; St. Louis, MO USA
| | | |
Collapse
|
12
|
Ricoy UM, Mao P, Manczak M, Reddy PH, Frerking ME. A transgenic mouse model for Alzheimer's disease has impaired synaptic gain but normal synaptic dynamics. Neurosci Lett 2011; 500:212-5. [PMID: 21741442 DOI: 10.1016/j.neulet.2011.06.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
The chronic accumulation of amyloid beta (Aβ) peptides is thought to underlie much of the pathology of Alzheimer's disease (AD), and transgenic mice overexpressing Aβ show both behavioral defects and impairments in hippocampal synaptic transmission. In the present study, we examined excitatory transmission at the Schaffer collateral synapse in acute hippocampal slices from APP(Swe)/PS-1(A246E) transgenic mice to determine whether the synaptic impairment in these mice is due to a reduction in the activity-independent synaptic gain, or to a change in the activity-dependent synaptic dynamics. We observed a strong reduction in synaptic transmission in slices from APP(Swe)/PS-1(A246E) mice compared to those from their wildtype littermates. However, there was no resolvable change in the synaptic dynamics observed in response to either simple or complex stimulus trains. We conclude that the chronic accumulation of Aβ impairs synaptic transmission through a reduction in the synaptic gain, while preserving the synaptic dynamics.
Collapse
Affiliation(s)
- Ulises M Ricoy
- Department of Behavioral Neuroscience, Oregon Health and Science University, 3181 SW Sam Jackson Pk Rd., Portland, OR 97239, United States
| | | | | | | | | |
Collapse
|
13
|
Mejias JF, Kappen HJ, Torres JJ. Irregular dynamics in up and down cortical states. PLoS One 2010; 5:e13651. [PMID: 21079740 PMCID: PMC2975677 DOI: 10.1371/journal.pone.0013651] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/02/2010] [Indexed: 11/19/2022] Open
Abstract
Complex coherent dynamics is present in a wide variety of neural systems. A typical example is the voltage transitions between up and down states observed in cortical areas in the brain. In this work, we study this phenomenon via a biologically motivated stochastic model of up and down transitions. The model is constituted by a simple bistable rate dynamics, where the synaptic current is modulated by short-term synaptic processes which introduce stochasticity and temporal correlations. A complete analysis of our model, both with mean-field approaches and numerical simulations, shows the appearance of complex transitions between high (up) and low (down) neural activity states, driven by the synaptic noise, with permanence times in the up state distributed according to a power-law. We show that the experimentally observed large fluctuation in up and down permanence times can be explained as the result of sufficiently noisy dynamical synapses with sufficiently large recovery times. Static synapses cannot account for this behavior, nor can dynamical synapses in the absence of noise.
Collapse
Affiliation(s)
- Jorge F Mejias
- Centre for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
14
|
Klistorner A, Arvind H, Garrick R, Yiannikas C, Paine M, Graham SL. Remyelination of optic nerve lesions: spatial and temporal factors. Mult Scler 2010; 16:786-95. [DOI: 10.1177/1352458510371408] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Optic neuritis provides an in vivo model to study demyelination. The effects of myelin loss and recovery can be measured by the latency of the multifocal visual evoked potentials. We investigated whether the extent of initial inflammatory demyelination in optic neuritis correlates with the remyelinating capacity of the optic nerve. Forty subjects with acute unilateral optic neuritis and good visual recovery underwent multifocal visual evoked potentials testing at 1, 3, 6 and 12 months. Average latency changes were analyzed. Extensive latency delay at baseline significantly improved over time with rate of recovery slowed down after 6 months. Magnitude of latency recovery was independent of initial latency delay. Latency recovery ranged from 7 to 17 ms across the whole patient cohort (average = 11.3 (3.1) ms) despite the fact that in a number of cases the baseline latency delay was more than 35—40 ms. Optic nerve lesions tend to remyelinate at a particular rate irrespective of the size of the initial demyelinated zone with smaller lesions accomplishing recovery more completely. The extent of the initial inflammatory demyelination is probably the single most important factor determining completeness of remyelination. The time period favorable to remyelination is likely to be within the first 6 months after the attack.
Collapse
Affiliation(s)
- Alexandr Klistorner
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Sydney, Australia,
| | - Hemamalini Arvind
- Department of Ophthalmology, Save Sight Institute, University of Sydney, Sydney, Australia
| | | | | | - Mark Paine
- Royal Eye and Ear Hospital, Melbourne, Australia
| | - Stuart L Graham
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| |
Collapse
|
15
|
Park SW, Lee HN, Jeon GS, Sim KB, Cho IH, Cho SS. The expression of transferrin binding protein in the turtle nervous system. ACTA ACUST UNITED AC 2009; 72:65-76. [DOI: 10.1679/aohc.72.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sang Wook Park
- Department of Anatomy, Seoul National University College of Medicine
| | - Ha Na Lee
- Department of Anatomy, Seoul National University College of Medicine
| | - Gye Sun Jeon
- Department of Anatomy, Seoul National University College of Medicine
| | - Ki-Bum Sim
- Department of Neurosurgery, Jeju National University School of Medicine
| | - Ik-Hyun Cho
- Department of Anatomy, Jeju National University School of Medicine
| | - Sa Sun Cho
- Department of Anatomy, Seoul National University College of Medicine
- Department of Anatomy, Jeju National University School of Medicine
| |
Collapse
|
16
|
Song D, Marmarelis VZ, Berger TW. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: Computational study. J Comput Neurosci 2008; 26:1-19. [PMID: 18506609 DOI: 10.1007/s10827-008-0097-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/08/2008] [Accepted: 05/01/2008] [Indexed: 12/01/2022]
Abstract
Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input-output data. Results show that the non-parametric models accurately and efficiently replicate the input-output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP.
Collapse
Affiliation(s)
- Dong Song
- Department of Biomedical Engineering, University of Southern California, 403 Hedco Neuroscience Building, Los Angeles, CA 90089, USA.
| | | | | |
Collapse
|
17
|
Expression of transferrin binding protein in the capillaries of the brain in the developing chick embryo. Neurochem Res 2008; 33:2288-93. [PMID: 18459044 DOI: 10.1007/s11064-008-9716-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 04/10/2008] [Indexed: 10/22/2022]
Abstract
Transferrin-binding protein (TfBP) has been shown to be a novel protein, structurally related to the chicken heat shock protein 108. The physiological function of this protein, however, has not yet been established. Antiserum to TfBP selectively stains transferrin- and iron-rich oligodendrocytes and choroidal epithelium in the adult and embryonic chick brain, suggesting a role for this protein in transferrin and iron storage in these cells. In this study, we further demonstrate TfBP-immunoreactivity (IR) in the blood vessels of the embryonic chick central nervous system. A strong TfBP-IR was present in blood vessels from E6, declined from E10 and was absent by E18. Thus, the expression of the TfBP in the blood vessels precedes its expression in the oligodendrocytes. At the subcellular level, TfBP-IR was confined to the cytoplasm of capillary pericytes while the Tf-receptor IR was associated with the capillary endothelium of the brain. The up-regulated expression of TfBP, together with the Tf-receptor of the brain capillaries, suggests that pericytes may be associated with the high iron uptake required for the metabolic demands of the developing brain.
Collapse
|
18
|
Lange-Asschenfeldt C, Schipke CG, Riepe MW. Multimodal gain control at the hippocampal Schaffer collateral-CA1 synapse. Neurosci Lett 2007; 416:101-5. [PMID: 17293046 DOI: 10.1016/j.neulet.2007.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 12/18/2006] [Accepted: 01/26/2007] [Indexed: 01/02/2023]
Abstract
Information processing at central nervous system synapses is shaped by long-lasting modifications, such as long-term potentiation and short-lived and putatively synapse-specific modifications by various forms of short-term plasticity, such as facilitation, potentiation, and depression. Using an extracellular paired-pulse facilitation (PPF) protocol at the Schaffer collateral-CA1 (SC) connection in acute hippocampal slices in mice, we extend previous reports of optimal signal gain at intermediate interpulse intervals obtained at single SC synapses to the network level. Moreover, maximum signal gain changed when the input intensity was altered. We found further that facilitation decreased with increasing stimulus amplitude and duration in an exact exponential fashion when varied at a fixed interpulse interval. Variation of these intensity parameters accounted for significant changes in PPF adding a spatial dimension to time-based synaptic filter characteristics. Thus, this synapse functions as an amplitude window discriminator with a low-level aperture in combination with a band-pass frequency filter. By providing mathematical functions for the characteristic presynaptic parameters frequency, stimulus amplitude, and pulse duration at the network level our results lay ground for future studies on pharmacologically, genetically, or otherwise altered animal models.
Collapse
Affiliation(s)
- Christian Lange-Asschenfeldt
- Department of Psychiatry and Psychotherapy, Heinrich Heine University, Bergische Landstr 2, Düsseldorf, Germany.
| | | | | |
Collapse
|
19
|
Biró ÁA, Holderith NB, Nusser Z. Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J Neurosci 2006; 26:12487-96. [PMID: 17135411 PMCID: PMC2630420 DOI: 10.1523/jneurosci.3106-06.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The amount of neurotransmitter released after the arrival of an action potential affects the strength and the trial-to-trial variability of postsynaptic responses. Most studies examining the dependence of synaptic neurotransmitter concentration on the release probability (P(r)) have focused on glutamatergic synapses. Here we asked whether univesicular or multivesicular release characterizes transmission at hippocampal GABAergic synapses. We used multiple probability functional analysis to derive quantal parameters at inhibitory connections between cannabinoid receptor- and cholecystokinin (CCK)-expressing interneurons and CA3 pyramidal cells. After the recordings, the cells were visualized and reconstructed at the light-microscopic level, and the number of boutons mediating the IPSCs was determined using electron microscopy (EM). The number of active zones (AZs) per CCK-immunopositive bouton was determined from three-dimensional EM reconstructions, thus allowing the calculation of the total number of AZs for each pair. Our results reveal an approximate fivefold discrepancy between the numbers of functionally determined release sites (17.4 +/- 3.2) and structurally identified AZs (3.7 +/- 0.9). Channel modeling predicts that a fivefold to sevenfold increase in the peak synaptic GABA concentration is required for the fivefold enhancement of the postsynaptic responses. Kinetic analysis of the unitary IPSCs indicates that the increase in synaptic GABA concentration is most likely attributable to multivesicular release. This change in the synaptic GABA concentration transient together with extremely low postsynaptic receptor occupancy permits a P(r)-dependent scaling of the postsynaptic response generated at a single hippocampal GABAergic synaptic contact.
Collapse
Affiliation(s)
- Ágota A. Biró
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Noémi B. Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| |
Collapse
|
20
|
Klyachko VA, Stevens CF. Excitatory and feed-forward inhibitory hippocampal synapses work synergistically as an adaptive filter of natural spike trains. PLoS Biol 2006; 4:e207. [PMID: 16774451 PMCID: PMC1479695 DOI: 10.1371/journal.pbio.0040207] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 04/20/2006] [Indexed: 11/18/2022] Open
Abstract
Short-term synaptic plasticity (STP) is an important mechanism for modifying neural circuits during computation. Although STP is much studied, its role in the processing of complex natural spike patterns is unknown. Here we analyze the responses of excitatory and inhibitory hippocampal synapses to natural spike trains at near-physiological temperatures. Our results show that excitatory and inhibitory synapses express complementary sets of STP components that selectively change synaptic strength during epochs of high-frequency discharge associated with hippocampal place fields. In both types of synapses, synaptic strength rapidly alternates between a near-constant level during low activity and another near-constant, but elevated (for excitatory synapses) or reduced (for inhibitory synapses) level during high-frequency epochs. These history-dependent changes in synaptic strength are largely independent of the particular temporal pattern within the discharges, and occur concomitantly in the two types of synapses. When excitatory and feed-forward inhibitory synapses are co-activated within the hippocampal feed-forward circuit unit, the net effect of their complementary STP is an additional increase in the gain of excitatory synapses during high-frequency discharges via selective disinhibition. Thus, excitatory and feed-forward inhibitory hippocampal synapses in vitro act synergistically as an adaptive filter that operates in a switch-like manner and is selective for high-frequency epochs. Excitatory and inhibitory hippocampal synapses express complementary short term plasticity components that cooperate to amplify excitatory transmission in response to naturalistic stimulation.
Collapse
Affiliation(s)
- Vitaly A Klyachko
- Howard Hughes Medical Institute and Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, California, USA.
| | | |
Collapse
|
21
|
|
22
|
Dekay JGT, Chang TC, Mills N, Speed HE, Dobrunz LE. Responses of excitatory hippocampal synapses to natural stimulus patterns reveal a decrease in short-term facilitation and increase in short-term depression during postnatal development. Hippocampus 2006; 16:66-79. [PMID: 16261553 DOI: 10.1002/hipo.20132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Schaffer collateral excitatory synapses onto CA1 pyramidal cells are subject to significant modulation by short-term plasticity. This presynaptic, history-dependent modulation of neurotransmitter release causes synaptic transmission to be sensitive to the frequency of the input. As a result, temporally irregular input patterns, such as those observed in vivo, produce synaptic responses over a very wide dynamic range that reflect a balance of short-term facilitation and short-term depression. The neonatal period is an important developmental period in the hippocampus, when functional representations of an animal's environment are being established through exploratory behavior. The strength of excitatory synapses and their modulation by short-term plasticity are critical to this process. One form of short-term plasticity, paired-pulse facilitation, has been shown to decrease as juvenile rats mature into young adults. However, little is known about the neonatal modulation of other forms of short-term plasticity, including the responses to temporally complex stimuli. We examined developmental modulation of the short-term dynamics of Schaffer collateral excitatory synapses onto CA1 pyramidal cells in acute hippocampal slices, using both constant frequency stimuli and natural stimulus patterns that were taken from in vivo recording of spike patterns of hippocampal cells. In response to constant frequency stimulation, synapses in slices from young adult rats (P28-P35) showed less short-term depression than did those in slices from juveniles (P12-P18). However, when the natural stimulus pattern (containing a wide mix of frequencies) was used, synapses from young adults instead showed more short-term depression and less short-term facilitation than did juveniles. Comparing the natural stimulus pattern responses with constant frequency stimulation of a similar frequency, we found that the average responses were similar in young adults (both showed modest depression). However, in juveniles, the natural pattern produced robust facilitation while constant frequency stimulation caused a large short-term depression. Our results reveal that there are developmental changes both in individual forms of short-term plasticity and in the relative balance between short-term facilitation and short-term depression that will alter the signal transfer characteristics of these synapses.
Collapse
Affiliation(s)
- James G T Dekay
- Department of Neurobiology and Civitan International Research Center, University of Alabama, Birmingham, Alabama 35210, USA
| | | | | | | | | |
Collapse
|
23
|
Braunstein A, Zecchina R. Learning by message passing in networks of discrete synapses. PHYSICAL REVIEW LETTERS 2006; 96:030201. [PMID: 16486667 DOI: 10.1103/physrevlett.96.030201] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Indexed: 05/06/2023]
Abstract
We show that a message-passing process allows us to store in binary "material" synapses a number of random patterns which almost saturate the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g., [EQUATION: SEE TEXT]). The algorithm can be turned into an online-fault tolerant-learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.
Collapse
|
24
|
Abstract
Since the identification of the polyglutamine repeat expansion responsible for Kennedy disease (KD) more than a decade ago, several laboratories have created animal models for KD. The slowly progressive nature of KD, its X-linked dominant mode of inheritance, and its recently elucidated hormone dependence have made the modeling of this lower motor neuron disease uniquely challenging. Several models have been generated in which variations in specificity, age of onset, and rate of progression have been achieved. Animal models that precisely reproduce the motor neuron specificity, delayed onset, and slow progression of disease may not support preclinical therapeutics testing, whereas models with rapidly progressing symptoms may preclude the ability to fully elucidate pathogenic pathways. Drosophila models of KD provide unique opportunities to use the power of genetics to identify pathogenic pathways at work in KD. This paper reviews the new wealth of transgenic mouse and Drosophila models for KD. Whereas differences, primarily in neuropathological findings, exist in these models, these differences may be exploited to begin to elucidate the most relevant pathological features of KD.
Collapse
Affiliation(s)
- Diane E Merry
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
25
|
Indiveri G, Chicca E, Douglas R. A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses With Spike-Timing Dependent Plasticity. ACTA ACUST UNITED AC 2006; 17:211-21. [PMID: 16526488 DOI: 10.1109/tnn.2005.860850] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a mixed-mode analog/digital VLSI device comprising an array of leaky integrate-and-fire (I&F) neurons, adaptive synapses with spike-timing dependent plasticity, and an asynchronous event based communication infrastructure that allows the user to (re)configure networks of spiking neurons with arbitrary topologies. The asynchronous communication protocol used by the silicon neurons to transmit spikes (events) off-chip and the silicon synapses to receive spikes from the outside is based on the "address-event representation" (AER). We describe the analog circuits designed to implement the silicon neurons and synapses and present experimental data showing the neuron's response properties and the synapses characteristics, in response to AER input spike trains. Our results indicate that these circuits can be used in massively parallel VLSI networks of I&F neurons to simulate real-time complex spike-based learning algorithms.
Collapse
Affiliation(s)
- Giacomo Indiveri
- Institute of Neuroinformatics, Swiss Federal Institute of Technology, Zurich CH-8057, Switzerland.
| | | | | |
Collapse
|
26
|
Sun HY, Lyons SA, Dobrunz LE. Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. J Physiol 2005; 568:815-40. [PMID: 16109728 PMCID: PMC1464188 DOI: 10.1113/jphysiol.2005.093948] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although it is presynaptic, short-term plasticity has been shown at some synapses to depend upon the postsynaptic cell type. Previous studies have reported conflicting results as to whether Schaffer collateral axons have target-cell specific short-term plasticity. Here we investigate in detail the short-term dynamics of Schaffer collateral excitatory synapses onto CA1 stratum radiatum interneurones versus pyramidal cells in acute hippocampal slices from juvenile rats. In response to three stimulus protocols that invoke different forms of short-term plasticity, we find differences in some but not all forms of presynaptic short-term plasticity, and heterogeneity in the short term plasticity of synapses onto interneurones. Excitatory synapses onto the majority of interneurones had less paired-pulse facilitation than synapses onto pyramidal cells across a range of interpulse intervals (20-200 ms). Unlike synapses onto pyramidal cells, synapses onto most interneurones had very little facilitation in response to short high-frequency trains of five pulses at 5, 10 and 20 Hz, and depressed during trains at 50 Hz. However, the amount of high-frequency depression was not different between synapses onto pyramidal cells versus the majority of interneurones at steady state during 2-10 Hz trains. In addition, a small subset of interneurones (approximately 15%) had paired-pulse depression rather than paired-pulse facilitation, showed only depression in response to the high-frequency five pulse trains, and had more steady-state high-frequency depression than synapses onto pyramidal cells or the majority of interneurones. To investigate possible mechanisms for these differences in short-term plasticity, we developed a mechanistic mathematical model of neurotransmitter release that explicitly explores the contributions to different forms of short-term plasticity of the readily releasable vesicle pool size, release probability per vesicle, calcium-dependent facilitation, synapse inactivation following release, and calcium-dependent recovery from inactivation. Our model fits the responses of each of the three cell groups to the three different stimulus protocols with only two parameters that differ with cell group. The model predicts that the differences in short-term plasticity between synapses onto CA1 pyramidal cells and stratum radiatum interneurones are due to a higher initial release probability per vesicle and larger readily releasable vesicle pool size at synapses onto interneurones, resulting in a higher initial release probability. By measuring the rate of block of NMDA receptors by the open channel blocker MK-801, we confirmed that the initial release probability is greater at synapses onto interneurones versus pyramidal cells. This provides a mechanism by which both the initial strength and the short-term dynamics of Schaffer collateral excitatory synapses are regulated by their postsynaptic target cell.
Collapse
Affiliation(s)
- Hua Yu Sun
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
27
|
Abstract
A depressing synapse transforms a time interval into a voltage amplitude. The effect of that transformation on the output of the neuron and network depends on the kinetics of synaptic depression and properties of the postsynaptic neuron and network. Using as examples neural circuits that incorporate depressing synapses, we show how short-term depression can contribute to a surprising variety of time-dependent computational and behavioral tasks.
Collapse
Affiliation(s)
- Lucinda A Grande
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
28
|
Frerking M, Schulte J, Wiebe SP, Stäubli U. Spike timing in CA3 pyramidal cells during behavior: implications for synaptic transmission. J Neurophysiol 2005; 94:1528-40. [PMID: 15872069 PMCID: PMC1378104 DOI: 10.1152/jn.00108.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spike timing is thought to be an important mechanism for transmitting information in the CNS. Recent studies have emphasized millisecond precision in spike timing to allow temporal summation of rapid synaptic signals. However, spike timing over slower time scales could also be important, through mechanisms including activity-dependent synaptic plasticity or temporal summation of slow postsynaptic potentials (PSPs) such as those mediated by kainate receptors. To determine the extent to which these slower mechanisms contribute to information processing, it is first necessary to understand the properties of behaviorally relevant spike timing over this slow time scale. In this study, we examine the activity of CA3 pyramidal cells during the performance of a complex behavioral task in rats. Sustained firing rates vary over a wide range, and the firing rate of a cell is poorly correlated with the behavioral cues to which the cell responds. Nonrandom interactions between successive spikes can last for several seconds, but the nonrandom distribution of interspike intervals (ISIs) can account for the majority of nonrandom multi-spike patterns. During a stimulus, cellular responses are temporally complex, causing a shift in spike timing that favors intermediate ISIs over short and long ISIs. Response discrimination between related stimuli occurs through changes in both response time-course and response intensity. Precise synchrony between cells is limited, but loosely correlated firing between cells is common. This study indicates that spike timing is regulated over long time scales and suggests that slow synaptic mechanisms could play a substantial role in information processing in the CNS.
Collapse
Affiliation(s)
- M Frerking
- Neurological Sciences Institute, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
Neurons are often considered to be the computational engines of the brain, with synapses acting solely as conveyers of information. But the diverse types of synaptic plasticity and the range of timescales over which they operate suggest that synapses have a more active role in information processing. Long-term changes in the transmission properties of synapses provide a physiological substrate for learning and memory, whereas short-term changes support a variety of computations. By expressing several forms of synaptic plasticity, a single neuron can convey an array of different signals to the neural circuit in which it operates.
Collapse
Affiliation(s)
- L F Abbott
- Volen Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | |
Collapse
|
30
|
Sargsyan A, Melkonyan A, Mkrtchian H, Papatheodoropoulos C, Kostopoulos G. A computer model of field potential responses for the study of short-term plasticity in hippocampus. J Neurosci Methods 2004; 135:175-91. [PMID: 15020102 DOI: 10.1016/j.jneumeth.2003.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 12/08/2003] [Accepted: 12/17/2003] [Indexed: 01/21/2023]
Abstract
Activity-dependent synaptic plasticity has important implications for network function. The previously developed model of the hippocampal CA1 area, which contained pyramidal cells (PC) and two types of interneurons involved in feed-forward and recurrent inhibition, respectively, and received synaptic inputs from CA3 neurons via the Schaffer collaterals, was enhanced by incorporating dynamic synaptic connections capable of changing their weights depending on presynaptic activation history. The model output was presented as field potentials, which were compared with those derived experimentally. The parameters of Schaffer collateral-PC excitatory model synapse were determined, with which the model successfully reproduced the complicated dynamics of train-stimulation sequential potentiation/depression observed in experimentally recorded field responses. It was found that the model better reproduces the time course of experimental field potentials if the inhibitory synapses on PC are also made dynamic, with expressed properties of frequency-dependent depression. This finding supports experimental evidence that these synapses are subject to activity-dependent depression. The model field potentials in response to various randomly generated and real (derived from recorded CA3 unit activity) long stimulating trains were calculated, illustrating that short-term plasticity with the observed characteristics could play specific roles in frequency processing in hippocampus and thus providing a new tool for the theoretical study of activity-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Armen Sargsyan
- Neuronal Systems Mathematical Modelling Laboratory, Orbeli Institute of Physiology, Yerevan, Armenia
| | | | | | | | | |
Collapse
|
31
|
Beierlein M, Gibson JR, Connors BW. Two dynamically distinct inhibitory networks in layer 4 of the neocortex. J Neurophysiol 2003; 90:2987-3000. [PMID: 12815025 DOI: 10.1152/jn.00283.2003] [Citation(s) in RCA: 441] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal operations of the neocortex depend critically on several types of inhibitory interneurons, but the specific function of each type is unknown. One possibility is that interneurons are differentially engaged by patterns of activity that vary in frequency and timing. To explore this, we studied the strength and short-term dynamics of chemical synapses interconnecting local excitatory neurons (regular-spiking, or RS, cells) with two types of inhibitory interneurons: fast-spiking (FS) cells, and low-threshold spiking (LTS) cells of layer 4 in the rat barrel cortex. We also tested two other pathways onto the interneurons: thalamocortical connections and recurrent collaterals from corticothalamic projection neurons of layer 6. The excitatory and inhibitory synapses interconnecting RS cells and FS cells were highly reliable in response to single stimuli and displayed strong short-term depression. In contrast, excitatory and inhibitory synapses interconnecting the RS and LTS cells were less reliable when initially activated. Excitatory synapses from RS cells onto LTS cells showed dramatic short-term facilitation, whereas inhibitory synapses made by LTS cells onto RS cells facilitated modestly or slightly depressed. Thalamocortical inputs strongly excited both RS and FS cells but rarely and only weakly contacted LTS cells. Both types of interneurons were strongly excited by facilitating synapses from axon collaterals of corticothalamic neurons. We conclude that there are two parallel but dynamically distinct systems of synaptic inhibition in layer 4 of neocortex, each defined by its intrinsic spiking properties, the short-term plasticity of its chemical synapses, and (as shown previously) an exclusive set of electrical synapses. Because of their unique dynamic properties, each inhibitory network will be recruited by different temporal patterns of cortical activity.
Collapse
Affiliation(s)
- Michael Beierlein
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
32
|
Sargsyan AR, Melkonyan AA, Papatheodoropoulos C, Mkrtchian HH, Kostopoulos GK. A model synapse that incorporates the properties of short- and long-term synaptic plasticity. Neural Netw 2003; 16:1161-77. [PMID: 13678620 DOI: 10.1016/s0893-6080(03)00135-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity-the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier 'double barrier synapse' model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca(2+) concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3-CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks.
Collapse
Affiliation(s)
- Armen R Sargsyan
- Neuronal Systems Mathematical Modelling Laboratory, Orbeli Institute of Physiology, Yerevan, Armenia
| | | | | | | | | |
Collapse
|
33
|
GABA(B) receptor-mediated presynaptic inhibition has history-dependent effects on synaptic transmission during physiologically relevant spike trains. J Neurosci 2003. [PMID: 12832501 DOI: 10.1523/jneurosci.23-12-04809.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic inhibition is a form of neuromodulation that interacts with activity-dependent short-term plasticity so that the magnitude, and sometimes even the polarity, of that activity-dependent short-term plasticity is changed. However, the functional consequences of this interaction during physiologically relevant spike trains are poorly understood. We examined the effects of presynaptic inhibition on excitatory synaptic transmission during physiologically relevant spike trains, using the GABA(B) receptor (GABA(B)R) agonist baclofen to engage presynaptic inhibition and field EPSPs (fEPSPs) in hippocampal slices to monitor synaptic output. We examined the effects of baclofen on the relationship between an fEPSP during the spike train and the timing of spikes preceding that fEPSP, a relationship that we refer to as the history dependence of synaptic transmission. Baclofen alters this history dependence by causing no inhibition during short interspike intervals (ISIs) in the spike train but a maximal inhibition during long ISIs. This effect strengthens the dependence of the fEPSP on the first ISI preceding it. One consequence of this effect is that the apparent affinity of baclofen is strongly reduced during physiologically relevant spike trains when compared with conventional stimulus paradigms, and a second consequence is that the overall inhibition experienced by a synapse will vary considerably during repeated trials of a behavioral task. We conclude that GABA(B)R-mediated presynaptic inhibition is more accurately described as a high-pass filter than as a simple inhibition, and that this filtering must be taken into account to accurately assess the effects of presynaptic inhibition under physiologically relevant conditions.
Collapse
|
34
|
Nusser Z. Release-independent short-term facilitation at GABAergic synapses in the olfactory bulb. Neuropharmacology 2002; 43:573-83. [PMID: 12367603 DOI: 10.1016/s0028-3908(02)00158-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Neurones of the olfactory bulb are innervated by GABA-releasing axons and dendrites of diverse origin. Here, I studied GABAergic neurotransmission in juxtaglomerular cells using whole-cell voltage-clamp recordings in acute olfactory bulb slices. Spontaneous IPSCs were fully blocked by the GABA(A) receptor antagonist SR95531 (40 microM) and the sodium channel blocker tetrodotoxin (1 microM). The IPSCs had mean amplitudes of 125+/-86 pA and relatively slow biexponential decay times (tau(1)=4.3+/-1.0 ms (67+/-12%), tau(2)=16.9+/-2.7 ms) at physiological temperatures. Short-term plasticity of evoked IPSCs showed two distinct patterns: depressing (n=4 cells) and facilitating-depressing (n=9). In two cells, postsynaptic responses were mediated by single functional release sites. During a train of stimuli (4 stimuli at 20 Hz), the release probability increased by two-fold, whereas the potency (postsynaptic responses excluding failures) decreased by ~15%. The increase in release probability for the second stimulus in the train also occurred when the first action potential failed to release transmitter. However, the decrease in the potency was only observed if the preceding action potential released transmitter. These results reveal a heterogeneity in the short-term plasticity of evoked IPSCs in juxtaglomerular cells and demonstrate that the short-term facilitation at some GABAergic synapses is independent of release.
Collapse
Affiliation(s)
- Z Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony Street 43, 1083 Budapest, Hungary.
| |
Collapse
|
35
|
Losonczy A, Zhang L, Shigemoto R, Somogyi P, Nusser Z. Cell type dependence and variability in the short-term plasticity of EPSCs in identified mouse hippocampal interneurones. J Physiol 2002; 542:193-210. [PMID: 12096061 PMCID: PMC2290398 DOI: 10.1113/jphysiol.2002.020024] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synapses exhibit different short-term plasticity patterns and this behaviour influences information processing in neuronal networks. We tested how the short-term plasticity of excitatory postsynaptic currents (EPSCs) depends on the postsynaptic cell type, identified by axonal arborizations and molecular markers in the hippocampal CA1 area. Three distinct types of short-term synaptic behaviour (facilitating, depressing and combined facilitating-depressing) were defined by fitting a dynamic neurotransmission model to the data. Approximately 75 % of the oriens-lacunosum-moleculare (O-LM) interneurones received facilitating EPSCs, but in three of 12 O-LM cells EPSCs also showed significant depression. Over 90 % of the O-LM cells were immunopositive for somatostatin and mGluR1alpha and all tested cells were decorated by strongly mGluR7a positive axon terminals. Responses in eight of 12 basket cells were described well with a model involving only depression, but the other cells displayed combined facilitating-depressing EPSCs. No apparent difference was found between the plasticity of EPSCs in cholecystokinin- or parvalbumin-containing basket cells. In oriens-bistratified cells (O-Bi), two of nine cells showed facilitating EPSCs, another two depressing, and the remaining five cells combined facilitating-depressing EPSCs. Seven of 10 cells tested for somatostatin were immunopositive, but mGluR1alpha was detectable only in two of 11 tested cells. Furthermore, most O-Bi cells projected to the CA3 area and the subiculum, as well as outside the hippocampal formation. Postsynaptic responses to action potentials recorded in vivo from a CA1 place cell were modelled, and revealed great differences between and within cell types. Our results demonstrate that the short-term plasticity of EPSCs is cell type dependent, but with significant heterogeneity within all three interneurone populations.
Collapse
Affiliation(s)
- Attila Losonczy
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | | | | | | | | |
Collapse
|
36
|
Partridge LD, Valenzuela CF. Neurosteroids enhance bandpass filter characteristics of the rat Schaffer collateral-to-CA1 synapse. Neurosci Lett 2002; 326:1-4. [PMID: 12052524 DOI: 10.1016/s0304-3940(02)00295-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurosteroids are important modulators of synaptic activity in the mammalian central nervous system. We have shown previously that the neurosteroid, pregnenolone sulfate (PREGS) enhances paired-pulse facilitation at the Schaffer collateral-to-CA1 synapse in rat hippocampal slices. Here we show that PREGS enhances the facilitation of postsynaptic potentials (PSPs) during a 300 ms train of repetitive stimuli at frequencies between 10 and 50 Hz. At higher or lower frequencies, however, PREGS does not affect the PSPs produced by repetitive stimuli. This enhancement of the bandpass filtering characteristic of a central synapse by a naturally occurring neurosteroid could selectively influence transmission at bursting or other highly active synapses.
Collapse
Affiliation(s)
- L Donald Partridge
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
37
|
Fuhrmann G, Segev I, Markram H, Tsodyks M. Coding of temporal information by activity-dependent synapses. J Neurophysiol 2002; 87:140-8. [PMID: 11784736 DOI: 10.1152/jn.00258.2001] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synaptic transmission in the neocortex is dynamic, such that the magnitude of the postsynaptic response changes with the history of the presynaptic activity. Therefore each response carries information about the temporal structure of the preceding presynaptic input spike train. We quantitatively analyze the information about previous interspike intervals, contained in single responses of dynamic synapses, using methods from information theory applied to experimentally based deterministic and probabilistic phenomenological models of depressing and facilitating synapses. We show that for any given dynamic synapse, there exists an optimal frequency of presynaptic spike firing for which the information content is maximal; simple relations between this optimal frequency and the synaptic parameters are derived. Depressing neocortical synapses are optimized for coding temporal information at low firing rates of 0.5-5 Hz, typical to the spontaneous activity of cortical neurons, and carry significant information about the timing of up to four preceding presynaptic spikes. Facilitating synapses, however, are optimized to code information at higher presynaptic rates of 9-70 Hz and can represent the timing of over eight presynaptic spikes.
Collapse
Affiliation(s)
- Galit Fuhrmann
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
38
|
Abstract
Synaptic efficacy can increase (synaptic facilitation) or decrease (synaptic depression) markedly within milliseconds after the onset of specific temporal patterns of activity. Recent evidence suggests that short-term synaptic depression contributes to low-pass temporal filtering, and can account for a well-known paradox - many low-pass neurons respond vigorously to transients and the onsets of high temporal-frequency stimuli. The use of depression for low-pass filtering, however, is itself a paradox; depression induced by ongoing high-temporal frequency stimuli could preclude desired responses to low-temporal frequency information. This problem can be circumvented, however, by activation of short-term synaptic facilitation that maintains responses to low-temporal frequency information. Such short-term plasticity might also contribute to spatio-temporal processing.
Collapse
Affiliation(s)
- E S Fortune
- Dept of Biology, University of Utah, 257 South 1400 East, 84112, Salt Lake City, UT, USA.
| | | |
Collapse
|
39
|
Manwani A, Koch C. Detecting and estimating signals over noisy and unreliable synapses: information-theoretic analysis. Neural Comput 2001; 13:1-33. [PMID: 11177426 DOI: 10.1162/089976601300014619] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The temporal precision with which neurons respond to synaptic inputs has a direct bearing on the nature of the neural code. A characterization of the neuronal noise sources associated with different sub-cellular components (synapse, dendrite, soma, axon, and so on) is needed to understand the relationship between noise and information transfer. Here we study the effect of the unreliable, probabilistic nature of synaptic transmission on information transfer in the absence of interaction among presynaptic inputs. We derive theoretical lower bounds on the capacity of a simple model of a cortical synapse under two different paradigms. In signal estimation, the signal is assumed to be encoded in the mean firing rate of the presynaptic neuron, and the objective is to estimate the continuous input signal from the postsynaptic voltage. In signal detection, the input is binary, and the presence or absence of a presynaptic action potential is to be detected from the postsynaptic voltage. The efficacy of information transfer in synaptic transmission is characterized by deriving optimal strategies under these two paradigms. On the basis of parameter values derived from neocortex, we find that single cortical synapses cannot transmit information reliably, but redundancy obtained using a small number of multiple synapses leads to a significant improvement in the information capacity of synaptic transmission.
Collapse
Affiliation(s)
- A Manwani
- Computation and Neural Systems, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
40
|
Abstract
Short-term synaptic depression and facilitation often are elicited by different temporal patterns of activity. Short-term plasticity may contribute, therefore, to temporal filtering by impeding synaptic transmission for some temporal patterns of activity and facilitating transmission for other patterns. We examined this hypothesis by investigating whether short-term plasticity contributes to the temporal filtering properties of midbrain electrosensory neurons. Postsynaptic potentials were recorded in response to sensory stimuli and to direct stimulation of afferents, in vivo. Stimulating afferents with pairs of pulses at a rate of 20 pairs/sec ["tetanus (20 Hz)"] induced PSP depression. This PSP depression was similar to that observed for electrosensory stimuli of the same temporal frequency. Analysis of PSPs elicited by a pair of pulses that preceded versus followed the tetanus revealed that PSP depression was caused by synaptic depression, not by a loss of facilitation. Behavioral studies indicate that fish can detect slow changes in signal amplitude (slow AM) in backgrounds of fast fluctuations. Correspondingly, midbrain neurons respond well to slow AM even in the presence of fast AM. In many neurons, facilitation enhanced responses to trains (8-10 pulses; 100 Hz) that represented activity patterns elicited by slow AM, despite induction of synaptic depression by a tetanus (20 Hz). The interplay between synaptic depression and facilitation, therefore, can act as a filter of temporal information. Some neurons that showed little facilitation nonetheless responded to low temporal-frequency information after induction of depression by fast information; this likely results from the convergence of inputs with different temporal filtering properties.
Collapse
|
41
|
Abstract
Visual cortical cells are commonly characterized by their receptive-field structure. Originally, a visual receptive field was defined in a purely spatial way as that retinal area from which a change in spiking response of the regarded cell could be elicited by visual stimulation. The first attempts to understand receptive-field structure were based entirely on the anatomical connectivity of the primary visual pathway. More recently, however, it has been discovered that the spatial and temporal context in which a stimulus is presented to a cell can strongly influence its receptive field, and this in turn is dependent on the state of arousal and attention. Accordingly, new concepts recognize that cortical receptive fields are highly dynamic entities embracing more than the sum of the full spatial and temporal response properties of a cell.
Collapse
Affiliation(s)
- F Wörgötter
- Dept of Psychology, Center for Cognitive and Computational Neuroscience (CCCN), University of Stirling, FK9 4LA, Stirling, UK
| | | |
Collapse
|
42
|
Calado A, Tomé FM, Brais B, Rouleau GA, Kühn U, Wahle E, Carmo-Fonseca M. Nuclear inclusions in oculopharyngeal muscular dystrophy consist of poly(A) binding protein 2 aggregates which sequester poly(A) RNA. Hum Mol Genet 2000; 9:2321-8. [PMID: 11001936 DOI: 10.1093/oxfordjournals.hmg.a018924] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disease characterized by progressive eyelid drooping, swallowing difficulties and proximal limb weakness. The autosomal dominant form of the disease is caused by short (GCG)(8-13) expansions in the PABP2 gene. This gene encodes the poly(A) binding protein 2 (PABP2), an abundant nuclear protein that binds with high affinity to nascent poly(A) tails, stimulating their extension and controlling their length. In this work we report that PABP2 is detected in filamentous nuclear inclusions, which are the pathological hallmark of OPMD. Using both immunoelectron microscopy and fluorescence confocal microscopy, the OPMD-specific nuclear inclusions appeared decorated by anti-PABP2 antibodies. In addition, the inclusions were labeled with antibodies directed against ubiquitin and the subunits of the proteasome and contained a form of PABP2 that was more resistant to salt extraction than the protein dispersed in the nucleoplasm. This suggests that the polyalanine expansions in PABP2 induce a misfolding and aggregation of the protein into insoluble inclusions, similarly to events in neurodegenerative diseases caused by CAG/polyglutamine expansions. No significant differences were observed in the steady-state poly(A) tail length in OPMD and normal myoblasts. However, the nuclear inclusions were shown to sequester poly(A) RNA. This raises the possibility that in OPMD the polyalanine expansions in the PABP2 protein may interfere with the cellular traffic of poly(A) RNA.
Collapse
Affiliation(s)
- A Calado
- Institute of Histology and Embryology, Faculty of Medicine, University of Lisbon, Avenida Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
43
|
Bonnefont X, Fiekers J, Creff A, Mollard P. Rhythmic bursts of calcium transients in acute anterior pituitary slices. Endocrinology 2000; 141:868-75. [PMID: 10698160 DOI: 10.1210/endo.141.3.7363] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Endocrine cells isolated from the anterior pituitary fire intracellular Ca2+ ([Ca2+]i) transients due to voltage-gated Ca2+ entry. However, the patterns of [Ca2+]i transients within the glandular parenchyma of the anterior pituitary are unknown. Here we describe, using real-time confocal laser microscopy, several spontaneous patterns of calcium signaling in acute pituitary slices prepared from male as well as cycling and lactating female rats. Forty percent of the cells demonstrated a spontaneous bursting mode, consisting of an active period of [Ca2+]i transients firing at a constant frequency, followed by a rest period during which cells were either silent or randomly active. The remaining recordings from endocrine cells either demonstrated random [Ca2+]i transients or were silent. These rhythmic bursts of [Ca2+]i transients, which required extracellular calcium, were detected in lactotrophs, somatotrophs, and corticotrophs within the acute slices. Of significance was the finding that the bursting mode could be adjusted by hypothalamic factors. In slices prepared from lactating rats, TRH recruited more bursting cells and finely adjusted the average duty cycle of [Ca2+]i bursts such that cells fired patterned bursts for approximately 70% of the recording period. Eighty-six percent of these cells were lactotrophs. Thus, the rhythmic [Ca2+]i bursts and their tuning by secretagogues may provide timing information that could encode for one or more cellular functions (e.g. exocytosis and/or gene expression) critical for the release of hormones by endocrine cells in the intact gland.
Collapse
Affiliation(s)
- X Bonnefont
- INSERM U-469, Centre CNRS-INSERM de Pharmacologie-Endocrinologie, Montpellier, France
| | | | | | | |
Collapse
|
44
|
Abstract
Synapses display remarkable alterations in strength during repetitive use. Different types of synapses exhibit distinctive synaptic plasticity, but the factors giving rise to such diversity are not fully understood. To provide the experimental basis for a general model of short-term plasticity, we studied three synapses in rat brain slices at 34 degrees C: the climbing fiber to Purkinje cell synapse, the parallel fiber to Purkinje cell synapse, and the Schaffer collateral to CA1 pyramidal cell synapse. These synapses exhibited a broad range of responses to regular and Poisson stimulus trains. Depression dominated at the climbing fiber synapse, facilitation was prominent at the parallel fiber synapse, and both depression and facilitation were apparent in the Schaffer collateral synapse. These synapses were modeled by incorporating mechanisms of short-term plasticity that are known to be driven by residual presynaptic calcium (Ca(res)). In our model, release is the product of two factors: facilitation and refractory depression. Facilitation is caused by a calcium-dependent increase in the probability of release. Refractory depression is a consequence of release sites becoming transiently ineffective after release. These sites recover with a time course that is accelerated by elevations of Ca(res). Facilitation and refractory depression are coupled by their common dependence on Ca(res) and because increased transmitter release leads to greater synaptic depression. This model captures the behavior of three different synapses for various stimulus conditions. The interplay of facilitation and depression dictates synaptic strength and variability during repetitive activation. The resulting synaptic plasticity transforms the timing of presynaptic spikes into varying postsynaptic response amplitudes.
Collapse
|
45
|
Roberts PD. Computational consequences of temporally asymmetric learning rules: I. Differential hebbian learning. J Comput Neurosci 1999; 7:235-46. [PMID: 10596835 DOI: 10.1023/a:1008910918445] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Temporally asymetric learning rules governing plastic changes in synaptic efficacy have recently been identified in physiological studies. In these rules, the exact timing of pre- and postsynaptic spikes is critical to the induced change of synaptic efficacy. The temporal learning rules treated in this article are approximately antisymmetric; the synaptic efficacy is enhanced if the postsynaptic spike follows the presynaptic spike by a few milliseconds, but the efficacy is depressed if the postsynaptic spike precedes the presynaptic spike. The learning dynamics of this rule are studied using a stochastic model neuron receiving a set of serially delayed inputs. The average change of synaptic efficacy due to the temporally antisymmetric learning rule is shown to yield differential Hebbian learning. These results are demonstrated with both mathematical analyses and computer simulations, and connections with theories of classical conditioning are discussed.
Collapse
Affiliation(s)
- P D Roberts
- Neurological Sciences Institute, Portland OR 97209, USA
| |
Collapse
|
46
|
Abstract
In most neural network models, synapses are treated as static weights that change only with the slow time scales of learning. It is well known, however, that synapses are highly dynamic and show use-dependent plasticity over a wide range of time scales. Moreover, synaptic transmission is an inherently stochastic process: a spike arriving at a presynaptic terminal triggers the release of a vesicle of neurotransmitter from a release site with a probability that can be much less than one. We consider a simple model for dynamic stochastic synapses that can easily be integrated into common models for networks of integrate-and-fire neurons (spiking neurons). The parameters of this model have direct interpretations in terms of synaptic physiology. We investigate the consequences of the model for computing with individual spikes and demonstrate through rigorous theoretical results that the computational power of the network is increased through the use of dynamic synapses.
Collapse
Affiliation(s)
- W Maass
- Institute for Theoretical Computer Science, Technische Universität Graz, Klosterwiesgasse 32/2A-8010, Graz, Austria.
| | | |
Collapse
|
47
|
Hippocampal long-term potentiation preserves the fidelity of postsynaptic responses to presynaptic bursts. J Neurosci 1999. [PMID: 9952401 DOI: 10.1523/jneurosci.19-04-01236.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal cells often fire prolonged bursts of action potentials, resulting in dynamic modulation of postsynaptic responses; yet long-term potentiation (LTP) has routinely been studied using only single presynaptic stimuli given at low frequency. Recent work on neocortical synapses has suggested that LTP may cause a "redistribution of synaptic strength" in which synaptic responses to the first stimulus of a presynaptic burst of action potentials are potentiated with later responses depressed. We have examined whether this redistribution occurs at hippocampal synapses during LTP. Using prolonged bursts that result in maximal short-term depression of later responses within the burst, we found that LTP resulted in a uniform potentiation of individual responses throughout the burst rather than a redistribution of synaptic strength. This occurred both at Schaffer collateral-CA1 synapses and at CA3-CA3 synapses, the latter being activated and monitored using paired recordings. Thus in the hippocampus, LTP preserves the fidelity of postsynaptic responses to presynaptic bursts by a uniform increase rather than a redistribution of synaptic strength, a finding that suggests there are important differences between neocortex and hippocampus in how long-term changes in synaptic strength are used to encode new information.
Collapse
|
48
|
A persistent activity-dependent facilitation in chromaffin cells is caused by Ca2+ activation of protein kinase C. J Neurosci 1999. [PMID: 9880579 DOI: 10.1523/jneurosci.19-02-00589.1999] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent facilitation was studied in bovine adrenal chromaffin cells. Stimulation with a train of depolarizations caused subsequent triggered exocytotic activity to be significantly enhanced. After the facilitating stimulus train, the readily releasable vesicle pool (RRP) size was estimated from capacitance jumps in response to paired depolarizations and found to be elevated for a period of at least 10 min. The time dependency of onset and degree of facilitation could be well fitted assuming protein kinase C (PKC)-dependent and independent Ca2+-mediated processes. Both processes increase the recruitment of vesicles from the reserve pool to the RRP, resulting in an greater number of releasable vesicles. The data suggest that cell activity can act as a trigger to increase cytosolic Ca2+ to a level sufficient to cause an increase in the number of readily releasable secretory vesicles, with the more persistent component of the evoked facilitation being mediated through activity-dependent activation of PKC.
Collapse
|
49
|
Abstract
We have studied the synaptic responses in hippocampal slices to stimulus patterns derived from in vivo recordings of place cell firing in a behaving rodent. We find that synaptic strength is strongly modulated during the presentation of these natural stimulus trains, varying 2-fold or more because of short-term plasticity. This modulation of synaptic strength is precise and deterministic, because the pattern of synaptic response amplitudes is nearly identical from one presentation of the train to the next. The mechanism of synaptic modulation is primarily a change in release probability rather than a change in the size of the elementary postsynaptic response. In addition, natural stimulus trains are effective in inducing long-term potentiation (LTP). We conclude that short-term synaptic plasticity--facilitation, augmentation, and depression--plays a prominent role in normal synaptic function.
Collapse
Affiliation(s)
- L E Dobrunz
- Howard Hughes Medical Institute, Molecular Neurobiology Lab, The Salk Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
50
|
Csicsvari J, Hirase H, Czurko A, Buzsáki G. Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat. Neuron 1998; 21:179-89. [PMID: 9697862 DOI: 10.1016/s0896-6273(00)80525-5] [Citation(s) in RCA: 417] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Spike transmission probability between pyramidal cells and interneurons in the CA1 pyramidal layer was investigated in the behaving rat by the simultaneous recording of neuronal ensembles. Population synchrony was strongest during sharp wave (SPW) bursts. However, the increase was three times larger for pyramidal cells than for interneurons. The contribution of single pyramidal cells to the discharge of interneurons was often large (up to 0.6 probability), as assessed by the presence of significant (<3 ms) peaks in the cross-correlogram. Complex-spike bursts were more effective than single spikes. Single cell contribution was higher between SPW bursts than during SPWs or theta activity. Hence, single pyramidal cells can reliably discharge interneurons, and the probability of spike transmission is behavior dependent.
Collapse
Affiliation(s)
- J Csicsvari
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | | | | | | |
Collapse
|