1
|
Nakagawa N. The neuronal Golgi in neural circuit formation and reorganization. Front Neural Circuits 2024; 18:1504422. [PMID: 39703196 PMCID: PMC11655203 DOI: 10.3389/fncir.2024.1504422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The Golgi apparatus is a central hub in the intracellular secretory pathway. By positioning in the specific intracellular region and transporting materials to spatially restricted compartments, the Golgi apparatus contributes to the cell polarity establishment and morphological specification in diverse cell types. In neurons, the Golgi apparatus mediates several essential steps of initial neural circuit formation during early brain development, such as axon-dendrite polarization, neuronal migration, primary dendrite specification, and dendritic arbor elaboration. Moreover, neuronal activity-dependent remodeling of the Golgi structure enables morphological changes in neurons, which provides the cellular basis of circuit reorganization during postnatal critical period. In this review, I summarize recent findings illustrating the unique Golgi positioning and its developmental dynamics in various types of neurons. I also discuss the upstream regulators for the Golgi positioning in neurons, and functional roles of the Golgi in neural circuit formation and reorganization. Elucidating how Golgi apparatus sculpts neuronal connectivity would deepen our understanding of the cellular/molecular basis of neural circuit development and plasticity.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
2
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
4
|
Wojnacki J, Quassollo G, Bordenave MD, Unsain N, Martínez GF, Szalai AM, Pertz O, Gundersen GG, Bartolini F, Stefani FD, Cáceres A, Bisbal M. Dual spatio-temporal regulation of axon growth and microtubule dynamics by RhoA signaling pathways. J Cell Sci 2024; 137:jcs261970. [PMID: 38910449 DOI: 10.1242/jcs.261970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
RhoA plays a crucial role in neuronal polarization, where its action restraining axon outgrowth has been thoroughly studied. We now report that RhoA has not only an inhibitory but also a stimulatory effect on axon development depending on when and where exerts its action and the downstream effectors involved. In cultured hippocampal neurons, FRET imaging revealed that RhoA activity selectively localized in growth cones of undifferentiated neurites, whereas in developing axons it displayed a biphasic pattern, being low in nascent axons and high in elongating ones. RhoA-Rho kinase (ROCK) signaling prevented axon initiation but had no effect on elongation, whereas formin inhibition reduced axon extension without significantly altering initial outgrowth. In addition, RhoA-mDia signaling promoted axon elongation by stimulating growth cone microtubule stability and assembly, as opposed to RhoA-ROCK signaling, which restrained growth cone microtubule assembly and protrusion.
Collapse
Affiliation(s)
- José Wojnacki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Gonzalo Quassollo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Martín D Bordenave
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Nicolás Unsain
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| | - Gaby F Martínez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern 3012, Switzerland
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires C1425FQD, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires C1428EHA, Argentina
| | - Alfredo Cáceres
- Centro Investigación Medicina Traslacional Severo R Amuchástegui (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Naciones Unidas 440, Córdoba 5016, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Córdoba 5016, Argentina
| |
Collapse
|
5
|
Zhang Y, Kunii M, Taniguchi M, Yoshimura SI, Harada A. Rab6-Mediated Polarized Transport of Synaptic Vesicle Precursors Is Essential for the Establishment of Neuronal Polarity and Brain Formation. J Neurosci 2024; 44:e2334232024. [PMID: 38830762 PMCID: PMC11223463 DOI: 10.1523/jneurosci.2334-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/13/2024] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Neurons are highly polarized cells that are composed of a single axon and multiple dendrites. Axon-dendrite polarity is essential for proper tissue formation and brain functions. Intracellular protein transport plays an important role in the establishment of neuronal polarity. However, the regulatory mechanism of polarized transport remains unclear. Here, we show that Rab6, a small GTPase that acts on the regulation of intracellular vesicular trafficking, plays key roles in neuronal polarization and brain development. Central nervous system-specific Rab6a/b double knock-out (Rab6 DKO) mice of both sexes exhibit severe dysplasia of the neocortex and the cerebellum. In the Rab6 DKO neocortex, impaired axonal extension of neurons results in hypoplasia of the intermediate zone. In vitro, deletion of Rab6a and Rab6b in cultured neurons from both sexes causes the abnormal accumulation of synaptic vesicle precursors (SVPs) adjacent to the Golgi apparatus, which leads to defects in axonal extension and the loss of axon-dendrite polarity. Moreover, Rab6 DKO causes significant expansion of lysosomes in the soma in neurons. Overall, our results reveal that Rab6-mediated polarized transport of SVPs is crucial for neuronal polarization and subsequent brain formation.
Collapse
Affiliation(s)
- Yu Zhang
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kunii
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Shin-Ichiro Yoshimura
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Akihiro Harada
- Departments of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Xu Z, Angstmann CN, Wu Y, Stefen H, Parić E, Fath T, Curmi PM. Location of the axon initial segment assembly can be predicted from neuronal shape. iScience 2024; 27:109264. [PMID: 38450155 PMCID: PMC10915628 DOI: 10.1016/j.isci.2024.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
The axon initial segment (AIS) is located at the proximal axon demarcating the boundary between axonal and somatodendritic compartments. The AIS facilitates the generation of action potentials and maintenance of neuronal polarity. In this study, we show that the location of AIS assembly, as marked by Ankyrin G, corresponds to the nodal plane of the lowest-order harmonic of the Laplace-Beltrami operator solved over the neuronal shape. This correlation establishes a coupling between location of AIS assembly and neuronal cell morphology. We validate this correlation for neurons with atypical morphology and neurons containing multiple AnkG clusters on distinct neurites, where the nodal plane selects the appropriate axon showing enriched Tau. Based on our findings, we propose that Turing patterning systems are candidates for dynamically governing AIS location. Overall, this study highlights the importance of neuronal cell morphology in determining the precise localization of the AIS within the proximal axon.
Collapse
Affiliation(s)
- Zhuang Xu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher N. Angstmann
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuhuang Wu
- Infection Analytics Program, Kirby Institute for Infection and Immunity, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Holly Stefen
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Esmeralda Parić
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Thomas Fath
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M.G. Curmi
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Park S, Oh HN, Kim WK. Human coculture model of astrocytes and SH-SY5Y cells to test the neurotoxicity of chemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115912. [PMID: 38181562 DOI: 10.1016/j.ecoenv.2023.115912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
In this study, we established a coculture model comprising human neuroblastoma SH-SY5Y cells and induced pluripotent stem cell-derived astrocytes, faithfully replicating the human brain environment for in vitro neurotoxicity assessment. We optimized the cell differentiation duration and cell ratios to obtain images conducive to neurite outgrowth evaluation. Subsequently, the neurotoxic effects in the coculture and monoculture of SH-SY5Y cells were confirmed using neurotoxic agents such as acrylamide (ACR) and hydrogen peroxide (H2O2). Disparities in the neurotoxic impacts of ACR and H2O2 within the coculture were mirrored in the expression of genes associated with early neuronal injury. Notably, the reduction in neurite outgrowth induced by neurotoxic agents revealed the coculture's lower sensitivity compared to monocultures. Furthermore, the coculture system exhibited distinct effects of test agents on nerve damage and manifested protective influences on nerve cells. The proposed methodology holds promise for large-scale chemical neurotoxicity screening through neurite change measurements. This in vitro coculture model, accounting for cell interactions, emerges as a valuable tool in toxicity testing, offering insights into the potential effects of chemicals within the human body.
Collapse
Affiliation(s)
- Seungmin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea
| | - Ha-Na Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Woo-Keun Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
8
|
Suber Y, Alam MNA, Nakos K, Bhakt P, Spiliotis ET. Microtubule-associated septin complexes modulate kinesin and dynein motility with differential specificities. J Biol Chem 2023; 299:105084. [PMID: 37495111 PMCID: PMC10463263 DOI: 10.1016/j.jbc.2023.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Long-range membrane traffic is guided by microtubule-associated proteins and posttranslational modifications, which collectively comprise a traffic code. The regulatory principles of this code and how it orchestrates the motility of kinesin and dynein motors are largely unknown. Septins are a large family of GTP-binding proteins, which assemble into complexes that associate with microtubules. Using single-molecule in vitro motility assays, we tested how the microtubule-associated SEPT2/6/7, SEPT2/6/7/9, and SEPT5/7/11 complexes affect the motilities of the constitutively active kinesins KIF5C and KIF1A and the dynein-dynactin-bicaudal D (DDB) motor complex. We found that microtubule-associated SEPT2/6/7 is a potent inhibitor of DDB and KIF5C, preventing mainly their association with microtubules. SEPT2/6/7 also inhibits KIF1A by obstructing stepping along microtubules. On SEPT2/6/7/9-coated microtubules, KIF1A inhibition is dampened by SEPT9, which alone enhances KIF1A, showing that individual septin subunits determine the regulatory properties of septin complexes. Strikingly, SEPT5/7/11 differs from SEPT2/6/7, in permitting the motility of KIF1A and immobilizing DDB to the microtubule lattice. In hippocampal neurons, filamentous SEPT5 colocalizes with somatodendritic microtubules that underlie Golgi membranes and lack SEPT6. Depletion of SEPT5 disrupts Golgi morphology and polarization of Golgi ribbons into the shaft of somato-proximal dendrites, which is consistent with the tethering of DDB to microtubules by SEPT5/7/11. Collectively, these results suggest that microtubule-associated complexes have differential specificities in the regulation of the motility and positioning of microtubule motors. We posit that septins are an integral part of the microtubule-based code that spatially controls membrane traffic.
Collapse
Affiliation(s)
- Yani Suber
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Md Noor A Alam
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Konstantinos Nakos
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Priyanka Bhakt
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
9
|
Alfadil E, Bradke F. Moving through the crowd. Where are we at understanding physiological axon growth? Semin Cell Dev Biol 2023; 140:63-71. [PMID: 35817655 DOI: 10.1016/j.semcdb.2022.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Axon growth enables the rapid wiring of the central nervous system. Understanding this process is a prerequisite to retriggering it under pathological conditions, such as a spinal cord injury, to elicit axon regeneration. The last decades saw progress in understanding the mechanisms underlying axon growth. Most of these studies employed cultured neurons grown on flat surfaces. Only recently studies on axon growth were performed in 3D. In these studies, physiological environments exposed more complex and dynamic aspects of axon development. Here, we describe current views on axon growth and highlight gaps in our knowledge. We discuss how axons interact with the extracellular matrix during development and the role of the growth cone and its cytoskeleton within. Finally, we propose that the time is ripe to study axon growth in a more physiological setting. This will help us uncover the physiologically relevant mechanisms underlying axon growth, and how they can be reactivated to induce axon regeneration.
Collapse
Affiliation(s)
- Eissa Alfadil
- Laboratory of Axon Growth and Regeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany.
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| |
Collapse
|
10
|
Hansen J, Siddiq MM, Yadaw AS, Tolentino RE, Rabinovich V, Jayaraman G, Jain MR, Liu T, Li H, Xiong Y, Goldfarb J, Iyengar R. Whole cell response to receptor stimulation involves many deep and distributed subcellular biochemical processes. J Biol Chem 2022; 298:102325. [PMID: 35926710 PMCID: PMC9520007 DOI: 10.1016/j.jbc.2022.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Neurite outgrowth is an integrated whole cell response triggered by the cannabinoid-1 receptor. We sought to identify the many different biochemical pathways that contribute to this whole cell response. To understand underlying mechanisms, we identified subcellular processes (SCPs) composed of one or more biochemical pathways and their interactions required for this response. Differentially expressed genes and proteins were obtained from bulk transcriptomics and proteomic analysis of extracts from cells stimulated with a cannabinoid-1 receptor agonist. We used these differentially expressed genes and proteins to build networks of interacting SCPs by combining the expression data with prior pathway knowledge. From these SCP networks, we identified additional genes that when ablated, experimentally validated the SCP involvement in neurite outgrowth. Our experiments and informatics modeling allowed us to identify diverse SCPs such as those involved in pyrimidine metabolism, lipid biosynthesis, and mRNA splicing and stability, along with more predictable SCPs such as membrane vesicle transport and microtubule dynamics. We find that SCPs required for neurite outgrowth are widely distributed among many biochemical pathways required for constitutive cellular functions, several of which are termed ‘deep’, since they are distal to signaling pathways and the key SCPs directly involved in extension of the neurite. In contrast, ‘proximal’ SCPs are involved in microtubule growth and membrane vesicle transport dynamics required for neurite outgrowth. From these bioinformatics and dynamical models based on experimental data, we conclude that receptor-mediated regulation of subcellular functions for neurite outgrowth is both distributed, that is, involves many different biochemical pathways, and deep.
Collapse
Affiliation(s)
- Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mustafa M Siddiq
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Arjun Singh Yadaw
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Rosa E Tolentino
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Vera Rabinovich
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Gomathi Jayaraman
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Mohit Raja Jain
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Tong Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NY, 07103, United States
| | - Yuguang Xiong
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Joseph Goldfarb
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
11
|
Khan TA, Guo A, Martin J, Te Chien C, Liu T, Szczurkowska J, Shelly M. Directed mechanisms for apical dendrite development during neuronal polarization. Dev Biol 2022; 490:110-116. [PMID: 35809631 DOI: 10.1016/j.ydbio.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 12/18/2022]
Abstract
The development of the dendrite and the axon during neuronal polarization underlies the directed flow of information in the brain. Seminal studies on axon development have dominated the mechanistic analysis of neuronal polarization. These studies, many originating from examinations in cultured hippocampal and cortical neurons in vitro, have established a prevalent view that axon formation precedes and is necessary for neuronal polarization. There is also in vivo evidence supporting this view. Nevertheless, the establishment of bipolar polarity and the leading edge, and apical dendrite development in pyramidal neurons in vivo occur when axon formation is prevented. Furthermore, recent mounting evidence suggest that directed mechanisms might mediate bipolar polarity/leading process and subsequent apical dendrite development. In the presence of spatially directed extracellular cues in the developing brain, these events may operate independently of axon forming events. In this perspective we summarize evidence in support of these evolving views in neuronal polarization and highlight recent findings on dedicated mechanisms acting in apical dendrite development.
Collapse
Affiliation(s)
- Tamor A Khan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Alan Guo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Jacqueline Martin
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Chia Te Chien
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Tianrui Liu
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Joanna Szczurkowska
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Maya Shelly
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA.
| |
Collapse
|
12
|
Wilson C, Moyano AL, Cáceres A. Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans. Front Cell Dev Biol 2022; 10:878142. [PMID: 35517494 PMCID: PMC9062071 DOI: 10.3389/fcell.2022.878142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as “the establishment of polarity,” newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, in vivo approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.
Collapse
|
13
|
Huang B, Li X, Zhu X. The Role of GM130 in Nervous System Diseases. Front Neurol 2021; 12:743787. [PMID: 34777211 PMCID: PMC8581157 DOI: 10.3389/fneur.2021.743787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Golgi matrix protein 130 (GM130) is a Golgi-shaping protein located on the cis surface of the Golgi apparatus (GA). It is one of the most studied Golgin proteins so far. Its biological functions are involved in many aspects of life processes, including mitosis, autophagy, apoptosis, cell polarity, and directed migration at the cellular level, as well as intracellular lipid and protein transport, microtubule formation and assembly, lysosome function maintenance, and glycosylation modification. Mutation inactivation or loss of expression of GM130 has been detected in patients with different diseases. GM130 plays an important role in the development of the nervous system, but the studies on it are limited. This article reviewed the current research progress of GM130 in nervous system diseases. It summarized the physiological functions of GM130 in the occurrence and development of Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), microcephaly (MCPH), sepsis associated encephalopathy (SAE), and Ataxia, aiming to provide ideas for the further study of GM130 in nervous system disease detection and treatment.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoshi Zhu
- Pediatric Intensive Care Unit, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
14
|
Humpert I, Di Meo D, Püschel AW, Pietschmann JF. On the role of vesicle transport in neurite growth: Modeling and experiments. Math Biosci 2021; 338:108632. [PMID: 34087317 DOI: 10.1016/j.mbs.2021.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
The processes that determine the establishment of the complex morphology of neurons during development are still poorly understood. Here, we focus on the question how a difference in the length of neurites affects vesicle transport. We performed live imaging experiments and present a lattice-based model to gain a deeper theoretical understanding of intracellular transport in neurons. After a motivation and appropriate scaling of the model we present numerical simulations showing that initial differences in neurite length result in phenomena of biological relevance, i.e. a positive feedback that enhances transport into the longer neurite and oscillation of vesicles concentrations that can be interpreted as cycles of extension and retraction observed in experiments. Thus, our model is a first step towards a better understanding of the interplay between the transport of vesicles and the spatial organization of cells.
Collapse
Affiliation(s)
- Ina Humpert
- Applied Mathematics Münster: Institute for Analysis and Computational Mathematics, Westfälische Wilhelms-Universität (WWU) Münster, Germany.
| | - Danila Di Meo
- Institute for Molecular Biology, Westfälische-Wilhelms-Universität (WWU) Münster, Germany.
| | - Andreas W Püschel
- Institute for Molecular Biology, Westfälische-Wilhelms-Universität (WWU) Münster, Germany.
| | | |
Collapse
|
15
|
Wilson C, Giono LE, Rozés-Salvador V, Fiszbein A, Kornblihtt AR, Cáceres A. The Histone Methyltransferase G9a Controls Axon Growth by Targeting the RhoA Signaling Pathway. Cell Rep 2021; 31:107639. [PMID: 32402271 DOI: 10.1016/j.celrep.2020.107639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/18/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
The generation of axonal and dendritic domains is critical for brain circuitry assembly and physiology. Negative players, such as the RhoA-Rho coiled-coil-associated protein kinase (ROCK) signaling pathway, restrain axon development and polarization. Surprisingly, the genetic control of neuronal polarity has remained largely unexplored. Here, we report that, in primary cultured neurons, expression of the histone methyltransferase G9a and nuclear translocation of its major splicing isoform (G9a/E10+) peak at the time of axon formation. RNAi suppression of G9a/E10+ or pharmacological blockade of G9a constrains neuronal migration, axon initiation, and the establishment of neuronal polarity in situ and in vitro. Inhibition of G9a function upregulates RhoA-ROCK activity by increasing the expression of Lfc, a guanine nucleotide exchange factor (GEF) for RhoA. Together, these results identify G9a as a player in neuronal polarization.
Collapse
Affiliation(s)
- Carlos Wilson
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Friuli 2786, 5016 Córdoba, Argentina
| | - Luciana E Giono
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Ana Fiszbein
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alfredo Cáceres
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina; Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina; Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Av. Friuli 2786, 5016 Córdoba, Argentina.
| |
Collapse
|
16
|
Axon Growth of CNS Neurons in Three Dimensions Is Amoeboid and Independent of Adhesions. Cell Rep 2021; 32:107907. [PMID: 32698008 DOI: 10.1016/j.celrep.2020.107907] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
During development of the central nervous system (CNS), neurons polarize and rapidly extend their axons to assemble neuronal circuits. The growth cone leads the axon to its target and drives axon growth. Here, we explored the mechanisms underlying axon growth in three dimensions. Live in situ imaging and super-resolution microscopy combined with pharmacological and molecular manipulations as well as biophysical force measurements revealed that growth cones extend CNS axons independent of pulling forces on their substrates and without the need for adhesions in three-dimensional (3D) environments. In 3D, microtubules grow unrestrained from the actomyosin cytoskeleton into the growth cone leading edge to enable rapid axon extension. Axons extend and polarize even in adhesion-inert matrices. Thus, CNS neurons use amoeboid mechanisms to drive axon growth. Together with our understanding that adult CNS axons regenerate by reactivating developmental processes, our findings illuminate how cytoskeletal manipulations enable axon regeneration in the adult CNS.
Collapse
|
17
|
Tuba Activates Cdc42 during Neuronal Polarization Downstream of the Small GTPase Rab8a. J Neurosci 2021; 41:1636-1649. [PMID: 33478991 DOI: 10.1523/jneurosci.0633-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 11/21/2022] Open
Abstract
The acquisition of neuronal polarity is a complex molecular process that depends on changes in cytoskeletal dynamics and directed membrane traffic, regulated by the Rho and Rab families of small GTPases, respectively. However, during axon specification, a molecular link that couples these protein families has yet to be identified. In this paper, we describe a new positive feedback loop between Rab8a and Cdc42, coupled by Tuba, a Cdc42-specific guanine nucleotide-exchange factor (GEF), that ensures a single axon generation in rodent hippocampal neurons from embryos of either sex. Accordingly, Rab8a or Tuba gain-of-function generates neurons with supernumerary axons whereas Rab8a or Tuba loss-of-function abrogated axon specification, phenocopying the well-established effect of Cdc42 on neuronal polarity. Although Rab8 and Tuba do not interact physically, the activity of Rab8 is essential to generate a proximal to distal axonal gradient of Tuba in cultured neurons. Tuba-associated and Rab8a-associated polarity defects are also evidenced in vivo, since dominant negative (DN) Rab8a or Tuba knock-down impairs cortical neuronal migration in mice. Our results suggest that Tuba coordinates directed vesicular traffic and cytoskeleton dynamics during neuronal polarization.SIGNIFICANCE STATEMENT The morphologic, biochemical, and functional differences observed between axon and dendrites, require dramatic structural changes. The extension of an axon that is 1 µm in diameter and grows at rates of up to 500 µm/d, demands the confluence of two cellular processes: directed membrane traffic and fine-tuned cytoskeletal dynamics. In this study, we show that both processes are integrated in a positive feedback loop, mediated by the guanine nucleotide-exchange factor (GEF) Tuba. Tuba connects the activities of the Rab GTPase Rab8a and the Rho GTPase Cdc42, ensuring the generation of a single axon in cultured hippocampal neurons and controlling the migration of cortical neurons in the developing brain. Finally, we provide compelling evidence that Tuba is the GEF that mediates Cdc42 activation during the development of neuronal polarity.
Collapse
|
18
|
Abstract
The establishment of polarity is crucial for the physiology and wiring of neurons. Therefore, monitoring the axo-dendritic specification allows the mechanisms and signals associated with development, growth, and disease to be explored. Here, we describe major and minor steps to study polarity acquisition, using primary cultures of hippocampal neurons isolated from embryonic rat hippocampi, for in vitro monitoring. Furthermore, we use in utero electroporated, GFP-expressing embryonic mouse brains for visualizing cortical neuron migration and polarization in situ. Some underreported after-protocol steps are also included. For complete details on the use and execution of this protocol, please refer to Wilson et al. (2020). Dissection, isolation, and digestion of embryonic (E18.5) rat hippocampi Culturing isolated hippocampal neurons and monitoring polarity acquisition in vitro In utero electroporation of embryonic (E15.5) mouse brains with GFP plasmids Visualization of migration and polarization of E17.5–E18.5 cortical neurons in situ
Collapse
Affiliation(s)
- Carlos Wilson
- Centro de Investigación en Medicina Traslacional “Severo R Amuchástegui” (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Naciones Unidas 420, 5016 Córdoba, Argentina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
- Corresponding author
| | - Victoria Rozés-Salvador
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
| | - Alfredo Cáceres
- Centro de Investigación en Medicina Traslacional “Severo R Amuchástegui” (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Naciones Unidas 420, 5016 Córdoba, Argentina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC) Friuli 2434, 5016 Córdoba, Argentina
- Universidad Nacional de Córdoba (UNC), Av. Haya de la Torre s/n, 5000 Córdoba, Argentina
- Corresponding author
| |
Collapse
|
19
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
20
|
Urbina FL, Gupton SL. SNARE-Mediated Exocytosis in Neuronal Development. Front Mol Neurosci 2020; 13:133. [PMID: 32848598 PMCID: PMC7427632 DOI: 10.3389/fnmol.2020.00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The formation of the nervous system involves establishing complex networks of synaptic connections between proper partners. This developmental undertaking requires the rapid expansion of the plasma membrane surface area as neurons grow and polarize, extending axons through the extracellular environment. Critical to the expansion of the plasma membrane and addition of plasma membrane material is exocytic vesicle fusion, a regulated mechanism driven by soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNAREs). Since their discovery, SNAREs have been implicated in several critical neuronal functions involving exocytic fusion in addition to synaptic transmission, including neurite initiation and outgrowth, axon specification, axon extension, and synaptogenesis. Decades of research have uncovered a rich variety of SNARE expression and function. The basis of SNARE-mediated fusion, the opening of a fusion pore, remains an enigmatic event, despite an incredible amount of research, as fusion is not only heterogeneous but also spatially small and temporally fast. Multiple modes of exocytosis have been proposed, with full-vesicle fusion (FFV) and kiss-and-run (KNR) being the best described. Whereas most in vitro work has reconstituted fusion using VAMP-2, SNAP-25, and syntaxin-1; there is much to learn regarding the behaviors of distinct SNARE complexes. In the past few years, robust heterogeneity in the kinetics and fate of the fusion pore that varies by cell type have been uncovered, suggesting a paradigm shift in how the modes of exocytosis are viewed is warranted. Here, we explore both classic and recent work uncovering the variety of SNAREs and their importance in the development of neurons, as well as historical and newly proposed modes of exocytosis, their regulation, and proteins involved in the regulation of fusion kinetics.
Collapse
Affiliation(s)
- Fabio L. Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
21
|
Dupraz S, Hilton BJ, Husch A, Santos TE, Coles CH, Stern S, Brakebusch C, Bradke F. RhoA Controls Axon Extension Independent of Specification in the Developing Brain. Curr Biol 2019; 29:3874-3886.e9. [PMID: 31679934 DOI: 10.1016/j.cub.2019.09.040] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/22/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
Abstract
The specification of an axon and its subsequent outgrowth are key steps during neuronal polarization, a prerequisite to wire the brain. The Rho-guanosine triphosphatase (GTPase) RhoA is believed to be a central player in these processes. However, its physiological role has remained undefined. Here, genetic loss- and gain-of-function experiments combined with time-lapse microscopy, cell culture, and in vivo analysis show that RhoA is not involved in axon specification but confines the initiation of neuronal polarization and axon outgrowth during development. Biochemical analysis and super-resolution microscopy together with molecular and pharmacological manipulations reveal that RhoA restrains axon growth by activating myosin-II-mediated actin arc formation in the growth cone to prevent microtubules from protruding toward the leading edge. Through this mechanism, RhoA regulates the duration of axon growth and pause phases, thus controlling the tightly timed extension of developing axons. Thereby, this work unravels physiologically relevant players coordinating actin-microtubule interactions during axon growth.
Collapse
Affiliation(s)
- Sebastian Dupraz
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Brett J Hilton
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Andreas Husch
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Telma E Santos
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Charlotte H Coles
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Sina Stern
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany
| | - Cord Brakebusch
- Biotech Research & Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127 Bonn, Germany.
| |
Collapse
|
22
|
Kuznetsov MS, Rezvyakov PN, Lisyukov AN, Gusev OA, Nikolskiy EE, Islamov RR. Bioinformatic Analysis of the Sciatic Nerve Transcriptomes of Mice after 30-Day Spaceflight on Board the Bion-M1 Biosatellite. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419030104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Shima T, Morikawa M, Kaneshiro J, Kambara T, Kamimura S, Yagi T, Iwamoto H, Uemura S, Shigematsu H, Shirouzu M, Ichimura T, Watanabe TM, Nitta R, Okada Y, Hirokawa N. Kinesin-binding-triggered conformation switching of microtubules contributes to polarized transport. J Cell Biol 2018; 217:4164-4183. [PMID: 30297389 PMCID: PMC6279379 DOI: 10.1083/jcb.201711178] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/13/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023] Open
Abstract
Kinesin-1, the founding member of the kinesin superfamily of proteins, is known to use only a subset of microtubules for transport in living cells. This biased use of microtubules is proposed as the guidance cue for polarized transport in neurons, but the underlying mechanisms are still poorly understood. Here, we report that kinesin-1 binding changes the microtubule lattice and promotes further kinesin-1 binding. This high-affinity state requires the binding of kinesin-1 in the nucleotide-free state. Microtubules return to the initial low-affinity state by washing out the binding kinesin-1 or by the binding of non-hydrolyzable ATP analogue AMPPNP to kinesin-1. X-ray fiber diffraction, fluorescence speckle microscopy, and second-harmonic generation microscopy, as well as cryo-EM, collectively demonstrated that the binding of nucleotide-free kinesin-1 to GDP microtubules changes the conformation of the GDP microtubule to a conformation resembling the GTP microtubule.
Collapse
Affiliation(s)
- Tomohiro Shima
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Manatsu Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Kaneshiro
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Taketoshi Kambara
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Toshiki Yagi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Hiroyuki Iwamoto
- Life and Environmental Division, SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Shigematsu
- Structural Biology Group, RIKEN Center for Biosystems Dynamics Research, Kanagawa, Japan
| | - Mikako Shirouzu
- Structural Biology Group, RIKEN Center for Biosystems Dynamics Research, Kanagawa, Japan
| | - Taro Ichimura
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Ryo Nitta
- Structural Biology Group, RIKEN Center for Biosystems Dynamics Research, Kanagawa, Japan
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
- Department of Physics, Universal Biology Institute and the International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Center of Excellence in Genome Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
24
|
|
25
|
Gahl TJ, Kunze A. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function. Front Neurosci 2018; 12:299. [PMID: 29867315 PMCID: PMC5962660 DOI: 10.3389/fnins.2018.00299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.
Collapse
Affiliation(s)
| | - Anja Kunze
- Department of Electrical and Computer Engineering, Montana State University, Bozeman, MT, United States
| |
Collapse
|
26
|
Herold C, Bidmon HJ, Pannek HW, Hans V, Gorji A, Speckmann EJ, Zilles K. ATPase N-ethylmaleimide-sensitive Fusion Protein: A Novel Key Player for Causing Spontaneous Network Excitation in Human Temporal Lobe Epilepsy. Neuroscience 2018; 371:371-383. [DOI: 10.1016/j.neuroscience.2017.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 11/26/2022]
|
27
|
Abstract
During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation.
Collapse
|
28
|
Quiroga S, Bisbal M, Cáceres A. Regulation of plasma membrane expansion during axon formation. Dev Neurobiol 2017; 78:170-180. [PMID: 29090510 DOI: 10.1002/dneu.22553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022]
Abstract
Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 170-180, 2018.
Collapse
Affiliation(s)
- Santiago Quiroga
- Dpto. de Química Biológica Ranwel Caputto y Centro de Investigaciones en Química Biológica Córdoba (CIQUIBIC-CONICET) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina
| | - Mariano Bisbal
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| | - Alfredo Cáceres
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| |
Collapse
|
29
|
|
30
|
Hilton BJ, Bradke F. Can injured adult CNS axons regenerate by recapitulating development? Development 2017; 144:3417-3429. [PMID: 28974639 DOI: 10.1242/dev.148312] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS.
Collapse
Affiliation(s)
- Brett J Hilton
- Laboratory for Axon Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| | - Frank Bradke
- Laboratory for Axon Growth and Regeneration, German Centre for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Strasse 27, 53127, Bonn, Germany
| |
Collapse
|
31
|
KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS. J Neurosci 2017; 37:9632-9644. [PMID: 28871032 DOI: 10.1523/jneurosci.0643-16.2017] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Neurons in the adult mammalian CNS decrease in intrinsic axon growth capacity during development in concert with changes in Krüppel-like transcription factors (KLFs). KLFs regulate axon growth in CNS neurons including retinal ganglion cells (RGCs). Here, we found that knock-down of KLF9, an axon growth suppressor that is normally upregulated 250-fold in RGC development, promotes long-distance optic nerve regeneration in adult rats of both sexes. We identified a novel binding partner, MAPK10/JNK3 kinase, and found that JNK3 (c-Jun N-terminal kinase 3) is critical for KLF9's axon-growth-suppressive activity. Interfering with a JNK3-binding domain or mutating two newly discovered serine phosphorylation acceptor sites, Ser106 and Ser110, effectively abolished KLF9's neurite growth suppression in vitro and promoted axon regeneration in vivo These findings demonstrate a novel, physiologic role for the interaction of KLF9 and JNK3 in regenerative failure in the optic nerve and suggest new therapeutic strategies to promote axon regeneration in the adult CNS.SIGNIFICANCE STATEMENT Injured CNS nerves fail to regenerate spontaneously. Promoting intrinsic axon growth capacity has been a major challenge in the field. Here, we demonstrate that knocking down Krüppel-like transcription factor 9 (KLF9) via shRNA promotes long-distance axon regeneration after optic nerve injury and uncover a novel and important KLF9-JNK3 interaction that contributes to axon growth suppression in vitro and regenerative failure in vivo These studies suggest potential therapeutic approaches to promote axon regeneration in injury and other degenerative diseases in the adult CNS.
Collapse
|
32
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|
33
|
Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci 2017; 84:11-28. [PMID: 28363876 DOI: 10.1016/j.mcn.2017.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarization establishes distinct molecular structures to generate a single axon and multiple dendrites. Studies over the past years indicate that this efficient separation is brought about by a network of feedback loops. Axonal growth seems to play a major role in fueling those feedback loops and thereby stabilizing neuronal polarity. Indeed, various effectors involved in feedback loops are pivotal for axonal growth by ultimately acting on the actin and microtubule cytoskeleton. These effectors have key roles in interconnecting actin and microtubule dynamics - a mechanism crucial to commanding the growth of axons. We propose a model connecting signaling with cytoskeletal dynamics and neurite growth to better describe the underlying processes involved in neuronal polarization. We will discuss the current views on feedback loops and highlight the current limits of our understanding.
Collapse
|
34
|
Emperador Melero J, Nadadhur AG, Schut D, Weering JV, Heine VM, Toonen RF, Verhage M. Differential Maturation of the Two Regulated Secretory Pathways in Human iPSC-Derived Neurons. Stem Cell Reports 2017; 8:659-672. [PMID: 28238793 PMCID: PMC5355645 DOI: 10.1016/j.stemcr.2017.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Neurons communicate by regulated secretion of chemical signals from synaptic vesicles (SVs) and dense-core vesicles (DCVs). Here, we investigated the maturation of these two secretory pathways in micro-networks of human iPSC-derived neurons. These micro-networks abundantly expressed endogenous SV and DCV markers, including neuropeptides. DCV transport was microtubule dependent, preferentially anterograde in axons, and 2-fold faster in axons than in dendrites. SV and DCV secretion were strictly Ca2+ and SNARE dependent. DCV secretion capacity matured until day in vitro (DIV) 36, with intense stimulation releasing 6% of the total DCV pool, and then plateaued. This efficiency is comparable with mature mouse neurons. In contrast, SV secretion capacity continued to increase until DIV50, with substantial further increase in secretion efficiency and decrease in silent synapses. These data show that the two secretory pathways can be studied in human neurons and that they mature differentially, with DCV secretion reaching maximum efficiency when that of SVs is still low.
Collapse
Affiliation(s)
- Javier Emperador Melero
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Aishwarya G Nadadhur
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Desiree Schut
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Jan V Weering
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands
| | - Vivi M Heine
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands; Department of Pediatrics/Child Neurology, Amsterdam Neuroscience, VU Medical Center, 1081 HV Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Ruud F Toonen
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands.
| | - Matthijs Verhage
- Departments of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit (VU) Amsterdam and VU Medical Center, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
35
|
Kunze A, Murray CT, Godzich C, Lin J, Owsley K, Tay A, Di Carlo D. Modulating motility of intracellular vesicles in cortical neurons with nanomagnetic forces on-chip. LAB ON A CHIP 2017; 17:842-854. [PMID: 28164203 PMCID: PMC5400667 DOI: 10.1039/c6lc01349j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Vesicle transport is a major underlying mechanism of cell communication. Inhibiting vesicle transport in brain cells results in blockage of neuronal signals, even in intact neuronal networks. Modulating intracellular vesicle transport can have a huge impact on the development of new neurotherapeutic concepts, but only if we can specifically interfere with intracellular transport patterns. Here, we propose to modulate motion of intracellular lipid vesicles in rat cortical neurons based on exogenously bioconjugated and cell internalized superparamagnetic iron oxide nanoparticles (SPIONs) within microengineered magnetic gradients on-chip. Upon application of 6-126 pN on intracellular vesicles in neuronal cells, we explored how the magnetic force stimulus impacts the motion pattern of vesicles at various intracellular locations without modulating the entire cell morphology. Altering vesicle dynamics was quantified using, mean square displacement, a caging diameter and the total traveled distance. We observed a de-acceleration of intercellular vesicle motility, while applying nanomagnetic forces to cultured neurons with SPIONs, which can be explained by a decrease in motility due to opposing magnetic force direction. Ultimately, using nanomagnetic forces inside neurons may permit us to stop the mis-sorting of intracellular organelles, proteins and cell signals, which have been associated with cellular dysfunction. Furthermore, nanomagnetic force applications will allow us to wirelessly guide axons and dendrites by exogenously using permanent magnetic field gradients.
Collapse
Affiliation(s)
- Anja Kunze
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA. and Department of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, USA.
| | - Coleman Tylor Murray
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Chanya Godzich
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Jonathan Lin
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Keegan Owsley
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Andy Tay
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA.
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA. and California NanoSystems Institute, University of California, Los Angeles, California 90095, USA and Jonsson Comprehensive Cancer Research Center, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
36
|
Higuero AM, Díez-Revuelta N, Abad-Rodríguez J. The sugar code in neuronal physiology. Histochem Cell Biol 2016; 147:257-267. [PMID: 27999993 DOI: 10.1007/s00418-016-1519-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Carbohydrate-related interactions are necessary for the correct development and function of the nervous system. As we illustrate with several examples, those interactions are controlled by carbohydrate-modifying enzymes and by carbohydrate-binding proteins that regulate a plethora of complex axonal processes. Among others, glycan-related proteins as sialidase Neu3 or galectins-1, -3, and -4 play central roles in the determination of axonal fate, axon growth, guidance and regeneration, as well as in polarized axonal glycoprotein transport. In addition, myelination is also highly dependent on glycans, and the stabilization of myelin architecture requires the interaction of the myelin-associated glycoprotein (siglec-4) with gangliosides in the axonal membrane. The roles of glycans in neuroscience are far from being completely understood, though the cases presented here underscore the importance and potential of carbohydrates to establish with precision key molecular mechanisms of the physiology of the nervous system. New specific applications in diagnosis as well as the definition of new molecular targets to treat neurological diseases related to lectins and/or glycans are envisioned in the future.
Collapse
Affiliation(s)
- Alonso M Higuero
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, National Hospital for Paraplegics (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
37
|
Villarroel-Campos D, Bronfman FC, Gonzalez-Billault C. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton (Hoboken) 2016; 73:498-507. [PMID: 27124121 DOI: 10.1002/cm.21303] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/30/2022]
Abstract
Neurons are highly polarized cells that contain specialized subcellular domains involved in information transmission in the nervous system. Specifically, the somatodendritic compartment receives neuronal inputs while the axons convey information through the synapse. The establishment of asymmetric domains requires a specific delivery of components, including organelles, proteins, and membrane. The Rab family of small GTPases plays an essential role in membrane trafficking. Signaling cascades triggered by extrinsic and intrinsic factors tightly regulate Rab functions in cells, with Rab protein activation depending on GDP/GTP binding to establish a binary mode of action. This review summarizes the contributions of several Rab family members involved in trans-Golgi, early/late endosomes, and recycling endosomes during neurite development and axonal outgrowth. The regulation of some Rabs by guanine exchanging factors and GTPase activating proteins will also be addressed. Finally, discussion will be provided on how specific effector-mediated Rab activation modifies several molecules essential to neuronal differentiation. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad De Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Francisca C Bronfman
- MINREB And Center for Ageing and Regeneration (CARE), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad De Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| |
Collapse
|
38
|
Britt DJ, Farías GG, Guardia CM, Bonifacino JS. Mechanisms of Polarized Organelle Distribution in Neurons. Front Cell Neurosci 2016; 10:88. [PMID: 27065809 PMCID: PMC4814528 DOI: 10.3389/fncel.2016.00088] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Neurons are highly polarized cells exhibiting axonal and somatodendritic domains with distinct complements of cytoplasmic organelles. Although some organelles are widely distributed throughout the neuronal cytoplasm, others are segregated to either the axonal or somatodendritic domains. Recent findings show that organelle segregation is largely established at a pre-axonal exclusion zone (PAEZ) within the axon hillock. Polarized sorting of cytoplasmic organelles at the PAEZ is proposed to depend mainly on their selective association with different microtubule motors and, in turn, with distinct microtubule arrays. Somatodendritic organelles that escape sorting at the PAEZ can be subsequently retrieved at the axon initial segment (AIS) by a microtubule- and/or actin-based mechanism. Dynamic sorting along the PAEZ-AIS continuum can thus explain the polarized distribution of cytoplasmic organelles between the axonal and somatodendritic domains.
Collapse
Affiliation(s)
- Dylan J Britt
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Ginny G Farías
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Carlos M Guardia
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
39
|
Hanus C, Ehlers MD. Specialization of biosynthetic membrane trafficking for neuronal form and function. Curr Opin Neurobiol 2016; 39:8-16. [PMID: 27010827 DOI: 10.1016/j.conb.2016.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 10/24/2022]
Abstract
Neuronal growth and synaptic transmission require the continuous production of adhesion molecules, neurotransmitter receptors, ion-channels, and secreted trophic factors, and thus critically relies on the secretory pathway-the series of intracellular organelles including the endoplasmic reticulum (ER) and the Golgi apparatus (GA), where membrane lipids and proteins are synthesized. Commensurate with the gigantic size of the neuronal membrane and its compartmentalization by thousands of synapses with distinct compositions and activities, the neuronal secretory pathway has evolved to both traffic synaptic components over very long distances, and locally control the composition of specified segments of dendrites. Here we review new insights into the distribution and dynamics of dendritic secretory organelles and their impact on postsynaptic compartments.
Collapse
Affiliation(s)
- Cyril Hanus
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Michael D Ehlers
- Neuroscience Research Unit, BioTherapeutics, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA.
| |
Collapse
|
40
|
Hsu MT, Guo CL, Liou AY, Chang TY, Ng MC, Florea BI, Overkleeft HS, Wu YL, Liao JC, Cheng PL. Stage-Dependent Axon Transport of Proteasomes Contributes to Axon Development. Dev Cell 2016; 35:418-31. [PMID: 26609957 DOI: 10.1016/j.devcel.2015.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 09/22/2015] [Accepted: 10/22/2015] [Indexed: 01/26/2023]
Abstract
Axon extension at the growing tip requires elevated local protein supply, with a capability sustainable over long axons in varying environments. The exact mechanisms, however, remain elusive. Here we report that axon-promoting factors elicited a retrograde transport-dependent removal of proteasomes from nascent axon terminals, thereby increasing protein stability at axon tips. Such an effect occurred through phosphorylation of a dynein-interacting proteasome adaptor protein Ecm29. During the transition from immature neurites to nascent axons in cultured hippocampal neurons, live-cell imaging revealed a significant increase of the retrograde axonal transport of fluorescently labeled 20S proteasomes. This retrograde proteasome transport depended on neuron stage and increased with axon lengths. Blockade of retrograde transport caused accumulation of proteasomes, reduction of axon growth, and attenuation of growth-associated Par6 at the axon tip of newly polarized neurons. Our results delineate a regulatory mechanism that controls proteasome abundance via preferential transport required for axon development in newborn neurons.
Collapse
Affiliation(s)
- Meng-Tsung Hsu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Chin-Lin Guo
- Institute of Physics, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Angela Y Liou
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ting-Ya Chang
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Ming-Chong Ng
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Bogdan I Florea
- Leiden Institute of Chemistry, Leiden University, Rapenburg 70, 2311 EZ Leiden, the Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Rapenburg 70, 2311 EZ Leiden, the Netherlands
| | - Yen-Lin Wu
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Pei-Lin Cheng
- Institute of Molecular Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
41
|
Winans AM, Collins SR, Meyer T. Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation. eLife 2016; 5:e12387. [PMID: 26836307 PMCID: PMC4805541 DOI: 10.7554/elife.12387] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 01/31/2016] [Indexed: 12/16/2022] Open
Abstract
Many developing neurons transition through a multi-polar state with many competing neurites before assuming a unipolar state with one axon and multiple dendrites. Hallmarks of the multi-polar state are large fluctuations in microtubule-based transport into and outgrowth of different neurites, although what drives these fluctuations remains elusive. We show that actin waves, which stochastically migrate from the cell body towards neurite tips, direct microtubule-based transport during the multi-polar state. Our data argue for a mechanical control system whereby actin waves transiently widen the neurite shaft to allow increased microtubule polymerization to direct Kinesin-based transport and create bursts of neurite extension. Actin waves also require microtubule polymerization, arguing that positive feedback links these two components. We propose that actin waves create large stochastic fluctuations in microtubule-based transport and neurite outgrowth, promoting competition between neurites as they explore the environment until sufficient external cues can direct one to become the axon. DOI:http://dx.doi.org/10.7554/eLife.12387.001 Nerve cells (also known as neurons) connect with each other to form complex networks through which signals are carried around the body. Signals are received by branch-like projections called dendrites, pass through the cell body and then pass along a long projection called the axon before being transmitted to the dendrites of neighboring neurons. In animal embryos, immature neurons in part of the brain called the hippocampus – which is crucial for learning and forming memories – develop into mature neurons through a series of steps. In the early stages of development, an immature neuron sends out multiple projections that extend out in all directions from its cell body. These projections randomly retract and lengthen for a while before a single projection grows into an axon and the others become dendrites. It is believed that signal proteins inside the neuron that promote the formation of an axon selectively accumulate in a projection as it grows into an axon. These axon-promoting proteins are carried to the axons by a motor protein called kinesin, which moves along fibers called microtubules. In immature neurons, kinesin motors randomly move in and out of different projections, before settling in the projection that will grow into the axon. However, it is not clear what drives these fluctuations. To address this question, Winans et al. used microscopy to study the transport of axon-promoting proteins in hippocampal neurons. The experiments show that a protein called actin forms a mesh of filaments in a wave-like manner, starting in the cell body and moving outwards into the projections. When a wave of actin reaches a projection, the projection grows for a while and then stops until the next actin wave arrives. Furthermore, the actin waves promote the formation of more microtubule filaments. This work shows that actin waves make the projections wider to create space for more microtubules to form, which increases the transport of axon-promoting proteins to the projections. Winans et al.’s findings suggest that actin waves direct axon-promoting proteins to axons and promote competition between the projections early on by generating random fluctuations that allow all the projections to grow and retract. This would allow each projection to explore its environment in the search for signals that promote axon growth. The next challenge is to understand how different signals select the “winning axon”. DOI:http://dx.doi.org/10.7554/eLife.12387.002
Collapse
Affiliation(s)
- Amy M Winans
- Biophysics Program, Stanford University, Stanford, United States.,Department of Chemical and Systems Biology, Stanford University, Stanford, United States.,Center for Systems Biology, Stanford University, Stanford, United States
| | - Sean R Collins
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States.,Center for Systems Biology, Stanford University, Stanford, United States
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States.,Center for Systems Biology, Stanford University, Stanford, United States
| |
Collapse
|
42
|
Coullery RP, Ferrari ME, Rosso SB. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway. Neurotoxicology 2016; 52:150-61. [PMID: 26688330 DOI: 10.1016/j.neuro.2015.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 01/25/2023]
Abstract
The growth and morphological differentiation of neurons are critical events in the establishment of proper neuronal connectivity and functioning. The developing nervous system is highly susceptible to damage caused by exposure to environmental contaminants. Glyphosate-containing herbicides are the most used agrochemicals in the world, particularly on genetically modified plants. Previous studies have demonstrated that glyphosate induces neurotoxicity in mammals. Therefore, its action mechanism on the nervous system needs to be determined. In this study, we report about impaired neuronal development caused by glyphosate exposure. Particularly, we observed that the initial axonal differentiation and growth of cultured neurons is affected by glyphosate since most treated cells remained undifferentiated after 1 day in culture. Although they polarized at 2 days in vitro, they elicited shorter and unbranched axons and they also developed less complex dendritic arbors compared to controls. To go further, we attempted to identify the cellular mechanism by which glyphosate affected neuronal morphology. Biochemical approaches revealed that glyphosate led to a decrease in Wnt5a level, a key factor for the initial neurite development and maturation, as well as inducing a down-regulation of CaMKII activity. This data suggests that the morphological defects would likely be a consequence of the decrease in both Wnt5a expression and CaMKII activity induced by glyphosate. Additionally, these changes might be reflected in a subsequent neuronal dysfunction. Therefore, our findings highlight the importance of establishing rigorous control on the use of glyphosate-based herbicides in order to protect mammals' health.
Collapse
Affiliation(s)
- Romina P Coullery
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - María E Ferrari
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Silvana B Rosso
- Experimental Toxicology Laboratory, School of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
43
|
Valenzuela JI, Perez F. Diversifying the secretory routes in neurons. Front Neurosci 2015; 9:358. [PMID: 26500481 PMCID: PMC4595659 DOI: 10.3389/fnins.2015.00358] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/18/2015] [Indexed: 12/23/2022] Open
Abstract
Nervous system homeostasis and synaptic function need dedicated mechanisms to locally regulate the molecular composition of the neuronal plasma membrane and allow the development, maintenance and plastic modification of the neuronal morphology. The cytoskeleton and intracellular trafficking lies at the core of all these processes. In most mammalian cells, the Golgi apparatus (GA) is at the center of the biosynthetic pathway, located in the proximity of the microtubule-organizing center. In addition to this central localization, the somatic GA in neurons is complemented by satellite Golgi outposts (GOPs) in dendrites, which are essential for dendritic morphogenesis and are emerging like local stations of membranes trafficking to synapses. Largely, GOPs participation in post-ER trafficking has been determined by imaging the transport of the exogenous protein VSVG. Here we review the diversity of neuronal cargoes that traffic through GOPs and the assortment of different biosynthetic routes to synapses. We also analyze the recent advances in understanding the role of cytoskeleton and Golgi matrix proteins in the biogenesis of GOPs and how the diversity of secretory routes can be generated.
Collapse
Affiliation(s)
- José I Valenzuela
- Cell Biology Department, Institut Curie, PSL Research University, UMR144 Paris, France ; Dynamics of Intracellular Organisation, Centre National de la Recherche Scientifique -UMR144 Paris, France
| | - Franck Perez
- Cell Biology Department, Institut Curie, PSL Research University, UMR144 Paris, France ; Dynamics of Intracellular Organisation, Centre National de la Recherche Scientifique -UMR144 Paris, France
| |
Collapse
|
44
|
|
45
|
Duan L, Che D, Zhang K, Ong Q, Guo S, Cui B. Optogenetic control of molecular motors and organelle distributions in cells. ACTA ACUST UNITED AC 2015; 22:671-82. [PMID: 25963241 DOI: 10.1016/j.chembiol.2015.04.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
Intracellular transport and distribution of organelles play important roles in diverse cellular functions, including cell polarization, intracellular signaling, cell survival, and apoptosis. Here, we report an optogenetic strategy to control the transport and distribution of organelles by light. This is achieved by optically recruiting molecular motors onto organelles through the heterodimerization of Arabidopsis thaliana cryptochrome 2 (CRY2) and its interacting partner CIB1. CRY2 and CIB1 dimerize within subseconds upon exposure to blue light, which requires no exogenous ligands and low intensity of light. We demonstrate that mitochondria, peroxisomes, and lysosomes can be driven toward the cell periphery upon light-induced recruitment of kinesin, or toward the cell nucleus upon recruitment of dynein. Light-induced motor recruitment and organelle movements are repeatable, reversible, and can be achieved at subcellular regions. This light-controlled organelle redistribution provides a new strategy for studying the causal roles of organelle transport and distribution in cellular functions in living cells.
Collapse
Affiliation(s)
- Liting Duan
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Daphne Che
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Kai Zhang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qunxiang Ong
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Shunling Guo
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Involvement of GSK3 in the formation of the leading process and migration of neurons from the embryonic rat medial ganglionic eminence in vitro. Neuroreport 2015; 26:179-85. [PMID: 25646586 DOI: 10.1097/wnr.0000000000000333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Migrating neurons have leading processes that direct cell movement in response to guidance cues. We investigated the involvement of glycogen synthase kinase 3 (GSK3) in the formation of leading processes and migration of neurons in vitro. We used embryonic rat medial ganglionic eminence (MGE) neurons, which are precursors of inhibitory neurons that migrate into the cerebral cortex. When MGE neurons were placed on an astrocyte layer, they migrated freely with the highest speed among neurons from other parts of the embryonic forebrain. When they were cultured alone, they showed bipolar morphology and extended leading processes within 20 h. Their leading processes had large growth cones, but did not elongate during 3 days in culture, indicating that leading processes are distinct from short axons. Next, we examined the effect of GSK3 inhibitors on leading processes and the migratory behavior of MGE neurons. MGE neurons treated with GSK3 inhibitors showed multipolar morphology and altered process shapes. Moreover, migration of MGE neurons on the astrocyte layer was significantly decreased in the presence of GSK3 inhibitors. These data suggest that GSK3 is involved in the formation of leading processes and in the migration of MGE neurons.
Collapse
|
47
|
Sanuki R, Watanabe S, Sugita Y, Irie S, Kozuka T, Shimada M, Ueno S, Usukura J, Furukawa T. Protein-4.1G-Mediated Membrane Trafficking Is Essential for Correct Rod Synaptic Location in the Retina and for Normal Visual Function. Cell Rep 2015; 10:796-808. [DOI: 10.1016/j.celrep.2015.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/17/2014] [Accepted: 12/24/2014] [Indexed: 11/27/2022] Open
|
48
|
Kunze A, Tseng P, Godzich C, Murray C, Caputo A, Schweizer FE, Di Carlo D. Engineering cortical neuron polarity with nanomagnets on a chip. ACS NANO 2015; 9:3664-76. [PMID: 25801533 DOI: 10.1021/nn505330w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Intra- and extracellular signaling play critical roles in cell polarity, ultimately leading to the development of functional cell-cell connections, tissues, and organs. In the brain, pathologically oriented neurons are often the cause for disordered circuits, severely impacting motor function, perception, and memory. Aside from control through gene expression and signaling pathways, it is known that nervous system development can be manipulated by mechanical stimuli (e.g., outgrowth of axons through externally applied forces). The inverse is true as well: intracellular molecular signals can be converted into forces to yield axonal outgrowth. The complete role played by mechanical signals in mediating single-cell polarity, however, remains currently unclear. Here we employ highly parallelized nanomagnets on a chip to exert local mechanical stimuli on cortical neurons, independently of the amount of superparamagnetic nanoparticles taken up by the cells. The chip-based approach was utilized to quantify the effect of nanoparticle-mediated forces on the intracellular cytoskeleton as visualized by the distribution of the microtubule-associated protein tau. While single cortical neurons prefer to assemble tau proteins following poly-L-lysine surface cues, an optimal force range of 4.5-70 pN by the nanomagnets initiated a tau distribution opposed to the pattern cue. In larger cell clusters (groups comprising six or more cells), nanoparticle-mediated forces induced tau repositioning in an observed range of 190-270 pN, and initiation of magnetic field-directed cell displacement was observed at forces above 300 pN. Our findings lay the groundwork for high-resolution mechanical encoding of neural networks in vitro, mechanically driven cell polarization in brain tissues, and neurotherapeutic approaches using functionalized superparamagnetic nanoparticles to potentially restore disordered neural circuits.
Collapse
Affiliation(s)
- Anja Kunze
- †Department of Bioengineering, ‡California NanoSystems Institute, and §Department of Neurobiology, University of California, Los Angeles, California 90095, United States
| | - Peter Tseng
- †Department of Bioengineering, ‡California NanoSystems Institute, and §Department of Neurobiology, University of California, Los Angeles, California 90095, United States
| | - Chanya Godzich
- †Department of Bioengineering, ‡California NanoSystems Institute, and §Department of Neurobiology, University of California, Los Angeles, California 90095, United States
| | - Coleman Murray
- †Department of Bioengineering, ‡California NanoSystems Institute, and §Department of Neurobiology, University of California, Los Angeles, California 90095, United States
| | - Anna Caputo
- †Department of Bioengineering, ‡California NanoSystems Institute, and §Department of Neurobiology, University of California, Los Angeles, California 90095, United States
| | - Felix E Schweizer
- †Department of Bioengineering, ‡California NanoSystems Institute, and §Department of Neurobiology, University of California, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- †Department of Bioengineering, ‡California NanoSystems Institute, and §Department of Neurobiology, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
49
|
Yau KW, van Beuningen SFB, Cunha-Ferreira I, Cloin BMC, van Battum EY, Will L, Schätzle P, Tas RP, van Krugten J, Katrukha EA, Jiang K, Wulf PS, Mikhaylova M, Harterink M, Pasterkamp RJ, Akhmanova A, Kapitein LC, Hoogenraad CC. Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development. Neuron 2014; 82:1058-73. [PMID: 24908486 DOI: 10.1016/j.neuron.2014.04.019] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2014] [Indexed: 01/09/2023]
Abstract
In neurons, most microtubules are not associated with a central microtubule-organizing center (MTOC), and therefore, both the minus and plus-ends of these non-centrosomal microtubules are found throughout the cell. Microtubule plus-ends are well established as dynamic regulatory sites in numerous processes, but the role of microtubule minus-ends has remained poorly understood. Using live-cell imaging, high-resolution microscopy, and laser-based microsurgery techniques, we show that the CAMSAP/Nezha/Patronin family protein CAMSAP2 specifically localizes to non-centrosomal microtubule minus-ends and is required for proper microtubule organization in neurons. CAMSAP2 stabilizes non-centrosomal microtubules and is required for neuronal polarity, axon specification, and dendritic branch formation in vitro and in vivo. Furthermore, we found that non-centrosomal microtubules in dendrites are largely generated by γ-Tubulin-dependent nucleation. We propose a two-step model in which γ-Tubulin initiates the formation of non-centrosomal microtubules and CAMSAP2 stabilizes the free microtubule minus-ends in order to control neuronal polarity and development.
Collapse
Affiliation(s)
- Kah Wai Yau
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Sam F B van Beuningen
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Inês Cunha-Ferreira
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Bas M C Cloin
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Eljo Y van Battum
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Lena Will
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Philipp Schätzle
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Roderick P Tas
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Jaap van Krugten
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Eugene A Katrukha
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Kai Jiang
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Phebe S Wulf
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Marina Mikhaylova
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Martin Harterink
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| | - Casper C Hoogenraad
- Cell Biology, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands; Department of Neuroscience, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|
50
|
Lalli G. Regulation of neuronal polarity. Exp Cell Res 2014; 328:267-75. [PMID: 25107381 DOI: 10.1016/j.yexcr.2014.07.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 07/26/2014] [Indexed: 12/28/2022]
Abstract
The distinctive polarized morphology of neuronal cells is essential for the proper wiring of the nervous system. The rodent hippocampal neuron culture established about three decades ago has provided an amenable in vitro system to uncover the molecular mechanisms underlying neuronal polarization, a process relying on highly regulated cytoskeletal dynamics, membrane traffic and localized protein degradation. More recent research in vivo has highlighted the importance of the extracellular environment and cell-cell interactions in neuronal polarity. Here, I will review some key signaling pathways regulating neuronal polarization and provide some insights on the complexity of this process gained from in vivo studies.
Collapse
Affiliation(s)
- Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King׳s College London, Guy׳s Campus, London SE1 1UL, UK.
| |
Collapse
|