1
|
Venati SR, Uversky VN. Exploring Intrinsic Disorder in Human Synucleins and Associated Proteins. Int J Mol Sci 2024; 25:8399. [PMID: 39125972 PMCID: PMC11313516 DOI: 10.3390/ijms25158399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, β-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human β- and γ- synucleins and revealed that, relative to the β- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.
Collapse
Affiliation(s)
- Sriya Reddy Venati
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
LaCroix MS, Artikis E, Hitt BD, Beaver JD, Estill-Terpack SJ, Gleason K, Tamminga CA, Evers BM, White CL, Caughey B, Diamond MI. Tau seeding without tauopathy. J Biol Chem 2024; 300:105545. [PMID: 38072056 PMCID: PMC10797195 DOI: 10.1016/j.jbc.2023.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/04/2024] Open
Abstract
Neurodegenerative tauopathies such as Alzheimer's disease (AD) are caused by brain accumulation of tau assemblies. Evidence suggests tau functions as a prion, and cells and animals can efficiently propagate unique, transmissible tau pathologies. This suggests a dedicated cellular replication machinery, potentially reflecting a normal physiologic function for tau seeds. Consequently, we hypothesized that healthy control brains would contain seeding activity. We have recently developed a novel monoclonal antibody (MD3.1) specific for tau seeds. We used this antibody to immunopurify tau from the parietal and cerebellar cortices of 19 healthy subjects without any neuropathology, ranging 19 to 65 years. We detected seeding in lysates from the parietal cortex, but not in the cerebellum. We also detected no seeding in brain homogenates from wildtype or human tau knockin mice, suggesting that cellular/genetic context dictates development of seed-competent tau. Seeding did not correlate with subject age or brain tau levels. We confirmed our essential findings using an orthogonal assay, real-time quaking-induced conversion, which amplifies tau seeds in vitro. Dot blot analyses revealed no AT8 immunoreactivity above background levels in parietal and cerebellar extracts and ∼1/100 of that present in AD. Based on binding to a panel of antibodies, the conformational characteristics of control seeds differed from AD, suggesting a unique underlying assembly, or structural ensemble. Tau's ability to adopt self-replicating conformations under nonpathogenic conditions may reflect a normal function that goes awry in disease states.
Collapse
Affiliation(s)
- Michael S LaCroix
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Brian D Hitt
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Joshua D Beaver
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sandi-Jo Estill-Terpack
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kelly Gleason
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bret M Evers
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Charles L White
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Byron Caughey
- NIH/NIAID, Rocky Mountain Laboratories, Hamilton, Montana, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Neurology, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
3
|
LaCroix MS, Mirbaha H, Shang P, Zandee S, Foong C, Prat A, White CL, Stuve O, Diamond MI. Tau seeding in cases of multiple sclerosis. Acta Neuropathol Commun 2022; 10:146. [PMID: 36221144 PMCID: PMC9552360 DOI: 10.1186/s40478-022-01444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Relapsing remitting multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system that in many cases leads to progressive MS, a neurodegenerative disease. Progressive MS is untreatable and relentless, and its cause is unknown. Prior studies of MS have documented neuronal accumulation of phosphorylated tau protein, which characterizes another heterogeneous group of neurogenerative disorders, the tauopathies. Known causes of tauopathy are myriad, and include point mutations within the tau gene, amyloid beta accumulation, repeated head trauma, and viral infection. We and others have proposed that tau has essential features of a prion. It forms intracellular assemblies that can exit a cell, enter a secondary cell, and serve as templates for their own replication in a process termed "seeding." We have previously developed specialized "biosensor" cell systems to detect and quantify tau seeds in brain tissues. We hypothesized that progressive MS is a tauopathy, potentially triggered by inflammation. We tested for and detected tau seeding in frozen brain tissue of 6/8 subjects with multiple sclerosis. We then evaluated multiple brain regions from a single subject for whom we had detailed clinical history. We observed seeding outside of MS plaques that was enriched by immunopurification with two anti-tau antibodies (HJ8.5 and MD3.1). Immunohistochemistry with AT8 and MD3.1 confirmed prior reports of tau accumulation in MS. Although larger studies are required, our data suggest that progressive MS may be considered a secondary tauopathy.
Collapse
Affiliation(s)
- Michael S LaCroix
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Shang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephanie Zandee
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montreal, Quebec, H2X 0A9, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Chan Foong
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montreal, Quebec, H2X 0A9, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Charles L White
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Olaf Stuve
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Du F, Yu Q, Kanaan NM, Yan SS. Mitochondrial oxidative stress contributes to the pathological aggregation and accumulation of tau oligomers in Alzheimer's disease. Hum Mol Genet 2022; 31:2498-2507. [PMID: 35165721 PMCID: PMC9396941 DOI: 10.1093/hmg/ddab363] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Tau oligomers (oTau) are thought to precede neurofibrillary tangle formation and likely represent one of the toxic species in disease. This study addresses whether mitochondrial reactive oxygen species (ROS) contribute to tau oligomer accumulation. First, we determined whether elevated oxidative stress correlates with aggregation of tau oligomers in the brain and platelets of human Alzheimer's disease (AD) patient, tauopathy mice, primary cortical neurons from tau mice and human trans-mitochondrial 'cybrid' (cytoplasmic hybrid) neuronal cells, whose mitochondria are derived from platelets of patients with sporadic AD- or mild cognitive impairment (MCI)-derived mitochondria. Increased formation of tau oligomers correlates with elevated ROS levels in the hippocampi of AD patients and tauopathy mice, AD- and MCI-derived mitochondria and AD and MCI cybrid cells. Furthermore, scavenging ROS by application of mito-TEMPO/2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride, a mitochondria-targeted antioxidant, not only inhibits the generation of mitochondrial ROS and rescues mitochondrial respiratory function but also robustly suppresses tau oligomer accumulation in MCI and AD cybrids as well as cortical neurons from tau mice. These studies provide substantial evidence that mitochondria-mediated oxidative stress contributes to tau oligomer formation and accumulation.
Collapse
Affiliation(s)
- Fang Du
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Qing Yu
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Nicholas M Kanaan
- Department of Translational Neuroscience, Michigan State University College of Human Medicine, MI 49503
| | - Shirley ShiDu Yan
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
- Molecular Pharmacology & Therapeutics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Xie J, Zhang Y, Li S, Wei H, Yu H, Zhou Q, Wei L, Ke D, Wang Q, Yang Y, Wang J. P301S-hTau acetylates KEAP1 to trigger synaptic toxicity via inhibiting NRF2/ARE pathway: A novel mechanism underlying hTau-induced synaptic toxicities. Clin Transl Med 2022; 12:e1003. [PMID: 35917404 PMCID: PMC9345400 DOI: 10.1002/ctm2.1003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Human Tau (hTau) accumulation and synapse loss are two pathological hallmarks of tauopathies. However, whether and how hTau exerts toxic effects on synapses remain elusive. METHODS Mutated hTau (P301S) was overexpressed in the N2a cell line, primary hippocampal neurons and hippocampal CA3. Western blotting and quantitative polymerase chain reaction were applied to examine the protein and mRNA levels of synaptic proteins. The protein interaction was tested by co-immunoprecipitation and proximity ligation assays. Memory and emotion status were evaluated by a series of behavioural tests. The transcriptional activity of nuclear factor-erythroid 2-related factor 2 (NRF2) was detected by dual luciferase reporter assay. Electrophoresis mobility shift assay and chromosome immunoprecipitation were conducted to examine the combination of NRF2 to specific anti-oxidative response element (ARE) sequences. Neuronal morphology was analysed after Golgi staining. RESULTS Overexpressing P301S decreased the protein levels of post-synaptic density protein 93 (PSD93), PSD95 and synapsin 1 (SYN1). Simultaneously, NRF2 was decreased, whereas Kelch-like ECH-associated protein 1 (KEAP1) was elevated. Further, we found that NRF2 could bind to the specific AREs of DLG2, DLG4 and SYN1 genes, which encode PSD93, PSD95 and SYN1, respectively, to promote their expression. Overexpressing NRF2 ameliorated P301S-reduced synaptic proteins and synapse. By means of acetylation at K312, P301S increased the protein level of KEAP1 via inhibiting KEAP1 degradation from ubiquitin-proteasome pathway, thereby decreasing NRF2 and reducing synapse. Blocking the P301S-KEAP1 interaction at K312 rescued the P301S-suppressed expression of synaptic proteins and memory deficits with anxiety efficiently. CONCLUSIONS P301S-hTau could acetylate KEAP1 to trigger synaptic toxicity via inhibiting the NRF2/ARE pathway. These findings provide a novel and potential target for the therapeutic intervention of tauopathies.
Collapse
Affiliation(s)
- Jia‐Zhao Xie
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yao Zhang
- Endocrine Department of Liyuan HospitalKey Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shi‐Hong Li
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui Wei
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui‐Ling Yu
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiu‐Zhi Zhou
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lin‐Yu Wei
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Ke
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qun Wang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ying Yang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jian‐Zhi Wang
- Department of PathophysiologySchool of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological DisordersTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
6
|
Shahpasand‐Kroner H, Portillo J, Lantz C, Seidler PM, Sarafian N, Loo JA, Bitan G. Three-repeat and four-repeat tau isoforms form different oligomers. Protein Sci 2022; 31:613-627. [PMID: 34902187 PMCID: PMC8862439 DOI: 10.1002/pro.4257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Different tauopathies are characterized by the isoform-specific composition of the aggregates found in the brain and by structurally distinct tau strains. Although tau oligomers have been implicated as important neurotoxic species, little is known about how the primary structures of the six human tau isoforms affect tau oligomerization because the oligomers are metastable and difficult to analyze. To address this knowledge gap, here, we analyzed the initial oligomers formed by the six tau isoforms in the absence of posttranslational modifications or other manipulations using dot blots probed by an oligomer-specific antibody, native-PAGE/western blots, photo-induced cross-linking of unmodified proteins, mass-spectrometry, and ion-mobility spectroscopy. We found that under these conditions, three-repeat (3R) isoforms are more prone than four-repeat (4R) isoforms to form oligomers. We also tested whether known inhibitors of tau aggregation affect its oligomerization using three small molecules representing different classes of tau aggregation inhibitors, Methylene Blue (MB), the molecular tweezer CLR01, and the all-D peptide TLKIVW, for their ability to inhibit or modulate the oligomerization of the six tau isoforms. Unlike their reported inhibitory effect on tau fibrillation, the inhibitors had little or no effect on the initial oligomerization. Our study provides novel insight into the primary-quaternary structure relationship of human tau and suggests that 3R-tau oligomers may be an important target for future development of compounds targeting pathological tau assemblies.
Collapse
Affiliation(s)
- Hedieh Shahpasand‐Kroner
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Jennifer Portillo
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Carter Lantz
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Paul M. Seidler
- Department of Pharmacology and Pharmaceutical SciencesUniversity of Southern California School of PharmacyLos AngelesCaliforniaUSA
| | - Natalie Sarafian
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA
| | - Joseph A. Loo
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Department of Biological ChemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Gal Bitan
- Department of NeurologyDavid Geffen School of Medicine, University of CaliforniaLos AngelesCaliforniaUSA,Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA,Brain Research InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Chen L, van Zijl PC, Wei Z, Lu H, Duan W, Wong PC, Li T, Xu J. Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging. Neuroimage 2021; 236:118071. [PMID: 33878375 PMCID: PMC8321389 DOI: 10.1016/j.neuroimage.2021.118071] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 01/29/2023] Open
Abstract
Detecting Alzheimer's disease (AD) at an early stage brings a lot of benefits including disease management and actions to slow the progression of the disease. Here, we demonstrate that reduced creatine chemical exchange saturation transfer (CrCEST) contrast has the potential to serve as a new biomarker for early detection of AD. The results on wild type (WT) mice and two age-matched AD models, namely tauopathy (Tau) and Aβ amyloidosis (APP), indicated that CrCEST contrasts of the cortex and corpus callosum in the APP and Tau mice were significantly reduced compared to WT counterpart at an early stage (6-7 months) (p < 0.011). Two main causes of the reduced CrCEST contrast, i.e. cerebral pH and creatine concentration, were investigated. From phantom and hypercapnia experiments, CrCEST showed excellent sensitivity to pH variations. From MRS results, the creatine concentration in WT and AD mouse brain was equivalent, which suggests that the reduced CrCEST contrast was dominated by cerebral pH change involved in the progression of AD. Immunohistochemical analysis revealed that the abnormal cerebral pH in AD mice may relate to neuroinflammation, a known factor that can cause pH reduction.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Azouz M, Feuillie C, Lafleur M, Molinari M, Lecomte S. Interaction of Tau construct K18 with model lipid membranes. NANOSCALE ADVANCES 2021; 3:4244-4253. [PMID: 36132846 PMCID: PMC9417262 DOI: 10.1039/d1na00055a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the formation of neurofibrillary tangles, resulting from the aggregation of the tubulin associated unit protein (Tau), which holds a vital role in maintaining neuron integrity in a healthy brain. The development of such aggregates and their deposition in the brain seem to correlate with the onset of neurodegeneration processes. The misfolding and subsequent aggregation of the protein into paired helical filaments that further form the tangles, lead to dysfunction of the protein with neuronal loss and cognitive decline. The aggregation of the protein then seems to be a causative factor of the neurodegeneration associated with AD. The hypothesis of an involvement of the membrane in modulating the misfolding and assembly of Tau into paired helical filaments attracts increasing interests. To provide more insight about how lipids can modulate the interactions with Tau, we have conducted a comprehensive Atomic Force Microscopy (AFM) study involving supported lipid bilayers of controlled compositions with the Tau microtubule-binding construct K18. Particularly, the effects of zwitterionic and negatively charged phospholipids on the interaction have been investigated. Deleterious solubilization effects have been evidenced on fluid zwitterionic membranes as well as an inability of K18 to fragment gel phases. The role of negative lipids in the aggregation of the peptide and the particular ability of phosphatidylinositol-4,5-bisphosphate (PIP2) in inducing K18 fibrillization on membranes are also reported.
Collapse
Affiliation(s)
- Mehdi Azouz
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
- Department of Chemistry, Université de Montréal Succursale Centre-Ville Montréal C.P. 6128 Québec Canada H3C 3J7
| | - Cécile Feuillie
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal Succursale Centre-Ville Montréal C.P. 6128 Québec Canada H3C 3J7
| | - Michaël Molinari
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Sophie Lecomte
- Institute of Chemistry and Biology of Membranes and Nano-Objects, CNRS, Université de Bordeaux, INP Bordeaux, UMR5248 allée Geoffroy Saint Hilaire 33600 Pessac France
| |
Collapse
|
9
|
Saha P, Skidmore PT, Holland LA, Mondal A, Bose D, Seth RK, Sullivan K, Janulewicz PA, Horner R, Klimas N, Nagarkatti M, Nagarkatti P, Lim ES, Chatterjee S. Andrographolide Attenuates Gut-Brain-Axis Associated Pathology in Gulf War Illness by Modulating Bacteriome-Virome Associated Inflammation and Microglia-Neuron Proinflammatory Crosstalk. Brain Sci 2021; 11:brainsci11070905. [PMID: 34356139 PMCID: PMC8304847 DOI: 10.3390/brainsci11070905] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptomatic illness that is associated with fatigue, pain, cognitive deficits, and gastrointestinal disturbances and presents a significant challenge to treat in clinics. Our previous studies show a role of an altered Gut–Brain axis pathology in disease development and symptom persistence in GWI. The present study utilizes a mouse model of GWI to study the role of a labdane diterpenoid andrographolide (AG) to attenuate the Gut–Brain axis-linked pathology. Results showed that AG treatment in mice (100 mg/kg) via oral gavage restored bacteriome alterations, significantly increased probiotic bacteria Akkermansia, Lachnospiraceae, and Bifidobacterium, the genera that are known to aid in preserving gut and immune health. AG also corrected an altered virome with significant decreases in virome families Siphoviridae and Myoviridae known to be associated with gastrointestinal pathology. AG treatment significantly restored tight junction proteins that correlated well with decreased intestinal proinflammatory mediators IL-1β and IL-6 release. AG treatment could restore Claudin-5 levels, crucial for maintaining the BBB integrity. Notably, AG could decrease microglial activation and increase neurotrophic factor BDNF, the key to neurogenesis. Mechanistically, microglial conditioned medium generated from IL-6 stimulation with or without AG in a concentration similar to circulating levels found in the GWI mouse model and co-incubated with neuronal cells in vitro, decreased Tau phosphorylation and neuronal apoptosis. In conclusion, we show that AG treatment mitigated the Gut–Brain-Axis associated pathology in GWI and may be considered as a potential therapeutic avenue for the much-needed bench to bedside strategies in GWI.
Collapse
Affiliation(s)
- Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Peter T. Skidmore
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
| | - Ayan Mondal
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Ratanesh K. Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (K.S.); (P.A.J.)
| | - Patricia A. Janulewicz
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA; (K.S.); (P.A.J.)
| | - Ronnie Horner
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA;
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.N.); (P.N.)
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.N.); (P.N.)
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (P.T.S.); (L.A.H.); (E.S.L.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA; (P.S.); (A.M.); (D.B.); (R.K.S.)
- Columbia VA Medical Center, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-777-8120 or +1-919-599-2278
| |
Collapse
|
10
|
Xu C, Guo J, Li L, Wang X, Zhou Q, Sun D, Zhang S, Li S, Ye J, Liu Y, Liu E, Zeng P, Wang X, Yang Y, Wang JZ. Co-Expression of Three Wild-Type 3R-Tau Isoforms Induces Memory Deficit via Oxidation-Related DNA Damage and Cell Death: A Promising Model for Tauopathies. J Alzheimers Dis 2021; 73:1105-1123. [PMID: 31884489 DOI: 10.3233/jad-191132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The three isoforms of 3R-tau are predominantly deposited in neurons bearing neurofibrillary tangles in Alzheimer's disease (AD), while only 3R-tau accumulation has been detected in Pick's disease (PiD), suggesting the involvement of 3R-tau in neurodegeneration. However, both the role and the molecular mechanism of 3R-tau in neurodegeneration are elusive. Here, we co-expressed three isoforms of human wild-type 3R-tau in adult mouse hippocampal to mimic the pathologic tau accumulating observed in PiD patients. We found that co-expressing three 3R-tau isoforms induced hyperphosphorylation and accumulation of tau proteins; simultaneously, the mice showed remarkable neuron death with synapse and memory deficits. Further in vitro and in vivo studies demonstrated that co-expressing 3R-tau isoforms caused oxidative stress evidenced by an increased malondialdehyde, and the decreased superoxide dismutase and glutathione peroxidase; the 3R-tau accumulation also induced significant glial activation and DNA double-strand breaks (DSBs). Notably, the toxic effects of 3R-tau accumulation were efficiently reversed by administration of antioxidants Vitamin E (VitE) and Vitamin C (VitC), respectively. These data reveal that intracellular accumulation of 3R-tau isoforms in adult brain induces significant neuron death and memory deficits with the mechanism involving oxidation-mediated DSBs; and the antioxidants VitE and VitC can efficiently attenuate the toxicities of 3R-tau. Given that no significant cell death has been detected in the currently available wild-type tau-accumulating models, co-expressing 3R-tau isoforms could be a promising model for drug development of tauopathies, such as PiD.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jing Guo
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Li Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Department of Physiology, Hubei University of Chinese Medicine, Wuhan, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qiuzhi Zhou
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Dongsheng Sun
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shujuan Zhang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Shihong Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jinwang Ye
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yanchao Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Enjie Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Peng Zeng
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
11
|
Wan HL, Hong XY, Zhao ZH, Li T, Zhang BG, Liu Q, Zhao S, Wang JZ, Shen XF, Liu GP, Liu GP. STAT3 ameliorates cognitive deficits via regulation of NMDAR expression in an Alzheimer's disease animal model. Am J Cancer Res 2021; 11:5511-5524. [PMID: 33859760 PMCID: PMC8039956 DOI: 10.7150/thno.56541] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Abnormal tau accumulation in the brain has a positively correlation with neurodegeneration and memory deterioration, but the mechanism underlying tau-associated synaptic and cognitive impairments remains unclear. Our previous work has found that human full length tau (hTau) accumulation activated signal transducer and activator of transcription-1 (STAT1) to suppress N-methyl-D-aspartate receptors (NMDARs) expression, followed by memory deficits. STAT3 also belongs to STAT protein family and is reported to involve in regulation of synaptic plasticity and cognition. Here, we investigated the role of STAT3 in the cognitive deficits induced by hTau accumulation. Methods: In vitro studies HEK293 cells were used. EMSA, Luciferase reporter assay, and Immunoprecipitation were applied to detect STAT3 activity. In vivo studies, AAV virus were injected into the hippocampal CA3 region of C57 mice. Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence were applied to examine the level of synaptic proteins. Electrophysiological analysis, behavioral testing and Golgi impregnation were used to determine synaptic plasticity and memory ability recovery after overexpressing STAT3 or non-acetylated STAT1. Results: Our results showed that hTau accumulation acetylated STAT1 to retain STAT3 in the cytoplasm by increasing the binding of STAT1 with STAT3, and thus inactivated STAT3. Overexpressing STAT3 or non-acetylated STAT1 ameliorated hTau-induced synaptic loss and memory deficits by increasing the expression of NMDARs. Conclusions: Taken together, our study indicates that hTau accumulation impaired synaptic plasticity through STAT3 inactivation induced suppression of NMDARs expression, revealing a novel mechanism for hTau-associated synapse and memory deficits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| |
Collapse
|
12
|
STAT3 ameliorates cognitive deficits by positively regulating the expression of NMDARs in a mouse model of FTDP-17. Signal Transduct Target Ther 2020; 5:295. [PMID: 33361763 PMCID: PMC7762755 DOI: 10.1038/s41392-020-00290-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/12/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
In tauopathies, memory impairment positively strongly correlates with the amount of abnormal tau aggregates; however, how tau accumulation induces synapse impairment is unclear. Recently, we found that human tau accumulation activated Signal Transduction and Activator of Transcription-1 (STAT1) to inhibit the transcription of synaptic N-methyl-D-aspartate receptors (NMDARs). Here, overexpressing human P301L mutant tau (P301L-hTau) increased the phosphorylated level of Signal Transduction and Activator of Transcription-3 (STAT3) at Tyr705 by JAK2, which would promote STAT3 translocate into the nucleus and activate STAT3. However, STAT3 was found mainly located in the cytoplasm. Further study found that P301L-htau acetylated STAT1 to bind with STAT3 in the cytoplasm, and thus inhibited the nuclear translocation and inactivation of STAT3. Knockdown of STAT3 in STAT3flox/flox mice mimicked P301L-hTau-induced suppression of NMDARs expression, synaptic and memory impairments. Overexpressing STAT3 rescued P301L-hTau-induced synaptic and cognitive deficits by increasing NMDARs expression. Further study proved that STAT3 positively regulated NMDARs transcription through direct binding to the specific GAS element of NMDARs promoters. These findings indicate that accumulated P301L-hTau inactivating STAT3 to suppress NMDARs expression, revealed a novel mechanism for tau-associated synapse and cognition deficits, and STAT3 will hopefully serve as a potential pharmacological target for tauopathies treatment.
Collapse
|
13
|
Neddens J, Daurer M, Loeffler T, Alzola Aldamizetxebarria S, Flunkert S, Hutter-Paier B. Constant Levels of Tau Phosphorylation in the Brain of htau Mice. Front Mol Neurosci 2020; 13:136. [PMID: 32982685 PMCID: PMC7485327 DOI: 10.3389/fnmol.2020.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Excessive tau phosphorylation is the hallmark of tauopathies. Today’s research thus focusses on the development of drugs targeting this pathological feature. To test new drugs in preclinical studies, animal models are needed that properly mimic this pathological hallmark. The htau mouse is a well-known model expressing human but lacking murine tau, allowing to evaluate the efficacy of tau modifying compounds without interference from murine tau. Htau mice are well-characterized for tau pathology at older age, although it is often not specified on which genetic background analyzed animals were bred. Since it was shown that the genetic background can influence the pathology, we evaluated the phosphorylation status of young and adult htau mice on a C57BL/6J background by analyzing ptau Ser202 and ptau Ser396 levels in the cortex and hippocampus of 3 and 12 month old animals by immunofluorescent labelling. Additionally, we evaluated total tau, ptau Thr231 and ptau Thr181 in the soluble and insoluble brain fraction of 3–15 month old htau mice by immunosorbent assay. Our results show that ptau levels of all analyzed residues and age groups are similar without strong increases over age. These data show that tau is already phosphorylated at the age of 3 months suggesting that phosphorylation starts even earlier. The early start of tau phosphorylation in htau mice enables the use of these mice for efficacy studies already at very young age.
Collapse
|
14
|
Astroglial contribution to tau-dependent neurodegeneration. Biochem J 2020; 476:3493-3504. [PMID: 31774919 DOI: 10.1042/bcj20190506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 01/31/2023]
Abstract
Astrocytes, by maintaining an optimal environment for neuronal function, play a critical role in proper function of mammalian nervous system. They regulate synaptic transmission and plasticity and protect neurons against toxic insults. Astrocytes and neurons interact actively via glutamine-glutamate cycle (GGC) that supports neuronal metabolic demands and neurotransmission. GGC deficiency may be involved in different diseases of the brain, where impaired astrocytic control of glutamate homeostasis contributes to neuronal dysfunction. This includes tau-dependent neurodegeneration, where astrocytes lose key molecules involved in regulation of glutamate/glutamine homeostasis, neuronal survival and synaptogenesis. Astrocytic dysfunction in tauopathy appears to precede neurodegeneration and overt tau neuropathology such as phosphorylation, aggregation and formation of neurofibrillary tangles. In this review, we summarize recent studies demonstrating that activation of astrocytes is strictly associated with neurodegenerative processes including those involved in tau related pathology. We propose that astrocytic dysfunction, by disrupting the proper neuron-glia signalling early in the disease, significantly contributes to tauopathy pathogenesis.
Collapse
|
15
|
Saito T, Mihira N, Matsuba Y, Sasaguri H, Hashimoto S, Narasimhan S, Zhang B, Murayama S, Higuchi M, Lee VMY, Trojanowski JQ, Saido TC. Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation. J Biol Chem 2019; 294:12754-12765. [PMID: 31273083 DOI: 10.1074/jbc.ra119.009487] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Indexed: 11/06/2022] Open
Abstract
In cortical regions of brains from individuals with preclinical or clinical Alzheimer's disease (AD), extracellular β-amyloid (Aβ) deposition precedes the aggregation of pathological intracellular tau (the product of the gene microtubule-associated protein tau (MAPT)). To our knowledge, current mouse models of tauopathy reconstitute tau pathology by overexpressing mutant human tau protein. Here, through a homologous recombination approach that replaced the entire murine Mapt gene with the human ortholog, we developed knock-in mice with humanized Mapt to create an in vivo platform for studying human tauopathy. Of note, the humanized Mapt expressed all six tau isoforms present in humans. We next cross-bred the MAPT knock-in mice with single amyloid precursor protein (App) knock-in mice to investigate the Aβ-tau axis in AD etiology. The double-knock-in mice exhibited higher tau phosphorylation than did single MAPT knock-in mice but initially lacked apparent tauopathy and neurodegeneration, as observed in the single App knock-in mice. We further observed that tau humanization significantly accelerates cell-to-cell propagation of AD brain-derived pathological tau both in the absence and presence of Aβ-amyloidosis. In the presence of Aβ-amyloidosis, tau accumulation was intensified and closely associated with dystrophic neurites, consistently showing that Aβ-amyloidosis affects tau pathology. Our results also indicated that the pathological human tau interacts better with human tau than with murine tau, suggesting species-specific differences between these orthologous pathogenic proteins. We propose that the MAPT knock-in mice will make it feasible to investigate the behaviors and characteristics of human tau in an animal model.
Collapse
Affiliation(s)
- Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan .,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Sneha Narasimhan
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Geriatric Hospital, 35-2 Sakaecho, Itabashi, Tokyo 173-0015, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Rayner SL, Morsch M, Molloy MP, Shi B, Chung R, Lee A. Using proteomics to identify ubiquitin ligase-substrate pairs: how novel methods may unveil therapeutic targets for neurodegenerative diseases. Cell Mol Life Sci 2019; 76:2499-2510. [PMID: 30919022 PMCID: PMC11105231 DOI: 10.1007/s00018-019-03082-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022]
Abstract
Ubiquitin ligases play an integral role in fine-tuning signaling cascades necessary for normal cell function. Aberrant regulation of ubiquitin ligases has been implicated in several neurodegenerative diseases, generally, due to mutations within the E3 ligase itself. Several proteomic-based methods have recently emerged to facilitate the rapid identification of ligase-substrate pairs-a previously challenging feat due to the transient nature of ligase-substrate interactions. These novel methods complement standard immunoprecipitations (IPs) and include proximity-dependent biotin identification (BioID), ubiquitin ligase-substrate trapping, tandem ubiquitin-binding entities (TUBEs), and a molecular trapping unit known as the NEDDylator. The implementation of these techniques is expected to facilitate the rapid identification of novel substrates of E3 ubiquitin ligases, a process that is likely to enhance our understanding of neurodegenerative diseases and highlight novel therapeutic targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephanie L Rayner
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Mark P Molloy
- Faculty of Medicine and Health, Sydney School of Medicine, Royal North Shore Hospital, Pacific Hwy, St Leonards, Sydney, NSW, 2065, Australia
| | - Bingyang Shi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Roger Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, 2 Technology Place, Macquarie Park, Sydney, NSW, 2109, Australia.
| |
Collapse
|
17
|
Chen L, Wei Z, Chan K, Cai S, Liu G, Lu H, Wong PC, van Zijl PCM, Li T, Xu J. Protein aggregation linked to Alzheimer's disease revealed by saturation transfer MRI. Neuroimage 2019; 188:380-390. [PMID: 30553917 PMCID: PMC6401270 DOI: 10.1016/j.neuroimage.2018.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to develop a molecular biomarker for the detection of protein aggregation involved in Alzheimer's disease (AD) by exploiting the features of the water saturation transfer spectrum (Z-spectrum), the CEST signal of which is sensitive to the molecular configuration of proteins. A radial-sampling steady-state sequence based ultrashort echo time (UTE) readout was implemented to image the Z-spectrum in the mouse brain, especially the contributions from mobile proteins at the frequency offsets for the composite protein amide proton (+3.6 ppm) and aliphatic proton (-3.6 ppm) signals. Using a relatively weak radiofrequency (RF) saturation amplitude, contributions due to strong magnetization transfer contrast (MTC) from solid-like macromolecules and direct water saturation (DS) were minimized. For practical measure of the changes in the mobile protein configuration, we defined a saturation transfer difference (ΔST) by subtracting the Z-spectral signals at ±3.6 ppm from a control signal at 8 ppm. Phantom studies of glutamate solution, protein (egg white) and hair conditioner show the capability of the proposed scheme to minimize the contributions from amine protons, DS, and MTC, respectively. The ST signal at ±3.6 ppm of the cross-linked bovine serum albumin (BSA) solutions demonstrated that the ΔST signal can be used to monitor the aggregation process of the mobile proteins. High-resolution ΔST images of AD mouse brains at ±3.6 ppm of mouse brains showed significantly reduced ΔST (-3.6) signal compared to the age-matched wild-type (WT) mice. Thus, this signal has potential to serve as a molecular biomarker for monitoring protein aggregation in AD.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie Chan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C. M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Takeda S. Progression of Alzheimer's disease, tau propagation, and its modifiable risk factors. Neurosci Res 2018; 141:36-42. [PMID: 30120962 DOI: 10.1016/j.neures.2018.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/15/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
The number of patients with Alzheimer's disease (AD) has been increasing exponentially side by side with aging societies worldwide. Symptoms of AD worsen over time due to progressive neurodegeneration, requiring institutional care at the later stage and resulting in a heavy burden on patients, caregivers, and the public-health system. AD neuropathology is characterized by cerebral accumulation and aggregation of amyloid-β (Aβ) and tau proteins. For decades, Aβ has been a leading target in the therapeutic development for AD, and many drug candidates have been tested in clinical trials; however, most medications have failed to slow the progression of the disease. Tau pathology currently is attracting more attention as an alternate target for developing disease-modifying therapy. Tau is known to spread in a hierarchical pattern in AD brain, likely by trans-synaptic tau transfer between neurons. Extracellular tau may mediate tau spreading and serve as biomarker for AD. AD pathogenesis is multifactorial, and many genetic- and non-genetic factors are known to contribute to Aβ- and tau-related pathology. Recent studies indicate an association between vascular risk factors and AD. Identifying modifiable risk factors for AD and understanding their contributory mechanisms could be key in tackling this devastating disease.
Collapse
Affiliation(s)
- Shuko Takeda
- Department of Clinical Gene Therapy, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Tau Spreading Mechanisms; Implications for Dysfunctional Tauopathies. Int J Mol Sci 2018; 19:ijms19030645. [PMID: 29495325 PMCID: PMC5877506 DOI: 10.3390/ijms19030645] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Tauopathies comprise a group of progressive age-associated neurodegenerative diseases where tau protein deposits are found as the predominant pathological signature (primary tauopathies) or in combination with the presence of other toxic aggregates (secondary tauopathies). In recent years, emerging evidence suggests that abnormal tau accumulation is mediated through spreading of seeds of the protein from cell to cell, favouring the hypothesis of a prion-like transmission of tau to explain the propagation of the pathology. This would also support the concept that the pathology initiates in a very small part of the brain before becoming symptomatic and spreads across the brain over time. To date, many key questions still remain unclear, such as the nature of the tau species involved in the spreading, the precise seeding/template and uptaking mechanisms or the selectivity explaining why certain neurons are affected and some others are not. A better understanding of the tau spreading machinery will contribute to the development of new therapeutic approaches focused on halting the abnormal propagation, offering also new perspectives for early diagnosis and preventive therapies. In this review, we will cover the most recent advances in tau spreading mechanisms as well as the implications of these findings for dysfunctional tauopathies.
Collapse
|
20
|
Hu W, Wu F, Zhang Y, Gong CX, Iqbal K, Liu F. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis. Front Aging Neurosci 2017; 9:311. [PMID: 29021756 PMCID: PMC5623682 DOI: 10.3389/fnagi.2017.00311] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022] Open
Abstract
Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Wen Hu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Feng Wu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Yanchong Zhang
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States.,Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
21
|
Tau prions from Alzheimer's disease and chronic traumatic encephalopathy patients propagate in cultured cells. Proc Natl Acad Sci U S A 2016; 113:E8187-E8196. [PMID: 27911827 PMCID: PMC5167200 DOI: 10.1073/pnas.1616344113] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tau prions are thought to aggregate in the central nervous system, resulting in neurodegeneration. Among the tauopathies, Alzheimer's disease (AD) is the most common, whereas argyrophilic grain disease (AGD), corticobasal degeneration (CBD), chronic traumatic encephalopathy (CTE), Pick's disease (PiD), and progressive supranuclear palsy (PSP) are less prevalent. Brain extracts from deceased individuals with PiD, a neurodegenerative disorder characterized by three-repeat (3R) tau prions, were used to infect HEK293T cells expressing 3R tau fused to yellow fluorescent protein (YFP). Extracts from AGD, CBD, and PSP patient samples, which contain four-repeat (4R) tau prions, were transmitted to HEK293 cells expressing 4R tau fused to YFP. These studies demonstrated that prion propagation in HEK cells requires isoform pairing between the infecting prion and the recipient substrate. Interestingly, tau aggregates in AD and CTE, containing both 3R and 4R isoforms, were unable to robustly infect either 3R- or 4R-expressing cells. However, AD and CTE prions were able to replicate in HEK293T cells expressing both 3R and 4R tau. Unexpectedly, increasing the level of 4R isoform expression alone supported the propagation of both AD and CTE prions. These results allowed us to determine the levels of tau prions in AD and CTE brain extracts.
Collapse
|
22
|
Propagation of tau pathology: hypotheses, discoveries, and yet unresolved questions from experimental and human brain studies. Acta Neuropathol 2016; 131:27-48. [PMID: 26576562 DOI: 10.1007/s00401-015-1507-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Tau is a microtubule-associated protein and a key regulator of microtubule stabilization as well as the main component of neurofibrillary tangles-a principle neuropathological hallmark of Alzheimer's disease (AD)-as well as pleomorphic neuronal and glial inclusions in neurodegenerative tauopathies. Cross-sectional studies of neurofibrillary pathology in AD reveal a stereotypic spatiotemporal pattern of neuronal vulnerability that correlates with disease severity; however, the relationship of this pattern to disease progression is less certain and exceptions to the typical pattern have been described in a subset of AD patients. The basis for the selective vulnerability of specific populations of neurons to tau pathology and cell death is largely unknown, although there have been a number of hypotheses based upon shared properties of vulnerable neurons (e.g., degree of axonal myelination or synaptic plasticity). A recent hypothesis for selective vulnerability takes into account the emerging science of functional connectivity based upon resting state functional magnetic resonance imaging, where subsets of neurons that fire synchronously define patterns of degeneration similar to specific neurodegenerative disorders, including various tauopathies. In the past 6 years, the concept of tau propagation has emerged from numerous studies in cell and animal models suggesting that tau moves from cell-to-cell and that this may trigger aggregation and region-to-region spread of tau pathology within the brain. How the spread of tau pathology relates to functional connectivity is an area of active investigation. Observations of templated folding and propagation of tau have prompted comparisons of tau to prions, the pathogenic proteins in transmissible spongiform encephalopathies. In this review, we discuss the most compelling studies in the field, discuss their shortcomings and consider their implications with respect to human tauopathies as well as the controversy that tauopathies may be prion-like disorders.
Collapse
|
23
|
Abstract
Dementias are among the most common neurological disorders, and Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD remains a looming health crisis despite great efforts to learn the mechanisms surrounding the neuron dysfunction and neurodegeneration that accompanies AD primarily in the medial temporal lobe. In addition to AD, a group of diseases known as frontotemporal dementias (FTDs) are degenerative diseases involving atrophy and degeneration in the frontal and temporal lobe regions. Importantly, AD and a number of FTDs are collectively known as tauopathies due to the abundant accumulation of pathological tau inclusions in the brain. The precise role tau plays in disease pathogenesis remains an area of strong research focus. A critical component to effectively study any human disease is the availability of models that recapitulate key features of the disease. Accordingly, a number of animal models are currently being pursued to fill the current gaps in our knowledge of the causes of dementias and to develop effective therapeutics. Recent developments in gene therapy-based approaches, particularly in recombinant adeno-associated viruses (rAAVs), have provided new tools to study AD and other related neurodegenerative disorders. Additionally, gene therapy approaches have emerged as an intriguing possibility for treating these diseases in humans. This chapter explores the current state of rAAV models of AD and other dementias, discuss recent efforts to improve these models, and describe current and future possibilities in the use of rAAVs and other viruses in treatments of disease.
Collapse
Affiliation(s)
- Benjamin Combs
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503, USA
| | - Andrew Kneynsberg
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503, USA
- Neuroscience Program, Michigan State University, Grand Rapids, MI, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, College of Human Medicine, Michigan State University, 333 Bostwick Avenue NE, Grand Rapids, MI, 49503, USA.
- Neuroscience Program, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
24
|
Im SY, Kim YE, Kim YJ. Genetics of Progressive Supranuclear Palsy. J Mov Disord 2015; 8:122-9. [PMID: 26413239 PMCID: PMC4572662 DOI: 10.14802/jmd.15033] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative syndrome that is clinically characterized by progressive postural instability, supranuclear gaze palsy, parkinsonism and cognitive decline. Pathologically, diagnosis of PSP is based on characteristic features, such as neurofibrillary tangles, neutrophil threads, tau-positive astrocytes and their processes in basal ganglia and brainstem, and the accumulation of 4 repeat tau protein. PSP is generally recognized as a sporadic disorder; however, understanding of genetic background of PSP has been expanding rapidly. Here we review relevant publications to outline the genetics of PSP. Although only small number of familial PSP cases have been reported, the recognition of familial PSP has been increasing. In some familial cases of clinically probable PSP, PSP pathologies were confirmed based on NINDS neuropathological diagnostic criteria. Several mutations in MAPT, the gene that causes a form of familial frontotemporal lobar degeneration with tauopathy, have been identified in both sporadic and familial PSP cases. The H1 haplotype of MAPT is a risk haplotype for PSP, and within H1, a sub-haplotype (H1c) is associated with PSP. A recent genome-wide association study on autopsyproven PSP revealed additional PSP risk alleles in STX6 and EIF2AK3. Several heredodegenerative parkinsonian disorders are referred to as PSP-look-alikes because their clinical phenotype, but not their pathology, mimics PSP. Due to the fast development of genomics and bioinformatics, more genetic factors related to PSP are expected to be discovered. Undoubtedly, these studies will provide a better understanding of the pathogenesis of PSP and clues for developing therapeutic strategies.
Collapse
Affiliation(s)
- Sun Young Im
- Department of Neurology, Hallym University College of Medicine, Anyang, Korea
| | - Young Eun Kim
- Department of Neurology, Hallym University College of Medicine, Anyang, Korea
| | - Yun Joong Kim
- Department of Neurology, Hallym University College of Medicine, Anyang, Korea ; ILSONG Institute of Life Science, Hallym University, Anyang, Korea ; Hallym Institute of Translational Genomics & Bioinformatics, Anyang, Korea
| |
Collapse
|
25
|
Sagy-Bross C, Kasianov K, Solomonov Y, Braiman A, Friedman A, Hadad N, Levy R. The role of cytosolic phospholipase A2 α in amyloid precursor protein induction by amyloid beta1-42 : implication for neurodegeneration. J Neurochem 2015; 132:559-71. [PMID: 25533654 DOI: 10.1111/jnc.13012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/15/2023]
Abstract
Amyloid-β peptides generated by proteolysis of the β-amyloid precursor protein (APP) play an important role in the pathogenesis of Alzheimer's disease. The present study aimed to determine whether cytosolic phospholipase A2 α (cPLA2 α) plays a role in elevated APP protein expression induced by aggregated amyloid-β1-42 (Aβ) in cortical neurons and to elucidate its specific role in signal events leading to APP induction. Elevated cPLA2 α and its activity determined by phosphorylation on serine 505 as well as elevated APP protein expression, were detected in primary rat cortical neuronal cultures exposed to Aβ for 24 h and in cortical neuron of human amyloid-β1-42 brain infused mice. Prevention of cPLA2 α up-regulation and its activity by oligonucleotide antisense against cPLA2 α (AS) prevented the elevation of APP protein in cortical neuronal cultures and in mouse neuronal cortex. To determine the role of cPLA2 α in the signals leading to APP induction, increased cPLA2 α expression and activity induced by Aβ was prevented by means of AS in neuronal cortical cultures. Under these conditions, the elevated cyclooxygenase-2 and the production of prostaglandin E2 (PGE2 ) were prevented. Addition of PGE2 or cyclic AMP analogue (dbcAMP) to neuronal cultures significantly increased the expression of APP protein, while the presence protein kinase A inhibitor (H-89) attenuated the elevation of APP induced by Aβ. Inhibition of elevated cPLA2 α by AS prevented the activation of cAMP response element binding protein (CREB) as detected by its phosphorylated form, its translocation to the nucleus and its DNA binding induced by Aβ which coincided with cPLA2 α dependent activation of CREB in the cortex of Aβ brain infused mice. Our results show that accumulation of Aβ induced elevation of APP protein expression mediated by cPLA2 α, PGE2 release, and CREB activation via protein kinase A pathway.
Collapse
Affiliation(s)
- Chen Sagy-Bross
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - Ksenia Kasianov
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - Yulia Solomonov
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nurit Hadad
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| | - Rachel Levy
- Immunology and Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev and Soroka University Medical Center, Beer-Sheva, Israel
| |
Collapse
|
26
|
Zhou J, Fa H, Yin W, Zhang J, Hou C, Huo D, Zhang D, Zhang H. Synthesis of superparamagnetic iron oxide nanoparticles coated with a DDNP-carboxyl derivative for in vitro magnetic resonance imaging of Alzheimer's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:348-55. [DOI: 10.1016/j.msec.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/20/2013] [Accepted: 01/05/2014] [Indexed: 10/25/2022]
|
27
|
p53 in neurodegenerative diseases and brain cancers. Pharmacol Ther 2013; 142:99-113. [PMID: 24287312 DOI: 10.1016/j.pharmthera.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/21/2022]
Abstract
More than thirty years elapsed since a protein, not yet called p53 at the time, was detected to bind SV40 during viral infection. Thousands of papers later, p53 evolved as the main tumor suppressor involved in growth arrest and apoptosis. A lot has been done but the protein has not yet revealed all its secrets. Particularly important is the observation that in totally distinct pathologies where apoptosis is either exacerbated or impaired, p53 appears to play a central role. This is exemplified for Alzheimer's and Parkinson's diseases that represent the two main causes of age-related neurodegenerative affections, where cell death enhancement appears as one of the main etiological paradigms. Conversely, in cancers, about half of the cases are linked to mutations in p53 leading to the impairment of p53-dependent apoptosis. The involvement of p53 in these pathologies has driven a huge amount of studies aimed at designing chemical tools or biological approaches to rescue p53 defects or over-activity. Here, we describe the data linking p53 to neurodegenerative diseases and brain cancers, and we document the various strategies to interfere with p53 dysfunctions in these disorders.
Collapse
|
28
|
Rasool S, Martinez-Coria H, Wu JW, LaFerla F, Glabe CG. Systemic vaccination with anti-oligomeric monoclonal antibodies improves cognitive function by reducing Aβ deposition and tau pathology in 3xTg-AD mice. J Neurochem 2013; 126:473-82. [PMID: 23672786 DOI: 10.1111/jnc.12305] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a devastating disorder that is clinically characterized by a comprehensive cognitive decline. Accumulation of the amyloid-beta (Aβ) peptide plays a pivotal role in the pathogenesis of AD. In AD, the conversion of Aβ from a physiological soluble monomeric form into insoluble fibrillar conformation is an important event. The most toxic form of Aβ is oligomers, which is the intermediate step during the conversion of monomeric form to fibrillar form. There are at least two types of oligomers: oligomers that are immunologically related to fibrils and those that are not. In transgenic AD animal models, both active and passive anti-Aβ immunotherapies improve cognitive function and clear the parenchymal accumulation of amyloid plaques in the brain. In this report we studied effect of immunotherapy of two sequence-independent non-fibrillar oligomer specific monoclonal antibodies on the cognitive function, amyloid load and tau pathology in 3xTg-AD mice. Anti-oligomeric monoclonal antibodies significantly reduce the amyloid load and improve the cognition. The clearance of amyloid load was significantly correlated with reduced tau hyperphosphorylation and improvement in cognition. These results demonstrate that systemic immunotherapy using oligomer-specific monoclonal antibodies effectively attenuates behavioral and pathological impairments in 3xTg-AD mice. These findings demonstrate the potential of using oligomer specific monoclonal antibodies as a therapeutic approach to prevent and treat Alzheimer's disease.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA.
| | | | | | | | | |
Collapse
|
29
|
Rasool S, Martinez-Coria H, Milton S, Glabe CG. Nonhuman amyloid oligomer epitope reduces Alzheimer's-like neuropathology in 3xTg-AD transgenic mice. Mol Neurobiol 2013; 48:931-40. [PMID: 23771815 DOI: 10.1007/s12035-013-8478-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022]
Abstract
Accumulation of beta-amyloid (Aβ) is an important pathological event in Alzheimer's disease (AD). It is now well known that vaccination against fibrillar Aβ prevents amyloid accumulation and preserves cognitive function in transgenic mouse models. To study the effect of vaccination against generic oligomer epitopes, Aβ oligomers, islet amyloid polypeptide oligomers, random peptide oligomer (3A), and Aβ fibrils were used to vaccinate 3xTg-AD, which develop a progressive accumulation of plaques and cognitive impairment. Subcutaneous administration of these antigens markedly reduced total plaque load (Aβ burden) and improved cognitive function in the 3xTg-AD mouse brains as compared to controls. We demonstrated that vaccination with this nonhuman amyloid oligomer generated high titers of specifically antibodies recognizing Aβ oligomers, which in turn inhibited accumulation of Aβ pathology in mice. In addition to amyloid plaques, another hallmark of AD is tau pathology. It was found that there was a significant decline in the level of hyper-phosphorylated tau following vaccination. We have previously shown that immunization with 3A peptide improves cognitive function and clears amyloid plaques in Tg2576 mice, which provides a novel strategy of AD therapy. Here, we have shown that vaccination with 3A peptide in 3xTg-AD mice not only clears amyloid plaques but also extensively clears abnormal tau in brain.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA,
| | | | | | | |
Collapse
|
30
|
Kim SM, Kim D, Chae MK, Jeong IH, Cho JH, Choi N, Lee KC, Lee C, Ryu EK. Synthesis and Evaluation of Oleanolic Acid-Conjugated Lactoferrin for β-Amyloid Plaque Imaging. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.11.3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Lee I, Choe YS, Choi JY, Lee KH, Kim BT. Synthesis and evaluation of ¹⁸F-labeled styryltriazole and resveratrol derivatives for β-amyloid plaque imaging. J Med Chem 2012; 55:883-92. [PMID: 22236086 DOI: 10.1021/jm201400q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, a styryltriazole and four resveratrol derivatives were synthesized as candidates for β-amyloid (Aβ) plaque imaging. On the basis of their binding affinities to Aβ(1-42) aggregates, the styryltriazole (1, K(i) = 12.8 nM) and one resveratrol derivative (5, K(i) = 0.49 nM) were labeled with (18)F. In normal mice, tissue distribution of [(18)F]5 showed good initial brain uptake (3.26% ID/g at 2 min) but slow wash-out from brains (2-to-60 min uptake ratio: 2.9). Furthermore, it underwent in vivo metabolic defluorination (1.88% ID/g at 2 min and 9.73% ID/g at 60 min). In contrast, [(18)F]1 displayed high initial brain uptake (5.38% ID/g at 2 min) with rapid wash-out from brains (0.52% ID/g at 60 min; 2-to-60 min uptake ratio: 10.3). These results indicate that [(18)F]1 has in vivo kinetics comparable to PET radiopharmaceuticals currently under commercial development, demonstrating that [(18)F]1 is a desirable PET radioligand for Aβ plaque imaging.
Collapse
Affiliation(s)
- Iljung Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, Korea
| | | | | | | | | |
Collapse
|
32
|
Lee I, Yang J, Lee JH, Choe YS. Synthesis and evaluation of 1-(4-[¹⁸F]fluoroethyl)-7-(4'-methyl)curcumin with improved brain permeability for β-amyloid plaque imaging. Bioorg Med Chem Lett 2011; 21:5765-9. [PMID: 21885280 DOI: 10.1016/j.bmcl.2011.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 07/21/2011] [Accepted: 08/01/2011] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is characterized by the accumulation of β-amyloid (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. We previously developed [(18)F]fluoropropylcurcumin ([(18)F]FP-curcumin), which demonstrated excellent binding affinity (K(i)=0.07 nM) for Aβ(1-40) aggregates and good pharmacokinetics in normal mouse brains. However, its initial brain uptake was poor (0.52% ID/g at 2 min post-injection). Therefore, in the present study, fluorine-substituted 4,4'-bissubstituted or pegylated curcumin derivatives were synthesized and evaluated. Their binding affinities for Aβ(1-42) aggregates were measured and 1-(4-fluoroethyl)-7-(4'-methyl)curcumin (1) had the highest binding affinity (K(i)=2.12 nM). Fluorescence staining of Tg APP/PS-1 mouse brain sections demonstrated high and specific labeling of Aβ plaques by 1 in the cortex region, which was confirmed with thioflavin-S staining of the same spots in the adjacent brain sections. Radioligand [(18)F]1 was found to have an appropriate partition coefficient (logP(o/w)=2.40), and its tissue distribution in normal mice demonstrated improved brain permeability (1.44% ID/g at 2 min post-injection) compared to that of [(18)F]FP-curcumin by a factor of 2.8 and fast wash-out from mouse brains (0.45% ID/g at 30 min post-injection). These results suggest that [(18)F]1 may hold promise as a PET radioligand for Aβ plaque imaging.
Collapse
Affiliation(s)
- Iljung Lee
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | | | | | | |
Collapse
|
33
|
Mollenhauer B, Trenkwalder C. Neurochemical biomarkers in the differential diagnosis of movement disorders. Mov Disord 2009; 24:1411-26. [PMID: 19412961 DOI: 10.1002/mds.22510] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, the neurochemical analysis of neuronal proteins in cerebrospinal fluid (CSF) has become increasingly accepted for the diagnosis of neurodegenerative dementia diseases such as Alzheimer's disease and Creutzfeldt-Jakob disease. CSF surrounds the central nervous system, and in the composition of CSF proteins one finds brain-specific proteins that are prioritized from blood-derived proteins. Levels of specific CSF proteins could be very promising biomarkers for central nervous system diseases. We need the development of more easily accessible biomarkers, in the blood. In neurodegenerative diseases with and without dementia, studies on CSF and blood proteins have investigated the usefulness of biomarkers in differential diagnosis. The clinical diagnoses of Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration still rely mainly on clinical symptoms as defined by international classification criteria. In this article, we review CSF biomarkers in these movement disorders and discuss recent published reports on the neurochemical intra vitam diagnosis of neurodegenerative disorders (including recent CSF alpha-synuclein findings).
Collapse
|
34
|
Ubhi K, Rockenstein E, Doppler E, Mante M, Adame A, Patrick C, Trejo M, Crews L, Paulino A, Moessler H, Masliah E. Neurofibrillary and neurodegenerative pathology in APP-transgenic mice injected with AAV2-mutant TAU: neuroprotective effects of Cerebrolysin. Acta Neuropathol 2009; 117:699-712. [PMID: 19252918 DOI: 10.1007/s00401-009-0505-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 02/17/2009] [Accepted: 02/18/2009] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) continues to be the most common cause of cognitive and motor alterations in the aging population. Accumulation of amyloid beta (Abeta)-protein oligomers and the microtubule associated protein-TAU might be responsible for the neurological damage. We have previously shown that Cerebrolysin (CBL) reduces the synaptic and behavioral deficits in amyloid precursor protein (APP) transgenic (tg) mice by decreasing APP phosphorylation via modulation of glycogen synthase kinase-3beta (GSK3beta) and cyclin-dependent kinase-5 (CDK5) activity. These kinases also regulate TAU phosphorylation and are involved in promoting neurofibrillary pathology. In order to investigate the neuroprotective effects of CBL on TAU pathology, a new model for neurofibrillary alterations was developed using somatic gene transfer with adeno-associated virus (AAV2)-mutant (mut) TAU (P301L). The Thy1-APP tg mice (3 m/o) received bilateral injections of AAV2-mutTAU or AAV2-GFP, into the hippocampus. After 3 months, compared to non-tg controls, in APP tg mice intra-hippocampal injections with AAV2-mutTAU resulted in localized increased accumulation of phosphorylated TAU and neurodegeneration. Compared with vehicle controls, treatment with CBL in APP tg injected with AAV2-mutTAU resulted in a significant decrease in the levels of TAU phosphorylation at critical sites dependent on GSK3beta and CDK5 activity. This was accompanied by amelioration of the neurodegenerative alterations in the hippocampus. This study supports the concept that the neuroprotective effects of CBL may involve the reduction of TAU phosphorylation by regulating kinase activity.
Collapse
Affiliation(s)
- Kiren Ubhi
- Department of Neurosciences, School of Medicine, University of California, La Jolla, San Diego, CA 92093-0624, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Xiong ZM, Kitagawa K, Nishiuchi Y, Kimura T, Nakamura T, Inagaki C. Acetyl-Ile-Gly-Leu protects neurons from Aβ1–42 induced toxicity in vitro and in V337M human tau-expressing mice. Life Sci 2009; 84:132-8. [DOI: 10.1016/j.lfs.2008.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 11/04/2008] [Accepted: 11/12/2008] [Indexed: 11/25/2022]
|
36
|
Deters N, Ittner LM, Götz J. Divergent phosphorylation pattern of tau in P301L tau transgenic mice. Eur J Neurosci 2008; 28:137-47. [PMID: 18662339 DOI: 10.1111/j.1460-9568.2008.06318.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aggregates of hyperphosphorylated tau are prominent in brains of patients with Alzheimer's disease or frontotemporal dementia (FTD). They have been reproduced in animal models following the identification of tau mutations in familial cases of FTD. This includes our previously generated transgenic model, pR5, which expresses FTD (P301L) mutant tau in neurons. The mice are characterized by tau aggregation including tangle (NFT) formation, memory impairment and mitochondrial dysfunction. In 8-month-old mice, S422 phosphorylation of tau is linked to NFT formation, however, a detailed analysis of tau solubility, phosphorylation and aggregation has not been done nor have the mice been monitored until a high age. Here, we undertook an analysis by immunohistochemistry, Gallyas impregnation and Western blotting of brains from 3 month- up to 20 month-old mice. NFTs first appeared at 6 months in the amygdala, followed by the CA1 region of the hippocampus. As the mice get older, the solubility of tau is decreased as determined by sequential extractions. Histological analysis revealed increased phosphorylation at the AT180, AT270 and 12E8 epitopes with ageing. The numbers of AT8-positive neurons increased from 3 to 6 months old. However, whereas S422 appeared only late and concomitantly with NFT formation, the only neurons left with AT8-reactivity at 20 months were those that had undergone NFT formation. As hyperphosphorylated tau continued to accumulate, the lack of AT8-reactivity suggests regulatory mechanisms in specifically dephosphorylating the AT8 epitope in the remaining neurons. Thus, differential regulation of phosphorylation is important for NFT formation in neurodegenerative diseases with tau pathology.
Collapse
Affiliation(s)
- Natasha Deters
- Alzheimer's and Parkinson's Disease Laboratory, Brain & Mind Research Institute, University of Sydney, 100 Mallett St, Camperdown, NSW 2050, Australia
| | | | | |
Collapse
|
37
|
Taking the next steps in the treatment of Alzheimer's disease: disease-modifying agents. CNS Spectr 2008; 13:11-4. [PMID: 18564460 DOI: 10.1017/s109285290001720x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the United States and the number of AD patients is increasing at an alarming rate. There is no cure for AD and the currently available treatments are symptomatic, providing only limited effects on disease pathophysiology and progression. An overwhelming need exists for therapies that can slow or halt this debilitating disease process. Disease modification in AD has been defined from patient-focused, regulatory, and neurobiological perspectives. The latter two of these perspectives rely largely on an interruption of the disease process and a clear demonstration of this interruption. As defined by Cummings, a disease-modifying treatment is a “pharmacologic treatment that retards the underlying process of AD by intervening in the neurobiological processes that constitute the pathology and pathophysiology of the disease and lead to cell death or dysfunction.” By this definition, the burden of confirmatory study is placed on any new treatment for which the claim of “disease modification” is to be made (Slide 1).
Collapse
|
38
|
Fujita M, Wei J, Nakai M, Masliah E, Hashimoto M. Chaperone and anti-chaperone: Two-faced synuclein as stimulator of synaptic evolution. Neuropathology 2006; 26:383-92. [PMID: 17080714 DOI: 10.1111/j.1440-1789.2006.00732.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous studies have shown that beta-synuclein (beta-syn), the homologue of alpha-syn, inhibited alpha-syn aggregation and stabilized Akt cell survival signaling molecule, suggesting that beta-syn was protective against alpha-syn-related neurodegenerative disorders, such as Parkinson's disease and diffuse Lewy body disease. However, emerging evidence argues that the situation may be not so simple. Two missense mutations of beta-syn were identified in familial and sporadic diffuse Lewy body disease, and wild type beta-syn was induced to form fibril structures in vitro, while, alpha-syn was shown to be protective against neurodegeneration caused by deletion of cysteine-string protein-alpha, the presynaptic cochaperone to Hsc70 in mice. Collectively, alpha- and beta-syn are both, but in varying degrees, featured with two opposite properties, namely normal chaperone and anti-chaperone. By reviewing recent progress in syn biology with a particular focus on beta-syn, this manuscript refers to the intriguing possibility that the dual syn proteins might have acquired a driving force for synaptic evolution. Hypothetically, the anti-chaperone syn may provoke stress-induced diverse responses, whereas, the chaperone syn may provide buffering for them, allowing accumulation of nonlethal phenotypic variations in synapses. Consequently, dual syn proteins may cope with forthcoming stresses in the brain by stimulating adaptive evolution. In this context, failure to regulate this process due to various causes, such as gene mutations and environmental risk factors, may result in imperfect adaptability against stresses, leading to neurodegenerative disorders.
Collapse
Affiliation(s)
- Masayo Fujita
- Department of Chemistry and Metabolism, Tokyo Metropolitan Institute for Neuroscience, Fuchu, Tokyo, Japan
| | | | | | | | | |
Collapse
|
39
|
Ma QL, Lim GP, Harris-White ME, Yang F, Ambegaokar SS, Ubeda OJ, Glabe CG, Teter B, Frautschy SA, Cole GM. Antibodies against beta-amyloid reduce Abeta oligomers, glycogen synthase kinase-3beta activation and tau phosphorylation in vivo and in vitro. J Neurosci Res 2006; 83:374-84. [PMID: 16385556 DOI: 10.1002/jnr.20734] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although active and passive immunization against the beta-amyloid peptide (Abeta) of amyloid plaque-bearing transgenic mice markedly reduces amyloid plaque deposition and improves cognition, the mechanisms of neuroprotection and impact on toxic oligomer species are not understood. We demonstrate that compared to control IgG2b, passive immunization with intracerebroventricular (icv) anti-Abeta (1-15) antibody into the AD HuAPPsw (Tg2576) transgenic mouse model reduced specific oligomeric forms of Abeta, including the dodecamers that correlate with cognitive decline. Interestingly, the reduction of soluble Abeta oligomers, but not insoluble Abeta, significantly correlated with reduced tau phosphorylation by glycogen synthase kinase-3beta (GSK-3beta), a major tau kinase implicated previously in mediating Abeta toxicity. A conformationally-directed antibody against amyloid oligomers (larger than tetramer) also reduced Abeta oligomer-induced activation of GSK3beta and protected human neuronal SH-SY5Y cells from Abeta oligomer-induced neurotoxicity, supporting a role for Abeta oligomers in human tau kinase activation. These data suggest that antibodies that are highly specific for toxic oligomer subspecies may reduce toxicity via reduction of GSK-3beta, which could be an important strategy for Alzheimer's disease (AD) therapeutics.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Medicine, University of California, Los Angeles, California 91343, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Treating Alzheimer's disease (AD) is the biggest unmet medical need in neurology. Current drugs improve symptoms, but do not have profound disease-modifying effects. Three main classes of disease-modification approaches can be defined: one that is broadly neurotrophic or neuroprotective, one that targets specific aspects of AD pathology, and one that is based on epidemiological observation. This review discusses all three approaches, with particular emphasis on anti-amyloid strategies - currently the most active area of investigation. The approaches that are reviewed include secretase inhibition, amyloid-beta aggregation inhibition, immunotherapy and strategies that might indirectly affect the amyloid pathway.
Collapse
Affiliation(s)
- Martin Citron
- Amgen Incorporated, Department of Neuroscience, M/S 29-2-B, One Amgen Center Drive, Thousand Oaks, California 91320, USA.
| |
Collapse
|
42
|
|
43
|
Lee VMY, Giasson BI, Trojanowski JQ. More than just two peas in a pod: common amyloidogenic properties of tau and α-synuclein in neurodegenerative diseases. Trends Neurosci 2004; 27:129-34. [PMID: 15036877 DOI: 10.1016/j.tins.2004.01.007] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Intracytoplasmic filamentous aggregates, such as neurofibrillary tangles in Alzheimer's disease and Lewy bodies in Parkinson's disease, are composed of the proteins tau and alpha-synuclein, respectively. These pathological inclusions are linked directly to the etiology and mechanisms of disease in a wide spectrum of neurodegenerative disorders, termed 'tauopathies' and 'synucleinopathies'. Emerging evidence indicates that there is frequent overlap of the pathological and clinical features of patients with tauopathies and synucleinopathies, thereby re-enforcing the notion that these disorders might be linked mechanistically. Indeed, several lines of investigation suggest that tau and alpha-synuclein might constitute a unique class of unstructured proteins that assemble predominantly into homopolymeric (rather than heteropolymeric) fibrils, which deposit mainly in separate amyloid inclusions, but occasionally deposit together. Thus, the ability of tau and alpha-synuclein to affect each other directly or indirectly might contribute to the overlap in the clinical and pathological features of tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Virginia M-Y Lee
- The Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, and Institute on Aging, the University of Pennsylvania, Philadelphia, PA 19104-4283, USA.
| | | | | |
Collapse
|
44
|
Abstract
The amyloid precursor protein and the proteases cleaving this protein are important players in the pathogenesis of Alzheimer's disease via the generation of the amyloid peptide. Physiologically, the amyloid precursor protein is implied in axonal vesicular trafficking and the proteases are implicated in developmentally important signaling pathways, most significantly those involving regulated intramembrane proteolysis or RIP. We discuss the cell biology behind the amyloid and tangle hypothesis for Alzheimer's disease, drawing on the many links to the fields of cell biology and developmental biology that have been established in the recent years.
Collapse
Affiliation(s)
- Wim Annaert
- Neuronal Cell Biology Laboratory, Flanders Interuniversity Institute for Biotechnology (VIB) and Catholic University of Leuven, Center for Human Genetics Herestraat 49, Belgium
| | | |
Collapse
|
45
|
Yamamoto H, Yamauchi E, Taniguchi H, Ono T, Miyamoto E. Phosphorylation of microtubule-associated protein tau by Ca2+/calmodulin-dependent protein kinase II in its tubulin binding sites. Arch Biochem Biophys 2002; 408:255-62. [PMID: 12464279 DOI: 10.1016/s0003-9861(02)00556-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The paired helical filaments (PHF) found in Alzheimer's disease (AD) brain are composed mainly of the hyperphosphorylated form of microtubule-associated protein tau (PHF-tau). It is well known that tau is a good in vitro substrate for Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). To establish the phosphorylation sites, the longest human tau (hTau40) was bacterially expressed and phosphorylated by CaM kinase II, followed by digestion with lysyl endoprotease. The digests were subjected to liquid chromatography/mass spectrometry. We found that 5 of 22 identified peptides were phosphorylated. From the tandem mass spectrometry, two phosphorylation sites (serines 262 and 356) were identified in the tubulin binding sites. When tau was phosphorylated by CaM kinase II, the binding of tau to taxol-stabilized microtubules was remarkably impaired. As both serines 262 and 356 are reportedly phosphorylated in PHF-tau, CaM kinase II may be involved in hyperphosphorylation of tau in AD brain.
Collapse
Affiliation(s)
- Hideyuki Yamamoto
- Department of Pharmacology, Kumamoto University School of Medicine, Kumamoto, Japan.
| | | | | | | | | |
Collapse
|
46
|
Sato S, Tatebayashi Y, Akagi T, Chui DH, Murayama M, Miyasaka T, Planel E, Tanemura K, Sun X, Hashikawa T, Yoshioka K, Ishiguro K, Takashima A. Aberrant tau phosphorylation by glycogen synthase kinase-3beta and JNK3 induces oligomeric tau fibrils in COS-7 cells. J Biol Chem 2002; 277:42060-5. [PMID: 12191990 DOI: 10.1074/jbc.m202241200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofibrillary tangles (NFTs) are found in a wide range of neurodegenerative disorders, including Alzheimer's disease. The major component of NFTs is aberrantly hyperphosphorylated microtubule-associated protein tau. Because appropriate in vivo models have been lacking, the role of tau phosphorylation in NFTs formation has remained elusive. Here, we describe a new model in which adenovirus-mediated gene expression of tau, DeltaMEKK, JNK3, and GSK-3beta in COS-7 cells produces most of the pathological phosphorylation epitopes of tau including AT100. Furthermore, this co-expression resulted in the formation of tau aggregates having short fibrils that were detergent-insoluble and Thioflavin-S-reactive. These results suggest that aberrant tau phosphorylation by the combination of these kinases may be involved in "pretangle," oligomeric tau fibril formation in vivo.
Collapse
Affiliation(s)
- Shinji Sato
- Laboratory for Alzheimer's Disease, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Tatebayashi Y, Miyasaka T, Chui DH, Akagi T, Mishima KI, Iwasaki K, Fujiwara M, Tanemura K, Murayama M, Ishiguro K, Planel E, Sato S, Hashikawa T, Takashima A. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci U S A 2002; 99:13896-901. [PMID: 12368474 PMCID: PMC129794 DOI: 10.1073/pnas.202205599] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The R406W tau mutation found in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) causes a hereditary tauopathy clinically resembling Alzheimer's disease. Expression of modest levels of the longest human tau isoform with this mutation under the control of the alpha-calcium-calmodulin-dependent kinase-II promoter in transgenic (Tg) mice resulted in the development of congophilic hyperphosphorylated tau inclusions in forebrain neurons. These inclusions appeared as early as 18 months of age. As with human cases, tau inclusions were composed of both mutant and endogenous wild-type tau, and were associated with microtubule disruption and flame-shaped transformations of the affected neurons. Straight tau filaments were recovered from Sarkosyl-insoluble fractions from only the aged Tg brains. Behaviorally, aged Tg mice had associative memory impairment without obvious sensorimotor deficits. Therefore, these mice that exhibit a phenotype mimicking R406W FTDP-17 provide an animal model for investigating the adverse properties associated with this mutation, which might potentially recapitulate some etiological events in Alzheimer's disease.
Collapse
Affiliation(s)
- Yoshitaka Tatebayashi
- Laboratory for Alzheimer's Disease and Neural Architecture, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wong PC, Cai H, Borchelt DR, Price DL. Genetically engineered mouse models of neurodegenerative diseases. Nat Neurosci 2002; 5:633-9. [PMID: 12085093 DOI: 10.1038/nn0702-633] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research has significantly advanced our understanding of the molecular mechanisms of neurodegenerative diseases, including Alzheimer's disease (AD) and motor neuron disease. Here we emphasize the use of genetically engineered mouse models that are instrumental for understanding why AD is a neuronal disease, and for validating attractive therapeutic targets. In motor neuron diseases, Cu/Zn superoxide dismutase and survival motor neuron mouse models are useful in testing disease mechanisms and therapeutic strategies for amyotrophic lateral sclerosis (ALS) and spinal motor atrophy, respectively, but the mechanisms that account for selective motor neuron loss remain uncertain. We anticipate that, in the future, therapies based on understanding disease mechanisms will be identified and tested in mouse model systems.
Collapse
Affiliation(s)
- Philip C Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, 558 Ross Research Building, 720 Rutland Avenue, Baltimore, Maryland 21205-2196, USA.
| | | | | | | |
Collapse
|
49
|
Xu G, Gonzales V, Borchelt DR. Abeta deposition does not cause the aggregation of endogenous tau in transgenic mice. Alzheimer Dis Assoc Disord 2002; 16:196-201. [PMID: 12218652 DOI: 10.1097/00002093-200207000-00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Alzheimer disease, the extracellular deposition of beta-amyloid (Abeta) in the brain is accompanied by the intracellular accumulation of aggregated forms of hyperphosphorylated tau. In developing animal models of AD, the authors and others have been able to reproduce extracellular amyloid pathology in the brains of mice by expressing mutant amyloid precursor proteins (APP). The co-expression of APP with mutant presenilin leads to a dramatic acceleration in Abeta deposition, leading to very high amyloid burdens in mice. In the current study, the authors have examined whether the brains of mice with high burdens of amyloid deposition also contain aggregated forms of tau, using a cellulose acetate filter trap assay. Although discrete accumulations of phosphorylated tau immunoreactivity were apparent in neurites proximal to cored deposits of Abeta, little if any of this tau was in a SDS-resistant state of aggregation. By contrast, the brains of AD patients contained large amounts of aggregated tau. Overall, this study demonstrates that, in mice, deposition of Abeta does not cause endogenous tau to aggregate.
Collapse
Affiliation(s)
- Guilian Xu
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
50
|
Cuadrado A, García-Fernández LF, Imai T, Okano H, Muñoz A. Regulation of tau RNA maturation by thyroid hormone is mediated by the neural RNA-binding protein musashi-1. Mol Cell Neurosci 2002; 20:198-210. [PMID: 12093154 DOI: 10.1006/mcne.2002.1131] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The tau gene encodes a microtubule-associated protein expressed by neuronal and glial cells. Abnormal deposits of Tau protein are characteristic of several neurodegenerative disorders. Additionally, mutations affecting tau pre-mRNA alternative splicing of exon 10 are associated with frontotemporal dementia and Parkinsonism linked to chromosome 17. In rodents, this process is developmentally regulated by thyroid hormone (T3) causing the predominance of exon 10-containing transcripts. Here we demonstrate that musashi-1 (msi-1) gene is induced by T3 during rat brain development and in N2a cells. T3 increases msi-1 mRNA level in an actinomycin D-sensitive, cycloheximide-resistant fashion without affecting its half-life, which suggests a transcriptional effect. Both ectopic Msi-1 expression and T3 treatment increased the proportion of exon 10-containing tau transcripts. Furthermore, antisense msi-1 expression inhibited T3 action. Our results show that msi-1 mediates the posttranscriptional regulation of tau expression by T3.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antisense Elements (Genetics)
- Brain/drug effects
- Brain/growth & development
- Brain/metabolism
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Exons/genetics
- Female
- Fetus
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Mice
- Nerve Tissue Proteins/genetics
- Neurodegenerative Diseases/genetics
- Neurodegenerative Diseases/metabolism
- Neurodegenerative Diseases/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Pregnancy
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- Rats
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Thyroid Hormone/drug effects
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- Thyroid Hormone Receptors beta
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Triiodothyronine/metabolism
- Triiodothyronine/pharmacology
- Tumor Cells, Cultured
- tau Proteins/biosynthesis
- tau Proteins/drug effects
- tau Proteins/genetics
Collapse
Affiliation(s)
- Ana Cuadrado
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|