1
|
Skelin L, Racetin A, Kelam N, Ogorevc M, Znaor L, Saraga-Babić M, Filipović N, Katsuyama Y, Pogorelić Z, Vukojević K. Connexin Expression Is Altered in the Eye Development of Yotari Mice: A Preliminary Study. Biomolecules 2024; 14:1174. [PMID: 39334940 PMCID: PMC11430515 DOI: 10.3390/biom14091174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This study aimed to explore how Dab1 functional silencing influences the expression patterns of different connexins in the developing yotari (yot) mice eyes as potential determinants of retinogenesis. Using immunofluorescence staining, the protein expression of Dab1, Reelin, and connexin 37, 40, 43, and 45 (Cx37, Cx40, Cx43, and Cx45) in the wild-type (wt) and yot eyes at embryonic days 13.5 and 15.5 (E13.5 and E15.5) were analyzed. Different expression patterns of Cx37 were seen between the wt and yot groups. The highest fluorescence intensity of Cx37 was observed in the yot animals at E15.5. Cx40 had higher expression at the E13.5 when differentiation of retinal layers was still beginning, whereas it decreased at the E15.5 when differentiation was at the advanced stage. Higher expression of Cx43 was found in the yot group at both time points. Cx45 was predominantly expressed at E13.5 in both groups. Our results reveal the altered expression of connexins during retinogenesis in yot mice and their potential involvement in retinal pathology, where they might serve as prospective therapeutic targets.
Collapse
Affiliation(s)
- Ljubica Skelin
- Clinical Department of Ophthalmology, University Hospital of Split, 21000 Split, Croatia
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Ljubo Znaor
- Clinical Department of Ophthalmology, University Hospital of Split, 21000 Split, Croatia
- Department of Ophthalmology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Zenon Pogorelić
- Department of Pediatric Surgery, Split University Hospital, 21000 Split, Croatia
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
- Center for Translational Research in Biomedicine, University of Split School of Medicine, Šoltanska 2A, 21000 Split, Croatia
| |
Collapse
|
2
|
Pavlou M, Probst M, Blasdel N, Prieve AR, Reh TA. The impact of timing and injury mode on induced neurogenesis in the adult mammalian retina. Stem Cell Reports 2024; 19:239-253. [PMID: 38278154 PMCID: PMC10874861 DOI: 10.1016/j.stemcr.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
Regeneration of neurons has important implications for human health, and the retina provides an accessible system to study the potential of replacing neurons following injury. In previous work, we generated transgenic mice in which neurogenic transcription factors were expressed in Müller glia (MG) and showed that they stimulated neurogenesis following inner retinal damage. It was unknown, however, whether the timing or mode of injury mattered in this process. Here, we explored these parameters on induced neurogenesis from MG and show that MG expressing Ascl1 will generate new bipolar neurons with similar efficiency irrespective of injury mode or timing. However, MG that express Ascl1-Atoh1 produce a new type of retinal ganglion-like cell after outer retinal damage, which is absent with inner retinal damage. Our data suggest that although cell fate is primarily dictated by neurogenic transcription factors, the inflammatory state of MG relative to injury can influence the outcome of induced neurogenesis.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of Biological Structure, University of Washington, Seattle, WA, USA; Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Marlene Probst
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Aric R Prieve
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA; Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Chen M, Xu L, Wu Y, Soba P, Hu C. The organization and function of the Golgi apparatus in dendrite development and neurological disorders. Genes Dis 2023; 10:2425-2442. [PMID: 37554209 PMCID: PMC10404969 DOI: 10.1016/j.gendis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dendrites are specialized neuronal compartments that sense, integrate and transfer information in the neural network. Their development is tightly controlled and abnormal dendrite morphogenesis is strongly linked to neurological disorders. While dendritic morphology ranges from relatively simple to extremely complex for a specified neuron, either requires a functional secretory pathway to continually replenish proteins and lipids to meet dendritic growth demands. The Golgi apparatus occupies the center of the secretory pathway and is regulating posttranslational modifications, sorting, transport, and signal transduction, as well as acting as a non-centrosomal microtubule organization center. The neuronal Golgi apparatus shares common features with Golgi in other eukaryotic cell types but also forms distinct structures known as Golgi outposts that specifically localize in dendrites. However, the organization and function of Golgi in dendrite development and its impact on neurological disorders is just emerging and so far lacks a systematic summary. We describe the organization of the Golgi apparatus in neurons, review the current understanding of Golgi function in dendritic morphogenesis, and discuss the current challenges and future directions.
Collapse
Affiliation(s)
- Meilan Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Lu Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yi Wu
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Bonn 53115, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| |
Collapse
|
4
|
Medina E, Peterson S, Ford K, Singletary K, Peixoto L. Critical periods and Autism Spectrum Disorders, a role for sleep. Neurobiol Sleep Circadian Rhythms 2023; 14:100088. [PMID: 36632570 PMCID: PMC9826922 DOI: 10.1016/j.nbscr.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Brain development relies on both experience and genetically defined programs. Time windows where certain brain circuits are particularly receptive to external stimuli, resulting in heightened plasticity, are referred to as "critical periods". Sleep is thought to be essential for normal brain development. Importantly, studies have shown that sleep enhances critical period plasticity and promotes experience-dependent synaptic pruning in the developing mammalian brain. Therefore, normal plasticity during critical periods depends on sleep. Problems falling and staying asleep occur at a higher rate in Autism Spectrum Disorder (ASD) relative to typical development. In this review, we explore the potential link between sleep, critical period plasticity, and ASD. First, we review the importance of critical period plasticity in typical development and the role of sleep in this process. Next, we summarize the evidence linking ASD with deficits in synaptic plasticity in rodent models of high-confidence ASD gene candidates. We then show that the high-confidence rodent models of ASD that show sleep deficits also display plasticity deficits. Given how important sleep is for critical period plasticity, it is essential to understand the connections between synaptic plasticity, sleep, and brain development in ASD. However, studies investigating sleep or plasticity during critical periods in ASD mouse models are lacking. Therefore, we highlight an urgent need to consider developmental trajectory in studies of sleep and plasticity in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Sarah Peterson
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
5
|
Majumdar S. Role of glutamate in the development of visual pathways. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1147769. [PMID: 38983097 PMCID: PMC11182277 DOI: 10.3389/fopht.2023.1147769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/20/2023] [Indexed: 07/11/2024]
Abstract
Glutamate is an important amino acid, metabolite and excitatory neurotransmitter, which is found in its free form in the extracellular spaces of the central nervous system (CNS). More than half of all synapses in CNS release glutamate. It is the main neurotransmitter driving the light responses in the retina. All types of photoreceptors, bipolar, ganglion and one type of glycinergic amacrine cells express specific subtypes of vesicular glutamate transporters and are the main source of endogenous glutamate in retina, besides Müller glia that are responsible for glutamate homeostasis, release and reuptake. Reduced or excessive extracellular glutamate was detected in the synaptic clefts of several naturally occurring or transgenic eye disease models, in which network rewiring and altered functions were observed. These led to the hypothesis that glutamate is one of the extrinsic signals for visual pathway development. This minireview examines experimental evidences supporting, or refuting, the influence of glutamate on prenatal and postnatal retinal development.
Collapse
Affiliation(s)
- Sriparna Majumdar
- Department of Psychology, Santa Clara University, Santa Clara, CA, United States
- Computer Science Department, City College of San Francisco, San Francisco, CA, United States
| |
Collapse
|
6
|
Balzamino BO, Esposito G, Marino R, Calissano P, Latina V, Amadoro G, Keller F, Cacciamani A, Micera A. Morphological and biomolecular targets in retina and vitreous from Reelin-deficient mice (Reeler): Potential implications for age-related macular degeneration in Alzheimer’s dementia. Front Aging Neurosci 2022; 14:1015359. [DOI: 10.3389/fnagi.2022.1015359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
The neurosensory retina is an outgrowth of the Central Nervous System (CNS), and the eye is considered “a window to the brain.” Reelin glycoprotein is directly involved in neurodevelopment, in synaptic plasticity, learning and memory. Consequently, abnormal Reelin signaling has been associated with brain neurodegeneration but its contributing role in ocular degeneration is still poorly explored. To this aim, experimental procedures were assayed on vitreous or retinas obtained from Reeler mice (knockout for Reelin protein) at different postnatal days (p) p14, p21 and p28. At p28, a significant increase in the expression of Amyloid Precursor Protein (APP) and its amyloidogenic peptide (Aβ1-42 along with truncated tau fragment (i.e., NH2htau)- three pathological hallmarks of Alzheimer’s disease (AD)-were found in Reeler mice when compared to their age-matched wild-type controls. Likewise, several inflammatory mediators, such as Interleukins, or crucial biomarkers of oxidative stress were also found to be upregulated in Reeler mice by using different techniques such as ELLA assay, microchip array or real-time PCR. Taken together, these findings suggest that a dysfunctional Reelin signaling enables the expression of key pathological features which are classically associated with AD neurodegenerative processes. Thus, this work suggests that Reeler mouse might be a suitable animal model to study not only the pathophysiology of developmental processes but also several neurodegenerative diseases, such as AD and Age-related Macular Degeneration (AMD), characterized by accumulation of APP and/or Aβ1-42, NH2htau and inflammatory markers.
Collapse
|
7
|
Lipophorin receptors regulate mushroom body development and complex behaviors in Drosophila. BMC Biol 2022; 20:198. [PMID: 36071487 PMCID: PMC9454125 DOI: 10.1186/s12915-022-01393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.
Collapse
|
8
|
Structure of Reelin repeat 8 and the adjacent C-terminal region. Biophys J 2022; 121:2526-2537. [DOI: 10.1016/j.bpj.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/15/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022] Open
|
9
|
Shuffrey LC, Rodriguez C, Rodriguez DJ, Mahallati H, Jayaswal M, Barbosa JR, Syme S, Gimenez LA, Pini N, Lucchini M, Fifer WP. Delayed maturation of P2 flash visual evoked potential (VEP) latency in newborns of gestational diabetic mothers. Early Hum Dev 2021; 163:105503. [PMID: 34741833 DOI: 10.1016/j.earlhumdev.2021.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/22/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The prevalence of gestational diabetes mellitus (GDM) has rapidly increased, yet few prior studies have investigated parameters of early brain development in infants born to gestational diabetic mothers. The present study assessed visual evoked potentials (VEPs) in healthy infants born to gestational diabetic mothers and matched controls. METHODS After exclusions, in this prospective study we examined VEPs in 73 neonates between 37 weeks and 41 weeks gestation at birth (n = 37 infants of gestational diabetic mothers). Stroboscopic flashes were presented through closed eyelids during passive electroencephalography (EEG) recording to derive VEP waveforms during natural sleep. RESULTS There was a statistically significant moderate correlation between gestational age at birth and P2 latency of the flash VEP where P2 latency significantly decreased with increasing gestational age (Pearson's R(73) = -0.32, p < .01). There was also a significant moderate correlation between postnatal age (hours of life) and P2 latency of the flash VEP where P2 latency significantly decreased with increasing postnatal age (Pearson's R(73) = -0.23, p < .05). When controlling for gestational age at birth, postnatal age, and sex, there was a significant effect of group (GDM-exposed vs. control) on P2 latency of the flash VEP (p < .05). Infants of gestational diabetic mothers had a significantly longer P2 latency (M: 215.29 ± SD: 2.58 ms) than controls (M: 206.41 ± SD: 2.62 ms). CONCLUSION Our findings suggest P2 flash VEP latency is a potential measure of cortical maturation and marker of immature development in infants of gestational diabetic mothers.
Collapse
Affiliation(s)
- Lauren C Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America.
| | - Cynthia Rodriguez
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Daianna J Rodriguez
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Hana Mahallati
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Minna Jayaswal
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Jennifer R Barbosa
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Samantha Syme
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Lissete A Gimenez
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Maristella Lucchini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - William P Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| |
Collapse
|
10
|
Turk LS, Kuang X, Dal Pozzo V, Patel K, Chen M, Huynh K, Currie MJ, Mitchell D, Dobson RCJ, D'Arcangelo G, Dai W, Comoletti D. The structure-function relationship of a signaling-competent, dimeric Reelin fragment. Structure 2021; 29:1156-1170.e6. [PMID: 34089653 DOI: 10.1016/j.str.2021.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 01/21/2023]
Abstract
Reelin operates through canonical and non-canonical pathways that mediate several aspects of brain development and function. Reelin's dimeric central fragment (CF), generated through proteolytic cleavage, is required for the lipoprotein-receptor-dependent canonical pathway activation. Here, we analyze the signaling properties of a variety of Reelin fragments and measure the differential binding affinities of monomeric and dimeric CF fragments to lipoprotein receptors to investigate the mode of canonical signal activation. We also present the cryoelectron tomography-solved dimeric structure of Reelin CF and support it using several other biophysical techniques. Our findings suggest that Reelin CF forms a covalent parallel dimer with some degree of flexibility between the two protein chains. As a result of this conformation, Reelin binds to lipoprotein receptors in a manner inaccessible to its monomeric form and is capable of stimulating canonical pathway signaling.
Collapse
Affiliation(s)
- Liam S Turk
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Xuyuan Kuang
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Hyperbaric Oxygen, Central South University, Changsha, Hunan Province, China
| | - Valentina Dal Pozzo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Khush Patel
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Muyuan Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin Huynh
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Michael J Currie
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Daniel Mitchell
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interactions Centre and School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wei Dai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Davide Comoletti
- Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA; School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
11
|
Pensado-López A, Veiga-Rúa S, Carracedo Á, Allegue C, Sánchez L. Experimental Models to Study Autism Spectrum Disorders: hiPSCs, Rodents and Zebrafish. Genes (Basel) 2020; 11:E1376. [PMID: 33233737 PMCID: PMC7699923 DOI: 10.3390/genes11111376] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/26/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Autism Spectrum Disorders (ASD) affect around 1.5% of the global population, which manifest alterations in communication and socialization, as well as repetitive behaviors or restricted interests. ASD is a complex disorder with known environmental and genetic contributors; however, ASD etiology is far from being clear. In the past decades, many efforts have been put into developing new models to study ASD, both in vitro and in vivo. These models have a lot of potential to help to validate some of the previously associated risk factors to the development of the disorder, and to test new potential therapies that help to alleviate ASD symptoms. The present review is focused on the recent advances towards the generation of models for the study of ASD, which would be a useful tool to decipher the bases of the disorder, as well as to conduct drug screenings that hopefully lead to the identification of useful compounds to help patients deal with the symptoms of ASD.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (S.V.-R.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Sara Veiga-Rúa
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (S.V.-R.)
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Ángel Carracedo
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), CIMUS, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Catarina Allegue
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain; (A.P.-L.); (S.V.-R.)
| |
Collapse
|
12
|
Faini G, Del Bene F, Albadri S. Reelin functions beyond neuronal migration: from synaptogenesis to network activity modulation. Curr Opin Neurobiol 2020; 66:135-143. [PMID: 33197872 DOI: 10.1016/j.conb.2020.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/05/2023]
Abstract
Reelin, a glycoprotein of the extracellular matrix, has been the focus of several studies over the years, mostly for its role in cell migration. Here we report the role of this molecule and of its downstream pathways in post-mitotic neurons and how they contribute to neural circuit assembly, refinement and function. Accumulating evidence has pointed at a major role for Reelin in axonal guidance, synaptogenesis and dendritic spine formation. In particular, new evidence points at a direct role in axonal targeting and refinement at the target site. In addition, recent advances highlight new functions of Reelin in the modulation of synaptic activity, plasticity and behavior and in the direct regulation of GABA receptors expression and stability. We discuss these findings in the context of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Giulia Faini
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Filippo Del Bene
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.
| | - Shahad Albadri
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| |
Collapse
|
13
|
Jossin Y. Reelin Functions, Mechanisms of Action and Signaling Pathways During Brain Development and Maturation. Biomolecules 2020; 10:biom10060964. [PMID: 32604886 PMCID: PMC7355739 DOI: 10.3390/biom10060964] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
During embryonic development and adulthood, Reelin exerts several important functions in the brain including the regulation of neuronal migration, dendritic growth and branching, dendritic spine formation, synaptogenesis and synaptic plasticity. As a consequence, the Reelin signaling pathway has been associated with several human brain disorders such as lissencephaly, autism, schizophrenia, bipolar disorder, depression, mental retardation, Alzheimer’s disease and epilepsy. Several elements of the signaling pathway are known. Core components, such as the Reelin receptors very low-density lipoprotein receptor (VLDLR) and Apolipoprotein E receptor 2 (ApoER2), Src family kinases Src and Fyn, and the intracellular adaptor Disabled-1 (Dab1), are common to most but not all Reelin functions. Other downstream effectors are, on the other hand, more specific to defined tasks. Reelin is a large extracellular protein, and some aspects of the signal are regulated by its processing into smaller fragments. Rather than being inhibitory, the processing at two major sites seems to be fulfilling important physiological functions. In this review, I describe the various cellular events regulated by Reelin and attempt to explain the current knowledge on the mechanisms of action. After discussing the shared and distinct elements of the Reelin signaling pathway involved in neuronal migration, dendritic growth, spine development and synaptic plasticity, I briefly outline the data revealing the importance of Reelin in human brain disorders.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
14
|
Biswas S, Cottarelli A, Agalliu D. Neuronal and glial regulation of CNS angiogenesis and barriergenesis. Development 2020; 147:dev182279. [PMID: 32358096 PMCID: PMC7197727 DOI: 10.1242/dev.182279] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurovascular pathologies of the central nervous system (CNS), which are associated with barrier dysfunction, are leading causes of death and disability. The roles that neuronal and glial progenitors and mature cells play in CNS angiogenesis and neurovascular barrier maturation have been elucidated in recent years. Yet how neuronal activity influences these processes remains largely unexplored. Here, we discuss our current understanding of how neuronal and glial development affects CNS angiogenesis and barriergenesis, and outline future directions to elucidate how neuronal activity might influence these processes. An understanding of these mechanisms is crucial for developing new interventions to treat neurovascular pathologies.
Collapse
Affiliation(s)
- Saptarshi Biswas
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Azzurra Cottarelli
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dritan Agalliu
- Departments of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
15
|
Mikulska-Ruminska K, Strzelecki J, Nowak W. Dynamics, nanomechanics and signal transduction in reelin repeats. Sci Rep 2019; 9:18974. [PMID: 31831824 PMCID: PMC6908669 DOI: 10.1038/s41598-019-55461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/27/2019] [Indexed: 12/04/2022] Open
Abstract
Reelin is a large glycoprotein controlling brain development and cell adhesion. It regulates the positioning of neurons, as well as neurotransmission and memory formation. Perturbations in reelin signaling are linked to psychiatric disorders. Reelin participates in signal transduction by binding to the lipoprotein receptors VLDLR and ApoER2 through its central region. This part is rich in repeating BNR-EGF-BNR modules. We used standard molecular dynamics, steered molecular dynamics, and perturbation response scanning computational methods to characterize unique dynamical properties of reelin modules involved in signaling. Each module has specific sensors and effectors arranged in a similar topology. In the modules studied, disulfide bridges play a protective role, probably making both selective binding and protease activity of reelin possible. Results of single reelin molecule stretching by atomic force microscopy provide the first data on the mechanical stability of individual reelin domains. The forces required for partial unfolding of the modules studied are below 60 pN.
Collapse
Affiliation(s)
- Karolina Mikulska-Ruminska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland.
| | - Janusz Strzelecki
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland
| | - Wieslaw Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100, Torun, Poland.
| |
Collapse
|
16
|
Collin J, Queen R, Zerti D, Dorgau B, Hussain R, Coxhead J, Cockell S, Lako M. Deconstructing Retinal Organoids: Single Cell RNA-Seq Reveals the Cellular Components of Human Pluripotent Stem Cell-Derived Retina. Stem Cells 2019; 37:593-598. [PMID: 30548510 PMCID: PMC6519347 DOI: 10.1002/stem.2963] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/07/2018] [Accepted: 12/03/2018] [Indexed: 11/11/2022]
Abstract
The rapid improvements in single cell sequencing technologies and analyses afford greater scope for dissecting organoid cultures composed of multiple cell types and create an opportunity to interrogate these models to understand tissue biology, cellular behavior and interactions. To this end, retinal organoids generated from human embryonic stem cells (hESCs) were analyzed by single cell RNA-sequencing (scRNA-Seq) at three time points of differentiation. Combinatorial data from all time points revealed the presence of nine clusters, five of which corresponded to key retinal cell types: retinal pigment epithelium (RPE), retinal ganglion cells (RGCs), cone and rod photoreceptors, and Müller glia. The remaining four clusters expressed genes typical of mitotic cells, extracellular matrix components and those involved in homeostasis. The cell clustering analysis revealed the decreasing presence of mitotic cells and RGCs, formation of a distinct RPE cluster, the emergence of cone and rod photoreceptors from photoreceptor precursors, and an increasing number of Müller glia cells over time. Pseudo-time analysis resembled the order of cell birth during retinal development, with the mitotic cluster commencing the trajectory and the large majority of Müller glia completing the time line. Together, these data demonstrate the feasibility and potential of scRNA-Seq to dissect the inherent complexity of retinal organoids and the orderly birth of key retinal cell types. Stem Cells 2019;37:593-598.
Collapse
Affiliation(s)
- Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Queen
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Darin Zerti
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Birthe Dorgau
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rafiqul Hussain
- Genomics Core Facility, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jonathan Coxhead
- Genomics Core Facility, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
17
|
Di Donato V, De Santis F, Albadri S, Auer TO, Duroure K, Charpentier M, Concordet JP, Gebhardt C, Del Bene F. An Attractive Reelin Gradient Establishes Synaptic Lamination in the Vertebrate Visual System. Neuron 2018; 97:1049-1062.e6. [PMID: 29429939 DOI: 10.1016/j.neuron.2018.01.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 11/11/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
A conserved organizational and functional principle of neural networks is the segregation of axon-dendritic synaptic connections into laminae. Here we report that targeting of synaptic laminae by retinal ganglion cell (RGC) arbors in the vertebrate visual system is regulated by a signaling system relying on target-derived Reelin and VLDLR/Dab1a on the projecting neurons. Furthermore, we find that Reelin is distributed as a gradient on the target tissue and stabilized by heparan sulfate proteoglycans (HSPGs) in the extracellular matrix (ECM). Through genetic manipulations, we show that this Reelin gradient is important for laminar targeting and that it is attractive for RGC axons. Finally, we suggest a comprehensive model of synaptic lamina formation in which attractive Reelin counter-balances repulsive Slit1, thereby guiding RGC axons toward single synaptic laminae. We establish a mechanism that may represent a general principle for neural network assembly in vertebrate species and across different brain areas.
Collapse
Affiliation(s)
- Vincenzo Di Donato
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Flavia De Santis
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Shahad Albadri
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Thomas Oliver Auer
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Karine Duroure
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France
| | - Marine Charpentier
- Muséum National d'Histoire Naturelle, INSERM U1154, CNRS UMR7196, Paris 75231, France
| | - Jean-Paul Concordet
- Muséum National d'Histoire Naturelle, INSERM U1154, CNRS UMR7196, Paris 75231, France
| | - Christoph Gebhardt
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris 75005, France.
| |
Collapse
|
18
|
Fairchild CL, Hino K, Han JS, Miltner AM, Peinado Allina G, Brown CE, Burns ME, La Torre A, Simó S. RBX2 maintains final retinal cell position in a DAB1-dependent and -independent fashion. Development 2018; 145:dev.155283. [PMID: 29361558 DOI: 10.1242/dev.155283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/28/2017] [Indexed: 01/13/2023]
Abstract
The laminated structure of the retina is fundamental for the organization of the synaptic circuitry that translates light input into patterns of action potentials. However, the molecular mechanisms underlying cell migration and layering of the retina are poorly understood. Here, we show that RBX2, a core component of the E3 ubiquitin ligase CRL5, is essential for retinal layering and function. RBX2 regulates the final cell position of rod bipolar cells, cone photoreceptors and Muller glia. Our data indicate that sustained RELN/DAB1 signaling, triggered by depletion of RBX2 or SOCS7 - a CRL5 substrate adaptor known to recruit DAB1 - causes rod bipolar cell misposition. Moreover, whereas SOCS7 also controls Muller glia cell lamination, it is not responsible for cone photoreceptor positioning, suggesting that RBX2, most likely through CRL5 activity, controls other signaling pathways required for proper cone localization. Furthermore, RBX2 depletion reduces the number of ribbon synapses and disrupts cone photoreceptor function. Together, these results uncover RBX2 as a crucial molecular regulator of retina morphogenesis and cone photoreceptor function.
Collapse
Affiliation(s)
- Corinne L Fairchild
- Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA
| | - Keiko Hino
- Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA
| | - Jisoo S Han
- Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA
| | - Adam M Miltner
- Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA
| | - Gabriel Peinado Allina
- Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA
| | - Caileigh E Brown
- Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA
| | - Marie E Burns
- Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA.,Department of Ophthalmology and Vision Science, University of California Davis, CA 95616, USA
| | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA
| | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California Davis, CA 95616, USA
| |
Collapse
|
19
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|
20
|
Henning Y, Szafranski K. Age-Dependent Changes of Monocarboxylate Transporter 8 Availability in the Postnatal Murine Retina. Front Cell Neurosci 2016; 10:205. [PMID: 27616981 PMCID: PMC4999454 DOI: 10.3389/fncel.2016.00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022] Open
Abstract
The thyroid hormones (TH) triiodothyronine (T3) and its prohormone thyroxine (T4) are crucial for retinal development and function, and increasing evidence points at TH dysregulation as a cause for retinal degenerative diseases. Thus, precise regulation of retinal TH supply is required for proper retinal function, but knowledge on these mechanisms is still fragmentary. Several transmembrane transporters have been described as key regulators of TH availability in target tissues of which the monocarboxylate transporter 8 (MCT8), a high affinity transporter for T4 and T3, plays an essential role in the central nervous system. Moreover, in the embryonic chicken retina, MCT8 is highly expressed, but the postnatal availability of MCT8 in the mammalian retina was not reported to date. In the present study, spatiotemporal retinal MCT8 availability was examined in mice of different age. For this purpose, we quantified expression levels of Mct8 via Real-Time Reverse-Transcriptase PCR in mouse eyecups (C57BL/6) of juvenile and adult age groups. Additionally, age-dependent MCT8 protein levels were quantified via Western blotting and localized via immunofluorescence confocal microscopy. While no difference in Mct8 expression levels could be detected between age groups, MCT8 protein levels in juvenile animals were about two times higher than in adult animals based on Western blot analyses. Immunohistochemical analyses showed that MCT8 immunoreactivity in the eyecup was restricted to the retina and the retinal pigment epithelium. In juvenile mice, MCT8 was broadly observed along the apical membrane of the retinal pigment epithelium, tightly surrounding photoreceptor outer segments. Distinct immunopositive staining was also detected in the inner nuclear layer and the ganglion cell layer. However, in adult specimens, immunoreactivity visibly declined in all layers, which was in line with Western blot analyses. Since MCT8 was abundantly present in juvenile and about twofold lower in adult retinae, our findings suggest a pivotal role of MCT8 especially during postnatal maturation. The present study provides novel insights into age-dependent retinal TH supply, which might help to understand different aspects regarding retinal development, function, and disorders.
Collapse
Affiliation(s)
- Yoshiyuki Henning
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen Essen, Germany
| | - Karol Szafranski
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute Jena, Germany
| |
Collapse
|
21
|
Ranaivoson FM, von Daake S, Comoletti D. Structural Insights into Reelin Function: Present and Future. Front Cell Neurosci 2016; 10:137. [PMID: 27303268 PMCID: PMC4882317 DOI: 10.3389/fncel.2016.00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
Reelin is a neuronal glycoprotein secreted by the Cajal-Retzius cells in marginal regions of the cerebral cortex and the hippocampus where it plays important roles in the control of neuronal migration and the formation of cellular layers during brain development. This 3461 residue-long protein is composed of a signal peptide, an F-spondin-like domain, eight Reelin repeats (RR1-8), and a positively charged sequence at the C-terminus. Biochemical data indicate that the central region of Reelin binds to the low-density lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and the very-low-density lipoprotein receptor (VLDLR), leading to the phosphorylation of the intracellular adaptor protein Dab1. After secretion, Reelin is rapidly degraded in three major fragments, but the functional significance of this degradation is poorly understood. Probably due to its large mass and the complexity of its architecture, the high-resolution, three-dimensional structure of Reelin has never been determined. However, the crystal structures of some of the RRs have been solved, providing important insights into their fold and the interaction with the ApoER2 receptor. This review discusses the current findings on the structure of Reelin and its binding to the ApoER2 and VLDLR receptors, and we discuss some areas where proteomics and structural biology can help understanding Reelin function in brain development and human health.
Collapse
Affiliation(s)
- Fanomezana M Ranaivoson
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA
| | - Sventja von Daake
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA
| | - Davide Comoletti
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA; Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers UniversityNew Brunswick, NJ, USA
| |
Collapse
|
22
|
Chandra A, Xu YM. Cholesterol: A necessary evil from a multiple sclerosis perspective. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Avinash Chandra
- Buffalo Neuroimaging Analysis Center; Department of Neurology; Buffalo General Hospital; Buffalo NY USA
- Department of Neurology; Annapurna Neurological Institute and Allied Sciences; Kathmandu Nepal
| | - Yu Ming Xu
- Department of Neurology III; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| |
Collapse
|
23
|
Johnson V, Xiang M, Chen Z, Junge HJ. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS One 2015; 10:e0132013. [PMID: 26177550 PMCID: PMC4503745 DOI: 10.1371/journal.pone.0132013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023] Open
Abstract
In the retina blood vessels are required to support a high metabolic rate, however, uncontrolled vascular growth can lead to impaired vision and blindness. Subretinal vascularization (SRV), one type of pathological vessel growth, occurs in retinal angiomatous proliferation and proliferative macular telangiectasia. In these diseases SRV originates from blood vessels within the retina. We use mice with a targeted disruption in the Vldl-receptor (Vldlr) gene as a model to study SRV with retinal origin. We find that Vldlr mRNA is strongly expressed in the neuroretina, and we observe both vascular and neuronal phenotypes in Vldlr-/- mice. Unexpectedly, horizontal cell (HC) neurites are mistargeted prior to SRV in this model, and the majority of vascular lesions are associated with mistargeted neurites. In Foxn4-/- mice, which lack HCs and display reduced amacrine cell (AC) numbers, we find severe defects in intraretinal capillary development. However, SRV is not suppressed in Foxn4-/-;Vldlr-/- mice, which reveals that mistargeted HC neurites are not required for vascular lesion formation. In the absence of VLDLR, the intraretinal capillary plexuses form in an inverse order compared to normal development, and subsequent to this early defect, vascular proliferation is increased. We conclude that SRV in the Vldlr-/- model is associated with mistargeted neurites and that SRV is preceded by altered retinal vascular development.
Collapse
Affiliation(s)
- Verity Johnson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, 80309, United States of America
| | - Mengqing Xiang
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, 08901, United States of America
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, China
| | - Zhe Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, 80309, United States of America
| | - Harald J. Junge
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, 80309, United States of America
| |
Collapse
|
24
|
Balzamino BO, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med 2015; 17:314-25. [PMID: 26066836 DOI: 10.1007/s12017-015-8360-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/30/2015] [Indexed: 11/25/2022]
Abstract
We recently reported that increased NGF and p75(NTR) as well as decreased trkA(NGFR) characterized the Reelin-deprived (E-Reeler) retina, prospecting a potential contribution of NGF during E-Reeler retinogenesis. Herein, retinal ganglion cells (RGCs), glial cells and rod bipolar cells (RBCs) were isolated from E-Reeler retinas, and NGF, trkA(NGFR)/p75(NTR) expression and apoptosis were investigated. E-Reeler (n = 28) and E-control (n = 34) retinas were digested, and RGCs, glial cells and RBCs were isolated by the magnetic bead separation. Expression of NGF, trkA(NGFR), p75(NTR), Annexin V/PI and Bcl2/Bax was quantified by flow cytometry and validated by real-time PCR or WB. In E-Reeler retinas, NGF was significantly increased in RGCs and glial cells, p75(NTR) was increased in both RBCs and RGCs, and trkA(NGFR) was unchanged. In E-control retinas, NGF and p75(NTR) were expressed mainly in RBCs and RGCs and faintly in glial cells, while trkA(NGFR) was weakly expressed by RBCs and RGCs. In RBCs and RGCs, Annexin V expression was unchanged, while Bcl2 increased and Bax decreased selectively in E-Reeler RGCs. The data indicate that E-Reeler RBCs and RGCs overexpress NGF and p75(NTR) as a protective endogenous response to Reelin deprivation. The observation is strongly supported by the absence of apoptosis in both cell types.
Collapse
Affiliation(s)
- Bijorn Omar Balzamino
- Laboratory of Ophthalmology, Ocular Surface Unit, IRCCS-G.B. Bietti Foundation, via Alvaro del Portillo 21, 00128, Rome, Italy
| | | | | | | | | |
Collapse
|
25
|
Cissé M, Checler F. Eph receptors: new players in Alzheimer's disease pathogenesis. Neurobiol Dis 2014; 73:137-49. [PMID: 25193466 DOI: 10.1016/j.nbd.2014.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is devastating and leads to permanent losses of memory and other cognitive functions. Although recent genetic evidences strongly argue for a causative role of Aβ in AD onset and progression (Jonsson et al., 2012), its role in AD etiology remains a matter of debate. However, even if not the sole culprit or pathological trigger, genetic and anatomical evidences in conjunction with numerous pharmacological studies, suggest that Aβ peptides, at least contribute to the disease. How Aβ contributes to memory loss remains largely unknown. Soluble Aβ species referred to as Aβ oligomers have been shown to be neurotoxic and induce network failure and cognitive deficits in animal models of the disease. In recent years, several proteins were described as potential Aβ oligomers receptors, amongst which are the receptor tyrosine kinases of Eph family. These receptors together with their natural ligands referred to as ephrins have been involved in a plethora of physiological and pathological processes, including embryonic neurogenesis, learning and memory, diabetes, cancers and anxiety. Here we review recent discoveries on Eph receptors-mediated protection against Aβ oligomers neurotoxicity as well as their potential as therapeutic targets in AD pathogenesis.
Collapse
Affiliation(s)
- Moustapha Cissé
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNS, "Labex Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France..
| |
Collapse
|
26
|
Pielecka-Fortuna J, Wagener RJ, Martens AK, Goetze B, Schmidt KF, Staiger JF, Löwel S. The disorganized visual cortex in reelin-deficient mice is functional and allows for enhanced plasticity. Brain Struct Funct 2014; 220:3449-67. [PMID: 25119525 PMCID: PMC4575689 DOI: 10.1007/s00429-014-0866-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 01/28/2023]
Abstract
A hallmark of neocortical circuits is the segregation of processing streams into six distinct layers. The importance of this layered organization for cortical processing and plasticity is little understood. We investigated the structure, function and plasticity of primary visual cortex (V1) of adult mice deficient for the glycoprotein reelin and their wild-type littermates. In V1 of rl-/- mice, cells with different laminar fates are present at all cortical depths. Surprisingly, the (vertically) disorganized cortex maintains a precise retinotopic (horizontal) organization. Rl-/- mice have normal basic visual capabilities, but are compromised in more challenging perceptual tasks, such as orientation discrimination. Additionally, rl-/- animals learn and memorize a visual task as well as their wild-type littermates. Interestingly, reelin deficiency enhances visual cortical plasticity: juvenile-like ocular dominance plasticity is preserved into late adulthood. The present data offer an important insight into the capabilities of a disorganized cortical system to maintain basic functional properties.
Collapse
Affiliation(s)
- Justyna Pielecka-Fortuna
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany.
| | - Robin Jan Wagener
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Ann-Kristin Martens
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany
| | - Bianka Goetze
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany
| | - Karl-Friedrich Schmidt
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany.
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
- Collaborative Research Center 889, University of Göttingen, 37075, Göttingen, Germany.
| | - Siegrid Löwel
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany.
- Collaborative Research Center 889, University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
27
|
Gaillard F, Kuny S, Sauvé Y. Retinal distribution of Disabled-1 in a diurnal murine rodent, the Nile grass rat Arvicanthis niloticus. Exp Eye Res 2014; 125:236-43. [PMID: 24992207 DOI: 10.1016/j.exer.2014.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/29/2022]
Abstract
We sought to study the expression pattern of Disabled-1 (Dab1; an adaptor protein in the reelin pathway) in the cone-rich retina of a diurnal murine rodent. Expression was examined by western blotting and immunohistochemistry using well-established antibodies against Dab1 and various markers of retinal neurons. Western blots revealed the presence of Dab1 (80 kDa) in brain and retina of the Nile grass rat. Retinal immunoreactivity was predominant in soma and dendrites of horizontal cells as well as in amacrine cell bodies aligned at the INL/IPL border. Dab1(+) neurons in the inner retina do not stain for parvalbumin, calbindin, protein kinase C-alpha, choline acetyltransferase, glutamic acid decarboxylase, or tyrosine hydroxylase. They express, however, the glycine transporter GlyT1. They have small ovoid cell bodies (7.1 ± 1.06 μm in diameter) and bistratified terminal plexii in laminas a and b of the IPL. Dab1(+) amacrine cells are evenly distributed across the retina (2600 cells/mm(2)) in a fairly regular mosaic (regularity indexes ≈3.3-5.5). We conclude that retinal Dab1 in the adult Nile grass rat exhibits a dual cell patterning similar to that found in human. It is expressed in horizontal cells as well as in a subpopulation of glycinergic amacrine cells undetectable with antibodies against calcium-binding proteins. These amacrine cells are likely of the AII type.
Collapse
Affiliation(s)
- Frédéric Gaillard
- Department of Ophthalmology and Visual Science, University of Alberta, Edmonton, AB, Canada
| | - Sharee Kuny
- Department of Ophthalmology and Visual Science, University of Alberta, Edmonton, AB, Canada
| | - Yves Sauvé
- Department of Ophthalmology and Visual Science, University of Alberta, Edmonton, AB, Canada; Department of Physiology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Eresheim C, Leeb C, Buchegger P, Nimpf J. Signaling by the extracellular matrix protein Reelin promotes granulosa cell proliferation in the chicken follicle. J Biol Chem 2014; 289:10182-91. [PMID: 24573679 DOI: 10.1074/jbc.m113.533489] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chicken oocytes develop in follicles and reach an enormous size because of a massive uptake of yolk precursors such as very low density lipoprotein and vitellogenin. Oocyte growth is supported by theca cells and granulosa cells, which establish dynamic and highly organized cell layers surrounding the oocyte. The signaling processes orchestrating the development of these layered structures are largely unknown. Here we demonstrate that the Reelin pathway, which determines the development of layered neuronal structures in the brain, is also active in chicken follicles. Reelin, which is expressed in theca cells, triggers a signal in granulosa cells via apolipoprotein E receptor 2 and the very low density lipoprotein receptor, resulting in the phosphorylation of disabled-1 and consecutive activation of the phosphatidylinositol 3-kinase/Akt pathway. This signaling pathway supports the proliferation of differentiated granulosa cells to keep up with the demand of cells to cover the rapidly increasing surface of the giant germ cell.
Collapse
Affiliation(s)
- Christine Eresheim
- From the Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | | | | | | |
Collapse
|
29
|
Li Y, Hao H, Tzatzalos E, Lin RK, Doh S, Liu LF, Lyu YL, Cai L. Topoisomerase IIbeta is required for proper retinal development and survival of postmitotic cells. Biol Open 2014; 3:172-84. [PMID: 24463367 PMCID: PMC3925320 DOI: 10.1242/bio.20146767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Topoisomerase IIbeta (Top2b) is an enzyme that modulates DNA supercoiling by catalyzing the passage of DNA duplexes through one another. It is ubiquitously expressed in postmitotic cells and known to function during the development of neuromuscular junctions in the diaphragm and the proper formation of laminar structure in the cerebral cortex. However, due to the perinatal death phenotype of the traditional constitutive and brain-specific Top2b knockout mice, the precise in vivo function of Top2b, especially during postnatal neural development, remains to be determined. Using both the constitutive and retina-specific knockout mouse models, we showed that Top2b deficiency resulted in delayed neuronal differentiation, degeneration of the plexiform layers and outer segment of photoreceptors, as well as dramatic reduction in cell number in the retina. Genome-wide transcriptome analysis by RNA sequencing revealed that genes involved in neuronal survival and neural system development were preferentially affected in Top2b-deficient retinas. Collectively, our findings have indicated an important function of Top2b in proper development and the maintenance/survival of postmitotic neurons in the retina.
Collapse
Affiliation(s)
- Ying Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Characterization of NGF, trkA (NGFR) , and p75 (NTR) in Retina of Mice Lacking Reelin Glycoprotein. Int J Cell Biol 2014; 2014:725928. [PMID: 24627687 PMCID: PMC3928862 DOI: 10.1155/2014/725928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022] Open
Abstract
Both Reelin and Nerve Growth Factor (NGF) exert crucial roles in retinal development. Retinogenesis is severely impaired in E-reeler mice, a model of Reelin deficiency showing specific Green Fluorescent Protein expression in Rod Bipolar Cells (RBCs). Since no data are available on Reelin and NGF cross-talk, NGF and trkANGFR/ p75NTR expression was investigated in retinas from E-reeler versus control mice, by confocal microscopy, Western blotting, and real time PCR analysis. A scattered increase of NGF protein was observed in the Ganglion Cell Layer and more pronounced in the Inner Nuclear Layer (INL). A selective increase of p75NTR was detected in most of RBCs and in other cell subtypes of INL. On the contrary, a slight trend towards a decrease was detected for trkANGFR, albeit not significant. Confocal data were validated by Western blot and real time PCR. Finally, the decreased trkANGFR/ p75NTR ratio, representative of p75NTR increase, significantly correlated with E-reeler versus E-control. These data indicate that NGF-trkANGFR/ p75NTR is affected in E-reeler retina and that p75NTR might represent the main NGF receptor involved in the process. This first NGF-trkANGFR/ p75NTR characterization suggests that E-reeler might be suitable for exploring Reelin-NGF cross-talk, representing an additional information source in those pathologies characterized by retinal degeneration.
Collapse
|
31
|
Reelin in the Years: Controlling Neuronal Migration and Maturation in the Mammalian Brain. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/597395] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extracellular protein Reelin was initially identified as an essential factor in the control of neuronal migration and layer formation in the developing mammalian brain. In the years following its discovery, however, it became clear that Reelin is a multifunctional protein that controls not only the positioning of neurons in the developing brain, but also their growth, maturation, and synaptic activity in the adult brain. In this review, we will highlight the major discoveries of the biological activities of Reelin and the underlying molecular mechanisms that affect the development and function of the mammalian brain, from embryonic ages to adulthood.
Collapse
|
32
|
Kania A. Spinal motor neuron migration and the significance of topographic organization in the nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 800:133-48. [PMID: 24243104 DOI: 10.1007/978-94-007-7687-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nervous system displays a high degree of topographic organisation such that neuronal soma position is closely correlated to axonal trajectory. One example of such order is the myotopic organisation of the motor system where spinal motor neuron position parallels that of target muscles. This chapter will discuss the molecular mechanisms underlying motor neuron soma positioning, which include transcriptional control of Reelin signaling and cadherin expression. As the same transcription factors have been shown to control motor axon innervation of target muscles, a simple mechanism of topographic organisation specification is becoming evident raising the question of how coordinating soma position with axon trajectory might be important for nervous system wiring and its function.
Collapse
Affiliation(s)
- Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), 110, ave. des Pins Ouest, Montréal, QC, H2W 1R7, Canada,
| |
Collapse
|
33
|
Baier H. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu Rev Cell Dev Biol 2013; 29:385-416. [PMID: 24099086 DOI: 10.1146/annurev-cellbio-101011-155748] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synaptic connections between neurons form the basis for perception and behavior. Synapses are often clustered in space, forming stereotyped layers. In the retina and optic tectum, multiple such synaptic laminae are stacked on top of each other, giving rise to stratified neuropil regions in which each layer combines synapses responsive to a particular sensory feature. Recently, several cellular and molecular mechanisms that underlie the development of multilaminar arrays of synapses have been discovered. These mechanisms include neurite guidance and cell-cell recognition. Molecules of the Slit, Semaphorin, Netrin, and Hedgehog families, binding to their matching receptors, bring axons and dendrites into spatial register. These guidance cues may diffuse over short distances or bind to sheets of extracellular matrix, thus conditioning the local extracellular milieu, or are presented on the surface of cells bordering the future neuropil. In addition, mutual recognition of axons and dendrites through adhesion molecules with immunoglobulin domains ensures cell type-specific connections within a given layer. Thus, an elaborate genetic program assembles the parallel processing channels that underlie visual perception.
Collapse
Affiliation(s)
- Herwig Baier
- Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried near Munich, Germany;
| |
Collapse
|
34
|
VEGF activates NR2B phosphorylation through Dab1 pathway. Neurosci Lett 2013; 552:30-4. [PMID: 23916658 DOI: 10.1016/j.neulet.2013.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 01/17/2023]
Abstract
Vascular endothelial growth factor (VEGF) and reelin are two major signaling pathways involved in many neuronal functions including neurogenesis and neuronal migration. Both VEGF and reelin have been shown to regulate NMDA type glutamate receptor (NMDAR) activity via independent mechanisms. However, it is not known whether the above signaling pathways influence each other on NMDAR regulation. We demonstrate that Disabled 1 (Dab1), a downstream signaling molecule of reelin pathway mediates VEGF-induced regulation of NMDAR subunit NR2B. Furthermore, VEGF treatment led to the association of VEGF receptor-2 (Flk1) and reelin receptor (apolipoprotein E receptor 2, ApoER2), and Dab1 as well as NR2B activation were Flk1-dependent. Moreover, VEGF treatment could significantly rescue the deficits in phospho-Dab1 levels in reeler (Reln-/-) neurons. Our results suggest a major role of VEGF in the regulation of reelin signaling, and Dab1 as a key molecule in the cross talk between reelin and VEGF signaling pathways.
Collapse
|
35
|
Su J, Klemm MA, Josephson AM, Fox MA. Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projections. Neural Dev 2013; 8:11. [PMID: 23758727 PMCID: PMC3685595 DOI: 10.1186/1749-8104-8-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/22/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs), the output neurons of the retina, project to over 20 distinct brain nuclei, including the lateral geniculate nucleus (LGN), a thalamic region comprised of three functionally distinct subnuclei: the ventral LGN (vLGN), the dorsal LGN (dLGN) and the intergeniculate leaflet (IGL). We previously identified reelin, an extracellular glycoprotein, as a critical factor that directs class-specific targeting of these subnuclei. Reelin is known to bind to two receptors: very-low-density lipoprotein receptor (VLDLR) and low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2). Here we examined the roles of these canonical reelin receptors in retinogeniculate targeting. RESULTS To assess the roles of VLDLR and LRP8 in retinogeniculate targeting, we used intraocular injections of fluorescently conjugated cholera toxin B subunit (CTB) to label all RGC axons in vivo. Retinogeniculate projections in mutant mice lacking either VLDLR or LRP8 appeared similar to controls; however, deletion of both receptors resulted in dramatic defects in the pattern of retinal innervation in LGN. Surprisingly, defects in vldlr(-/-);lrp8(-/-) double mutant mice were remarkably different than those observed in mice lacking reelin. First, we failed to observe retinal axons exiting the medial border of the vLGN and IGL to invade distant regions of non-retino-recipient thalamus. Second, an ectopic region of binocular innervation emerged in the dorsomedial pole of vldlr(-/-);lrp8(-/-) mutant dLGN. Analysis of retinal projection development, retinal terminal sizes and LGN cytoarchitecture in vldlr(-/-);lrp8(-/-) mutants, all suggest that a subset of retinal axons destined for the IGL are misrouted to the dorsomedial pole of dLGN in the absence of VLDLR and LRP8. Such mistargeting is likely the result of abnormal migration of IGL neurons into the dorsomedial pole of dLGN in vldlr(-/-);lrp8(-/-) mutants. CONCLUSIONS In contrast to our expectations, the development of both the LGN and retinogeniculate projections appeared dramatically different in mutants lacking either reelin or both canonical reelin receptors. These results suggest that there are reelin-independent functions of VLDLR and LRP8 in LGN development, and VLDLR- and LRP8-independent functions of reelin in class-specific axonal targeting.
Collapse
Affiliation(s)
- Jianmin Su
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
| | - Michael A Klemm
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Anne M Josephson
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | - Michael A Fox
- Virginia Tech Carilion Research Institute, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| |
Collapse
|
36
|
McCullough SD, Xu X, Dent SYR, Bekiranov S, Roeder RG, Grant PA. Reelin is a target of polyglutamine expanded ataxin-7 in human spinocerebellar ataxia type 7 (SCA7) astrocytes. Proc Natl Acad Sci U S A 2012; 109:21319-24. [PMID: 23236151 PMCID: PMC3535616 DOI: 10.1073/pnas.1218331110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant neurodegenerative disorder that results from polyglutamine expansion of the ataxin-7 (ATXN7) protein. Remarkably, although mutant ATXN7 is expressed throughout the body, pathology is restricted primarily to the cerebellum and retina. One major goal has been to identify factors that contribute to the tissue specificity of SCA7. Here we describe the development and use of a human astrocyte cell culture model to identify reelin, a factor intimately involved in the development and maintenance of Purkinje cells and the cerebellum as a whole, as an ATXN7 target gene. We found that polyglutamine expansion decreased ATXN7 occupancy, which correlated with increased levels of histone H2B monoubiquitination, at the reelin promoter. Treatment with trichostatin A, but not other histone deacetylase inhibitors, partially restored reelin transcription and promoted the accumulation of mutant ATXN7 into nuclear inclusions. Our findings suggest that reelin could be a previously unknown factor involved in the tissue specificity of SCA7 and that trichostatin A may ameliorate deleterious effects of the mutant ATXN7 protein by promoting its sequestration away from promoters into nuclear inclusions.
Collapse
Affiliation(s)
- Shaun D. McCullough
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Xiaojiang Xu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Sharon Y. R. Dent
- Department of Molecular Carcinogenesis at the Virginia Harris Cockrell Cancer Research Center, University of Texas M. D. Anderson Cancer Center, Smithville, TX 78957; and
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Robert G. Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065
| | - Patrick A. Grant
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
37
|
Matsuki T, Zaka M, Guerreiro R, van der Brug MP, Cooper JA, Cookson MR, Hardy JA, Howell BW. Identification of Stk25 as a genetic modifier of Tau phosphorylation in Dab1-mutant mice. PLoS One 2012; 7:e31152. [PMID: 22355340 PMCID: PMC3280280 DOI: 10.1371/journal.pone.0031152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 01/03/2012] [Indexed: 11/18/2022] Open
Abstract
Hyperphosphorylation of the microtubule binding protein Tau is a feature of a number of neurodegenerative diseases, including Alzheimer's disease. Tau is hyperphosphorylated in the hippocampus of dab1-null mice in a strain-dependent manner; however, it has not been clear if the Tau phosphorylation phenotype is a secondary effect of the morbidity of these mutants. The dab1 gene encodes a docking protein that is required for normal brain lamination and dendritogenesis as part of the Reelin signaling pathway. We show that dab1 gene inactivation after brain development leads to Tau hyperphosphorylation in anatomically normal mice. Genomic regions that regulate the phospho Tau phenotype in dab1 mutants have previously been identified. Using a microarray gene expression comparison between dab1-mutants from the high-phospho Tau expressing and low-phospho Tau expressing strains, we identified Stk25 as a differentially expressed modifier of dab1-mutant phenotypes. Stk25 knockdown reduces Tau phosphorylation in embryonic neurons. Furthermore, Stk25 regulates neuronal polarization and Golgi morphology in an antagonistic manner to Dab1. This work provides insights into the complex regulation of neuronal behavior during brain development and provides insights into the molecular cascades that regulate Tau phosphorylation.
Collapse
Affiliation(s)
- Tohru Matsuki
- Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Mariam Zaka
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rita Guerreiro
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcel P. van der Brug
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan A. Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Mark R. Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Hardy
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian W. Howell
- Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Lindhorst T, Kurz H, Sibbe M, Meseke M, Förster E. Congruence of vascular network remodeling and neuronal dispersion in the hippocampus of reelin-deficient mice. Histochem Cell Biol 2012; 137:629-39. [PMID: 22261923 DOI: 10.1007/s00418-012-0912-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 12/18/2022]
Abstract
In the hippocampus, neurons and fiber projections are strictly organized in layers and supplied with oxygen via a vascular network that also develops layer-specific characteristics in wild-type mice, as shown in the present study for the first time in a quantitative manner. By contrast, in the reeler mutant, well known for its neuronal migration defects due to the lack of the extracellular matrix protein reelin, emerging layer-specific characteristics of the vascular pattern were found to be remodeled during development of the dentate gyrus. Remarkably, in the first postnatal week, when a granule cell layer was still discernable in the reeler dentate gyrus, also the reeler vascular pattern resembled wild type. Thus, at postnatal day 6, unbranched microvessels traversed the granule cell layer and bifurcated when reaching the subgranular zone. Only after the first postnatal week vascular network remodeling in the reeler dentate gyrus became apparent, when the proportion of dispersed granule cells increased. Hence, vessel bifurcation frequency decreased in the maturing reeler dentate gyrus, but increased in wild type, resulting in significant differences (approx. 100%; p < 0.01) between adult wild type and reeler. Moreover, layer-specific vessel bifurcation frequencies disappeared in the maturing reeler dentate gyrus. Finally, a wild type-like vascular pattern was also found in the dentate gyrus of mice deficient for the reelin receptor very low density lipoprotein receptor (VLDLR), precluding a requirement of VLDLR for normal vascular pattern formation in the dentate gyrus. In sum, our findings show that vascular network remodeling in the reeler dentate gyrus is closely linked to the progression of granule cell dispersion.
Collapse
Affiliation(s)
- Tina Lindhorst
- Department of Hematology and Oncology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Katyal S, Glubrecht DD, Li L, Gao Z, Godbout R. Disabled-1 alternative splicing in human fetal retina and neural tumors. PLoS One 2011; 6:e28579. [PMID: 22163036 PMCID: PMC3232236 DOI: 10.1371/journal.pone.0028579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022] Open
Abstract
Background The Reelin-Dab1 signaling pathway plays a critical role in the positioning of migrating neurons, dendrite formation and lamination in the developing central nervous system. We have previously identified two alternatively spliced forms of Dab1 in the developing chick retina: an early form, Dab1-E, expressed in retinal progenitor cells, and a late form, Dab1 or Dab1-L, expressed in amacrine and ganglion cells. Compared to Dab1-L, Dab1-E lacks two exons that encode two Src family kinase (SFK) phosphorylation sites. Principal Findings Both Dab1-L and Dab1-E-like transcripts were identified in human fetal retina. Expression of human Dab1-L in primary chick retinal cultures resulted in Reelin-mediated induction of SFK phosphorylation and formation of neurite-like processes. In contrast, human Dab1-E-expressing cells retained an undifferentiated morphology. The human Dab1 gene is located within a common fragile site, and it has been postulated that it may function as a tumor suppressor. Analysis of Dab1 splice forms in retinoblastoma and neuroblastoma tumor cells revealed relative enrichment of Dab1-L-like (includes exons 7 and 8) and Dab1-E-like (excludes exons 7 and 8) transcripts in retinoblastoma and neuroblastoma, respectively. Treatment of retinoblastoma cell line RB522A with Reelin resulted in increased tyrosine phosphorylation of Dab1. As Nova2 has previously been implicated in the exclusion of exons 9B and 9C in Dab1, we examined the expression of this splicing factor in neuroblastoma and retinoblastoma cell lines. Nova2 was only detected in neuroblastoma cells, suggesting a correlation between Nova2 expression and increased levels of Dab1-E-like splice forms in neuroblastoma. Conclusions These results indicate that alternative splicing of Dab1 is conserved in avian and mammalian species, with Dab1-L driving SFK phosphorylation in both species. Dab1-E- and Dab-L-like isoforms are also expressed in childhood neural tumors, with preferential enrichment of Dab1-L-like and Dab1-E-like isoforms in retinoblastoma and neuroblastoma, respectively.
Collapse
Affiliation(s)
- Sachin Katyal
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Darryl D. Glubrecht
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lei Li
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zhihua Gao
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
40
|
Abstract
The cellular and molecular mechanisms responsible for the development of inner retinal circuitry are poorly understood. Reelin and apolipoprotein E (apoE), ligands of apoE receptor 2 (ApoER2), are involved in retinal development and degeneration, respectively. Here we describe the function of ApoER2 in the developing and adult retina. ApoER2 expression was highest during postnatal inner retinal synaptic development and was considerably lower in the mature retina. Both during development and in the adult, ApoER2 was expressed by A-II amacrine cells. ApoER2 knock-out (KO) mice had rod bipolar morphogenic defects, altered A-II amacrine dendritic development, and impaired rod-driven retinal responses. The presence of an intact ApoER2 NPxY motif, necessary for binding Disabled-1 and transducing the Reelin signal, was also necessary for development of the rod bipolar pathway, while the alternatively spliced exon 19 was not. Mice deficient in another Reelin receptor, very low-density lipoprotein receptor (VLDLR), had normal rod bipolar morphology but altered A-II amacrine dendritic development. VLDLR KO mice also had reductions in oscillatory potentials and delayed synaptic response intervals. Interestingly, age-related reductions in rod and cone function were observed in both ApoER2 and VLDLR KOs. These results support a pivotal role for ApoER2 in the establishment and maintenance of normal retinal synaptic connectivity.
Collapse
|
41
|
Kiser PJ, Liu Z, Wilt SD, Mower GD. Cellular and laminar expression of Dab-1 during the postnatal critical period in cat visual cortex and the effects of dark rearing. Brain Res 2011; 1383:81-9. [PMID: 21303666 DOI: 10.1016/j.brainres.2011.01.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/14/2011] [Accepted: 01/31/2011] [Indexed: 11/28/2022]
Abstract
This study describes postnatal critical period changes in cellular and laminar expression of Dab-1, a gene shown to play a role in controlling neuronal positioning during embryonic brain development, in cat visual cortex and the effects of dark rearing (DR). At 1week, there is dense cellular staining which is uniform across cortical layers and very light neuropil staining. At the peak of the critical period (5weeks), dense cell staining is largely restricted to large pyramidal cells of deep layer III and layer V, there is faint cell body staining throughout all cortical layers, neuropil staining is markedly increased and uniform in layers III to VI. This dramatic change in laminar and cellular labeling is independent of visual input, since immunostaining is similar in 5-week DR cats. By 10weeks, the mature laminar and cellular staining pattern is established and the major subsequent change is a further reduction in the density of cellular staining in all cortical layers. Neuropil staining is pronounced and uniform across cortical layers. These developmental changes are altered by DR. Quantification by cell counts indicated that age and DR interact such that differences in cellular expression are opposite in direction between 5- and 20-week-old cats. This bidirectional regulation of cellular expression is the same in all cortical laminae. The bidirectional regulation of cellular expression matches the effects of age and DR on physiological plasticity during the critical period as assessed by ocular dominance shifts in response to monocular deprivation.
Collapse
Affiliation(s)
- Paul J Kiser
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, 500 South Preston St., Louisville, KY 40202, USA
| | | | | | | |
Collapse
|
42
|
Dinet V, An N, Ciccotosto GD, Bruban J, Maoui A, Bellingham SA, Hill AF, Andersen OM, Nykjaer A, Jonet L, Cappai R, Mascarelli F. APP involvement in retinogenesis of mice. Acta Neuropathol 2011; 121:351-63. [PMID: 20978902 DOI: 10.1007/s00401-010-0762-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/11/2010] [Accepted: 10/14/2010] [Indexed: 12/23/2022]
Abstract
Very few studies have examined expression and function of amyloid precursor protein (APP) in the retina. We showed that APP mRNA and protein are expressed according to the different waves of retinal differentiation. Depletion of App led to an absence of amacrine cells, a 50% increase in the number of horizontal cells and alteration of the synapses. The retinas of adult APP(-/-) mice showed only half as many glycinergic amacrine cells as wild-type retinas. We identified Ptf1a, which plays a role in controlling both amacrine and horizontal cell fates, as a downstream effector of APP. The observation of a similar phenotype in sorLA knockout mice, a major regulator of APP processing, suggests that regulation of APP functions via sorLA controls the determination of amacrine and horizontal cell fate. These findings provide novel insights that indicate that APP plays an important role in retinal differentiation.
Collapse
Affiliation(s)
- Virginie Dinet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 6, INSERM, 15 rue de l'Ecole de Médecine, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Development of visual system circuitry requires the formation of precise synaptic connections between neurons in the retina and brain. For example, axons from retinal ganglion cells (RGCs) form synapses onto neurons within subnuclei of the lateral geniculate nucleus (LGN) [i.e., the dorsal LGN (dLGN), ventral LGN (vLGN), and intergeniculate leaflet (IGL)]. Distinct classes of RGCs project to these subnuclei: the dLGN is innervated by image-forming RGCs, whereas the vLGN and IGL are innervated by non-image-forming RGCs. To explore potential mechanisms regulating class-specific LGN targeting, we sought to identify differentially expressed targeting molecules in these LGN subnuclei. One candidate targeting molecule enriched in the vLGN and IGL during retinogeniculate circuit formation was the extracellular matrix molecule reelin. Anterograde labeling of RGC axons in mutant mice lacking functional reelin (reln(rl/rl)) revealed reduced patterns of vLGN and IGL innervation and misrouted RGC axons in adjacent non-retino-recipient thalamic nuclei. Using genetic reporter mice, we further demonstrated that mistargeted axons were from non-image-forming, intrinsically photosensitive RGCs (ipRGCs). In contrast to mistargeted ipRGC axons, axons arising from image-forming RGCs and layer VI cortical neurons correctly targeted the dLGN in reln(rl/rl) mutants. Together, these data reveal that reelin is essential for the targeting of LGN subnuclei by functionally distinct classes of RGCs.
Collapse
|
44
|
Matsuki T, Matthews RT, Cooper JA, van der Brug MP, Cookson MR, Hardy JA, Olson EC, Howell BW. Reelin and stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell 2010; 143:826-36. [PMID: 21111240 DOI: 10.1016/j.cell.2010.10.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/27/2010] [Accepted: 10/20/2010] [Indexed: 12/11/2022]
Abstract
The Reelin ligand regulates a Dab1-dependent signaling pathway required for brain lamination and normal dendritogenesis, but the specific mechanisms underlying these actions remain unclear. We find that Stk25, a modifier of Reelin-Dab1 signaling, regulates Golgi morphology and neuronal polarization as part of an LKB1-Stk25-Golgi matrix protein 130 (GM130) signaling pathway. Overexpression of Stk25 induces Golgi condensation and multiple axons, both of which are rescued by Reelin treatment. Reelin stimulation of cultured neurons induces the extension of the Golgi into dendrites, which is suppressed by Stk25 overexpression. In vivo, Reelin and Dab1 are required for the normal extension of the Golgi apparatus into the apical dendrites of hippocampal and neocortical pyramidal neurons. This demonstrates that the balance between Reelin-Dab1 signaling and LKB1-Stk25-GM130 regulates Golgi dispersion, axon specification, and dendrite growth and provides insights into the importance of the Golgi apparatus for cell polarization.
Collapse
Affiliation(s)
- Tohru Matsuki
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Foxp1 and lhx1 coordinate motor neuron migration with axon trajectory choice by gating Reelin signalling. PLoS Biol 2010; 8:e1000446. [PMID: 20711475 PMCID: PMC2919418 DOI: 10.1371/journal.pbio.1000446] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 06/24/2010] [Indexed: 11/19/2022] Open
Abstract
During embryonic development of the vertebrate motor system, the same transcription factors that regulate axonal trajectories can also regulate cell body migration, thereby controlling topographic map formation. Topographic neuronal maps arise as a consequence of axon trajectory choice correlated with the localisation of neuronal soma, but the identity of the pathways coordinating these processes is unknown. We addressed this question in the context of the myotopic map formed by limb muscles innervated by spinal lateral motor column (LMC) motor axons where the Eph receptor signals specifying growth cone trajectory are restricted by Foxp1 and Lhx1 transcription factors. We show that the localisation of LMC neuron cell bodies can be dissociated from axon trajectory choice by either the loss or gain of function of the Reelin signalling pathway. The response of LMC motor neurons to Reelin is gated by Foxp1- and Lhx1-mediated regulation of expression of the critical Reelin signalling intermediate Dab1. Together, these observations point to identical transcription factors that control motor axon guidance and soma migration and reveal the molecular hierarchy of myotopic organisation. Many areas of our nervous system are organized in a topographic manner, such that the location of a neuron relative to its neighbors is often spatially correlated with its axonal trajectory and therefore target identity. In this study, we focus on the spinal myotopic map, which is characterized by the stereotyped organization of motor neuron cell bodies that is correlated with the trajectory of their axons to limb muscles. An open question for how this map forms is the identity of the molecules that coordinate the expression of effectors of neuronal migration and axonal guidance. Here, we first show that Dab1, a key protein that relays signals directing neuronal migration, is expressed at different concentrations in specific populations of limb-innervating motor neurons and determines the position of their cell bodies in the spinal cord. We then demonstrate that Foxp1 and Lhx1, the same transcription factors that regulate the expression of receptors for motor axon guidance signals, also modulate Dab1 expression. The significance of our findings is that we identify a molecular hierarchy linking effectors of both neuronal migration and axonal projections, and therefore coordinating neuronal soma position with choice of axon trajectory. In general, our findings provide a framework in which to address the general question of how the nervous system is organized.
Collapse
|
46
|
The early isoform of disabled-1 functions independently of Reelin-mediated tyrosine phosphorylation in chick retina. Mol Cell Biol 2010; 30:4339-53. [PMID: 20606009 DOI: 10.1128/mcb.00545-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Reelin-Disabled-1 (Dab1) signaling pathway plays a key role in the positioning of neurons during brain development. Two alternatively spliced Dab1 isoforms have been identified in chick retina and brain: Dab1-E, expressed at early stages of development, and Dab1-L (commonly referred to as Dab1), expressed at later developmental stages. The well-studied Dab1-L serves as an adaptor protein linking Reelin signal to its downstream effectors; however, nothing is known regarding the role of Dab1-E. Here we show that Dab1-E is primarily expressed in proliferating retinal progenitor cells whereas Dab1-L is found exclusively in differentiated neuronal cells. In contrast to Dab1-L, which is tyrosine phosphorylated upon Reelin stimulation, Dab1-E is not tyrosine phosphorylated and may function independently of Reelin. Knockdown of Dab1-E in chick retina results in a significant reduction in the number of proliferating cells and promotes ganglion cell differentiation. Our results demonstrate a role for Dab1-E in the maintenance of the retinal progenitor pool and determination of cell fate.
Collapse
|
47
|
Huberman AD, Clandinin TR, Baier H. Molecular and cellular mechanisms of lamina-specific axon targeting. Cold Spring Harb Perspect Biol 2010; 2:a001743. [PMID: 20300211 PMCID: PMC2829955 DOI: 10.1101/cshperspect.a001743] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The specificity of synaptic connections is directly related to the functional integrity of neural circuits. Long-range axon guidance and topographic mapping mechanisms bring axons into spatial proximity of target cells and thus limit the number of potential synaptic partners. Synaptic specificity is then achieved by extracellular short-range guidance cues and cell-surface recognition cues. Neural activity may enhance the precision and strength of specific circuit connections. Here, we focus on one of the final steps of synaptic matchmaking: the targeting of synaptic layers and the mutual recognition of axons and dendrites within these layers.
Collapse
Affiliation(s)
- Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | | | | |
Collapse
|
48
|
GABAergic amacrine cells and visual function are reduced in PAC1 transgenic mice. Neuropharmacology 2010; 58:215-25. [DOI: 10.1016/j.neuropharm.2009.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/25/2009] [Accepted: 07/02/2009] [Indexed: 01/22/2023]
|
49
|
Inagaki A, Ugawa S, Safwat MM, Keceli S, Shimada S, Motohiko S, Murakami S. Reelin-disabled-1 signaling in the mature rat cochlear nucleus. Acta Otolaryngol 2009:7-11. [PMID: 19848232 DOI: 10.1080/00016480902911961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONCLUSION Immunohistochemical detection of Reelin in granular cells and disabled-1 in cochlear nucleus suggests a possible Reelin signaling pathway in mature rat cochlear nucleus. MATERIALS AND METHODS Six-week-old Wister rats were used throughout this study. The expression of reelin and disabled-1 were studied by using in situ hybridization technique and immunohistochemistry. RESULTS Reelin mRNA expression was observed in granular cell layer of dorsal cochlear nucleus. Immunohistochemistry using anti-reelin monoclonal antibodies confirmed reelin expression in granule cells at protein level. We also examined disabled-1 expression in cochlear nucleus and observed positive immunoreactivity in both ventricular and dorsal cochlear nucleus. In the dorsal cochlear nucleus, fusiform and cartwheel cells were labeled. In the ventricular cochlear nucleus, relatively large cells were labeled with anti-disabled-1 polyclonal antibody but the subtypes of disabled-1 positive cells could not be identified.
Collapse
|
50
|
Nakajima Y, Moriyama M, Hattori M, Minato N, Nakanishi S. Isolation of ON bipolar cell genes via hrGFP-coupled cell enrichment using the mGluR6 promoter. J Biochem 2009; 145:811-8. [PMID: 19270057 DOI: 10.1093/jb/mvp038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
mGluR6 expression is a characteristic property of retinal ON bipolar cells. mGluR6 is also the causal gene for a form of congenital night blindness. To elucidate physiological and pathological functions of ON bipolar cells and mGluR6, we thought it important to identify genes specifically expressed in them. We thus made transgenic mouse lines expressing humanized Renilla reniformis green fluorescent protein (hrGFP), under the control of the mGluR6 promoter. From their retina, we isolated hrGFP-positive cells by cell sorting, and analysed the gene-expression profile of these cells by using DNA microarray. Further analysis revealed that about half of the initially selected ON bipolar cell genes were expressed in the expected retinal layer. We confirmed previously ambiguous retinal localization of regulator of G-protein signalling 11 (RGS11) and transient receptor potential cation channel, subfamily M, member 1 (TRPM1). In addition, we showed the expression of calcium channel, voltage-dependent, alpha2/delta subunit 3 (Cacna2d3) in ON bipolar cells for the first time. Although we could not completely exclude the possibility that a small population of hrGFP-positive cells might not be ON bipolar cells, these mice as well as our strategy would be highly valuable for the further analysis of ON bipolar cells.
Collapse
Affiliation(s)
- Yoshiaki Nakajima
- Department of Biological Sciences, Faculty of Medicine, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|