1
|
Fukaya M, Ibuchi K, Sugawara T, Itakura M, Ito A, Shiroshima T, Hara Y, Okamoto H, Luton F, Sakagami H. EFA6A, an Exchange Factor for Arf6, Regulates NGF-Dependent TrkA Recycling From Early Endosomes and Neurite Outgrowth in PC12 Cells. Traffic 2024; 25:e12936. [PMID: 38725127 DOI: 10.1111/tra.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 06/03/2024]
Abstract
Endosomal trafficking of TrkA is a critical process for nerve growth factor (NGF)-dependent neuronal cell survival and differentiation. The small GTPase ADP-ribosylation factor 6 (Arf6) is implicated in NGF-dependent processes in PC12 cells through endosomal trafficking and actin cytoskeleton reorganization. However, the regulatory mechanism for Arf6 in NGF signaling is largely unknown. In this study, we demonstrated that EFA6A, an Arf6-specific guanine nucleotide exchange factor, was abundantly expressed in PC12 cells and that knockdown of EFA6A significantly inhibited NGF-dependent Arf6 activation, TrkA recycling from early endosomes to the cell surface, prolonged ERK1/2 phosphorylation, and neurite outgrowth. We also demonstrated that EFA6A forms a protein complex with TrkA through its N-terminal region, thereby enhancing its catalytic activity for Arf6. Similarly, we demonstrated that EFA6A forms a protein complex with TrkA in cultured dorsal root ganglion (DRG) neurons. Furthermore, cultured DRG neurons from EFA6A knockout mice exhibited disturbed NGF-dependent TrkA trafficking compared with wild-type neurons. These findings provide the first evidence for EFA6A as a key regulator of NGF-dependent TrkA trafficking and signaling.
Collapse
Affiliation(s)
- Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Kanta Ibuchi
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Makoto Itakura
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Japan
| | - Akiko Ito
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hirotsugu Okamoto
- Department of Anesthesiology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Frédéric Luton
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Université Côte d'Azur, Valbonne, France
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| |
Collapse
|
2
|
Albini M, Krawczun-Rygmaczewska A, Cesca F. Astrocytes and brain-derived neurotrophic factor (BDNF). Neurosci Res 2023; 197:42-51. [PMID: 36780947 DOI: 10.1016/j.neures.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Astrocytes are emerging in the neuroscience field as crucial modulators of brain functions, from the molecular control of synaptic plasticity to orchestrating brain-wide circuit activity for cognitive processes. The cellular pathways through which astrocytes modulate neuronal activity and plasticity are quite diverse. In this review, we focus on neurotrophic pathways, mostly those mediated by brain-derived neurotrophic factor (BDNF). Neurotrophins are a well-known family of trophic factors with pleiotropic functions in neuronal survival, maturation and activity. Within the brain, BDNF is the most abundantly expressed and most studied of all neurotrophins. While we have detailed knowledge of the effect of BDNF on neurons, much less is known about its physiology on astroglia. However, over the last years new findings emerged demonstrating that astrocytes take an active part into BDNF physiology. In this work, we discuss the state-of-the-art knowledge about astrocytes and BDNF. Indeed, astrocytes sense extracellular BDNF through its specific TrkB receptors and activate intracellular responses that greatly vary depending on the brain area, stage of development and receptors expressed. Astrocytes also uptake and recycle BDNF / proBDNF at synapses contributing to synaptic plasticity. Finally, experimental evidence is now available describing deficits in astrocytic BDNF in several neuropathologies, suggesting that astrocytic BDNF may represent a promising target for clinical translation.
Collapse
Affiliation(s)
- Martina Albini
- Department of Experimental Medicine, University of Genova, Italy; IIT Center for Synaptic Neuroscience and Technology, Genova, Italy
| | - Alicja Krawczun-Rygmaczewska
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy
| | - Fabrizia Cesca
- IIT Center for Synaptic Neuroscience and Technology, Genova, Italy; Department of Life Sciences, University of Trieste, Italy.
| |
Collapse
|
3
|
Kropf E, Shekari A, Jaberi S, Puri A, Wu C, Fahnestock M. Age-induced nitrative stress decreases retrograde transport of proNGF via TrkA and increases proNGF retrograde transport and neurodegeneration via p75 NTR. Front Mol Neurosci 2023; 16:1241420. [PMID: 38025269 PMCID: PMC10679388 DOI: 10.3389/fnmol.2023.1241420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Axonal transport of pro nerve growth factor (proNGF) is impaired in aged basal forebrain cholinergic neurons (BFCNs), which is associated with their degeneration. ProNGF is neurotrophic in the presence of its receptor tropomyosin-related kinase A (TrkA) but induces apoptosis via the pan-neurotrophin receptor (p75NTR) when TrkA is absent. It is well established that TrkA is lost while p75NTR is maintained in aged BFCNs, but whether aging differentially affects transport of proNGF via each receptor is unknown. Nitrative stress increases during aging, but whether age-induced nitrative stress differentially affects proNGF transport via TrkA versus p75NTR has not yet been studied. Answering these questions is essential for developing an accurate understanding of the mechanisms contributing to age-induced loss of proNGF transport and BFCN degeneration. Methods In this study, fluorescence microscopy was used to analyze axonal transport of quantum dot labeled proNGF in rat BFCNs in vitro. Receptor specific effects were studied with proNGF mutants that selectively bind to either TrkA (proNGF-KKE) or p75NTR (proNGF-Δ9-13). Signaling factor activity was quantified via immunostaining. Results Young BFCNs transported proNGF-KKE but not proNGF-Δ9-13, and proNGF transport was not different in p75NTR knockout BFCNs compared to wildtype BFCNs. These results indicate that young BFCNs transport proNGF via TrkA. In vitro aging increased transport of proNGF-Δ9-13 but decreased transport of proNGF-KKE. Treatment with the nitric oxide synthase inhibitor L-NAME reduced retrograde transport of proNGF-Δ9-13 in aged BFCNs while increasing retrograde transport of proNGF-KKE but did not affect TrkA or p75NTR levels. ProNGF-Δ9-13 induced greater pro-apoptotic signaling and neurodegeneration and less pro-survival signaling relative to proNGF-KKE. Discussion Together, these results indicate that age-induced nitrative stress decreases proNGF transport via TrkA while increasing proNGF transport via p75NTR. These transport deficits are associated with decreased survival signaling, increased apoptotic signaling, and neurodegeneration. Our findings elucidate the receptor specificity of age-and nitrative stress-induced proNGF transport deficits. These results may help to rescue the neurotrophic signaling of proNGF in aging to reduce age-induced loss of BFCN function and cognitive decline.
Collapse
Affiliation(s)
- Erika Kropf
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Arman Shekari
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Sama Jaberi
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Anish Puri
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
4
|
Neurotrophin mimetics and tropomyosin kinase receptors: a futuristic pharmacological tool for Parkinson's. Neurol Sci 2023:10.1007/s10072-023-06684-1. [PMID: 36870001 DOI: 10.1007/s10072-023-06684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/11/2023] [Indexed: 03/05/2023]
Abstract
Parkinson's disease is a complex age-related progressive dopaminergic neurodegenerative disease consistently viewed as a disorder of movement and is characterized by its cardinal motor symptoms. While the motor symptoms and its clinical manifestations are attributed to the nigral dopaminergic neuronal death and basal ganglia dysfunction, studies have subsequently proven that the non-dopaminergic neurons in various brain regions are also additionally involved with the disease progression. Thus, it is now well accepted that the involvement of various neurotransmitters and other ligands accounts for the non-motor symptoms (NMS) associated with the Parkinson's disease. Consequently, this has demonstrated to possess remarkable clinical concerns to the patients in terms of various disability, such impaired to compromised quality of life and increased risk of morbidity and mortality. Currently, available pharmacological, non-pharmacological, and surgical therapeutic strategies neither prevent, arrest, nor reverse the nigral dopaminergic neurodegeneration. Thus, there is an imminent medical necessity to increase patient's quality of life and survival, which in turn decreases the incidence and prevalence of the NMS. The current research article reviews the potential direct involvement of neurotrophin and its mimetics to target and modulate neurotrophin-mediated signal transduction pathways to enlighten a new and novel therapeutic strategy along with the pre-existing treatments for Parkinson's disease and other neurological/neurodegenerative disorders which are associated with the downregulation of neurotrophins.
Collapse
|
5
|
Sympathetic neurons secrete retrogradely transported TrkA on extracellular vesicles. Sci Rep 2023; 13:3657. [PMID: 36871060 PMCID: PMC9985603 DOI: 10.1038/s41598-023-30728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Proper wiring of the peripheral nervous system relies on neurotrophic signaling via nerve growth factor (NGF). NGF secreted by target organs (i.e. eye) binds to the TrkA receptor expressed on the distal axons of postganglionic neurons. Upon binding, TrkA is internalized into a signaling endosome and retrogradely trafficked back to the soma and into the dendrites to promote cell survival and postsynaptic maturation, respectively. Much progress has been made in recent years to define the fate of the retrogradely trafficked TrkA signaling endosome, yet it has not been fully characterized. Here we investigate extracellular vesicles (EVs) as a novel route of neurotrophic signaling. Using the mouse superior cervical ganglion (SCG) as a model, we isolate EVs derived from sympathetic cultures and characterize them using immunoblot assays, nanoparticle tracking analysis, and cryo-electron microscopy. Furthermore, using a compartmentalized culture system, we find that TrkA derived from endosomes originating in the distal axon can be detected on EVs secreted from the somatodendritic domain. In addition, inhibition of classic TrkA downstream pathways, specifically in somatodendritic compartments, greatly decreases TrkA packaging into EVs. Our results suggest a novel trafficking route for TrkA: it can travel long distances to the cell body, be packaged into EVs, and be secreted. Secretion of TrkA via EVs appears to be regulated by its own downstream effector cascades, raising intriguing future questions about novel functionalities associated with TrkA+ EVs.
Collapse
|
6
|
Burk K. The endocytosis, trafficking, sorting and signaling of neurotrophic receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:141-165. [PMID: 36813356 DOI: 10.1016/bs.pmbts.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurotrophins are soluble factors secreted by neurons themselves as well as by post-synaptic target tissues. Neurotrophic signaling regulates several processes such as neurite growth, neuronal survival and synaptogenesis. In order to signal, neurotrophins bind to their receptors, the tropomyosin receptor tyrosine kinase (Trk), which causes internalization of the ligand-receptor complex. Subsequently, this complex is routed into the endosomal system from where Trks can start their downstream signaling. Depending on their endosomal localization, co-receptors involved, but also due to the expression patterns of adaptor proteins, Trks regulate a variety of mechanisms. In this chapter, I provide an overview of the endocytosis, trafficking, sorting and signaling of neurotrophic receptors.
Collapse
Affiliation(s)
- Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany.
| |
Collapse
|
7
|
Surve S, Sorkin A. CRISPR/Cas9 Gene Editing of HeLa Cells to Tag Proteins with mNeonGreen. Bio Protoc 2022; 12:e4415. [PMID: 35813028 PMCID: PMC9183963 DOI: 10.21769/bioprotoc.4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022] Open
Abstract
Subcellular localization dynamics of proteins involved in signal transduction processes is crucial in determining the signaling outcome. However, there is very limited information about the localization of endogenous signaling proteins in living cells. For example, biochemical mechanisms underlying the signaling pathway from epidermal growth factor (EGF) receptor (EGFR) to RAS-RAF and ERK1/2/MAPK are well understood, whereas the operational domains of this pathway in the cell remain poorly characterized. Tagging of endogenous components of signaling pathways with fluorescent proteins allows more accurate characterization of their intracellular dynamics at their native expression levels controlled by endogenous regulatory mechanisms, thus avoiding possible tainting effects of overexpression and mistargeting. In this study, we describe methodological approaches to label components of the EGFR-RAS-MAPK pathway, such as Grb2, KRAS, and NRAS, with the fluorescent protein mNeonGreen (mNG) using CRISPR/Cas9 gene-editing, as well as generation of homozygous single-cell clones of the edited target protein.
Collapse
Affiliation(s)
- Sachin Surve
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Shen R, Murphy CJ, Xu X, Hu M, Ding J, Wu C. Ras and Rab Interactor 3: From Cellular Mechanisms to Human Diseases. Front Cell Dev Biol 2022; 10:824961. [PMID: 35359443 PMCID: PMC8963869 DOI: 10.3389/fcell.2022.824961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ras and Rab interactor 3 (RIN3) functions as a Guanine nucleotide Exchange Factor (GEF) for some members of the Rab family of small GTPase. By promoting the activation of Rab5, RIN3 plays an important role in regulating endocytosis and endocytic trafficking. In addition, RIN3 activates Ras, another small GTPase, that controls multiple signaling pathways to regulate cellular function. Increasing evidence suggests that dysregulation of RIN3 activity may contribute to the pathogenesis of several disease conditions ranging from Paget’s Disease of the Bone (PDB), Alzheimer’s Disease (AD), Chronic Obstructive Pulmonary Disease (COPD) and to obesity. Recent genome-wide association studies (GWAS) identified variants in the RIN3 gene to be linked with these disease conditions. Interestingly, some variants appear to be missense mutations in the functional domains of the RIN3 protein while most variants are located in the noncoding regions of the RIN3 gene, potentially altering its gene expression. However, neither the protein structure of RIN3 nor its exact function(s) (except for its GEF activity) has been fully defined. Furthermore, how the polymorphisms/variants contribute to disease pathogenesis remain to be understood. Herein, we examine, and review published studies in an attempt to provide a better understanding of the physiological function of RIN3; More importantly, we construct a framework linking the polymorphisms/variants of RIN3 to altered cell signaling and endocytic traffic, and to potential disease mechanism(s).
Collapse
Affiliation(s)
- Ruinan Shen
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Caitlin J Murphy
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Xiaowen Xu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Mingzheng Hu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Jianqing Ding
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
- *Correspondence: Chengbiao Wu,
| |
Collapse
|
9
|
Zhang W, Zhao S, Lu L, Fan Z, Ye S. Activation of neurotrophin signalling with light‑inducible receptor tyrosine kinases. Mol Med Rep 2022; 25:70. [PMID: 35014690 PMCID: PMC8767455 DOI: 10.3892/mmr.2022.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/17/2020] [Indexed: 11/05/2022] Open
Abstract
Optogenetics combined with protein engineering based on natural light-sensitive dimerizing proteins has evolved as a powerful strategy to study cellular functions. The present study focused on tropomyosin kinase receptors (Trks) that have been engineered to be light-sensitive. Trk belongs to the superfamily of receptor tyrosine kinases (RTKs), which are single-pass transmembrane receptors that are activated by natural ligands and serve crucial roles in cellular growth, differentiation, metabolism and motility. However, functional variations exist among receptors fused with light-sensitive proteins. The present study proposed a signal transduction model for light-induced receptor activation. This model is based on analysis of previous light-induced Trk receptors reported to date and comparisons to the activation mechanism of natural receptors. In this model, quantitative differences on the dimerization induced from either top-to-bottom or bottom-to-up may lead to the varying amplitude of intracellular signals. We hypothesize that the top-to-bottom propagation is more favourable for activation and yields better results compared with the bottom-to-top direction. The careful delineation of the dimerization mechanisms fine-tuning activation will guide future design for an optimum cellular output with the precision of light.
Collapse
Affiliation(s)
- Wei Zhang
- Anesthesiology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Shu Zhao
- School of Life Science, Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Linjie Lu
- Institute of Genetics, Molecular and Cellular Biology, University of Strasbourg, Illkirch 67400, France
| | - Zhimin Fan
- Anesthesiology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| | - Shixin Ye
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1195, Bicetre Hospital, Paris‑Saclay University, Le Kremlin-Bicêtre 94276, France
| |
Collapse
|
10
|
Long A, Crouse A, Kesterson RA, Might M, Wallis D. Functional characterization and potential therapeutic avenues for variants in the NTRK2 gene causing developmental and epileptic encephalopathies. Am J Med Genet B Neuropsychiatr Genet 2022; 189:37-47. [PMID: 34889524 DOI: 10.1002/ajmg.b.32882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023]
Abstract
Variants within the Neurotrophic Tyrosine Kinase Receptor Type 2 (NTRK2) gene have been discovered to play a role in developmental and epileptic encephalopathies, a group of debilitating conditions for which little is known about cause or treatment. Here, we determine the functional consequences of two variants: p.Tyr434Cys (Y434C) (located in the transmembrane domain) and p.Thr720Ile (T720I) (located in the catalytic domain). Wild-type and variant cDNAs were constructed and transfected into HEK293 cells. In cell culture, variant Y434C exhibited ligand-independent activation of tropomyosin-related kinase B (TRKB) signaling with an associated abnormal response to brain-derived neurotrophic factor (BDNF) stimulation and increased levels of phosphorylated extracellular signal-regulated kinase (ERK) and ETS like-1 protein (ELK1) activity. Expression of variant T720I resulted in decreased TRKB signaling with reduced mTor activity as determined by decreased levels of phosphorylated S6. With the deleterious mechanisms characterized, we utilized mediKanren (a novel artificial intelligence tool) to identify therapeutics to compensate for the pathological effects. Downregulation of TRKB through inhibition with mediKanren-predicted compound 1NM-PP1 led to decreased MEK activity. Upregulation of TRKB signaling by mediKanren-predicted valproic acid led to subsequent increase of mTor activity. Overall, our results provide further characterization of the pathogenicity of these two variants in the NTRK2 gene. Indeed, Y434C is the first patient-specific NTRK2 variant with demonstrated hypermorphic activity. Furthermore, we observed that variants Y434C and T720I result in distinct functional consequences that require distinct therapeutic strategies. These data suggest the possibility that unique mutations within different regions of the NTRK2 gene results in separate clinical presentations, representing distinct genetic disorders requiring unique therapeutics.
Collapse
Affiliation(s)
- Ashlee Long
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew Crouse
- Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew Might
- Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Pišlar A, Kos J. γ-Enolase enhances Trk endosomal trafficking and promotes neurite outgrowth in differentiated SH-SY5Y cells. Cell Commun Signal 2021; 19:118. [PMID: 34895236 PMCID: PMC8665614 DOI: 10.1186/s12964-021-00784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurotrophins can activate multiple signalling pathways in neuronal cells through binding to their cognate receptors, leading to neurotrophic processes such as cell survival and differentiation. γ-Enolase has been shown to have a neurotrophic activity that depends on its translocation towards the plasma membrane by the scaffold protein γ1-syntrophin. The association of γ-enolase with its membrane receptor or other binding partners at the plasma membrane remains unknown. METHODS In the present study, we used immunoprecipitation and immunofluorescence to show that γ-enolase associates with the intracellular domain of the tropomyosin receptor kinase (Trk) family of tyrosine kinase receptors at the plasma membrane of differentiated SH-SY5Y cells. RESULTS In differentiated SH-SY5Y cells with reduced expression of γ1-syntrophin, the association of γ-enolase with the Trk receptor was diminished due to impaired translocation of γ-enolase towards the plasma membrane or impaired Trk activity. Treatment of differentiated SH-SY5Y cells with a γ-Eno peptide that mimics γ-enolase neurotrophic activity promoted Trk receptor internalisation and endosomal trafficking, as defined by reduced levels of Trk in clathrin-coated vesicles and increased levels in late endosomes. In this way, γ-enolase triggers Rap1 activation, which is required for neurotrophic activity of γ-enolase. Additionally, the inhibition of Trk kinase activity by K252a revealed that increased SH-SY5Y cell survival and neurite outgrowth mediated by the γ-Eno peptide through activation of signalling cascade depends on Trk kinase activity. CONCLUSIONS These data therefore establish the Trk receptor as a binding partner of γ-enolase, whereby Trk endosomal trafficking is promoted by γ-Eno peptide to mediate its neurotrophic signalling. Video abstract.
Collapse
Affiliation(s)
- Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Surve S, Watkins SC, Sorkin A. EGFR-RAS-MAPK signaling is confined to the plasma membrane and associated endorecycling protrusions. J Cell Biol 2021; 220:212639. [PMID: 34515735 PMCID: PMC8563293 DOI: 10.1083/jcb.202107103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
The subcellular localization of RAS GTPases defines the operational compartment of the EGFR-ERK1/2 signaling pathway within cells. Hence, we used live-cell imaging to demonstrate that endogenous KRAS and NRAS tagged with mNeonGreen are predominantly localized to the plasma membrane. NRAS was also present in the Golgi apparatus and a tubular, plasma-membrane derived endorecycling compartment, enriched in recycling endosome markers (TERC). In EGF-stimulated cells, there was essentially no colocalization of either mNeonGreen-KRAS or mNeonGreen-NRAS with endosomal EGFR, which, by contrast, remained associated with endogenous Grb2-mNeonGreen, a receptor adaptor upstream of RAS. ERK1/2 activity was diminished by blocking cell surface EGFR with cetuximab, even after most ligand-bound, Grb2-associated EGFRs were internalized. Endogenous mCherry-tagged RAF1, an effector of RAS, was recruited to the plasma membrane, with subsequent accumulation in mNG-NRAS–containing TERCs. We propose that a small pool of surface EGFRs sustain signaling within the RAS-ERK1/2 pathway and that RAS activation persists in TERCs, whereas endosomal EGFR does not significantly contribute to ERK1/2 activity.
Collapse
Affiliation(s)
- Sachin Surve
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
13
|
NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nat Commun 2021; 12:4939. [PMID: 34400627 PMCID: PMC8368242 DOI: 10.1038/s41467-021-25143-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Pain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types. Consequently, NGF-responsive axonal invasion occurs which precedes osteocartilaginous differentiation. Surgical denervation impedes axonal ingrowth, with significant delays in cartilage and bone formation. Likewise, either deletion of Ngf or two complementary methods to inhibit its receptor TrkA (Tropomyosin receptor kinase A) lead to similar delays in axonal invasion and osteochondral differentiation. Mechanistically, single-cell sequencing suggests a shift from TGFβ to FGF signaling activation among pre-chondrogenic cells after denervation. Finally, analysis of human pathologic specimens and databases confirms the relevance of NGF-TrkA signaling in human disease. In sum, NGF-mediated TrkA-expressing axonal ingrowth drives abnormal osteochondral differentiation after soft tissue trauma. NGF-TrkA signaling inhibition may have dual therapeutic use in soft tissue trauma, both as an analgesic and negative regulator of aberrant stem cell differentiation.
Collapse
|
14
|
Camblor-Perujo S, Kononenko NL. Brain-specific functions of the endocytic machinery. FEBS J 2021; 289:2219-2246. [PMID: 33896112 DOI: 10.1111/febs.15897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Endocytosis is an essential cellular process required for multiple physiological functions, including communication with the extracellular environment, nutrient uptake, and signaling by the cell surface receptors. In a broad sense, endocytosis is accomplished through either constitutive or ligand-induced invagination of the plasma membrane, which results in the formation of the plasma membrane-retrieved endocytic vesicles, which can either be sent for degradation to the lysosomes or recycled back to the PM. This additional function of endocytosis in membrane retrieval has been adopted by excitable cells, such as neurons, for membrane equilibrium maintenance at synapses. The last two decades were especially productive with respect to the identification of brain-specific functions of the endocytic machinery, which additionally include but not limited to regulation of neuronal differentiation and migration, maintenance of neuron morphology and synaptic plasticity, and prevention of neurotoxic aggregates spreading. In this review, we highlight the current knowledge of brain-specific functions of endocytic machinery with a specific focus on three brain cell types, neuronal progenitor cells, neurons, and glial cells.
Collapse
Affiliation(s)
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, University of Cologne, Germany.,Center for Physiology & Pathophysiology, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
15
|
von Zastrow M, Sorkin A. Mechanisms for Regulating and Organizing Receptor Signaling by Endocytosis. Annu Rev Biochem 2021; 90:709-737. [PMID: 33606955 DOI: 10.1146/annurev-biochem-081820-092427] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for multiple receptor classes and to affect myriad physiological and developmental processes. This review summarizes our present understanding of how endocytosis orchestrates cellular signaling networks, with an emphasis on mechanistic underpinnings and focusing on two receptor classes-tyrosine kinase and G protein-coupled receptors-that have been investigated in particular detail. Together, these examples provide a useful survey of the current consensus, uncertainties, and controversies in this rapidly advancing area of cell biology.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, California 94143, USA;
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
16
|
Abstract
During the development of the nervous system, neurons respond to diffusible cues secreted by target cells. Because such target-derived factors regulate development, maturation, and maintenance of axons as well as somatodendritic compartments, signals initiated at distal axons must be retrogradely transmitted toward cell bodies. Neurotrophins, including the nerve growth factor (NGF), provide one of the best-known examples of target-derived growth factors. The cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies are key mechanisms by which target-derived neurotrophins influence neurons. Evidence accumulated over the past several decades has begun to uncover the molecular mechanisms of formation, transport, and biological functions of these specialized endosomes called "signaling endosomes."
Collapse
|
17
|
Overhoff M, De Bruyckere E, Kononenko NL. Mechanisms of neuronal survival safeguarded by endocytosis and autophagy. J Neurochem 2020; 157:263-296. [PMID: 32964462 DOI: 10.1111/jnc.15194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Multiple aspects of neuronal physiology crucially depend on two cellular pathways, autophagy and endocytosis. During endocytosis, extracellular components either unbound or recognized by membrane-localized receptors (termed "cargo") become internalized into plasma membrane-derived vesicles. These can serve to either recycle the material back to the plasma membrane or send it for degradation to lysosomes. Autophagy also uses lysosomes as a terminal degradation point, although instead of degrading the plasma membrane-derived cargo, autophagy eliminates detrimental cytosolic material and intracellular organelles, which are transported to lysosomes by means of double-membrane vesicles, referred to as autophagosomes. Neurons, like all non-neuronal cells, capitalize on autophagy and endocytosis to communicate with the environment and maintain protein and organelle homeostasis. Additionally, the highly polarized, post-mitotic nature of neurons made them adopt these two pathways for cell-specific functions. These include the maintenance of the synaptic vesicle pool in the pre-synaptic terminal and the long-distance transport of signaling molecules. Originally discovered independently from each other, it is now clear that autophagy and endocytosis are closely interconnected and share several common participating molecules. Considering the crucial role of autophagy and endocytosis in cell type-specific functions in neurons, it is not surprising that defects in both pathways have been linked to the pathology of numerous neurodegenerative diseases. In this review, we highlight the recent knowledge of the role of endocytosis and autophagy in neurons with a special focus on synaptic physiology and discuss how impairments in genes coding for autophagy and endocytosis proteins can cause neurodegeneration.
Collapse
Affiliation(s)
- Melina Overhoff
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Elodie De Bruyckere
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Cluster of Excellence, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Johnstone A, Mobley W. Local TrkB signaling: themes in development and neural plasticity. Cell Tissue Res 2020; 382:101-111. [DOI: 10.1007/s00441-020-03278-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023]
|
19
|
GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res 2020; 382:47-56. [PMID: 32897420 PMCID: PMC7529617 DOI: 10.1007/s00441-020-03287-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Glial cell line–derived neurotrophic factor (GDNF) is a 134 amino acid protein belonging in the GDNF family ligands (GFLs). GDNF was originally isolated from rat glial cell lines and identified as a neurotrophic factor with the ability to promote dopamine uptake within midbrain dopaminergic neurons. Since its discovery, the potential neuroprotective effects of GDNF have been researched extensively, and the effect of GDNF on motor neurons will be discussed herein. Similar to other members of the TGF-β superfamily, GDNF is first synthesized as a precursor protein (pro-GDNF). After a series of protein cleavage and processing, the 211 amino acid pro-GDNF is finally converted into the active and mature form of GDNF. GDNF has the ability to trigger receptor tyrosine kinase RET phosphorylation, whose downstream effects have been found to promote neuronal health and survival. The binding of GDNF to its receptors triggers several intracellular signaling pathways which play roles in promoting the development, survival, and maintenance of neuron-neuron and neuron-target tissue interactions. The synthesis and regulation of GDNF have been shown to be altered in many diseases, aging, exercise, and addiction. The neuroprotective effects of GDNF may be used to develop treatments and therapies to ameliorate neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). In this review, we provide a detailed discussion of the general roles of GDNF and its production, delivery, secretion, and neuroprotective effects on motor neurons within the mammalian neuromuscular system.
Collapse
|
20
|
Li W, Qiu S, Chen J, Jiang S, Chen W, Jiang J, Wang F, Si W, Shu Y, Wei P, Fan G, Tian R, Wu H, Xu C, Wang H. Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity 2020; 53:456-470.e6. [PMID: 32758419 DOI: 10.1016/j.immuni.2020.07.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
Clinical evidence suggests that poor persistence of chimeric antigen receptor-T cells (CAR-T) in patients limits therapeutic efficacy. Here, we designed a CAR with recyclable capability to promote in vivo persistence and to sustain antitumor activity. We showed that the engagement of tumor antigens induced rapid ubiquitination of CARs, causing CAR downmodulation followed by lysosomal degradation. Blocking CAR ubiquitination by mutating all lysines in the CAR cytoplasmic domain (CARKR) markedly repressed CAR downmodulation by inhibiting lysosomal degradation while enhancing recycling of internalized CARs back to the cell surface. Upon encountering tumor antigens, CARKR-T cells ameliorated the loss of surface CARs, which promoted their long-term killing capacity. Moreover, CARKR-T cells containing 4-1BB signaling domains displayed elevated endosomal 4-1BB signaling that enhanced oxidative phosphorylation and promoted memory T cell differentiation, leading to superior persistence in vivo. Collectively, our study provides a straightforward strategy to optimize CAR-T antitumor efficacy by redirecting CAR trafficking.
Collapse
Affiliation(s)
- Wentao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhen Qiu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Chen
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Shutan Jiang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wendong Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Si
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yilai Shu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ruijun Tian
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haitao Wu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| | - Chenqi Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
21
|
Oostinga D, Steverink JG, van Wijck AJM, Verlaan JJ. An understanding of bone pain: A narrative review. Bone 2020; 134:115272. [PMID: 32062002 DOI: 10.1016/j.bone.2020.115272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/20/2022]
Abstract
Skeletal pathologies are often accompanied by bone pain, which has negative effects on the quality of life and functional status of patients. Bone pain can be caused by a wide variety of injuries and diseases including (poorly healed) fractures, bone cancer, osteoarthritis and also iatrogenic by skeletal interventions. Orthopedic interventions are considered to be the most painful surgical procedures overall. Two major groups of medication currently used to attenuate bone pain are NSAIDs and opioids. However, these systemic drugs frequently introduce adverse events, emphasizing the need for alternative therapies that are directed at the pathophysiological mechanisms underlying bone pain. The periosteum, cortical bone and bone marrow are mainly innervated by sensory A-delta fibers and C-fibers. These fibers are mostly present in the periosteum rendering this structure most sensitive to nociceptive stimuli. A-delta fibers and C-fibers can be activated upon mechanical distortion, acidic environment and increased intramedullary pressure. After activation, these fibers can be sensitized by inflammatory mediators, phosphorylation of acid-sensing ion channels and cytokine receptors, or by upregulation of transcription factors. This can result in a change of pain perception such that normally non-noxious stimuli are now perceived as noxious. Pathological conditions in the bone can produce neurotrophic factors that bind to receptors on A-delta fibers and C-fibers. These fibers then start to sprout and increase the innervation density of the bone, making it more sensitive to nociceptive stimuli. In addition, repetitive painful stimuli cause neurochemical and electrophysiological alterations in afferent sensory neurons in the spinal cord, which leads to central sensitization, and can contribute to chronic bone pain. Understanding the pathophysiological mechanisms underlying bone pain in different skeletal injuries and diseases is important for the development of alternative, targeted pain treatments. These pain mechanism-based alternatives have the potential to improve the quality of life of patients suffering from bone pain without introducing undesirable systemic effects.
Collapse
Affiliation(s)
- Douwe Oostinga
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Jasper G Steverink
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Albert J M van Wijck
- Department of Anesthesiology, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| | - Jorrit-Jan Verlaan
- Department of Orthopedics, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands.
| |
Collapse
|
22
|
Chen YC, Chiu YJ, Lin CH, Hsu WC, Wu JL, Huang CH, Lin CW, Yao CF, Huang HJ, Lo YS, Chen CM, Wu YR, Chang KH, Lee-Chen GJ, Mei Hsieh-Li H. Indole Compound NC009-1 Augments APOE and TRKA in Alzheimer's Disease Cell and Mouse Models for Neuroprotection and Cognitive Improvement. J Alzheimers Dis 2020; 67:737-756. [PMID: 30689566 DOI: 10.3233/jad-180643] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD), associated with abnormal accumulation of amyloid-β (Aβ), is the most common cause of dementia among older people. A few studies have identified substantial AD biomarkers in blood but their results were inconsistent. Here we screened gene expression alterations on Aβ-GFP SH-SY5Y neuronal model for AD, and evaluated the findings on peripheral leukocytes from 78 patients with AD and 56 healthy controls. The therapeutic responses of identified biomarker candidates were further examined in Aβ-GFP SH-SY5Y neuronal and APP/PS1/Tau triple transgenic (3×Tg-AD) mouse models. Downregulation of apolipoprotein E (APOE) and tropomyosin receptor kinase A (TRKA) were detected in Aβ-GFP SH-SY5Y cells and validated by peripheral leukocytes from AD patients. Treatment with an in-house indole compound NC009-1 upregulated the expression of APOE and TRKA accompanied with improvement of neurite outgrowth in Aβ-GFP SH-SY5Y cells. NC009-1 further rescued the downregulated APOE and TRKA and reduced Aβ and tau levels in hippocampus and cortex, and ameliorated cognitive deficits in streptozocin-induced hyperglycemic 3×Tg-AD mice. These results suggest the role of APOE and TRKA as potential peripheral biomarkers in AD, and offer a new drug development target of AD treatment. Further studies of a large series of AD patients will be warranted to verify the findings and confirm the correlation between these markers and therapeutic efficacy.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Chuin Hsu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Dementia Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Lu Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chen-Hsiang Huang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Wei Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
23
|
Effect of Continuous Aerobic Exercise on Nerve Growth Factor in Diabetic Rats. HEALTH SCOPE 2020. [DOI: 10.5812/jhealthscope.85567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Li Z, Meyers CA, Chang L, Lee S, Li Z, Tomlinson R, Hoke A, Clemens TL, James AW. Fracture repair requires TrkA signaling by skeletal sensory nerves. J Clin Invest 2019; 129:5137-5150. [PMID: 31638597 PMCID: PMC6877307 DOI: 10.1172/jci128428] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/20/2019] [Indexed: 01/08/2023] Open
Abstract
Bone is richly innervated by nerve growth factor-responsive (NGF-responsive) tropomyosin receptor kinase A-expressing (TrKa-expressing) sensory nerve fibers, which are required for osteochondral progenitor expansion during mammalian skeletal development. Aside from pain sensation, little is known regarding the role of sensory innervation in bone repair. Here, we characterized the reinnervation of tissue following experimental ulnar stress fracture and assessed the impact of loss of TrkA signaling in this process. Sequential histological data obtained in reporter mice subjected to fracture demonstrated a marked upregulation of NGF expression in periosteal stromal progenitors and fracture-associated macrophages. Sprouting and arborization of CGRP+TrkA+ sensory nerve fibers within the reactive periosteum in NGF-enriched cellular domains were evident at time points preceding periosteal vascularization, ossification, and mineralization. Temporal inhibition of TrkA catalytic activity by administration of 1NMPP1 to TrkAF592A mice significantly reduced the numbers of sensory fibers, blunted revascularization, and delayed ossification of the fracture callus. We observed similar deficiencies in nerve regrowth and fracture healing in a mouse model of peripheral neuropathy induced by paclitaxel treatment. Together, our studies demonstrate an essential role of TrkA signaling for stress fracture repair and implicate skeletal sensory nerves as an important upstream mediator of this repair process.
Collapse
Affiliation(s)
- Zhu Li
- Department of Orthopaedics, Johns Hopkins University, Baltimore, Maryland, USA
- Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seungyong Lee
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhi Li
- Department of Orthopaedics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ryan Tomlinson
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ahmet Hoke
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, USA
| | - Thomas L. Clemens
- Department of Orthopaedics, Johns Hopkins University, Baltimore, Maryland, USA
- Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Rosenberg Y, Doniger T, Harii S, Sinniger F, Levy O. Demystifying Circalunar and Diel Rhythmicity in Acropora digitifera under Constant Dim Light. iScience 2019; 22:477-488. [PMID: 31835172 PMCID: PMC6926284 DOI: 10.1016/j.isci.2019.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023] Open
Abstract
Life on earth has evolved under constant environmental changes; in response to these changes, most organisms have developed an endogenous clock that allows them to anticipate daily and seasonal changes and adapt their biology accordingly. Light cycles synchronize biological rhythms and are controlled by an endogenous clock that is entrained by environmental cues. Light is known to play a key role in the biology of symbiotic corals as they exhibit many biological processes entrained by daily light patterns. In this study, we aimed at determining the effect of constant dim light on coral's perception of diel and monthly cycles. Our results show that under constant dim light corals display a loss of rhythmic processes and constant stimuli by light, which initiates signal transduction that results in an abnormal cell cycle, cell proliferation, and protein synthesis. The results emphasize how constant dim light can mask the biological clock of Acropora digitifera. Light entrains many biological processes governed by the endogenous clock Constant dim light overrides the biological clock of A. digitifera corals Artificial light impacts the processes that allow corals to thrive in our oceans The increase of artificial light in coastal areas is a growing threat to coral reefs
Collapse
Affiliation(s)
- Yael Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Saki Harii
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Frederic Sinniger
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
26
|
Claes M, De Groef L, Moons L. Target-Derived Neurotrophic Factor Deprivation Puts Retinal Ganglion Cells on Death Row: Cold Hard Evidence and Caveats. Int J Mol Sci 2019; 20:E4314. [PMID: 31484425 PMCID: PMC6747494 DOI: 10.3390/ijms20174314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Glaucoma and other optic neuropathies are characterized by axonal transport deficits. Axonal cargo travels back and forth between the soma and the axon terminus, a mechanism ensuring homeostasis and the viability of a neuron. An example of vital molecules in the axonal cargo are neurotrophic factors (NTFs). Hindered retrograde transport can cause a scarcity of those factors in the retina, which in turn can tilt the fate of retinal ganglion cells (RGCs) towards apoptosis. This postulation is one of the most widely recognized theories to explain RGC death in the disease progression of glaucoma and is known as the NTF deprivation theory. For several decades, research has been focused on the use of NTFs as a novel neuroprotective glaucoma treatment. Until now, results in animal models have been promising, but translation to the clinic has been highly disappointing. Are we lacking important knowledge to lever NTF therapies towards the therapeutic armamentarium? Or did we get the wrong end of the stick regarding the NTF deprivation theory? In this review, we will tackle the existing evidence and caveats advocating for and against the target-derived NTF deprivation theory in glaucoma, whilst digging into associated therapy efforts.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lies De Groef
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Chen XQ, Mobley WC. Exploring the Pathogenesis of Alzheimer Disease in Basal Forebrain Cholinergic Neurons: Converging Insights From Alternative Hypotheses. Front Neurosci 2019; 13:446. [PMID: 31133787 PMCID: PMC6514132 DOI: 10.3389/fnins.2019.00446] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary financial and emotional burdens (Apostolova, 2016). Studies of pathogenesis are essential for defining critical molecular and cellular events and for discovering therapies to prevent or mitigate their effects. Through studies of neuropathology, genetic and cellular, and molecular biology recent decades have provided many important insights. Several hypotheses have been suggested. Documentation in the 1980s of selective loss of cholinergic neurons of the basal forebrain, followed by clinical improvement in those treated with inhibitors of acetylycholinesterase, supported the "cholinergic hypothesis of age-related cognitive dysfunction" (Bartus et al., 1982). A second hypothesis, prompted by the selective loss of cholinergic neurons and the discovery of central nervous system (CNS) neurotrophic factors, including nerve growth factor (NGF), prompted the "deficient neurotrophic hypothesis" (Chen et al., 2018). The most persuasive hypothesis, the amyloid cascade hypothesis first proposed more than 25 years ago (Selkoe and Hardy, 2016), is supported by a wealth of observations. Genetic studies were exceptionally important, pointing to increased dose of the gene for the amyloid precursor protein (APP) in Down syndrome (DS) and a familial AD (FAD) due to duplication of APP and to mutations in APP and in the genes for Presenilin 1 and 2 (PSEN1, 2), which encode the γ-secretase enzyme that processes APP (Dorszewska et al., 2016). The "tau hypothesis" noted the prominence of tau-related pathology and its correlation with dementia (Kametani and Hasegawa, 2018). Recent interest in induction of microglial activation in the AD brain, as well as other manifestations of inflammation, supports the "inflammatory hypothesis" (Mcgeer et al., 2016). We place these findings in the context of the selective, but by no means unique, involvement of BFCNs and their trophic dependence on NGF signaling and speculate as to how pathogenesis in these neurons is initiated, amplified and ultimately results in their dysfunction and death. In so doing we attempt to show how the different hypotheses for AD may interact and reinforce one another. Finally, we address current attempts to prevent and/or treat AD in light of advances in understanding pathogenetic mechanisms and suggest that studies in the DS population may provide unique insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Surve SV, Myers PJ, Clayton SA, Watkins SC, Lazzara MJ, Sorkin A. Localization dynamics of endogenous fluorescently labeled RAF1 in EGF-stimulated cells. Mol Biol Cell 2019; 30:506-523. [PMID: 30586319 PMCID: PMC6594441 DOI: 10.1091/mbc.e18-08-0512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of the epidermal growth factor (EGF) receptor (EGFR) at the cell surface initiates signaling through the RAS-RAF-MAPK/ERK1/2 pathway and receptor endocytosis. Whether this signaling continues from endosomes remains unclear, because RAS is predominantly located on the plasma membrane, and the localization of endogenous RAF kinases, downstream effectors of RAS, is not defined. To examine RAF localization, we labeled endogenous RAF1 with mVenus using gene editing. From 10 to 15% of RAF1-mVenus (<2000 molecules/cell), which was initially entirely cytosolic, transiently translocated to the plasma membrane after EGF stimulation. Following an early burst of translocation, the membrane-associated RAF1-mVenus was undetectable by microscopy or subcellular fractionation, and this pool was estimated to be <200 molecules per cell. In contrast, persistent EGF-dependent translocation of RAF1-mVenus to the plasma membrane was driven by the RAF inhibitor sorafenib, which increases the affinity of Ras-GTP:RAF1 interactions. RAF1-mVenus was not found in EGFR-containing endosomes under any conditions. Computational modeling of RAF1 dynamics revealed that RAF1 membrane abundance is controlled most prominently by association and dissociation rates from RAS-GTP and by RAS-GTP concentration. The model further suggested that the relatively protracted activation of the RAF-MEK1/2-ERK1/2 module, in comparison with RAF1 membrane localization, may involve multiple rounds of cytosolic RAF1 rebinding to active RAS at the membrane.
Collapse
Affiliation(s)
- Sachin V Surve
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Paul J Myers
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Samantha A Clayton
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904.,Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
29
|
A new role of anterograde motor Kif5b in facilitating large clathrin-coated vesicle mediated endocytosis via regulating clathrin uncoating. Cell Discov 2019; 4:65. [PMID: 30603101 PMCID: PMC6305376 DOI: 10.1038/s41421-018-0067-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 11/30/2022] Open
Abstract
Kif5b-driven anterograde transport and clathrin-mediated endocytosis (CME) are responsible for opposite intracellular trafficking, contributing to plasma membrane homeostasis. However, whether and how the two trafficking processes coordinate remain unclear. Here, we show that Kif5b directly interacts with clathrin heavy chain (CHC) at a region close to that for uncoating catalyst (Hsc70) and preferentially localizes on relatively large clathrin-coated vesicles (CCVs). Uncoating in vitro is decreased for CCVs from the cortex of kif5b conditional knockout (mutant) mouse and facilitated by adding Kif5b fragments containing CHC-binding site, while cell peripheral distribution of CHC or Hsc70 keeps unaffected by Kif5b depletion. Furthermore, cellular entry of vesicular stomatitis virus that internalizes into large CCV is inhibited by Kif5b depletion or introducing a dominant-negative Kif5b fragment. These findings showed a new role of Kif5b in regulating large CCV-mediated CME via affecting CCV uncoating, indicating Kif5b as a molecular knot connecting anterograde transport to CME.
Collapse
|
30
|
Villarroel-Campos D, Schiavo G, Lazo OM. The many disguises of the signalling endosome. FEBS Lett 2018; 592:3615-3632. [PMID: 30176054 PMCID: PMC6282995 DOI: 10.1002/1873-3468.13235] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
Neurons are highly complex and polarised cells that must overcome a series of logistic challenges to maintain homeostasis across their morphological domains. A very clear example is the propagation of neurotrophic signalling from distal axons, where target-released neurotrophins bind to their receptors and initiate signalling, towards the cell body, where nuclear and cytosolic responses are integrated. The mechanisms of propagation of neurotrophic signalling have been extensively studied and, eventually, the model of a 'signalling endosome', transporting activated receptors and associated complexes, has emerged. Nevertheless, the exact nature of this organelle remains elusive. In this Review, we examine the evidence for the retrograde transport of neurotrophins and their receptors in endosomes, outline some of their diverse physiological and pathological roles, and discuss the main interactors, morphological features and trafficking destinations of a highly flexible endosomal signalling organelle with multiple molecular signatures.
Collapse
Affiliation(s)
- David Villarroel-Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK.,UK Dementia Research Institute at UCL, London, UK.,Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, UK
| | - Oscar Marcelo Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
31
|
Zahavi EE, Steinberg N, Altman T, Chein M, Joshi Y, Gradus-Pery T, Perlson E. The receptor tyrosine kinase TrkB signals without dimerization at the plasma membrane. Sci Signal 2018; 11:11/529/eaao4006. [PMID: 29739881 DOI: 10.1126/scisignal.aao4006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tropomyosin-related tyrosine kinase B (TrkB) is the receptor for brain-derived neurotrophic factor (BDNF) and provides critical signaling that supports the development and function of the mammalian nervous system. Like other receptor tyrosine kinases (RTKs), TrkB is thought to signal as a dimer. Using cell imaging and biochemical assays, we found that TrkB acted as a monomeric receptor at the plasma membrane regardless of its binding to BDNF and initial activation. Dimerization occurred only after the internalization and accumulation of TrkB monomers within BDNF-containing endosomes. We further showed that dynamin-mediated endocytosis of TrkB-BDNF was required for the effective activation of the kinase AKT but not of the kinase ERK1/2. Thus, we report a previously uncharacterized mode of monomeric signaling for an RTK and a specific role for the endosome in TrkB homodimerization.
Collapse
Affiliation(s)
- Eitan Erez Zahavi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Noam Steinberg
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Topaz Altman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Michael Chein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Yuvraj Joshi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tal Gradus-Pery
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel. .,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
32
|
Scott-Solomon E, Kuruvilla R. Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci 2018; 91:25-33. [PMID: 29596897 DOI: 10.1016/j.mcn.2018.03.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
In neurons, long-distance communication between axon terminals and cell bodies is a critical determinant in establishing and maintaining neural circuits. Neurotrophins are soluble factors secreted by post-synaptic target tissues that retrogradely control axon and dendrite growth, survival, and synaptogenesis of innervating neurons. Neurotrophins bind Trk receptor tyrosine kinases in axon terminals to promote endocytosis of ligand-bound phosphorylated receptors into signaling endosomes. Trk-harboring endosomes function locally in axons to acutely promote growth events, and can also be retrogradely transported long-distances to remote cell bodies and dendrites to stimulate cytoplasmic and transcriptional signaling necessary for neuron survival, morphogenesis, and maturation. Neuronal responsiveness to target-derived neurotrophins also requires the precise axonal targeting of newly synthesized Trk receptors. Recent studies suggest that anterograde delivery of Trk receptors is regulated by retrograde neurotrophin signaling. In this review, we summarize current knowledge on the functions and mechanisms of retrograde trafficking of Trk signaling endosomes, and highlight recent discoveries on the forward trafficking of nascent receptors.
Collapse
Affiliation(s)
- Emily Scott-Solomon
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St, 227 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
33
|
Indo Y. NGF-dependent neurons and neurobiology of emotions and feelings: Lessons from congenital insensitivity to pain with anhidrosis. Neurosci Biobehav Rev 2018; 87:1-16. [PMID: 29407522 DOI: 10.1016/j.neubiorev.2018.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
NGF is a well-studied neurotrophic factor, and TrkA is a receptor tyrosine kinase for NGF. The NGF-TrkA system supports the survival and maintenance of NGF-dependent neurons during development. Congenital insensitivity to pain with anhidrosis (CIPA) is an autosomal recessive genetic disorder due to loss-of-function mutations in the NTRK1 gene encoding TrkA. Individuals with CIPA lack NGF-dependent neurons, including NGF-dependent primary afferents and sympathetic postganglionic neurons, in otherwise intact systems. Thus, the pathophysiology of CIPA can provide intriguing findings to elucidate the unique functions that NGF-dependent neurons serve in humans, which might be difficult to evaluate in animal studies. Preceding studies have shown that the NGF-TrkA system plays critical roles in pain, itching and inflammation. This review focuses on the clinical and neurobiological aspects of CIPA and explains that NGF-dependent neurons in the peripheral nervous system play pivotal roles in interoception and homeostasis of our body, as well as in the stress response. Furthermore, these NGF-dependent neurons are likely requisite for neurobiological processes of 'emotions and feelings' in our species.
Collapse
Affiliation(s)
- Yasuhiro Indo
- Department of Pediatrics, Kumamoto University Hospital, Honjo 1-1-1, Chuou-ku, Kumamoto 860-8556, Japan.
| |
Collapse
|
34
|
Ye M, Lehigh KM, Ginty DD. Multivesicular bodies mediate long-range retrograde NGF-TrkA signaling. eLife 2018; 7:33012. [PMID: 29381137 PMCID: PMC5811214 DOI: 10.7554/elife.33012] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/30/2018] [Indexed: 12/25/2022] Open
Abstract
The development of neurons in the peripheral nervous system is dependent on target-derived, long-range retrograde neurotrophic factor signals. The prevailing view is that target-derived nerve growth factor (NGF), the prototypical neurotrophin, and its receptor TrkA are carried retrogradely by early endosomes, which serve as TrkA signaling platforms in cell bodies. Here, we report that the majority of retrograde TrkA signaling endosomes in mouse sympathetic neurons are ultrastructurally and molecularly defined multivesicular bodies (MVBs). In contrast to MVBs that carry non-TrkA cargoes from distal axons to cell bodies, retrogradely transported TrkA+ MVBs that arrive in cell bodies evade lysosomal fusion and instead evolve into TrkA+ single-membrane vesicles that are signaling competent. Moreover, TrkA kinase activity associated with retrogradely transported TrkA+ MVBs determines TrkA+ endosome evolution and fate. Thus, MVBs deliver long-range retrograde NGF signals and serve as signaling and sorting platforms in the cell soma, and MVB cargoes dictate their vesicular fate.
Collapse
Affiliation(s)
- Mengchen Ye
- Human Genetics Training Program, The Johns Hopkins University, School of Medicine, Baltimore, United States.,Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Kathryn M Lehigh
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, United States
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
35
|
Chen XQ, Sawa M, Mobley WC. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic Biol Med 2018; 114:52-61. [PMID: 29031834 PMCID: PMC5748266 DOI: 10.1016/j.freeradbiomed.2017.10.341] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022]
Abstract
Neurotrophic factors, including the members of the neurotrophin family, play important roles in the development and maintenance of the nervous system. Trophic factor signals must be transmitted over long distances from axons and dendrites to the cell bodies of neurons. A mode of signaling well suited to the challenge of robust long distance signaling is the signaling endosome. We review the biology of signaling endosomes and the "signaling endosome hypothesis". Evidence for disruption of signaling endosome function in disorders of the nervous system is also reviewed. Changes in endosome structure in Alzheimer disease (AD) and Down syndrome (DS) are present early in these disorders. Data for the APP products responsible are reviewed and the consequent changes in signaling from endosomes discussed. We conclude by pointing to the need for additional studies to explore the biology of signaling endosomes in normal neurons and to elucidate their role in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- University of California, San Diego, La Jolla, CA 92093, United States.
| | - Mariko Sawa
- University of California, San Diego, La Jolla, CA 92093, United States
| | - William C Mobley
- University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
36
|
Tebar F, Enrich C, Rentero C, Grewal T. GTPases Rac1 and Ras Signaling from Endosomes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:65-105. [PMID: 30097772 DOI: 10.1007/978-3-319-96704-2_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endocytic compartment is not only the functional continuity of the plasma membrane but consists of a diverse collection of intracellular heterogeneous complex structures that transport, amplify, sustain, and/or sort signaling molecules. Over the years, it has become evident that early, late, and recycling endosomes represent an interconnected vesicular-tubular network able to form signaling platforms that dynamically and efficiently translate extracellular signals into biological outcome. Cell activation, differentiation, migration, death, and survival are some of the endpoints of endosomal signaling. Hence, to understand the role of the endosomal system in signal transduction in space and time, it is therefore necessary to dissect and identify the plethora of decoders that are operational in the different steps along the endocytic pathway. In this chapter, we focus on the regulation of spatiotemporal signaling in cells, considering endosomes as central platforms, in which several small GTPases proteins of the Ras superfamily, in particular Ras and Rac1, actively participate to control cellular processes like proliferation and cell mobility.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
37
|
Jing H, Zhang X, Wisner SA, Chen X, Spiegelman NA, Linder ME, Lin H. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. eLife 2017; 6:32436. [PMID: 29239724 PMCID: PMC5745086 DOI: 10.7554/elife.32436] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022] Open
Abstract
Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously under-studied protein post-translational modification. Sirtuin 2 (SIRT2), one of the mammalian nicotinamide adenine dinucleotide (NAD)-dependent lysine deacylases, catalyzes the removal of fatty acylation from K-Ras4a. We further demonstrate that SIRT2-mediated lysine defatty-acylation promotes endomembrane localization of K-Ras4a, enhances its interaction with A-Raf, and thus promotes cellular transformation. Our study identifies lysine fatty acylation as a previously unknown regulatory mechanism for the Ras family of GTPases that is distinct from cysteine fatty acylation. These findings highlight the biological significance of lysine fatty acylation and sirtuin-catalyzed protein lysine defatty-acylation.
Collapse
Affiliation(s)
- Hui Jing
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Xiaoyu Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Stephanie A Wisner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Xiao Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Nicole A Spiegelman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Maurine E Linder
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, United States
| | - Hening Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States.,Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Cornell University, Ithaca, United States
| |
Collapse
|
38
|
Terenzio M, Schiavo G, Fainzilber M. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience. Neuron 2017; 96:667-679. [PMID: 29096079 DOI: 10.1016/j.neuron.2017.10.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/18/2022]
Abstract
Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells.
Collapse
Affiliation(s)
- Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, UK; Discoveries Centre for Regenerative and Precision Medicine at UCL, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
39
|
Tyler CM, Federoff HJ. CNS Gene Therapy and a Nexus of Complexity: Systems and Biology at a Crossroads. Cell Transplant 2017; 15:267-73. [PMID: 16719061 DOI: 10.3727/000000006783982007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gene therapy is a potentially promising new treatment for neurodegenerative disorders such as Alzheimer's disease (AD), which has been difficult to treat with conventional therapeutics. Viral vector-mediated somatic gene therapy is a rapidly developing methodology for providing never before achieved capability to deliver specific genes to the CNS in a highly localized and controlled manner. With the advent and refinements of this technology one focus is directed to which genes are the most appropriate to select for specific disease indications. Nerve growth factor (NGF), a potent survival factor for critical cell populations that degenerate in AD, has been chosen already for clinical gene therapy trials in human AD patients. Much knowledge about the pathophysiological underpinnings of AD is still lacking to make clear which patients may benefit from a gene therapy approach. Moreover, a detailed understanding of sustained NGF action in the normal and diseased CNS needs to be resolved before conclusions can be drawn regarding the utility of NGF gene therapy. Systematic efforts to acquire this new knowledge should compel clinically and biologically sophisticated efforts to advance gene therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolyn M Tyler
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | | |
Collapse
|
40
|
Canu N, Amadoro G, Triaca V, Latina V, Sposato V, Corsetti V, Severini C, Ciotti MT, Calissano P. The Intersection of NGF/TrkA Signaling and Amyloid Precursor Protein Processing in Alzheimer's Disease Neuropathology. Int J Mol Sci 2017. [PMID: 28632177 PMCID: PMC5486140 DOI: 10.3390/ijms18061319] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dysfunction of nerve growth factor (NGF) and its high-affinity Tropomyosin receptor kinase A (TrkA) receptor has been suggested to contribute to the selective degeneration of basal forebrain cholinergic neurons (BFCN) associated with the progressive cognitive decline in Alzheimer's disease (AD). The aim of this review is to describe our progress in elucidating the molecular mechanisms underlying the dynamic interplay between NGF/TrkA signaling and amyloid precursor protein (APP) metabolism within the context of AD neuropathology. This is mainly based on the finding that TrkA receptor binding to APP depends on a minimal stretch of ~20 amino acids located in the juxtamembrane/extracellular domain of APP that carries the α- and β-secretase cleavage sites. Here, we provide evidence that: (i) NGF could be one of the “routing” proteins responsible for modulating the metabolism of APP from amyloidogenic towards non-amyloidogenic processing via binding to the TrkA receptor; (ii) the loss of NGF/TrkA signaling could be linked to sporadic AD contributing to the classical hallmarks of the neuropathology, such as synaptic loss, β-amyloid peptide (Aβ) deposition and tau abnormalities. These findings will hopefully help to design therapeutic strategies for AD treatment aimed at preserving cholinergic function and anti-amyloidogenic activity of the physiological NGF/TrkA pathway in the septo-hippocampal system.
Collapse
Affiliation(s)
- Nadia Canu
- Department of System Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00137 Rome, Italy.
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Viviana Triaca
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Via Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - Valentina Sposato
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Veronica Corsetti
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Cinzia Severini
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neurobiology, National Council of Research Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| | - Pietro Calissano
- European Brain Research Institute Rome, Via del Fosso del Fiorano 64, 00143 Rome, Italy.
| |
Collapse
|
41
|
Zahavi EE, Maimon R, Perlson E. Spatial-specific functions in retrograde neuronal signalling. Traffic 2017; 18:415-424. [DOI: 10.1111/tra.12487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/16/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Eitan Erez Zahavi
- Department of Physiology and Pharmacology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Roy Maimon
- Department of Physiology and Pharmacology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
42
|
Retrograde apoptotic signaling by the p75 neurotrophin receptor. Neuronal Signal 2017; 1:NS20160007. [PMID: 32714573 PMCID: PMC7373242 DOI: 10.1042/ns20160007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are target-derived factors necessary for mammalian nervous system development and maintenance. They are typically produced by neuronal target tissues and interact with their receptors at axonal endings. Therefore, locally generated neurotrophin signals must be conveyed from the axon back to the cell soma. Retrograde survival signaling by neurotrophin binding to Trk receptors has been extensively studied. However, neurotrophins also bind to the p75 receptor, which can induce apoptosis in a variety of contexts. Selective activation of p75 at distal axon ends has been shown to generate a retrograde apoptotic signal, although the mechanisms involved are poorly understood. The present review summarizes the available evidence for retrograde proapoptotic signaling in general and the role of the p75 receptor in particular, with discussion of unanswered questions in the field. In-depth knowledge of the mechanisms of retrograde apoptotic signaling is essential for understanding the etiology of neurodegeneration in many diseases and injuries.
Collapse
|
43
|
Barford K, Deppmann C, Winckler B. The neurotrophin receptor signaling endosome: Where trafficking meets signaling. Dev Neurobiol 2017; 77:405-418. [PMID: 27503831 DOI: 10.1002/dneu.22427] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/05/2016] [Accepted: 08/04/2016] [Indexed: 11/08/2022]
Abstract
Neurons are the largest cells in the body and form subcellular compartments such as axons and dendrites. During both development and adulthood building blocks must be continually trafficked long distances to maintain the different regions of the neuron. Beyond building blocks, signaling complexes are also transported, allowing for example, axons to communicate with the soma. The critical roles of signaling via ligand-receptor complexes is perhaps best illustrated in the context of development, where they are known to regulate polarization, survival, axon outgrowth, dendrite development, and synapse formation. However, knowing 'when' and 'how much' signaling is occurring does not provide the complete story. The location of signaling has a significant impact on the functional outcomes. There are therefore complex and functionally important trafficking mechanisms in place to control the precise spatial and temporal aspects of many signal transduction events. In turn, many of these signaling events affect trafficking mechanisms, setting up an intricate connection between trafficking and signaling. In this review we will use neurotrophin receptors, specifically TrkA and TrkB, to illustrate the cell biology underlying the links between trafficking and signaling. Briefly, we will discuss the concepts of how trafficking and signaling are intimately linked for functional and diverse signaling outputs, and how the same protein can play different roles for the same receptor depending on its localization. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| | - Christopher Deppmann
- Department of Biology, University of Virginia, Physical Life Sciences Building (PLSB), 90 Geldard Drive, Charlottesville, Virginia, 22903
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia, 22908
| |
Collapse
|
44
|
Johnson T, Koria P. Expression and Purification of Neurotrophin-Elastin-Like Peptide Fusion Proteins for Neural Regeneration. BioDrugs 2016; 30:117-27. [PMID: 26820997 DOI: 10.1007/s40259-016-0159-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neural injuries such as spinal cord injuries, traumatic brain injuries, or nerve transection injuries pose a major health problem. Neurotrophins such as nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) have been shown to improve the outcome of neural injuries in several pre-clinical models, but their use in clinics is limited by the lack of a robust delivery system that enhances their bioavailability and half-life. OBJECTIVES We describe two fusion proteins comprising NGF or BDNF fused with elastin-like peptides (ELPs). The aim of this study was to investigate the biological activity of neurotrophin-ELP (N-ELP) fusion proteins via in vitro culture models. METHODS NGF and BDNF were cloned in front of an elastin-like polypeptide sequence V40C2. These proteins were expressed in bacteria as inclusion bodies. These fusion proteins underwent solubilization via 8 M urea and purification via inverse transition cycling (ITC). We measured the particle size and the effect of temperature on precipitated particles using dynamic light scattering (DLS). We used western blot analysis to confirm the specificity of NGF-ELP to tropomyosin receptor kinase A (TrkA) antibody and to confirm the specificity of BDNF-ELP to TrkB antibody. PC12 cells were used to perform a neurite outgrowth assay to determine the biological activity of NGF-ELP. Bioactivity of BDNF-ELP was ascertained via transfecting human epithelial kidney (HEK 293-T) cells to express the TrkB receptor. RESULTS The proteins were successfully purified to high homogeneity by exploiting the phase transition property of ELPs and urea, which solubilize inclusion bodies. Using PC12 neurite outgrowth assay, we further demonstrated that the biological activity of NGF was retained in the fusion. Similarly, BDNF-ELP phosphorylated the TrkB receptor, suggesting the biological activity of BDNF was also retained in the fusion. We further show that owing to the phase transition property of ELPs in the fusion, these proteins self-assembled into nanoparticles at their respective transition temperatures. CONCLUSION These fusion proteins are useful for neural regeneration, as they not only retain the biological activity of the neurotrophin but also self-assemble into nanoparticles, thereby simultaneously serving as drug-delivery vehicles. These nanoparticles can serve as drug depots and will increase bioavailability by limiting neurotrophin loss due to diffusion, thereby allowing controlled spatio-temporal delivery of the neurotrophin.
Collapse
Affiliation(s)
- Tamina Johnson
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL, 33620, USA
| | - Piyush Koria
- Department of Chemical and Biomedical Engineering, University of South Florida, 4202 E Fowler Avenue, ENB 118, Tampa, FL, 33620, USA.
| |
Collapse
|
45
|
Xu C, Fu X, Zhu S, Liu JJ. Retrolinkin recruits the WAVE1 protein complex to facilitate BDNF-induced TrkB endocytosis and dendrite outgrowth. Mol Biol Cell 2016; 27:3342-3356. [PMID: 27605705 PMCID: PMC5170866 DOI: 10.1091/mbc.e16-05-0326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
Retrolinkin, a neuronal membrane protein, coordinates with endophilin A1 and mediates early endocytic trafficking and signal transduction of the ligand-receptor complex formed between brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), in dendrites of CNS neurons. Here we report that retrolinkin interacts with the CYFIP1/2 subunit of the WAVE1 complex, a member of the WASP/WAVE family of nucleation-promoting factors that binds and activates the Arp2/3 complex to promote branched actin polymerization. WAVE1, not N-WASP, is required for BDNF-induced TrkB endocytosis and dendrite outgrowth. Disruption of the interaction between retrolinkin and CYFIP1/2 impairs recruitment of WAVE1 to neuronal plasma membrane upon BDNF addition and blocks internalization of activated TrkB. We also show that WAVE1-mediated endocytosis of BDNF-activated TrkB is actin dependent and clathrin independent. These results not only reveal the mechanistic role of retrolinkin in BDNF-TrkB endocytosis, but also indicate that WASP/WAVE-dependent actin polymerization during endocytosis is regulated by cell type-specific and cargo-specific modulators.
Collapse
Affiliation(s)
- Chenchang Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiuping Fu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shaoxia Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China .,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
46
|
Tomlinson RE, Li Z, Zhang Q, Goh BC, Li Z, Thorek DLJ, Rajbhandari L, Brushart TM, Minichiello L, Zhou F, Venkatesan A, Clemens TL. NGF-TrkA Signaling by Sensory Nerves Coordinates the Vascularization and Ossification of Developing Endochondral Bone. Cell Rep 2016; 16:2723-2735. [PMID: 27568565 DOI: 10.1016/j.celrep.2016.08.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/13/2016] [Accepted: 07/31/2016] [Indexed: 12/16/2022] Open
Abstract
Developing tissues dictate the amount and type of innervation they require by secreting neurotrophins, which promote neuronal survival by activating distinct tyrosine kinase receptors. Here, we show that nerve growth factor (NGF) signaling through neurotrophic tyrosine kinase receptor type 1 (TrkA) directs innervation of the developing mouse femur to promote vascularization and osteoprogenitor lineage progression. At the start of primary ossification, TrkA-positive axons were observed at perichondrial bone surfaces, coincident with NGF expression in cells adjacent to centers of incipient ossification. Inactivation of TrkA signaling during embryogenesis in TrkA(F592A) mice impaired innervation, delayed vascular invasion of the primary and secondary ossification centers, decreased numbers of Osx-expressing osteoprogenitors, and decreased femoral length and volume. These same phenotypic abnormalities were observed in mice following tamoxifen-induced disruption of NGF in Col2-expressing perichondrial osteochondral progenitors. We conclude that NGF serves as a skeletal neurotrophin to promote sensory innervation of developing long bones, a process critical for normal primary and secondary ossification.
Collapse
Affiliation(s)
- Ryan E Tomlinson
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zhi Li
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Qian Zhang
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Brian C Goh
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Daniel L J Thorek
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Thomas M Brushart
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Fengquan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD 21287, USA; Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA.
| |
Collapse
|
47
|
Abstract
The nerve growth factor family of growth factors, collectively known as neurotrophins, are evolutionarily ancient regulators with an enormous range of biological functions. Reflecting this long history and functional diversity, mechanisms for cellular responses to neurotrophins are exceptionally complex. Neurotrophins signal through p75
NTR, a member of the TNF receptor superfamily member, and through receptor tyrosine kinases (TrkA, TrkB, TrkC), often with opposite functional outcomes. The two classes of receptors are activated preferentially by proneurotrophins and mature processed neurotrophins, respectively. However, both receptor classes also possess neurotrophin-independent signaling functions. Signaling functions of p75
NTR and Trk receptors are each influenced by the other class of receptors. This review focuses on the mechanisms responsible for the functional interplay between the two neurotrophin receptor signaling systems.
Collapse
Affiliation(s)
- Mark Bothwell
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
48
|
Xiao Q, Hu X, Wei Z, Tam KY. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron. Int J Biol Sci 2016; 12:1083-92. [PMID: 27570482 PMCID: PMC4997052 DOI: 10.7150/ijbs.15633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/28/2016] [Indexed: 12/21/2022] Open
Abstract
Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.
Collapse
Affiliation(s)
- Qingpin Xiao
- 1. Faculty of Health Sciences, University of Macau, Taipa, Macau, China; 2. Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaohui Hu
- 1. Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Zhiyi Wei
- 2. Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kin Yip Tam
- 1. Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
49
|
Yamashita N, Kuruvilla R. Neurotrophin signaling endosomes: biogenesis, regulation, and functions. Curr Opin Neurobiol 2016; 39:139-45. [PMID: 27327126 DOI: 10.1016/j.conb.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/05/2016] [Indexed: 11/29/2022]
Abstract
In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health.
Collapse
Affiliation(s)
- Naoya Yamashita
- Department of Biology, Johns Hopkins University, 3400N. Charles St, 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400N. Charles St, 224 Mudd Hall, Baltimore, MD 21218, USA.
| |
Collapse
|
50
|
Ito K, Enomoto H. Retrograde transport of neurotrophic factor signaling: implications in neuronal development and pathogenesis. J Biochem 2016; 160:77-85. [DOI: 10.1093/jb/mvw037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/21/2016] [Indexed: 12/25/2022] Open
|