1
|
Song M, Qiang Y, Zhao X, Song F. Cyclin-dependent Kinase 5 and Neurodegenerative Diseases. Mol Neurobiol 2024; 61:7287-7302. [PMID: 38378992 DOI: 10.1007/s12035-024-04047-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Neurodegenerative diseases are a group of diseases characterized by the progressive loss of neurons, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. These diseases have a high incidence and mortality rate globally, placing a heavy burden on patients and their families. The pathogenesis of neurodegenerative diseases is complex, and there are no effective treatments at present. Cyclin-dependent kinase 5 is a proline-directed serine/threonine protein kinase that is closely related to the development and function of the nervous system. Under physiological conditions, it is involved in regulating the process of neuronal proliferation, differentiation, migration, and synaptic plasticity. Moreover, there is increasing evidence that cyclin-dependent kinase 5 also plays an important role in the pathogenesis of neurodegenerative diseases. In this review, we address the biological characteristics of cyclin-dependent kinase 5 and its role in neurodegenerative diseases. In particular, this review highlights the underlying mechanistic linkages between cyclin-dependent kinase 5 and mitochondrial dysfunction, oxidative stress and neuroinflammation in the context of neurodegeneration. Finally, we also summarize the currently available cyclin-dependent kinase 5 inhibitors and their prospects for the treatment of neurodegenerative diseases. Taken together, a better understanding of the molecular mechanisms of cyclin-dependent kinase 5 involved in neurodegenerative diseases can lead to the development of new strategies for the prevention and treatment of these devastating diseases.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Yalong Qiang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
2
|
Guo B, Zheng C, Cao J, Luo F, Li H, Hu S, Mingyuan Lee S, Yang X, Zhang G, Zhang Z, Sun Y, Wang Y. Tetramethylpyrazine nitrone exerts neuroprotection via activation of PGC-1α/Nrf2 pathway in Parkinson's disease models. J Adv Res 2024; 64:195-211. [PMID: 37989471 PMCID: PMC11464467 DOI: 10.1016/j.jare.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is common neurodegenerative disease where oxidative stress and mitochondrial dysfunction play important roles in its progression. Tetramethylpyrazine nitrone (TBN), a potent free radical scavenger, has shown protective effects in various neurological conditions. However, the neuroprotective mechanisms of TBN in PD models remain unclear. OBJECTIVES We aimed to investigate TBN's neuroprotective effects and mechanisms in PD models. METHODS TBN's neuroprotection was initially measured in MPP+/MPTP-induced PD models. Subsequently, a luciferase reporter assay was used to detect peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) promoter activity. Effects of TBN on antioxidant damage and the PGC-1α/Nuclear factor erythroid-2-related factor 2 (Nrf2) pathway were thoroughly investigated. RESULTS In MPP+-induced cell model, TBN (30-300 μM) increased cell survival by 9.95 % (P < 0.05), 16.63 % (P < 0.001), and 24.09 % (P < 0.001), respectively. TBN enhanced oxidative phosphorylation (P < 0.05) and restored PGC-1α transcriptional activity suppressed by MPP+ (84.30 % vs 59.03 %, P < 0.01). In MPTP-treated mice, TBN (30 mg/kg) ameliorated motor impairment, increased striatal dopamine levels (16.75 %, P < 0.001), dopaminergic neurons survival (27.12 %, P < 0.001), and tyrosine hydroxylase expression (28.07 %, P < 0.01). Selegiline, a positive control, increased dopamine levels (15.35 %, P < 0.001) and dopaminergic neurons survival (25.34 %, P < 0.001). Additionally, TBN reduced oxidative products and activated the PGC-1α/Nrf2 pathway. PGC-1α knockdown diminished TBN's neuroprotective effects, decreasing cell viability from 73.65 % to 56.87 % (P < 0.001). CONCLUSION TBN has demonstrated consistent effectiveness in MPP+-induced midbrain neurons and MPTP-induced mice. Notably, the therapeutic effect of TBN in mitigating motor deficits and neurodegeneration is superior to selegiline. The neuroprotective mechanisms of TBN are associated with activation of the PGC-1α/Nrf2 pathway, thereby reducing oxidative stress and maintaining mitochondrial function. These findings suggest that TBN may be a promising therapeutic candidate for PD, warranting further development and investigation.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Chengyou Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jie Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Fangcheng Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Shengquan Hu
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Gerontology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Simon Mingyuan Lee
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| |
Collapse
|
3
|
Xia L, Nie T, Lu F, Huang L, Shi X, Ren D, Lu J, Li X, Xu T, Cui B, Wang Q, Gao G, Yang Q. Direct regulation of FNIP1 and FNIP2 by MEF2 sustains MTORC1 activation and tumor progression in pancreatic cancer. Autophagy 2024; 20:505-524. [PMID: 37772772 PMCID: PMC10936626 DOI: 10.1080/15548627.2023.2259735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) orchestrates diverse environmental signals to facilitate cell growth and is frequently activated in cancer. Translocation of MTORC1 from the cytosol to the lysosomal surface by the RRAG GTPases is the key step in MTORC1 activation. Here, we demonstrated that transcription factors MEF2A and MEF2D synergistically regulated MTORC1 activation via modulating its cyto-lysosome shutting. Mechanically, MEF2A and MEF2D controlled the transcription of FNIP1 and FNIP2, the components of the FLCN-FNIP1 or FNIP2 complex that acts as a RRAGC-RRAGD GTPase-activating element to promote the recruitment of MTORC1 to lysosome and its activation. Furthermore, we determined that the pro-oncogenic protein kinase SRC/c-Src directly phosphorylated MEF2D at three conserved tyrosine residues. The tyrosine phosphorylation enhanced MEF2D transcriptional activity and was indispensable for MTORC1 activation. Finally, both the protein and tyrosine phosphorylation levels of MEF2D are elevated in human pancreatic cancers, positively correlating with MTORC1 activity. Depletion of both MEF2A and MEF2D or expressing the unphosphorylatable MEF2D mutant suppressed tumor cell growth. Thus, our study revealed a transcriptional regulatory mechanism of MTORC1 that promoted cell anabolism and proliferation and uncovered its critical role in pancreatic cancer progression.Abbreviation: ACTB: actin beta; ChIP: chromatin immunoprecipitation; EGF: epidermal growth factor; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FLCN: folliculin; FNIP1: folliculin interacting protein 1; FNIP2: folliculin interacting protein 2; GAP: GTPase activator protein; GEF: guanine nucleotide exchange factors; GTPase: guanosine triphosphatase; LAMP2: lysosomal associated membrane protein 2; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF2: myocyte enhancer factor 2; MEF2A: myocyte enhancer factor 2A; MEF2D: myocyte enhancer factor 2D; MEF2D-3YF: Y131F, Y333F, Y337F mutant; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NR4A1: nuclear receptor subfamily 4 group A member 1; RPTOR: regulatory associated protein of MTOR complex 1; RHEB: Ras homolog, mTORC1 binding; RPS6KB1: ribosomal protein S6 kinase B1; RRAG: Ras related GTP binding; RT-qPCR: real time-quantitative PCR; SRC: SRC proto-oncogene, non-receptor tyrosine kinase; TMEM192: transmembrane protein 192; WT: wild-type.
Collapse
Affiliation(s)
- Li Xia
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tiejian Nie
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fangfang Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Lu Huang
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaolong Shi
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Dongni Ren
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianjun Lu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaobin Li
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Tuo Xu
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qing Wang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Miller N, Xu Z, Quinlan KA, Ji A, McGivern JV, Feng Z, Shi H, Ko CP, Tsai LH, Heckman CJ, Ebert AD, Ma YC. Mitigating aberrant Cdk5 activation alleviates mitochondrial defects and motor neuron disease symptoms in spinal muscular atrophy. Proc Natl Acad Sci U S A 2023; 120:e2300308120. [PMID: 37976261 PMCID: PMC10666147 DOI: 10.1073/pnas.2300308120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/31/2023] [Indexed: 11/19/2023] Open
Abstract
Spinal muscular atrophy (SMA), the top genetic cause of infant mortality, is characterized by motor neuron degeneration. Mechanisms underlying SMA pathogenesis remain largely unknown. Here, we report that the activity of cyclin-dependent kinase 5 (Cdk5) and the conversion of its activating subunit p35 to the more potent activator p25 are significantly up-regulated in mouse models and human induced pluripotent stem cell (iPSC) models of SMA. The increase of Cdk5 activity occurs before the onset of SMA phenotypes, suggesting that it may be an initiator of the disease. Importantly, aberrant Cdk5 activation causes mitochondrial defects and motor neuron degeneration, as the genetic knockout of p35 in an SMA mouse model rescues mitochondrial transport and fragmentation defects, and alleviates SMA phenotypes including motor neuron hyperexcitability, loss of excitatory synapses, neuromuscular junction denervation, and motor neuron degeneration. Inhibition of the Cdk5 signaling pathway reduces the degeneration of motor neurons derived from SMA mice and human SMA iPSCs. Altogether, our studies reveal a critical role for the aberrant activation of Cdk5 in SMA pathogenesis and suggest a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Nimrod Miller
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Zhaofa Xu
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Katharina A. Quinlan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI02881
| | - Amy Ji
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jered V. McGivern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Han Shi
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA90089
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Charles J. Heckman
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI53226
| | - Yongchao C. Ma
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
5
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Pao PC, Seo J, Lee A, Kritskiy O, Patnaik D, Penney J, Raju RM, Geigenmuller U, Silva MC, Lucente DE, Gusella JF, Dickerson BC, Loon A, Yu MX, Bula M, Yu M, Haggarty SJ, Tsai LH. A Cdk5-derived peptide inhibits Cdk5/p25 activity and improves neurodegenerative phenotypes. Proc Natl Acad Sci U S A 2023; 120:e2217864120. [PMID: 37043533 PMCID: PMC10120002 DOI: 10.1073/pnas.2217864120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/07/2023] [Indexed: 04/13/2023] Open
Abstract
Aberrant activity of cyclin-dependent kinase (Cdk5) has been implicated in various neurodegenerative diseases. This deleterious effect is mediated by pathological cleavage of the Cdk5 activator p35 into the truncated product p25, leading to prolonged Cdk5 activation and altered substrate specificity. Elevated p25 levels have been reported in humans and rodents with neurodegeneration, and the benefit of genetically blocking p25 production has been demonstrated previously in rodent and human neurodegenerative models. Here, we report a 12-amino-acid-long peptide fragment derived from Cdk5 (Cdk5i) that is considerably smaller than existing peptide inhibitors of Cdk5 (P5 and CIP) but shows high binding affinity toward the Cdk5/p25 complex, disrupts the interaction of Cdk5 with p25, and lowers Cdk5/p25 kinase activity. When tagged with a fluorophore (FITC) and the cell-penetrating transactivator of transcription (TAT) sequence, the Cdk5i-FT peptide exhibits cell- and brain-penetrant properties and confers protection against neurodegenerative phenotypes associated with Cdk5 hyperactivity in cell and mouse models of neurodegeneration, highlighting Cdk5i's therapeutic potential.
Collapse
Affiliation(s)
- Ping-Chieh Pao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jinsoo Seo
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain Sciences, Daegu Gyeongbuk Institute for Science and Technology, Daegu42988, South Korea
| | - Audrey Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ravikiran M. Raju
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Ute Geigenmuller
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - M. Catarina Silva
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Diane E. Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Massachusetts General Hospital Frontotemporal Disorders Unit, Gerontology Research Unit, and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02114
| | - Bradford C. Dickerson
- Massachusetts General Hospital Frontotemporal Disorders Unit, Gerontology Research Unit, and Alzheimer’s Disease Research Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA02129
| | - Anjanet Loon
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Margaret X. Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Michael Bula
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Melody Yu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
7
|
The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. Int J Mol Sci 2023; 24:ijms24043120. [PMID: 36834528 PMCID: PMC9963821 DOI: 10.3390/ijms24043120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Collapse
|
8
|
Tian Z, Feng B, Wang XQ, Tian J. Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders. Front Mol Neurosci 2022; 15:1030639. [PMID: 36438186 PMCID: PMC9687395 DOI: 10.3389/fnmol.2022.1030639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/25/2022] [Indexed: 11/20/2023] Open
Abstract
Cyclin-dependent kinases 5 (Cdk5) is a special member of proline-directed serine threonine kinase family. Unlike other Cdks, Cdk5 is not directly involved in cell cycle regulation but plays important roles in nervous system functions. Under physiological conditions, the activity of Cdk5 is tightly controlled by p35 or p39, which are specific activators of Cdk5 and highly expressed in post-mitotic neurons. However, they will be cleaved into the corresponding truncated forms namely p25 and p29 under pathological conditions, such as neurodegenerative diseases and neurotoxic insults. The binding to truncated co-activators results in aberrant Cdk5 activity and contributes to the initiation and progression of multiple neurological disorders through affecting the down-stream targets. Although Cdk5 kinase activity is mainly regulated through combining with co-activators, it is not the only way. Post-translational modifications of Cdk5 including phosphorylation, S-nitrosylation, sumoylation, and acetylation can also affect its kinase activity and then participate in physiological and pathological processes of nervous system. In this review, we focus on the regulatory mechanisms of Cdk5 and its roles in a series of common neurological disorders such as neurodegenerative diseases, stroke, anxiety/depression, pathological pain and epilepsy.
Collapse
Affiliation(s)
- Zhen Tian
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Bin Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Xing-Qin Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiao Tian
- Department of Infection, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines On Public Health in Chongqing, Chongqing, China
| |
Collapse
|
9
|
Mohammadipour A. A focus on natural products for preventing and cure of mitochondrial dysfunction in Parkinson's disease. Metab Brain Dis 2022; 37:889-900. [PMID: 35156154 DOI: 10.1007/s11011-022-00931-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Mitochondria are considered the only source of energy production within cells. This organelle is vital for neural function and survival by producing energy (adenosine triphosphate (ATP)) and regulating intracellular calcium. Mitochondrial dysfunction, which significantly contributes to both idiopathic and familial types of Parkinson's disease (PD), depletes cellular energy, disrupts homeostasis, and induces oxidative stress, leading to cell death. In recent years several natural products have been discovered to be protective against mitochondrial dysfunction. This review discusses the role of mitochondria in the progression of PD to define the path for using natural products to prevent and/or cure PD.
Collapse
Affiliation(s)
- Abbas Mohammadipour
- Department of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, PO Box 91779-48564, Azadi Sq, Vakilabad Blvd, Mashhad, Iran.
| |
Collapse
|
10
|
Wang P, Zhao J, Sun X. DYRK1A phosphorylates MEF2D and decreases its transcriptional activity. J Cell Mol Med 2021; 25:6082-6093. [PMID: 34109727 PMCID: PMC8256340 DOI: 10.1111/jcmm.16505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Myocyte enhancer factor 2D (MEF2D) is predominantly expressed in the nucleus and associated with cell growth, differentiation, survival and apoptosis. Previous studies verified that phosphorylation at different amino acids determined MEF2's transcriptional activity which was essential in regulating downstream target genes expression. What regulates phosphorylation of MEF2D and affects its function has not been fully elucidated. Here, we uncovered that dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A), a kinase critical in Down's syndrome pathogenesis, directly bound to and phosphorylated MEF2D at Ser251 in vitro. Phosphorylation of MEF2D by DYRK1A significantly increased MEF2D protein level but attenuated its transcriptional activity, which resulted in decreased transcriptions of MEF2D target genes. Phosphorylation mutated Ser251A MEF2D exhibited enhanced transcriptional activity compared with wild type MEF2D. MEF2D and DYRK1A were observed co-localized in HEK293 and U87MG cells. Moreover, DYRK1A-mediated MEF2D phosphorylation in vitro might influence its nuclear export upon subcellular fractionation, which partially explained the reduction of MEF2D transcriptional activity by DYRK1A. Our results indicated that DYRK1A might be a regulator of MEF2D transcriptional activity and indirectly get involved in regulation of MEF2D target genes.
Collapse
Affiliation(s)
- Pin Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Juan Zhao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiulian Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Brain Research Institute, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
11
|
Huang Y, Huang W, Huang Y, Song P, Zhang M, Zhang HT, Pan S, Hu Y. Cdk5 Inhibitory Peptide Prevents Loss of Neurons and Alleviates Behavioral Changes in p25 Transgenic Mice. J Alzheimers Dis 2021; 74:1231-1242. [PMID: 32144987 DOI: 10.3233/jad-191098] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Accumulation of p25 is thought to be a causative risk factor for Alzheimer's disease (AD). As a cleaved product of p35, p25 binds to cyclin-dependent kinase 5 (Cdk5) and leads to the hyperactivity of Cdk5. Then, Cdk5/p25 phosphorylates many pathological substrates related to neurodegenerative diseases. p25 transgenic (Tg) mouse model recaptures some pathological changes of AD, including tau hyperphosphorylation, neurofibrillary tangles, neuroinflammation, and neuronal death, which can be prevented by transgenic expression of Cdk5 inhibitory peptide (CIP) before the insult of p25. OBJECTIVE In the present study, we would like to know whether adeno-associated virus serotype-9 (AAV9)-mediated CIP can protect neurons after insult of p25 in p25Tg mice. METHODS Administration of AAV9-CIP or control virus were delivered in the brain of p25Tg mice via intracerebroventricular infusions following the induction of p25. Western blotting, immunohistochemistry and immunofluorescence assessment, and animal behavioral evaluation were performed. RESULTS Brain atrophy, neuronal death, tau phosphorylation and inflammation in the hippocampus, and cognitive decline were observed in p25Tg mice. Administration of CIP but not the control virus in p25Tg mice reduced levels of tau phosphorylation and inflammation in the hippocampus, which is correlated with inhibition of brain atrophy and neuronal apoptosis in the hippocampus, and improvement of cognitive decline. CONCLUSION Our results provide further evidence that the neurotoxicity of p25 can be alleviated by CIP.
Collapse
Affiliation(s)
- Yaowei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Wei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Neurology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, P. R. China
| | - Yingwei Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Pingping Song
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Neurology, First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, P. R. China
| | - Melanie Zhang
- Department of Neurobiology Northwestern University, Feinberg School of Medicine, Evanston, IL, USA
| | - Han-Ting Zhang
- Department of Behavioral Medicine & Psychiatry, Physiology & Pharmacology, and Neuroscience, The Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
12
|
Chaudhary R, Agarwal V, Kaushik AS, Rehman M. Involvement of myocyte enhancer factor 2c in the pathogenesis of autism spectrum disorder. Heliyon 2021; 7:e06854. [PMID: 33981903 PMCID: PMC8082549 DOI: 10.1016/j.heliyon.2021.e06854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2), a family of transcription factor of MADS (minichromosome maintenance 1, agamous, deficiens and serum response factor)-box family needed in the growth and differentiation of a variety of human cells, such as neural, immune, endothelial, and muscles. As per existing literature, MEF2 transcription factors have also been associated with synaptic plasticity, the developmental mechanisms governing memory and learning, and several neurologic conditions, like autism spectrum disorders (ASDs). Recent genomic findings have ascertained a link between MEF2 defects, particularly in the MEF2C isoform and the ASD. In this review, we summarized a concise overview of the general regulation, structure and functional roles of the MEF2C transcription factor. We further outlined the potential role of MEF2C as a risk factor for various neurodevelopmental disorders, such as ASD, MEF2C Haploinsufficiency Syndrome and Fragile X syndrome.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
13
|
Do PA, Lee CH. The Role of CDK5 in Tumours and Tumour Microenvironments. Cancers (Basel) 2020; 13:E101. [PMID: 33396266 PMCID: PMC7795262 DOI: 10.3390/cancers13010101] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5), which belongs to the protein kinase family, regulates neuronal function but is also associated with cancer development and has been proposed as a target for cancer treatment. Indeed, CDK5 has roles in cell proliferation, apoptosis, angiogenesis, inflammation, and immune response. Aberrant CDK5 activation triggers tumour progression in numerous types of cancer. In this review, we summarise the role of CDK5 in cancer and neurons and CDK5 inhibitors. We expect that our review helps researchers to develop CDK5 inhibitors as treatments for refractory cancer.
Collapse
Affiliation(s)
| | - Chang Hoon Lee
- Phamaceutical Biochemistry, College of Pharmacy, BK21 FOUR Team, and Integrated Research Institute for Drug Development, Dongguk University, Goyang 100-715, Korea;
| |
Collapse
|
14
|
Xia X, Yu CY, Bian M, Sun CB, Tanasa B, Chang KC, Bruffett DM, Thakur H, Shah SH, Knasel C, Cameron EG, Kapiloff MS, Goldberg JL. MEF2 transcription factors differentially contribute to retinal ganglion cell loss after optic nerve injury. PLoS One 2020; 15:e0242884. [PMID: 33315889 PMCID: PMC7735573 DOI: 10.1371/journal.pone.0242884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Loss of retinal ganglion cells (RGCs) in optic neuropathies results in permanent partial or complete blindness. Myocyte enhancer factor 2 (MEF2) transcription factors have been shown to play a pivotal role in neuronal systems, and in particular MEF2A knockout was shown to enhance RGC survival after optic nerve crush injury. Here we expanded these prior data to study bi-allelic, tri-allelic and heterozygous allele deletion. We observed that deletion of all MEF2A, MEF2C, and MEF2D alleles had no effect on RGC survival during development. Our extended experiments suggest that the majority of the neuroprotective effect was conferred by complete deletion of MEF2A but that MEF2D knockout, although not sufficient to increase RGC survival on its own, increased the positive effect of MEF2A knockout. Conversely, MEF2A over-expression in wildtype mice worsened RGC survival after optic nerve crush. Interestingly, MEF2 transcription factors are regulated by post-translational modification, including by calcineurin-catalyzed dephosphorylation of MEF2A Ser-408 known to increase MEF2A-dependent transactivation in neurons. However, neither phospho-mimetic nor phospho-ablative mutation of MEF2A Ser-408 affected the ability of MEF2A to promote RGC death in vivo after optic nerve injury. Together these findings demonstrate that MEF2 gene expression opposes RGC survival following axon injury in a complex hierarchy, and further support the hypothesis that loss of or interference with MEF2A expression might be beneficial for RGC neuroprotection in diseases such as glaucoma and other optic neuropathies.
Collapse
Affiliation(s)
- Xin Xia
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Caroline Y. Yu
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Minjuan Bian
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Catalina B. Sun
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Bogdan Tanasa
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Kun-Che Chang
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Dawn M. Bruffett
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Hrishikesh Thakur
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Sahil H. Shah
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Cara Knasel
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Evan G. Cameron
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | - Michael S. Kapiloff
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
- Department of Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
- * E-mail: (MSK); (JLG)
| | - Jeffrey L. Goldberg
- Mary M. and Sash A. Spencer Center for Vision Research, Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, United States of America
- * E-mail: (MSK); (JLG)
| |
Collapse
|
15
|
Chen H, Cao J, Zha L, Wang P, Liu Z, Guo B, Zhang G, Sun Y, Zhang Z, Wang Y. Neuroprotective and neurogenic effects of novel tetramethylpyrazine derivative T-006 in Parkinson's disease models through activating the MEF2-PGC1α and BDNF/CREB pathways. Aging (Albany NY) 2020; 12:14897-14917. [PMID: 32710729 PMCID: PMC7425444 DOI: 10.18632/aging.103551] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
T-006, a new derivative of tetramethylpyrazine, has been recently found to protect against 6-hydroxydopamine (6-OHDA)-induced neuronal damage and clear α-synuclein (α-syn) by enhancing proteasome activity in an α-syn transgenic Parkinson’s disease (PD) model. The effect of T-006 on the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD model, however, has not been tested and T-006’s neuroprotective mechanisms have not been fully elucidated. In this study, we further investigated the neuroprotective and neurogenic effects of T-006 and explored its underlying mechanism of action in both cellular and animal PD models. T-006 was able to improve locomotor behavior, increase survival of nigra dopaminergic neurons and boost striatal dopamine levels in both MPTP- and 6-OHDA-induced animals. T-006 treatment restored the altered expressions of myocyte enhancer factor 2D (MEF2D), peroxisome proliferator-activated receptor γ (PPARγ) co-activator 1α (PGC1α) and NF-E2-related factor 1/2 (Nrf1/2) via modulation of Akt/GSK3β signaling. T-006 stimulated MEF2, PGC1α and Nrf2 transcriptional activities, inducing Nrf2 nuclear localization. Interestingly, T-006 promoted endogenous adult neurogenesis toward a dopaminergic phenotype by activating brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in 6-OHDA rats. Our work demonstrated that T-006 is a potent neuroprotective and neuroregenerative agent that may have therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Haiyun Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Cao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Ling Zha
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Peile Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Zheng Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China.,Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, Foshan, China
| | - Baojian Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Yewei Sun
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization, Innovative Drug Development of Chinese Ministry of Education, Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
16
|
Mekonnen YA, Gültas M, Effa K, Hanotte O, Schmitt AO. Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed. Front Genet 2019; 10:1095. [PMID: 31803229 PMCID: PMC6872528 DOI: 10.3389/fgene.2019.01095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
African animal trypanosomiasis (AAT) is caused by a protozoan parasite that affects the health of livestock. Livestock production in Ethiopia is severely hampered by AAT and various controlling measures were not successful to eradicate the disease. AAT affects the indigenous breeds in varying degrees. However, the Sheko breed shows better trypanotolerance than other breeds. The tolerance attributes of Sheko are believed to be associated with its taurine genetic background but the genetic controls of these tolerance attributes of Sheko are not well understood. In order to investigate the level of taurine background in the genome, we compare the genome of Sheko with that of 11 other African breeds. We find that Sheko has an admixed genome composed of taurine and indicine ancestries. We apply three methods: (i) The integrated haplotype score (iHS), (ii) the standardized log ratio of integrated site specific extended haplotype homozygosity between populations (Rsb), and (iii) the composite likelihood ratio (CLR) method to discover selective sweeps in the Sheko genome. We identify 99 genomic regions harboring 364 signature genes in Sheko. Out of the signature genes, 15 genes are selected based on their biological importance described in the literature. We also identify 13 overrepresented pathways and 10 master regulators in Sheko using the TRANSPATH database in the geneXplain platform. Most of the pathways are related with oxidative stress responses indicating a possible selection response against the induction of oxidative stress following trypanosomiasis infection in Sheko. Furthermore, we present for the first time the importance of master regulators involved in trypanotolerance not only for the Sheko breed but also in the context of cattle genomics. Our finding shows that the master regulator Caspase is a key protease which plays a major role for the emergence of adaptive immunity in harmony with the other master regulators. These results suggest that designing and implementing genetic intervention strategies is necessary to improve the performance of susceptible animals. Moreover, the master regulatory analysis suggests potential candidate therapeutic targets for the development of new drugs for trypanosomiasis treatment.
Collapse
Affiliation(s)
- Yonatan Ayalew Mekonnen
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - Kefena Effa
- Animal Biosciences, National Program Coordinator for African Dairy Genetic Gain, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms amd Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Armin O Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Li T, Zhang W, Kang X, Yang R, Li R, Huang L, Chen J, Yang Q, Sun X. Salidroside protects dopaminergic neurons by regulating the mitochondrial MEF2D‐ND6 pathway in the MPTP/MPP
+
‐induced model of Parkinson's disease. J Neurochem 2019; 153:276-289. [PMID: 31520529 DOI: 10.1111/jnc.14868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Tao Li
- Research Center of Traditional Chinese Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Wei Zhang
- Research Center of Traditional Chinese Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Xiaogang Kang
- Department of Neurology Xijing Hospital Fourth Military Medical University Xi’an China
| | - Ruixin Yang
- Department of Neurosurgery Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Ruru Li
- Research Center of Traditional Chinese Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Lu Huang
- Department of Neurosurgery Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Jianzong Chen
- Research Center of Traditional Chinese Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| | - Qian Yang
- Department of Neurosurgery Tangdu Hospital Fourth Military Medical University Xi'an China
| | - Xiaolong Sun
- Department of Rehabilitation Medicine Xijing Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
18
|
Down-regulation of cyclin-dependent kinase 5 attenuates p53-dependent apoptosis of hippocampal CA1 pyramidal neurons following transient cerebral ischemia. Sci Rep 2019; 9:13032. [PMID: 31506563 PMCID: PMC6737192 DOI: 10.1038/s41598-019-49623-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2019] [Indexed: 01/09/2023] Open
Abstract
Abnormal activation of cyclin-dependent kinase 5 (Cdk5) is associated with pathophysiological conditions. Ischemic preconditioning (IPC) can provide neuroprotective effects against subsequent lethal ischemic insult. The objective of this study was to determine how Cdk5 and related molecules could affect neuroprotection in the hippocampus of gerbils after with IPC [a 2-min transient cerebral ischemia (TCI)] followed by 5-min subsequent TCI. Hippocampal CA1 pyramidal neurons were dead at 5 days post-TCI. However, treatment with roscovitine (a potent inhibitor of Cdk5) and IPC protected CA1 pyramidal neurons from TCI. Expression levels of Cdk5, p25, phospho (p)-Rb and p-p53 were increased in nuclei of CA1 pyramidal neurons at 1 and 2 days after TCI. However, these expressions were attenuated by roscovitine treatment and IPC. In particular, Cdk5, p-Rb and p-p53 immunoreactivities in their nuclei were decreased. Furthermore, TUNEL-positive CA1 pyramidal neurons were found at 5 days after TCI with increased expression levels of Bax, PUMA, and activated caspase-3. These TUNEL-positive cells and increased molecules were decreased by roscovitine treatment and IPC. Thus, roscovitine treatment and IPC could protect CA1 pyramidal neurons from TCI through down-regulating Cdk5, p25, and p-p53 in their nuclei. These findings indicate that down-regulating Cdk5 might be a key strategy to attenuate p53-dependent apoptosis of CA1 pyramidal neurons following TCI.
Collapse
|
19
|
Zhou T, Wang H, Shen J, Li W, Cao M, Hong Y, Cao M. The p35/CDK5 signaling is regulated by p75NTR in neuronal apoptosis after intracerebral hemorrhage. J Cell Physiol 2019; 234:15856-15871. [PMID: 30770557 DOI: 10.1002/jcp.28244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The p75 neurotrophin receptor (p75NTR), a member of tumor necrosis factor receptor superfamily, involves in neuronal apoptosis after intracerebral hemorrhage (ICH). It has been previously demonstrated that phosphorylation of p35 is a crucial factor for fighting against the proapoptotic p25/CDK5 signaling in neuronal apoptosis. Then, in ICH models of rats and primary cortical neurons, we found that the expressions of p75NTR, p-histone H1 (the kinase activity of CDK5), p25, Fas-associated phosphatase-1 (FAP-1), and phosphorylated myocyte enhancer factor 2D (p-MEF2D) were enhanced after ICH, whereas the expression of p35-Thr(138) was attenuated. Coimmunoprecipitation analysis indicated several interactions as follows: p35/p25 and CKD5, p75NTR and p35, as well as p75NTR and FAP-1. After p75NTR or FAP-1 depletion with double-stranded RNA interference in PC12 cells, the levels of p25 and p-histone H1 were attenuated, whereas p35-Thr(138) was elevated. Considering p75NTR has no effect of dephosphorylation, our results suggested that p75NTR might promote the dephosphorylation of p35-Thr(138) via interaction with FAP-1, and the p75NTR/p35 complex upregulated p25/CDK5 signaling to facilitate the neuronal apoptosis following ICH. So, in the study, we aimed to provide a theoretical and experimental basis that p75NTR could be regulated to reduce neuronal apoptosis following ICH for potential clinical treatment.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Hongmei Wang
- Department of Neurology, Nantong Rich Hospital, Nantong, Jiangsu Province, People's Republic of China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Wanyan Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maosheng Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Yao Hong
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, People's Republic of China
| |
Collapse
|
20
|
Neuronal Myocyte-Specific Enhancer Factor 2D (MEF2D) Is Required for Normal Circadian and Sleep Behavior in Mice. J Neurosci 2019; 39:7958-7967. [PMID: 31420455 DOI: 10.1523/jneurosci.0411-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/08/2019] [Accepted: 08/10/2019] [Indexed: 11/21/2022] Open
Abstract
The transcription factor, myocyte enhancer factor-2 (MEF2), is required for normal circadian behavior in Drosophila; however, its role in the mammalian circadian system has not been established. Of the four mammalian Mef2 genes, Mef2d is highly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus, a region critical for coordinating peripheral circadian clocks. Using both conventional and brain-specific Mef2d KO (Mef2d -/-) mouse lines, we demonstrate that MEF2D is essential for maintaining the length of the circadian free-running period of locomotor activity and normal sleep patterns in male mice. Crossing Mef2d -/- with Per2::luc reporter mice, we show that these behavioral changes are achieved without altering the endogenous period of the master circadian oscillator in the SCN. Together, our data suggest that alterations in behavior in Mef2d -/- mice may be the result of an effect on SCN output, rather than an effect on timekeeping within the SCN itself. These findings add to the growing body of evidence that MEF2 proteins play important roles in the brain.SIGNIFICANCE STATEMENT These studies are the first to show a role for MEF2 proteins in the brain outside of the hippocampus, and our findings suggest that these proteins may play diverse roles in the CNS. It is important to continue to build on our understanding of the roles of proteins acting in the SCN because SCN dysfunction underlies jet lag in humans and influences the response to shift work schedules, which are now known as risk factors for the development of cancer. Our work on MEF2D could be the basis for opening new lines of research in the development and regulation of circadian rhythms.
Collapse
|
21
|
Emerging roles for MEF2 in brain development and mental disorders. Curr Opin Neurobiol 2019; 59:49-58. [PMID: 31129473 DOI: 10.1016/j.conb.2019.04.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
The MEF2 family of transcription factors regulate large programs of gene expression important for the development and maintenance of many tissues, including the brain. MEF2 proteins are regulated by neuronal synaptic activity, and they recruit several epigenetic enzymes to influence chromatin structure and gene expression during development and throughout adulthood. Here, we provide a brief review of the recent literature reporting important roles for MEF2 during early brain development and function, and we highlight emerging roles for MEF2 as a risk factor for multiple neurodevelopmental disorders and mental illnesses, such as autism, intellectual disability, and schizophrenia.
Collapse
|
22
|
Zhang W, Ping J, Zhou Y, Chen G, Xu L. Salvianolic Acid B Inhibits Activation of Human Primary Hepatic Stellate Cells Through Downregulation of the Myocyte Enhancer Factor 2 Signaling Pathway. Front Pharmacol 2019; 10:322. [PMID: 31031620 PMCID: PMC6470251 DOI: 10.3389/fphar.2019.00322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Various isoforms of myocyte enhancer factor 2 (MEF2) have been shown to play a role in the activation of rat hepatic stellate cells (HSCs) in culture. The signals that regulate MEF2 in HSCs are unknown. In addition, whether MEF2s regulate the activation of human HSCs (H-HSCs) is unclear. Here, we studied the expression and function of MEF2s in H-HSCs. Our data showed that the levels of MEF2A, C, and D proteins were high in liver tissues from patients with cirrhosis and increased during culture-induced activation of primary H-HSCs. Exposure of H-HSCs to transforming growth factor beta 1 (TGF-β1) led to a significant increase in MEF2A and C protein levels and enhanced MEF2 activity. Interestingly, TGF-β1 did not further enhance MEF2D levels. Furthermore, TGF-β1 activated p38 mitogen-activated protein kinase (MAPK) and led to increased phosphorylation of MEF2C at its p38 recognition site. Inhibition of p38 MAPK inhibited both TGF-β1- and culture-induced activation of MEF2. The activity of collagen I reporter in H-HSCs was significantly reduced when MEF2A and MEF2C were blocked with overexpression of dominant negative MEF2 mutants. Salvianolic-acid B (SA-B), a water-soluble element of Salvia miltiorrhiza known to have anti-fibrosis effects, attenuated both basal and TGF-β1-induced increased levels of MEF2A and C mRNA and protein. In addition, SA-B inhibited MEF2 activity, which correlated with reduced expression of the HSC activation markers, α-smooth muscle actin (α-SMA), and collagen I. Administration of SA-B reduced MEF2A in vivo, which was accompanied by reduced levels of α-SMA in a model of dimethylnitrosamine-induced rat liver fibrosis. We concluded that the MEF2 transcription factor was stimulated by TGF-β1 in H-HSCs. Antagonizing TGF-β1-induced activation of the MEF2 signaling pathway may account in part for the anti-fibrosis effects of SA-B.
Collapse
Affiliation(s)
- Wenwei Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Ping
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| | - Yang Zhou
- Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaofeng Chen
- Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| | - Lieming Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Key Laboratory of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, China
| |
Collapse
|
23
|
Zhu LS, Wang DQ, Cui K, Liu D, Zhu LQ. Emerging Perspectives on DNA Double-strand Breaks in Neurodegenerative Diseases. Curr Neuropharmacol 2019; 17:1146-1157. [PMID: 31362659 PMCID: PMC7057204 DOI: 10.2174/1570159x17666190726115623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022] Open
Abstract
DNA double-strand breaks (DSBs) are common events that were recognized as one of the most toxic lesions in eukaryotic cells. DSBs are widely involved in many physiological processes such as V(D)J recombination, meiotic recombination, DNA replication and transcription. Deregulation of DSBs has been reported in multiple diseases in human beings, such as the neurodegenerative diseases, with which the underlying mechanisms are needed to be illustrated. Here, we reviewed the recent insights into the dysfunction of DSB formation and repair, contributing to the pathogenesis of neurodegenerative disorders including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and ataxia telangiectasia (A-T).
Collapse
Affiliation(s)
| | | | | | | | - Ling-Qiang Zhu
- Address correspondence to this author at the Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China; Tel: 862783692625; Fax: 862783692608; E-mail:
| |
Collapse
|
24
|
Li J, Aponte Paris S, Thakur H, Kapiloff MS, Dodge-Kafka KL. Muscle A-kinase-anchoring protein-β-bound calcineurin toggles active and repressive transcriptional complexes of myocyte enhancer factor 2D. J Biol Chem 2018; 294:2543-2554. [PMID: 30523159 DOI: 10.1074/jbc.ra118.005465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/04/2018] [Indexed: 12/13/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) transcription factors are key regulators of the development and adult phenotype of diverse tissues, including skeletal and cardiac muscles. Controlled by multiple post-translational modifications, MEF2D is an effector for the Ca2+/calmodulin-dependent protein phosphatase calcineurin (CaN, PP2B, and PPP3). CaN-catalyzed dephosphorylation promotes the desumoylation and acetylation of MEF2D, increasing its transcriptional activity. Both MEF2D and CaN bind the scaffold protein muscle A-kinase-anchoring protein β (mAKAPβ), which is localized to the nuclear envelope, such that C2C12 skeletal myoblast differentiation and neonatal rat ventricular myocyte hypertrophy are inhibited by mAKAPβ signalosome targeting. Using immunoprecipitation and DNA-binding assays, we now show that the formation of mAKAPβ signalosomes is required for MEF2D dephosphorylation, desumoylation, and acetylation in C2C12 cells. Reduced MEF2D phosphorylation was coupled to a switch from type IIa histone deacetylase to p300 histone acetylase binding that correlated with increased MEF2D-dependent gene expression and ventricular myocyte hypertrophy. Together, these results highlight the importance of mAKAPβ signalosomes for regulating MEF2D activity in striated muscle, affirming mAKAPβ as a nodal regulator in the myocyte intracellular signaling network.
Collapse
Affiliation(s)
- Jinliang Li
- From the Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute, and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-1209 and
| | - Shania Aponte Paris
- the Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Hrishikesh Thakur
- From the Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute, and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-1209 and
| | - Michael S Kapiloff
- From the Departments of Ophthalmology and Cardiovascular Medicine, Byers Eye Institute, and Spencer Center for Vision Research, Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-1209 and
| | - Kimberly L Dodge-Kafka
- the Calhoun Center for Cardiology, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
25
|
Gwee SSL, Radford RAW, Chow S, Syal MD, Morsch M, Formella I, Lee A, Don EK, Badrock AP, Cole NJ, West AK, Cheung SNS, Chung RS. Aurora kinase B regulates axonal outgrowth and regeneration in the spinal motor neurons of developing zebrafish. Cell Mol Life Sci 2018; 75:4269-4285. [PMID: 29468257 PMCID: PMC11105541 DOI: 10.1007/s00018-018-2780-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023]
Abstract
Aurora kinase B (AurkB) is a serine/threonine protein kinase with a well-characterised role in orchestrating cell division and cytokinesis, and is prominently expressed in healthy proliferating and cancerous cells. However, the role of AurkB in differentiated and non-dividing cells has not been extensively explored. Previously, we have described a significant upregulation of AurkB expression in cultured cortical neurons following an experimental axonal transection. This is somewhat surprising, as AurkB expression is generally associated only with dividing cells Frangini et al. (Mol Cell 51:647-661, 2013); Hegarat et al. (J Cell Biol 195:1103-1113, 2011); Lu et al. (J Biol Chem 283:31785-31790, 2008); Trakala et al. (Cell Cycle 12:1030-1041, 2014). Herein, we present the first description of a role for AurkB in terminally differentiated neurons. AurkB was prominently expressed within post-mitotic neurons of the zebrafish brain and spinal cord. The expression of AurkB varied during the development of the zebrafish spinal motor neurons. Utilising pharmacological and genetic manipulation to impair AurkB activity resulted in truncation and aberrant motor axon morphology, while overexpression of AurkB resulted in extended axonal outgrowth. Further pharmacological inhibition of AurkB activity in regenerating axons delayed their recovery following UV laser-mediated injury. Collectively, these results suggest a hitherto unreported role of AurkB in regulating neuronal development and axonal outgrowth.
Collapse
Affiliation(s)
- Serene S L Gwee
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia.
| | - Rowan A W Radford
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia
| | - Sharron Chow
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia
| | - Monisha D Syal
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia
| | - Marco Morsch
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia
| | - Isabel Formella
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia
| | - Emily K Don
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia
| | - Andrew P Badrock
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia
| | - Nicholas J Cole
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia
| | - Adrian K West
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Steve N S Cheung
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Roger S Chung
- Department of Biomedical Sciences, Faculty of Medicine and Health Science, Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW, Australia.
- School of Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
26
|
Cyclin-dependent kinase 5-mediated phosphorylation of chloride intracellular channel 4 promotes oxidative stress-induced neuronal death. Cell Death Dis 2018; 9:951. [PMID: 30237421 PMCID: PMC6147799 DOI: 10.1038/s41419-018-0983-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023]
Abstract
Oxidative stress can cause apoptosis in neurons and may result in neurodegenerative diseases. However, the signaling mechanisms leading to oxidative stress–induced neuronal apoptosis are not fully understood. Oxidative stress stimulates aberrant activation of cyclin-dependent kinase 5 (CDK5), thought to promote neuronal apoptosis by phosphorylating many cell death-related substrates. Here, using protein pulldown methods, immunofluorescence experiments and in vitro kinase assays, we identified chloride intracellular channel 4 (CLIC4), the expression of which increases during neuronal apoptosis, as a CDK5 substrate. We found that activated CDK5 phosphorylated serine 108 in CLIC4, increasing CLIC4 protein stability, and accumulation. Pharmacological inhibition or shRNA-mediated silencing of CDK5 decreased CLIC4 levels in neurons. Moreover, CLIC4 overexpression led to neuronal apoptosis, whereas knockdown or pharmacological inhibition of CLIC4 attenuated H2O2-induced neuronal apoptosis. These results implied that CLIC4, by acting as a substrate of CDK5, mediated neuronal apoptosis induced by aberrant CDK5 activation. Targeting CLIC4 in neurons may therefore provide a therapeutic approach for managing progressive neurodegenerative diseases that arise from neuronal apoptosis.
Collapse
|
27
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Li W, Nie T, Xu H, Yang J, Yang Q, Mao Z. Chaperone-mediated autophagy: Advances from bench to bedside. Neurobiol Dis 2018; 122:41-48. [PMID: 29800676 DOI: 10.1016/j.nbd.2018.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Protein homeostasis or proteostasis is critical for proper cellular function and survival. It relies on the balance between protein synthesis and degradation. Lysosomes play an important role in degrading and recycling intracellular components via autophagy. Among the three types of lysosome-based autophagy pathways, chaperone-mediated autophagy (CMA) selectively degrades cellular proteins with KFERQ-like motif by unique machinery. During the past several years, significant advances have been made in our understanding of how CMA itself is modulated and what physiological and pathological processes it may be involved in. One particularly exciting discovery is how other cellular stress organelles such as ER signal to CMA. As more proteins are identified as CMA substrates, CMA function has been associated with an increasing number of important cellular processes, organelles, and diseases, including neurodegenerative diseases. Here we will summarize the recent advances in CMA biology, highlight ER stress-induced CMA, and discuss the role of CMA in diseases.
Collapse
Affiliation(s)
- Wenming Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Tiejian Nie
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haidong Xu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Yang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zixu Mao
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
29
|
Li L, Rubin LP, Gong X. MEF2 transcription factors in human placenta and involvement in cytotrophoblast invasion and differentiation. Physiol Genomics 2018; 50:10-19. [PMID: 29127222 PMCID: PMC5866412 DOI: 10.1152/physiolgenomics.00076.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Development of the human placenta and its trophoblast cell types is critical for a successful pregnancy. Defects in trophoblast invasion and differentiation are associated with adverse pregnancy outcomes, including preeclampsia. The members of myocyte enhancer factor-2 (MEF2) family of transcription factors are key regulators of cellular proliferation, differentiation, and invasion in various cell types and tissues and might play a similarly important role in regulating trophoblast proliferation, invasion, and differentiation during human placental development. In the present study, using human cytotrophoblast cell lines (HTR8/SVneo and BeWo) and primary human cytotrophoblasts (CTBs), we show that members of the MEF2 family are differentially expressed in human placental CTBs, with MEF2B and MEF2D being highly expressed in first trimester extravillous CTBs. Overexpression of MEF2D results in cytotrophoblast proliferation and enhances the invasion and migration of extravillous-like HTR8/SVneo cells. This invasive property is blocked by overexpression of a dominant negative MEF2 (dnMEF2). In contrast, MEF2A is the principal MEF2 isoform expressed in term CTBs, MEF2C and MEF2D being expressed more weakly, and MEF2B expression being undetected. Overexpression of MEF2A induces cytotrophoblast differentiation and syncytium formation in BeWo cells. During in vitro differentiation of primary CTBs, MEF2A expression is associated with CTB differentiation into syncytiotrophoblast. Additionally, the course of p38 MAPK and ERK5 activities parallels the increase in MEF2A expression. These findings suggest individual members of MEF2 family distinctively regulate cytotrophoblast proliferation, invasion, and differentiation. Dysregulation of expression of MEF2 family or of their upstream signaling pathways may be associated with placenta-related pregnancy disorders.
Collapse
Affiliation(s)
- Lucy Li
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso, Texas
| | - Lewis P Rubin
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso, Texas
| | - Xiaoming Gong
- Department of Pediatrics, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
| |
Collapse
|
30
|
Purα Repaired Expanded Hexanucleotide GGGGCC Repeat Noncoding RNA-Caused Neuronal Toxicity in Neuro-2a Cells. Neurotox Res 2017; 33:693-701. [DOI: 10.1007/s12640-017-9803-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022]
|
31
|
Tiwari PC, Pal R. The potential role of neuroinflammation and transcription factors in Parkinson disease. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28566949 PMCID: PMC5442366 DOI: 10.31887/dcns.2017.19.1/rpal] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by dopaminergic neurons affected by inflammatory processes. Post-mortem analyses of brain and cerebrospinal fluid from PD patients show the accumulation of proinflammatory cytokines, confirming an ongoing neuroinflammation in the affected brain regions. These inflammatory mediators may activate transcription factors—notably nuclear factor κB, Ying-Yang 1 (YY1), fibroblast growth factor 20 (FGF20), and mammalian target of rapamycin (mTOR)—which then regulate downstream signaling pathways that in turn promote death of dopaminergic neurons through death domain-containing receptors. Dopaminergic neurons are vulnerable to oxidative stress and inflammatory attack. An increased level of inducible nitric oxide synthase observed in the substantia nigra and striatum of PD patients suggests that both cytokine—and chemokine-induced toxicity and inflammation lead to oxidative stress that contributes to degeneration of dopaminergic neurons and to disease progression. Lipopolysaccharide activation of microglia in the proximity of dopaminergic neurons in the substantia nigra causes their degeneration, and this appears to be a selective vulnerability of dopaminergic neurons to inflammation. In this review, we will look at the role of various transcription factors and signaling pathways in the development of PD.
Collapse
Affiliation(s)
| | - Rishi Pal
- Department of Pharmacology & Therapeutics, King George's Medical University, Utter Pradesh Lucknow-226003, India
| |
Collapse
|
32
|
Welsbie DS, Mitchell KL, Jaskula-Ranga V, Sluch VM, Yang Z, Kim J, Buehler E, Patel A, Martin SE, Zhang PW, Ge Y, Duan Y, Fuller J, Kim BJ, Hamed E, Chamling X, Lei L, Fraser IDC, Ronai ZA, Berlinicke CA, Zack DJ. Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons. Neuron 2017. [PMID: 28641113 DOI: 10.1016/j.neuron.2017.06.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Derek S Welsbie
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Katherine L Mitchell
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Vinod Jaskula-Ranga
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Valentin M Sluch
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhiyong Yang
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica Kim
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eugen Buehler
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Amit Patel
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Scott E Martin
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Ping-Wu Zhang
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yan Ge
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yukan Duan
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Fuller
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Byung-Jin Kim
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eman Hamed
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xitiz Chamling
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lei Lei
- Department of Biology, University of New England, Biddeford, ME 04005, USA
| | - Iain D C Fraser
- Signaling Systems Unit, Laboratory of Systems Biology, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Ze'ev A Ronai
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Donald J Zack
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Department of Molecular Biology and Genetics, Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
CDK5-mediated phosphorylation of XBP1s contributes to its nuclear translocation and activation in MPP +-induced Parkinson's disease model. Sci Rep 2017; 7:5622. [PMID: 28717189 PMCID: PMC5514026 DOI: 10.1038/s41598-017-06012-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/06/2017] [Indexed: 11/11/2022] Open
Abstract
Parkinson’s disease (PD) is an irreversible and progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons of the substantia nigra pars compacta. Growing evidence indicates that endoplasmic reticulum stress is a hallmark of PD; however, its exact contribution to the disease process remains poorly understood. Here, we used molecular biology methods and RNA-Seq analysis to explored an unexpected role of spliced X-Box binding protein 1 (XBP1s) in the nervous system. In this study, we determined that the IRE1α/XBP1 pathway is activated in MPP+-treated neurons. Furthermore, XBP1s was identified as a substrate of CDK5 and that the phosphorylation of XBP1s at the Ser61 residue enhances its nuclear migration, whereas mutation of the residue to alanine substantially reduces its nuclear translocation and activity. Importantly, phosphorylated XBP1s acts as a nuclear transcription factor for multiple target genes, including metabolic-related genes, FosB, and non-coding RNAs. Our findings confirm that the IRE1α/XBP1 pathway is activated in PD, and reveal a novel role of XBP1s in the pathogenesis of PD. This pathway may be a new therapeutic strategy for PD.
Collapse
|
34
|
Shah SZA, Hussain T, Zhao D, Yang L. A central role for calcineurin in protein misfolding neurodegenerative diseases. Cell Mol Life Sci 2017; 74:1061-1074. [PMID: 27682820 PMCID: PMC11107525 DOI: 10.1007/s00018-016-2379-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Abstract
Accumulation of misfolded/unfolded aggregated proteins in the brain is a hallmark of many neurodegenerative diseases affecting humans and animals. Dysregulation of calcium (Ca2+) and disruption of fast axonal transport (FAT) are early pathological events that lead to loss of synaptic integrity and axonal degeneration in early stages of neurodegenerative diseases. Dysregulated Ca2+ in the brain is triggered by accumulation of misfolded/unfolded aggregated proteins in the endoplasmic reticulum (ER), a major Ca2+ storing organelle, ultimately leading to neuronal dysfunction and apoptosis. Calcineurin (CaN), a Ca2+/calmodulin-dependent serine/threonine phosphatase, has been implicated in T cells activation through the induction of nuclear factor of activated T cells (NFAT). In addition to the involvement of several other signaling cascades, CaN has been shown to play a role in early synaptic dysfunction and neuronal death. Therefore, inhibiting hyperactivated CaN in early stages of disease might be a promising therapeutic strategy for treating patients with protein misfolding diseases. In this review, we briefly summarize the structure of CaN, inhibition mechanisms by which immunosuppressants inhibit CaN, role of CaN in maintaining neuronal and synaptic integrity and homeostasis and the role played by CaN in protein unfolding/misfolding neurodegenerative diseases.
Collapse
Affiliation(s)
- Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Tariq Hussain
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory and Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
35
|
Pal R, Tiwari PC, Nath R, Pant KK. Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol Res 2016; 38:1111-1122. [DOI: 10.1080/01616412.2016.1249997] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rishi Pal
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | | | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| |
Collapse
|
36
|
Su LY, Li H, Lv L, Feng YM, Li GD, Luo R, Zhou HJ, Lei XG, Ma L, Li JL, Xu L, Hu XT, Yao YG. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy 2016; 11:1745-59. [PMID: 26292069 DOI: 10.1080/15548627.2015.1082020] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autophagy is involved in the pathogenesis of neurodegenerative diseases including Parkinson disease (PD). However, little is known about the regulation of autophagy in neurodegenerative process. In this study, we characterized aberrant activation of autophagy induced by neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and demonstrated that melatonin has a protective effect on neurotoxicity. We found an excessive activation of autophagy in monkey brain tissues and C6 cells, induced by MPTP, which is mediated by CDK5 (cyclin-dependent kinase 5). MPTP treatment significantly reduced total dendritic length and dendritic complexity of cultured primary cortical neurons and melatonin could reverse this effect. Decreased TH (tyrosine hydroxylase)-positive cells and dendrites of dopaminergic neurons in the substantia nigra pars compacta (SNc) were observed in MPTP-treated monkeys and mice. Along with decreased TH protein level, we observed an upregulation of CDK5 and enhanced autophagic activity in the striatum of mice with MPTP injection. These changes could be salvaged by melatonin treatment or knockdown of CDK5. Importantly, melatonin or knockdown of CDK5 reduced MPTP-induced SNCA/α-synuclein aggregation in mice, which is widely thought to trigger the pathogenesis of PD. Finally, melatonin or knockdown of CDK5 counteracted the PD phenotype in mice induced by MPTP. Our findings uncover a potent role of CDK5-mediated autophagy in the pathogenesis of PD, and suggest that control of autophagic pathways may provide an important clue for exploring potential target for novel therapeutics of PD.
Collapse
Affiliation(s)
- Ling-Yan Su
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Hao Li
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Li Lv
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Yue-Mei Feng
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China
| | - Guo-Dong Li
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China.,d School of Life Science; Anhui University ; Hefei, Anhui , China
| | - Rongcan Luo
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China
| | - He-Jiang Zhou
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China
| | - Xiao-Guang Lei
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China
| | - Liang Ma
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Jia-Li Li
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,c Kunming Primate Research Center of the Chinese Academy of Sciences; Kunming Institute of Zoology; Chinese Academy of Sciences ; Kunming, Yunnan , China
| | - Lin Xu
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,e CAS Center for Excellence in Brain Science and Intelligence Technology; Chinese Academy of Sciences ; Shanghai , China
| | - Xin-Tian Hu
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,c Kunming Primate Research Center of the Chinese Academy of Sciences; Kunming Institute of Zoology; Chinese Academy of Sciences ; Kunming, Yunnan , China.,e CAS Center for Excellence in Brain Science and Intelligence Technology; Chinese Academy of Sciences ; Shanghai , China
| | - Yong-Gang Yao
- a Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences; Kunming Institute of Zoology ; Kunming, Yunnan , China.,b Kunming College of Life Science; University of Chinese Academy of Sciences ; Kunming, Yunnan , China.,c Kunming Primate Research Center of the Chinese Academy of Sciences; Kunming Institute of Zoology; Chinese Academy of Sciences ; Kunming, Yunnan , China.,e CAS Center for Excellence in Brain Science and Intelligence Technology; Chinese Academy of Sciences ; Shanghai , China
| |
Collapse
|
37
|
Zhang Q, Xie H, Ji Z, He R, Xu M, He Y, Huang J, Pan S, Hu Y. Cdk5/p25 specific inhibitory peptide TFP5 rescues the loss of dopaminergic neurons in a sub-acute MPTP induced PD mouse model. Neurosci Lett 2016; 632:1-7. [PMID: 27542341 DOI: 10.1016/j.neulet.2016.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is pathologically characterized by progressively loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and the formation of Lewy bodies. In 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) induced PD mice models, the calpain- cyclin-dependent kinase 5 (Cdk5)-myocyte enhancer factor 2 (MEF2) signaling has been proven in governing dopaminergic neuronal death. Under MPTP insult, p35 is cleaved by calpain into p25, which binds to Cdk5 and exhibits hyperactivity of Cdk5/p25. Cdk5/p25 inactivates MEF2, a survivor factor, which is critical for DA neuronal death. In this study, neuroprotective effect of the Cdk5/p25 specific peptide, TFP5, was evaluated in sub-acute MPTP induced PD mouse model by intraperitoneal (i.p.) injection of MPTP for five consecutive days. The results indicated that the levels of p35 and p25, and p25/p35 ratio increased in the sub-acute MPTP mice. TFP5 broadly reached cortex neuron, hippocampus and SNpc areas after i.p. injections. Pretreatment with 45mg/kg/day TFP5, as well as 10mgkg/day Cdk5 inhibitor roscovitine, for three days significantly rescued DA neuronal loss up to 9.8% or 9.7% respectively compared to the saline treated group. Treatment of TFP5 and roscovitine reduced the levels of inactive form of MEF2 and cleaved caspase 3, thus protected apoptosis of DA neurons against MPTP insult. Our results propose that TFP5 might be a potential therapeutic candidate for PD.
Collapse
Affiliation(s)
- Qishan Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Neurology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, PR China
| | - Huifang Xie
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Rongni He
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Miaojing Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yong He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Neurology, The First People's Hospital of Chenzhou, Chenzhou, Hunan, PR China
| | - Jianou Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Neurology, The 421 Hospital, Guangzhou, Guangdong, PR China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
38
|
MEF2D and MEF2C pathways disruption in sporadic and familial ALS patients. Mol Cell Neurosci 2016; 74:10-7. [DOI: 10.1016/j.mcn.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/13/2022] Open
|
39
|
Chaperone-Mediated Autophagy and Mitochondrial Homeostasis in Parkinson's Disease. PARKINSONS DISEASE 2016; 2016:2613401. [PMID: 27413575 PMCID: PMC4927950 DOI: 10.1155/2016/2613401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/04/2016] [Accepted: 05/29/2016] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD), a complex neurodegenerative disorder, is pathologically characterized by the formation of Lewy bodies and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial dysfunction is considered to be one of the most important causative mechanisms. In addition, dysfunction of chaperone-mediated autophagy (CMA), one of the lysosomal proteolytic pathways, has been shown to play an important role in the pathogenesis of PD. An exciting and important development is recent finding that CMA and mitochondrial quality control may be linked. This review summarizes the studies revealing the link between autophagy and mitochondrial function. Discussions are focused on the connections between CMA and mitochondrial failure and on the role of MEF2D, a neuronal survival factor, in mediating the regulation of mitochondria in the context of CMA. These new findings highlight the need to further explore the possibility of targeting the MEF2D-mitochondria-CMA network in both understanding the PD pathogenesis and developing novel therapeutic strategies.
Collapse
|
40
|
Potent Protection Against MPP +-Induced Neurotoxicity via Activating Transcription Factor MEF2D by a Novel Derivative of Naturally Occurring Danshensu/Tetramethylpyrazine. Neuromolecular Med 2016; 18:561-572. [PMID: 27277280 DOI: 10.1007/s12017-016-8399-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/21/2016] [Indexed: 01/05/2023]
Abstract
Danshensu (DSS) and tetramethylpyrazine (TMP) are active ingredients of Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort that are widely used in oriental medicine. Structural combination of compounds with known biological activity may lead to the formation of a molecule with multiple properties or new function profile. In the current study, the neuroprotective effects of DT-010, a novel analogue in which TMP was coupled to DSS through an ester bond and two allyl groups at the carboxyl group, were evaluated in a cellular model of Parkinson's disease (PD). As evidenced by the increase in cell survival, as well as the decrease in the number of Hoechst-stained apoptotic nuclei and the level of intracellular accumulation of reactive oxygen species, DT-010 at 3-30 µM substantially protected against MPP+-induced neurotoxicity in both PC12 cells and primary cerebellar granule neurons, a protection that was more potent and efficacious than its parent molecules DSS and TMP. Very encouragingly, we found that DT-010, but not DSS or TMP, could enhance myocyte enhancer factor 2D (MEF2D) transcriptional activity using luciferase reporter gene assay. The neuroprotective effects of DT-010 could be blocked by pharmacologic inhibition of PI3K pathways with LY294002, or MEF2D pathway with short hairpin RNA-mediated knockdown of MEF2D. Furthermore, western blot analysis revealed that DT-010 potentiates Akt protein expression against MPP+ to down-regulate MEF2D inhibitor GSK3β. Taken together, the results suggest that DT-010 prevents MPP+-induced neurotoxicity via enhancing MEF2D through the activation of PI3K/Akt/GSK3β pathway. DT-010 may be a potential candidate for further preclinical study for preventing and treating PD.
Collapse
|
41
|
Wang B, Cai Z, Tao K, Zeng W, Lu F, Yang R, Feng D, Gao G, Yang Q. Essential control of mitochondrial morphology and function by chaperone-mediated autophagy through degradation of PARK7. Autophagy 2016; 12:1215-28. [PMID: 27171370 PMCID: PMC4968227 DOI: 10.1080/15548627.2016.1179401] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
As a selective degradation system, chaperone-mediated autophagy (CMA) is essential for maintaining cellular homeostasis and survival under stress conditions. Increasing evidence points to an important role for the dysfunction of CMA in the pathogenesis of Parkinson disease (PD). However, the mechanisms by which CMA regulates neuronal survival under stress and its role in neurodegenerative diseases are not fully understood. PARK7/DJ-1 is an autosomal recessive familial PD gene. PARK7 plays a critical role in antioxidative response and its dysfunction leads to mitochondrial defects. In the current study, we showed that CMA mediated the lysosome-dependent degradation of PARK7. Importantly, CMA preferentially removed the oxidatively damaged nonfunctional PARK7 protein. Furthermore, CMA protected cells from mitochondrial toxin MPP+-induced changes in mitochondrial morphology and function, and increased cell viability. These protective effects were lost under PARK7-deficiency conditions. Conversely, overexpression of PARK7 significantly attenuated the mitochondrial dysfunction and cell death exacerbated by blocking CMA under oxidative stress. Thus, our findings reveal a mechanism by which CMA protects mitochondrial function by degrading nonfunctional PARK7 and maintaining its homeostasis, and dysregulation of this pathway may contribute to the neuronal stress and death in PD pathogenesis.
Collapse
Affiliation(s)
- Bao Wang
- a Department of Neurosurgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Zhibiao Cai
- a Department of Neurosurgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Kai Tao
- a Department of Neurosurgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Weijun Zeng
- a Department of Neurosurgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Fangfang Lu
- a Department of Neurosurgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Ruixin Yang
- a Department of Neurosurgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Dayun Feng
- a Department of Neurosurgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Guodong Gao
- a Department of Neurosurgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , Shaanxi , China
| | - Qian Yang
- a Department of Neurosurgery , Tangdu Hospital, The Fourth Military Medical University , Xi'an , Shaanxi , China
| |
Collapse
|
42
|
Chen ZW, Liu A, Liu Q, Chen J, Li WM, Chao XJ, Yang Q, Liu PQ, Mao ZX, Pi RB. MEF2D Mediates the Neuroprotective Effect of Methylene Blue Against Glutamate-Induced Oxidative Damage in HT22 Hippocampal Cells. Mol Neurobiol 2016; 54:2209-2222. [PMID: 26941101 DOI: 10.1007/s12035-016-9818-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
Methylene blue (MB) can ameliorate behavioral, neurochemical, and neuropathological impairments in animal models of acute and chronic neurodegenerative disorders, but the underlying mechanism remains unclear. Myocyte enhancer factor 2 (MEF2D) is known to promote neuronal survival in several models, and several survival and death signals converge on MEF2D and regulate its activity. Here, we investigated the role of MEF2D in the neuroprotective effect of MB against glutamate-induced toxicity in HT22 neuronal cells. Our results showed that MB, event at less than 100 nM, improved the viability of HT22 cells exposed to 2 mM glutamate. MB attenuated the mitochondrial impairment and quenches the reactive oxygen species (ROS) induced by glutamate. Surprisingly, MB at 50-200 nM did not affect the Nrf2/HO-1 pathway, an important endogenous anti-oxidative system. Further study showed that MB increased the transcription and translation of MEF2D. In addition, MB upregulated the expression of mitochondrial NADH dehydrogenase 6 (ND6) in a MEF2D-dependent manner. Knockdown of MEF2D abolished both MB-medicated increase of ND6 and MB-induced neuroprotection against glutamate-induced toxicity. Moreover, we showed that MB promoted Akt function activity, suppressed GSK-3β activity, and increased MEF2D level in hippocampus of mice and HT22 cells. These findings for the first time demonstrate that MB protects HT22 neuronal cells against glutamate-induced cell death partially via the regulation of MEF2D-associated survival pathway.
Collapse
Affiliation(s)
- Zi-Wei Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Zhejiang Pharmaceutical College, Hangzhou, Zhejiang Province, China
| | - Anmin Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Qingyu Liu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jingkao Chen
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Ming Li
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Xiao-Juan Chao
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Pei-Qing Liu
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zi-Xu Mao
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Rong-Biao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510080, China. .,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China. .,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
43
|
Lam E, Pareek TK, Letterio JJ. Cdk5 controls IL-2 gene expression via repression of the mSin3a-HDAC complex. Cell Cycle 2016; 14:1327-36. [PMID: 25785643 DOI: 10.4161/15384101.2014.987621] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a unique member of a family of serine/threonine cyclin-dependent protein kinases. We previously demonstrated disruption of Cdk5 gene expression in mice impairs T-cell function and ameliorates T-cell-mediated neuroinflammation. Here, we show Cdk5 modulates gene expression during T-cell activation by impairing the repression of gene transcription by histone deacetylase 1 (HDAC1) through specific phosphorylation of the mSin3a protein at serine residue 861. Disruption of Cdk5 activity in T-cells enhances HDAC activity and binding of the HDAC1/mSin3a complex to the IL-2 promoter, leading to suppression of IL-2 gene expression. These data point to essential roles for Cdk5 in regulating gene expression in T-cells and transcriptional regulation by the co-repressor mSin3a.
Collapse
Affiliation(s)
- Eric Lam
- a Department of Pediatrics; Division of Pediatric Hematology/Oncology; University Hospitals Rainbow Babies & Children's Hospital Center; The Angie Fowler Adolescent & Young Adult Cancer Institute; The Case Comprehensive Cancer Center ; Case Western Reserve University ; Cleveland , OH USA
| | | | | |
Collapse
|
44
|
Huang Y, Wu X, Guo J, Yuan J. Myocyte-specific enhancer binding factor 2A expression is downregulated during temporal lobe epilepsy. Int J Neurosci 2015; 126:786-96. [PMID: 26439092 DOI: 10.3109/00207454.2015.1062003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myocyte-specific enhancer binding factor 2A (MEF2A) is a multifunctional nuclear protein that regulates synaptogenesis, dendritic morphogenesis, and neuronal survival. This study aimed to investigate the expression pattern of MEF2A in epileptogenic processes. MEF2A expression was detected in 20 temporal neocortex tissue samples from patients with temporal lobe epilepsy (TLE) and 20 samples from trauma patients without epilepsy by real-time quantitative polymerase chain reaction, immunohistochemistry, double-label immunofluorescent staining, and western blot analysis. In addition, the expression patterns of MEF2A in the hippocampus and adjacent cortex of a lithium-pilocarpine-induced TLE rat model and control rats were examined. MEF2A was found to be expressed in the nuclei of neurons but not in the dendrites of neurons and astrocytes. MEF2A expression was significantly downregulated in temporal neocortex of humans and rats with TLE compared to the control groups. In addition, in the lithium-pilocarpine-induced TLE model, MEF2A expression dynamically decreased within 2 months. Taken together, these data suggest that MEF2A is involved in the pathogenesis of TLE.
Collapse
Affiliation(s)
- Yunyi Huang
- a Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University , Yangmei Chen , China
| | - Xuling Wu
- a Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University , Yangmei Chen , China
| | - Jing Guo
- a Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University , Yangmei Chen , China
| | - Jinxian Yuan
- a Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University , Yangmei Chen , China
| |
Collapse
|
45
|
Binukumar BK, Shukla V, Amin ND, Grant P, Bhaskar M, Skuntz S, Steiner J, Pant HC. Peptide TFP5/TP5 derived from Cdk5 activator P35 provides neuroprotection in the MPTP model of Parkinson's disease. Mol Biol Cell 2015; 26:4478-91. [PMID: 26399293 PMCID: PMC4666141 DOI: 10.1091/mbc.e15-06-0415] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/17/2015] [Indexed: 11/29/2022] Open
Abstract
TFP5/TP5 rescues dopaminergic neurodegeneration induced by MPTP in a mouse model of Parkinson’s disease (PD). The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Selective inhibition of Cdk5/p25 by TFP5/TP5 peptide identifies the kinase as a potential target to reduce neurodegeneration in PD. Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity. Previously we reported that TFP5 peptide has neuroprotective effects in animal models of Alzheimer’s disease. Here we show that TFP5/TP5 selective inhibition of Cdk5/p25 hyperactivation in vivo and in vitro rescues nigrostriatal dopaminergic neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) in a mouse model of PD. TP5 peptide treatment also blocked dopamine depletion in the striatum and improved gait dysfunction after MPTP administration. The neuroprotective effect of TFP5/TP5 peptide is also associated with marked reduction in neuroinflammation and apoptosis. Here we show selective inhibition of Cdk5/p25 hyperactivation by TFP5/TP5 peptide, which identifies the kinase as a potential therapeutic target to reduce neurodegeneration in Parkinson’s disease.
Collapse
Affiliation(s)
- B K Binukumar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Varsha Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Niranjana D Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip Grant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - M Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Susan Skuntz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Harish C Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
46
|
Estrella NL, Clark AL, Desjardins CA, Nocco SE, Naya FJ. MEF2D deficiency in neonatal cardiomyocytes triggers cell cycle re-entry and programmed cell death in vitro. J Biol Chem 2015; 290:24367-80. [PMID: 26294766 DOI: 10.1074/jbc.m115.666461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 01/04/2023] Open
Abstract
The cardiomyocyte cell cycle is a poorly understood process. Mammalian cardiomyocytes permanently withdraw from the cell cycle shortly after birth but can re-enter the cell cycle and proliferate when subjected to injury within a brief temporal window in the neonatal period. Thus, investigating the mechanisms of cell cycle regulation in neonatal cardiomyocytes may provide critical insight into the molecular events that prevent adult myocytes from proliferating in response to injury or stress. MEF2D is a key transcriptional mediator of pathological remodeling in the adult heart downstream of various stress-promoting insults. However, the specific gene programs regulated by MEF2D in cardiomyocytes are unknown. By performing genome-wide transcriptome analysis using MEF2D-depleted neonatal cardiomyocytes, we found a significant impairment in the cell cycle, characterized by the up-regulation of numerous positive cell cycle regulators. Expression of Pten, the primary negative regulator of PI3K/Akt, was significantly reduced in MEF2D-deficient cardiomyocytes and found to be a direct target gene of MEF2D. Consistent with these findings mutant cardiomyocytes showed activation of the PI3K/Akt survival pathway. Paradoxically, prolonged deficiency of MEF2D in neonatal cardiomyocytes did not trigger proliferation but instead resulted in programmed cell death, which is likely mediated by the E2F transcription factor. These results demonstrate a critical role for MEF2D in cell cycle regulation of post-mitotic, neonatal cardiomyocytes in vitro.
Collapse
Affiliation(s)
- Nelsa L Estrella
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Amanda L Clark
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Cody A Desjardins
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Sarah E Nocco
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
47
|
Abstract
Alzheimer's disease (AD) is known as the most fatal chronic neurodegenerative disease in adults along with progressive loss of memory and other cognitive function disorders. Cyclin-dependent kinase 5 (Cdk5), a unique member of the cyclin-dependent kinases (Cdks), is reported to intimately associate with the process of the pathogenesis of AD. Cdk5 is of vital importance in the development of CNS and neuron movements such as neuronal migration and differentiation, synaptic functions, and memory consolidation. However, when neurons suffer from pathological stimuli, Cdk5 activity becomes hyperactive and causes aberrant hyperphosphorylation of various substrates of Cdk5 like amyloid precursor protein (APP), tau and neurofilament, resulting in neurodegenerative diseases like AD. Deregulation of Cdk5 contributes to an array of pathological events in AD, ranging from formation of senile plaques and neurofibrillary tangles, synaptic damage, mitochondrial dysfunction to cell cycle reactivation as well as neuronal cell apoptosis. More importantly, an inhibition of Cdk5 activity with inhibitors such as RNA inference (RNAi) could protect from memory decline and neuronal cell loss through suppressing β-amyloid (Aβ)-induced neurotoxicity and tauopathies. This review will briefly describe the above-mentioned possible roles of Cdk5 in the physiological and pathological mechanisms of AD, further discussing recent advances and challenges in Cdk5 as a therapeutic target.
Collapse
|
48
|
Kim C, Yun N, Lee J, Youdim MBH, Ju C, Kim WK, Han PL, Oh YJ. Phosphorylation of CHIP at Ser20 by Cdk5 promotes tAIF-mediated neuronal death. Cell Death Differ 2015. [PMID: 26206088 DOI: 10.1038/cdd.2015.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase and its dysregulation is implicated in neurodegenerative diseases. Likewise, C-terminus of Hsc70-interacting protein (CHIP) is linked to neurological disorders, serving as an E3 ubiquitin ligase for targeting damaged or toxic proteins for proteasomal degradation. Here, we demonstrate that CHIP is a novel substrate for Cdk5. Cdk5 phosphorylates CHIP at Ser20 via direct binding to a highly charged domain of CHIP. Co-immunoprecipitation and ubiquitination assays reveal that Cdk5-mediated phosphorylation disrupts the interaction between CHIP and truncated apoptosis-inducing factor (tAIF) without affecting CHIP's E3 ligase activity, resulting in the inhibition of CHIP-mediated degradation of tAIF. Lentiviral transduction assay shows that knockdown of Cdk5 or overexpression of CHIP(S20A), but not CHIP(WT), attenuates tAIF-mediated neuronal cell death induced by hydrogen peroxide. Thus, we conclude that Cdk5-mediated phosphorylation of CHIP negatively regulates its neuroprotective function, thereby contributing to neuronal cell death progression following neurotoxic stimuli.
Collapse
Affiliation(s)
- C Kim
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea.,Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - N Yun
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - J Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| | - M B H Youdim
- Technion Rapport Faculty of Medicine, Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Haifa, Haifa 30196, Israel
| | - C Ju
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Korea
| | - W-K Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 136-705, Korea
| | - P-L Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Y J Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749, Korea
| |
Collapse
|
49
|
Chaperone-mediated autophagy and neurodegeneration: connections, mechanisms, and therapeutic implications. Neurosci Bull 2015. [PMID: 26206600 DOI: 10.1007/s12264-015-1542-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes degrade dysfunctional intracellular components via three pathways: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Unlike the other two, CMA degrades cytosolic proteins with a recognized KFERQ-like motif in lysosomes and is important for cellular homeostasis. CMA activity declines with age and is altered in neurodegenerative diseases. Its impairment leads to the accumulation of aggregated proteins, some of which may be directly tied to the pathogenic processes of neurodegenerative diseases. Its induction may accelerate the clearance of pathogenic proteins and promote cell survival, representing a potential therapeutic approach for the treatment of neurodegenerative diseases. In this review, we summarize the current findings on how CMA is involved in neurodegenerative diseases, especially in Parkinson's disease.
Collapse
|
50
|
Abstract
Increasing evidence suggests that cellular stress may underlie mood disorders such as bipolar disorder and major depression, particularly as lithium and its targets can protect against neuronal cell death. Here we describe N-methyl-D-aspartate (NMDA)-induced filamentous actin reorganization (NIFAR) as a useful in-vitro model for studying acute neurocellular stress and investigating the effects of mood stabilizers. Brief incubation of cultured neurons with NMDA (50 µM, 5 min) induces marked reorganization of F-actin within the somatodendritic domain of a majority of neurons. During NIFAR, F-actin is rapidly depleted from dendritic spines and aberrantly aggregates within the dendrite shaft. The widely used mood stabilizer lithium chloride prevented NIFAR in a time-dependent and dose-dependent manner, consistent with its known efficacy in treating bipolar disorder. Inhibitors of the lithium target glycogen synthase kinase 3 and its upstream activator phosphoinositide-3-kinase also prevented NIFAR. The antidepressant compounds imipramine and fluoxetine also attenuated NIFAR. These findings have potential relevance to neuropsychiatric diseases characterized by excessive glutamate receptor activity and synaptotoxicity. We propose that protection of the dendritic actin cytoskeleton may be a common mechanism shared by various mood stabilizers.
Collapse
|