1
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
2
|
Liu R, Jia R, Wang D, Mirkin MV. Elucidating the Shape of Current Transients in Electrochemical Resistive-Pulse Sensing of Single Liposomes. Anal Chem 2023; 95:13756-13761. [PMID: 37676905 DOI: 10.1021/acs.analchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Electrochemical resistive-pulse (ERP) sensing with conductive carbon nanopipettes (CNPs) has recently been developed and employed for the detection of single liposomes and biological vesicles, and for the analysis of redox molecules contained in such vesicles. However, the origins of different shapes of current transients produced by the translocation of single vesicles through the CNP remain poorly understood. Herein, we report extensive finite-element simulations of both portions of an ERP transient, the current blockage by a vesicle approaching and passing through the pipet orifice and the faradaic current spike due to oxidation/reduction of redox species released from a vesicle on the carbon surface, for different values of parameters defining the geometry and dynamics of the vesicle/CNP system. The effects of the pipet geometry, surface charge, transport, vesicle trajectory, and collision location on the shape of current transients are investigated. The possibility of quantitative analysis of experimental ERP transients produced by translocations of liposomes and extracellular vesicles by fitting them to simulated curves is demonstrated. The developed theory can enable a more reliable interpretation of complicated ERP signals and characterization of the size and contents of single biological and artificial vesicles.
Collapse
Affiliation(s)
- Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College - CUNY, Flushing, New York 11367, United States
- The Graduate Center of City University of New York, New York, New York 10016, United States
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Michael V Mirkin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- The Graduate Center of City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Engisch KL, Wang X, Rich MM. Homeostatic Plasticity of the Mammalian Neuromuscular Junction. ADVANCES IN NEUROBIOLOGY 2022; 28:111-130. [PMID: 36066823 DOI: 10.1007/978-3-031-07167-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mammalian neuromuscular junction (NMJ) is an ideal preparation to study synaptic plasticity. Its simplicity- one input, one postsynaptic target- allows experimental manipulations and mechanistic analyses that are impossible at more complex synapses. Homeostatic synaptic plasticity attempts to maintain normal function in the face of perturbations in activity. At the NMJ, 3 aspects of activity are sensed to trigger 3 distinct mechanisms that contribute to homeostatic plasticity: Block of presynaptic action potentials triggers increased quantal size secondary to increased release of acetylcholine from vesicles. Simultaneous block of pre- and postsynaptic action potentials triggers an increase in the probability of vesicle release. Block of acetylcholine binding to acetylcholine receptors during spontaneous fusion of single vesicles triggers an increase in the number of releasable vesicles as well as increased motoneuron excitability. Understanding how the NMJ responds to perturbations of synaptic activity informs our understanding of its response to diverse neuromuscular diseases.
Collapse
Affiliation(s)
- Kathrin L Engisch
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA.
| |
Collapse
|
4
|
Short-Term Synaptic Plasticity: Microscopic Modelling and (Some) Computational Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1359:105-121. [DOI: 10.1007/978-3-030-89439-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Delgado JY. Lack of support for surface diffusion of postsynaptic AMPARs in tuning synaptic transmission. Biophys J 2021; 120:3409-3417. [PMID: 34214532 DOI: 10.1016/j.bpj.2021.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022] Open
Abstract
Repetitive stimulation of excitatory synapses triggers molecular events required for signal transfer across neuronal synapses. It has been hypothesized that one of these molecular events, the diffusion of extrasynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPARs) (i.e., the diffusion hypothesis), is necessary to help synapses recover from paired-pulse depression. To examine this presumed role of AMPAR diffusion during repetitive presynaptic stimulation, a biophysical model based on published physiological results was developed to track the localization and gating of each AMPAR. The model demonstrates that AMPAR gating in short intervals of fewer than 100 ms is controlled by their position in relation to the glutamate release site and by their recovery from desensitization, but it is negligibly influenced by their diffusion. Therefore, these simulations failed to demonstrate a role for AMPAR diffusion in helping synapses recover from paired-pulse depression.
Collapse
Affiliation(s)
- Jary Y Delgado
- Department of Biology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
6
|
Booras A, Stevenson T, McCormack CN, Rhoads ME, Hanks TD. Change point detection with multiple alternatives reveals parallel evaluation of the same stream of evidence along distinct timescales. Sci Rep 2021; 11:13098. [PMID: 34162943 PMCID: PMC8222317 DOI: 10.1038/s41598-021-92470-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
In order to behave appropriately in a rapidly changing world, individuals must be able to detect when changes occur in that environment. However, at any given moment, there are a multitude of potential changes of behavioral significance that could occur. Here we investigate how knowledge about the space of possible changes affects human change point detection. We used a stochastic auditory change point detection task that allowed model-free and model-based characterization of the decision process people employ. We found that subjects can simultaneously apply distinct timescales of evidence evaluation to the same stream of evidence when there are multiple types of changes possible. Informative cues that specified the nature of the change led to improved accuracy for change point detection through mechanisms involving both the timescales of evidence evaluation and adjustments of decision bounds. These results establish three important capacities of information processing for decision making that any proposed neural mechanism of evidence evaluation must be able to support: the ability to simultaneously employ multiple timescales of evidence evaluation, the ability to rapidly adjust those timescales, and the ability to modify the amount of information required to make a decision in the context of flexible timescales.
Collapse
Affiliation(s)
- Alexa Booras
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA
| | - Tanner Stevenson
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA
| | - Connor N. McCormack
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA
| | - Marie E. Rhoads
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Neuroscience, University of California Los Angeles, Los Angeles, CA USA
| | - Timothy D. Hanks
- grid.27860.3b0000 0004 1936 9684Center for Neuroscience, University of California Davis, Davis, CA USA ,grid.27860.3b0000 0004 1936 9684Department of Neurology, University of California Davis, Sacramento, CA USA
| |
Collapse
|
7
|
Impaired inhibitory GABAergic synaptic transmission and transcription studied in single neurons by Patch-seq in Huntington's disease. Proc Natl Acad Sci U S A 2021; 118:2020293118. [PMID: 33952696 DOI: 10.1073/pnas.2020293118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transcriptional dysregulation in Huntington's disease (HD) causes functional deficits in striatal neurons. Here, we performed Patch-sequencing (Patch-seq) in an in vitro HD model to investigate the effects of mutant Huntingtin (Htt) on synaptic transmission and gene transcription in single striatal neurons. We found that expression of mutant Htt decreased the synaptic output of striatal neurons in a cell autonomous fashion and identified a number of genes whose dysregulation was correlated with physiological deficiencies in mutant Htt neurons. In support of a pivotal role for epigenetic mechanisms in HD pathophysiology, we found that inhibiting histone deacetylase 1/3 activities rectified several functional and morphological deficits and alleviated the aberrant transcriptional profiles in mutant Htt neurons. With this study, we demonstrate that Patch-seq technology can be applied both to better understand molecular mechanisms underlying a complex neurological disease at the single-cell level and to provide a platform for screening for therapeutics for the disease.
Collapse
|
8
|
Findling C, Wyart V. Computation noise in human learning and decision-making: origin, impact, function. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Jia R, Mirkin MV. The double life of conductive nanopipette: a nanopore and an electrochemical nanosensor. Chem Sci 2020; 11:9056-9066. [PMID: 34123158 PMCID: PMC8163349 DOI: 10.1039/d0sc02807j] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/05/2020] [Indexed: 12/29/2022] Open
Abstract
The continuing interest in nanoscale research has spurred the development of nanosensors for liquid phase measurements. These include nanopore-based sensors typically employed for detecting nanoscale objects, such as nanoparticles, vesicles and biomolecules, and electrochemical nanosensors suitable for identification and quantitative analysis of redox active molecules. In this Perspective, we discuss conductive nanopipettes (CNP) that can combine the advantages of single entity sensitivity of nanopore detection with high selectivity and capacity for quantitative analysis offered by electrochemical sensors. Additionally, the small physical size and needle-like shape of a CNP enables its use as a tip in the scanning electrochemical microscope (SECM), thus, facilitating precise positioning and localized measurements in biological systems.
Collapse
Affiliation(s)
- Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY Flushing NY 11367 USA
- The Graduate Center of CUNY New York NY 10016 USA
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY Flushing NY 11367 USA
- The Graduate Center of CUNY New York NY 10016 USA
| |
Collapse
|
10
|
Zhang D, Zhou W, Lam TT, Li Y, Duman JG, Dougherty PM, Grosshans DR. Cranial irradiation induces axon initial segment dysfunction and neuronal injury in the prefrontal cortex and impairs hippocampal coupling. Neurooncol Adv 2020; 2:vdaa058. [PMID: 32642710 PMCID: PMC7260696 DOI: 10.1093/noajnl/vdaa058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Radiation therapy for brain tumors commonly induces cognitive dysfunction. The prefrontal cortex (PFC) is crucial for a diverse array of cognitive processes, however, its role in radiation-induced cognitive dysfunction is unknown. We previously found that cranial irradiation impairs neuroplasticity along the hippocampal-PFC pathway. Herein, we hypothesized that brain irradiation directly affects the firing properties of PFC neurons, contributing to deficits in neuronal functions. METHODS In vivo recordings were used to monitor the firing activities of PFC neurons and local field potentials in both PFC and hippocampal CA1/subicular regions after cranial irradiation of Sprague Dawley rats. We further assessed the impacts of irradiation on axon initial segments (AISs) with immunofluorescence assays of PFC slices. RESULTS We found that PFC neurons exhibited increased excitation 3 days after radiation and the timing of increased excitation coincided with elongation of the AIS. At 2 weeks, excitation levels returned to nearly normal levels however the population of spontaneously firing neurons decreased. While the number of NeuN-positive neurons in the PFC was not different, persistent neuronal injury, manifested as ATF-3 staining, was present at 2 weeks. Radiation also disrupted communication along the hippocampal-PFC pathway, with elongation of the phase lag between regions. Analysis of paired-pulse ratios suggested that this was secondary to presynaptic dysfunction. CONCLUSIONS Cranial irradiation excited and injured surviving PFC neurons and was associated with a partial block of PFC's functional coupling to the hippocampus. These deficits in the PFC may contribute to radiation-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Die Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Zhou
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Thanh Thai Lam
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yan Li
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph G Duman
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David R Grosshans
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,Corresponding Author: David R. Grosshans, MD, PhD, Departments of Radiation Oncology and Experimental Radiation Oncology, Unit 97, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA ()
| |
Collapse
|
11
|
Pan R, Hu K, Jia R, Rotenberg SA, Jiang D, Mirkin MV. Resistive-Pulse Sensing Inside Single Living Cells. J Am Chem Soc 2020; 142:5778-5784. [DOI: 10.1021/jacs.9b13796] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rongrong Pan
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Keke Hu
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Susan A. Rotenberg
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| |
Collapse
|
12
|
Timbie C, García-Cabezas MÁ, Zikopoulos B, Barbas H. Organization of primate amygdalar-thalamic pathways for emotions. PLoS Biol 2020; 18:e3000639. [PMID: 32106269 PMCID: PMC7064256 DOI: 10.1371/journal.pbio.3000639] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Studies on the thalamus have mostly focused on sensory relay nuclei, but the organization of pathways associated with emotions is not well understood. We addressed this issue by testing the hypothesis that the primate amygdala acts, in part, like a sensory structure for the affective import of stimuli and conveys this information to the mediodorsal thalamic nucleus, magnocellular part (MDmc). We found that primate sensory cortices innervate amygdalar sites that project to the MDmc, which projects to the orbitofrontal cortex. As in sensory thalamic systems, large amygdalar terminals innervated excitatory relay and inhibitory neurons in the MDmc that facilitate faithful transmission to the cortex. The amygdala, however, uniquely innervated a few MDmc neurons by surrounding and isolating large segments of their proximal dendrites, as revealed by three-dimensional high-resolution reconstruction. Physiologic studies have shown that large axon terminals are found in pathways issued from motor systems that innervate other brain centers to help distinguish self-initiated from other movements. By analogy, the amygdalar pathway to the MDmc may convey signals forwarded to the orbitofrontal cortex to monitor and update the status of the environment in processes deranged in schizophrenia, resulting in attribution of thoughts and actions to external sources.
Collapse
Affiliation(s)
- Clare Timbie
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Miguel Á. García-Cabezas
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Human Systems Neuroscience Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Helen Barbas
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Neuronal Glutamatergic Synaptic Clefts Alkalinize Rather Than Acidify during Neurotransmission. J Neurosci 2020; 40:1611-1624. [PMID: 31964719 DOI: 10.1523/jneurosci.1774-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
The dogma that the synaptic cleft acidifies during neurotransmission is based on the corelease of neurotransmitters and protons from synaptic vesicles, and is supported by direct data from sensory ribbon-type synapses. However, it is unclear whether acidification occurs at non-ribbon-type synapses. Here we used genetically encoded fluorescent pH indicators to examine cleft pH at conventional neuronal synapses. At the neuromuscular junction of female Drosophila larvae, we observed alkaline spikes of over 1 log unit during fictive locomotion in vivo. Ex vivo, single action potentials evoked alkalinizing pH transients of only ∼0.01 log unit, but these transients summated rapidly during burst firing. A chemical pH indicator targeted to the cleft corroborated these findings. Cleft pH transients were dependent on Ca2+ movement across the postsynaptic membrane, rather than neurotransmitter release per se, a result consistent with cleft alkalinization being driven by the Ca2+/H+ antiporting activity of the plasma membrane Ca2+-ATPase at the postsynaptic membrane. Targeting the pH indicators to the microenvironment of the presynaptic voltage gated Ca2+ channels revealed that alkalinization also occurred within the cleft proper at the active zone and not just within extrasynaptic regions. Application of the pH indicators at the mouse calyx of Held, a mammalian central synapse, similarly revealed cleft alkalinization during burst firing in both males and females. These findings, made at two quite different non-ribbon type synapses, suggest that cleft alkalinization during neurotransmission, rather than acidification, is a generalizable phenomenon across conventional neuronal synapses.SIGNIFICANCE STATEMENT Neurotransmission is highly sensitive to the pH of the extracellular milieu. This is readily evident in the neurological symptoms that accompany systemic acid/base imbalances. Imaging data from sensory ribbon-type synapses show that neurotransmission itself can acidify the synaptic cleft, likely due to the corelease of protons and glutamate. It is not clear whether the same phenomenon occurs at conventional neuronal synapses due to the difficulties in collecting such data. If it does occur, it would provide for an additional layer of activity-dependent modulation of neurotransmission. Our findings of alkalinization, rather than acidification, within the cleft of two different neuronal synapses encourages a reassessment of the scope of activity-dependent pH influences on neurotransmission and short-term synaptic plasticity.
Collapse
|
14
|
Tang Y, Yang XK, Zhang XW, Wu WT, Zhang FL, Jiang H, Liu YL, Amatore C, Huang WH. Harpagide, a natural product, promotes synaptic vesicle release as measured by nanoelectrode amperometry. Chem Sci 2019; 11:778-785. [PMID: 34123052 PMCID: PMC8146302 DOI: 10.1039/c9sc05538j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons and low level of dopamine (DA) in the midbrain. Recent studies suggested that some natural products can protect neurons against injury, but their role on neurotransmitter release and the underlying mechanisms remained unknown. In this work, nanoelectrode electrochemistry was used for the first time to quantify DA release inside single DAergic synapses. Our results unambiguously demonstrated that harpagide, a natural product, effectively enhances synaptic DA release and restores DA release at normal levels from injured neurons in PD model. These important protective and curative effects are shown to result from the fact that harpagide efficiently inhibits the phosphorylation and aggregation of α-synuclein by alleviating the intracellular reactive oxygen level, being beneficial for vesicle loading and recycling. This establishes that harpagide offers promising avenues for preventive or therapeutic interventions against PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yun Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xiao-Ke Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Wen-Tao Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Fu-Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Christian Amatore
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- PASTEUR, Departement de Chimie, Pcole Normale Superieure, PSL Research University, Sorbonne Universites, UPMC Univ. Paris 06, CNRS 24 rue Lhomond 75005 Paris France
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
15
|
Barros-Zulaica N, Rahmon J, Chindemi G, Perin R, Markram H, Muller E, Ramaswamy S. Estimating the Readily-Releasable Vesicle Pool Size at Synaptic Connections in the Neocortex. Front Synaptic Neurosci 2019; 11:29. [PMID: 31680928 PMCID: PMC6813366 DOI: 10.3389/fnsyn.2019.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
Previous studies based on the 'Quantal Model' for synaptic transmission suggest that neurotransmitter release is mediated by a single release site at individual synaptic contacts in the neocortex. However, recent studies seem to contradict this hypothesis and indicate that multi-vesicular release (MVR) could better explain the synaptic response variability observed in vitro. In this study we present a novel method to estimate the number of release sites per synapse, also known as the size of the readily releasable pool (NRRP), from paired whole-cell recordings of connections between layer 5 thick tufted pyramidal cell (L5_TTPC) in the juvenile rat somatosensory cortex. Our approach extends the work of Loebel et al. (2009) by leveraging a recently published data-driven biophysical model of neocortical tissue. Using this approach, we estimated NRRP to be between two to three for synaptic connections between L5_TTPCs. To constrain NRRP values for other connections in the microcircuit, we developed and validated a generalization approach using published data on the coefficient of variation (CV) of the amplitudes of post-synaptic potentials (PSPs) from literature and comparing them against in silico experiments. Our study predicts that transmitter release at synaptic connections in the neocortex could be mediated by MVR and provides a data-driven approach to constrain the MVR model parameters in the microcircuit.
Collapse
Affiliation(s)
| | - John Rahmon
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Giuseppe Chindemi
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eilif Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Srikanth Ramaswamy
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
16
|
Hu K, Wang D, Zhou M, Bae JH, Yu Y, Xin H, Mirkin MV. Ultrasensitive Detection of Dopamine with Carbon Nanopipets. Anal Chem 2019; 91:12935-12941. [PMID: 31503470 DOI: 10.1021/acs.analchem.9b02994] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Carbon fiber micro- and nanoelectrodes have been extensively used to measure dopamine and other neurotransmitters in biological systems. Although the radii of some reported probes were ≪1 μm, the lengths of the exposed carbon were typically on the micrometer scale, thus limiting the spatial resolution of electroanalytical measurements. Recent attempts to determine neurotransmitters in single cells and vesicles have provided additional impetus for decreasing the probe dimensions. Here, we report two types of dopamine sensors based on carbon nanopipets (CNP) prepared by chemical vapor deposition of carbon into prepulled quartz capillaries. These include 10-200 nm radius CNPs with a cavity near the orifice and CNPs with an open path in the middle, in which the volume of sampled solution can be controlled by the applied pressure. Because of the relatively large surface area of carbon exposed to solution inside the pipet, both types of sensors yielded well-shaped voltammograms of dopamine down to ca. 1 nM concentrations, and the unprecedented voltammetric response to 100 pM dopamine was obtained with open CNPs. TEM tomography and numerical simulations were used to model CNP responses. The effect of dopamine adsorption on the CNP detection limit is discussed along with the possibilities of measuring other physiologically important analytes (e.g., serotonin) and eliminating anionic and electrochemically irreversible interferences (e.g., ascorbic acid).
Collapse
Affiliation(s)
- Keke Hu
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States.,The Graduate Center of CUNY , New York , New York 10016 , United States
| | - Dengchao Wang
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Min Zhou
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Je Hyun Bae
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Yun Yu
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Huolin Xin
- Department of Physics & Astronomy , University of California , Irvine , California 92697 , United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States.,The Graduate Center of CUNY , New York , New York 10016 , United States
| |
Collapse
|
17
|
Solouki S, Bahrami F, Janahmadi M. The Concept of Transmission Coefficient Among Different Cerebellar Layers: A Computational Tool for Analyzing Motor Learning. Front Neural Circuits 2019; 13:54. [PMID: 31507382 PMCID: PMC6718712 DOI: 10.3389/fncir.2019.00054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
High-fidelity regulation of information transmission among cerebellar layers is mainly provided by synaptic plasticity. Therefore, determining the regulatory foundations of synaptic plasticity in the cerebellum and translating them to behavioral output are of great importance. To date, many experimental studies have been carried out in order to clarify the effect of synaptic defects, while targeting a specific signaling pathway in the cerebellar function. However, the contradictory results of these studies at the behavioral level further add to the ambiguity of the problem. Information transmission through firing rate changes in populations of interconnected neurons is one of the most widely accepted principles of neural coding. In this study, while considering the efficacy of synaptic interactions among the cerebellar layers, we propose a firing rate model to realize the concept of transmission coefficient. Thereafter, using a computational approach, we test the effect of different values of transmission coefficient on the gain adaptation of a cerebellar-dependent motor learning task. In conformity with the behavioral data, the proposed model can accurately predict that disruption in different forms of synaptic plasticity does not have the same effect on motor learning. Specifically, impairment in training mechanisms, like in the train-induced LTD in parallel fiber-Purkinje cell synapses, has a significant negative impact on all aspects of learning, including memory formation, transfer, and consolidation, although it does not disrupt basic motor performance. In this regard, the overinduction of parallel fiber-molecular layer interneuron LTP could not prevent motor learning impairment, despite its vital role in preserving the robustness of basic motor performance. In contrast, impairment in plasticity induced by interneurons and background activity of climbing fibers is partly compensable through overinduction of train-induced parallel fiber-Purkinje cell LTD. Additionally, blockade of climbing fiber signaling to the cerebellar cortex, referred to as olivary system lesion, shows the most destructive effect on both motor learning and basic motor performance. Overall, the obtained results from the proposed computational framework are used to provide a map from procedural motor memory formation in the cerebellum. Certainly, the generalization of this concept to other multi-layered networks of the brain requires more physiological and computational researches.
Collapse
Affiliation(s)
- Saeed Solouki
- Control and Intelligent Processing Center of Excellence, Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fariba Bahrami
- Control and Intelligent Processing Center of Excellence, Human Motor Control and Computational Neuroscience Laboratory, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Goel P, Li X, Dickman D. Estimation of the Readily Releasable Synaptic Vesicle Pool at the Drosophila Larval Neuromuscular Junction. Bio Protoc 2019; 9:e3127. [PMID: 30761328 DOI: 10.21769/bioprotoc.3127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Presynaptic boutons at nerve terminals are densely packed with synaptic vesicles, specialized organelles for rapid and regulated neurotransmitter secretion. Upon depolarization of the nerve terminal, synaptic vesicles fuse at specializations called active zones that are localized at discrete compartments in the plasma membrane to initiate synaptic transmission. A small proportion of synaptic vesicles are docked and primed for immediate fusion upon synaptic stimulation, which together comprise the readily releasable pool. The size of the readily releasable pool is an important property of synapses, which influences release probability and can dynamically change during various forms of plasticity. Here we describe a detailed protocol for estimating the readily releasable pool at a model glutamatergic synapse, the Drosophila neuromuscular junction. This synapse is experimentally robust and amenable to sophisticated genetic, imaging, electrophysiological, and pharmacological approaches. We detail the experimental design, electrophysiological recording procedure, and quantitative analysis necessary to determine the readily releasable pool size. This technique requires the use of a two-electrode voltage-clamp recording configuration in elevated external Ca2+ with high frequency stimulation. We have used this assay to measure the readily releasable pool size and reveal that a form of homeostatic plasticity modulates this pool with synapse-specific and compartmentalized precision. This powerful approach can be utilized to illuminate the dynamics of synaptic vesicle trafficking and plasticity and determine how synaptic function adapts and deteriorates during states of altered development, stress and neuromuscular disease.
Collapse
Affiliation(s)
- Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, USA
| | - Xiling Li
- Department of Neurobiology, University of Southern California, Los Angeles, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, USA
| |
Collapse
|
19
|
Lin CY, Luo SC, Yu JS, Chen TC, Su WF. Peptide-Based Polyelectrolyte Promotes Directional and Long Neurite Outgrowth. ACS APPLIED BIO MATERIALS 2018; 2:518-526. [DOI: 10.1021/acsabm.8b00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chia-Yu Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Jia-Shing Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Tapei 10002, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Guruge C, Ouedraogo YP, Comitz RL, Ma J, Losonczy A, Nesnas N. Improved Synthesis of Caged Glutamate and Caging Each Functional Group. ACS Chem Neurosci 2018; 9:2713-2721. [PMID: 29750497 DOI: 10.1021/acschemneuro.8b00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutamate is an excitatory neurotransmitter that controls numerous pathways in the brain. Neuroscientists make use of photoremovable protecting groups, also known as cages, to release glutamate with precise spatial and temporal control. Various cage designs have been developed and among the most effective has been the nitroindolinyl caging of glutamate. We, hereby, report an improved synthesis of one of the current leading molecules of caged glutamate, 4-carboxymethoxy-5,7-dinitroindolinyl glutamate (CDNI-Glu), which possesses efficiencies with the highest reported quantum yield of at least 0.5. We present the shortest route, to date, for the synthesis of CDNI-Glu in 4 steps, with a total reaction time of 40 h and an overall yield of 20%. We also caged glutamate at the other two functional groups, thereby, introducing two new cage designs: α-CDNI-Glu and N-CDNI-Glu. We included a study of their photocleavage properties using UV-vis, NMR, as well as a physiology experiment of a two-photon uncaging of CDNI-Glu in acute hippocampal brain slices. The newly introduced cage designs may have the potential to minimize the interference that CDNI-Glu has with the GABAA receptor. We are broadly disseminating this to enable neuroscientists to use these photoactivatable tools.
Collapse
Affiliation(s)
- Charitha Guruge
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Yannick P. Ouedraogo
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Richard L. Comitz
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Jingxuan Ma
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, New York 10032, United States
| | - Nasri Nesnas
- Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901, United States
| |
Collapse
|
21
|
Yuan Y, Huo H, Fang T. Effects of Metabolic Energy on Synaptic Transmission and Dendritic Integration in Pyramidal Neurons. Front Comput Neurosci 2018; 12:79. [PMID: 30319383 PMCID: PMC6168642 DOI: 10.3389/fncom.2018.00079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/07/2018] [Indexed: 11/24/2022] Open
Abstract
As a sophisticated computing unit, the pyramidal neuron requires sufficient metabolic energy to fuel its powerful computational capabilities. However, the majority of previous works focus on nonlinear integration and energy consumption in individual pyramidal neurons but seldom on the effects of metabolic energy on synaptic transmission and dendritic integration. Here, we developed biologically plausible models to simulate the synaptic transmission and dendritic integration of pyramidal neurons, exploring the relations between synaptic transmission and metabolic energy and between dendritic integration and metabolic energy. We find that synaptic energy not only drives synaptic vesicle cycle, but also participates in the regulation of this cycle. Release probability of synapses adapts to synaptic energy levels by regulating the speed of synaptic vesicle cycle. Besides, we also find that to match neural energy levels, only a part of the synapses receive presynaptic signals during a given period so that neurons have a low action potential frequency. That is, the number of simultaneously active synapses over a period of time should be adapted to neural energy levels.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Hong Huo
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Tao Fang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| |
Collapse
|
22
|
Zhang Y, Magnus G, Han VZ. Cell type-specific plasticity at parallel fiber synapses onto Purkinje cells in the posterior caudal lobe of the mormyrid fish cerebellum. J Neurophysiol 2018; 120:644-661. [PMID: 29668384 DOI: 10.1152/jn.00175.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been demonstrated that there are two morphological subtypes of Purkinje cells (PCs)-fan-shaped Purkinje cells (fPCs) and multipolar Purkinje cells (mPCs)-in the posterior caudal lobe of the mormyrid fish cerebellum, but whether these cell types are also functionally distinct is unknown. Here, we have used electrophysiological and pharmacological tools in a slice preparation to demonstrate that pairing parallel fiber (PF) and climbing fiber (CF) inputs at a low frequency induces long-term depression (LTD) in fPCs but long-term potentiation (LTP) in mPCs. The induction of plasticity in both cell types required postsynaptic Ca2+ and type 1α metabotropic glutamate receptors. However, the LTD in fPCs was inducted via a calcium/calmodulin-dependent protein kinase II cascade, whereas LTP induction in mPCs required calcineurin. Moreover, the LTD in fPCs and LTP in mPCs were accompanied by changes to the corresponding paired-pulse ratios and their coefficients of variation, suggesting presynaptic modes of expression for the plasticity at PF terminals for both cell types. Hence, the synaptic plasticity at PF synapses onto PCs in the posterior caudal lobe of the mormyrid cerebellum is cell type specific, with both pre- and postsynaptic mechanisms contributing to its induction and expression. NEW & NOTEWORTHY Much has been learnt about the cerebellar long-term depression (LTD) in the cortex. More recent work has shown that long-term potentiation (LTP) is equally important for cerebellar motor learning. Here we report for the first time that plasticity in the mormyrid cerebellum is cell type specific, e.g., following the conventional pairing of parallel and climbing fiber inputs in an in vitro preparation leads to LTD in one Purkinje cell subtype and LTP in another.
Collapse
Affiliation(s)
- Yueping Zhang
- Department of Pediatrics and Neuroscience, Xijing Hospital , Xi'an , China.,Center for Integrative Brain Research, Seattle Children's Research Institute , Seattle, Washington
| | - Gerhard Magnus
- Center for Integrative Brain Research, Seattle Children's Research Institute , Seattle, Washington
| | - Victor Z Han
- Center for Integrative Brain Research, Seattle Children's Research Institute , Seattle, Washington
| |
Collapse
|
23
|
Qiu QF, Zhang FL, Tang Y, Zhang XW, Jiang H, Liu YL, Huang WH. Real-time Monitoring of Exocytotic Glutamate Release from Single Neuron by Amperometry at an Enzymatic Biosensor. ELECTROANAL 2018. [DOI: 10.1002/elan.201700656] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Quan-Fa Qiu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Fu-Li Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yun Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Xin-Wei Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Hong Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| |
Collapse
|
24
|
Nakano Y, Karube F, Hirai Y, Kobayashi K, Hioki H, Okamoto S, Kameda H, Fujiyama F. Parvalbumin-producing striatal interneurons receive excitatory inputs onto proximal dendrites from the motor thalamus in male mice. J Neurosci Res 2018; 96:1186-1207. [PMID: 29314192 DOI: 10.1002/jnr.24214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Abstract
In rodents, the dorsolateral striatum regulates voluntary movement by integrating excitatory inputs from the motor-related cerebral cortex and thalamus to produce contingent inhibitory output to other basal ganglia nuclei. Striatal parvalbumin (PV)-producing interneurons receiving this excitatory input then inhibit medium spiny neurons (MSNs) and modify their outputs. To understand basal ganglia function in motor control, it is important to reveal the precise synaptic organization of motor-related cortical and thalamic inputs to striatal PV interneurons. To examine which domains of the PV neurons receive these excitatory inputs, we used male bacterial artificial chromosome transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein in PV neurons. An anterograde tracing study with the adeno-associated virus vector combined with immunodetection of pre- and postsynaptic markers visualized the distribution of the excitatory appositions on PV dendrites. Statistical analysis revealed that the density of thalamostriatal appositions along the dendrites was significantly higher on the proximal than distal dendrites. In contrast, there was no positional preference in the density of appositions from axons of the dorsofrontal cortex. Population observations of thalamostriatal and corticostriatal appositions by immunohistochemistry for pathway-specific vesicular glutamate transporters confirmed that thalamic inputs preferentially, and cortical ones less preferentially, made apposition on proximal dendrites of PV neurons. This axodendritic organization suggests that PV neurons produce fast and reliable inhibition of MSNs in response to thalamic inputs and process excitatory inputs from motor cortices locally and plastically, possibly together with other GABAergic and dopaminergic dendritic inputs, to modulate MSN inhibition.
Collapse
Affiliation(s)
- Yasutake Nakano
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Yasuharu Hirai
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinichiro Okamoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kameda
- Department of Physiology, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
25
|
Sakamoto H, Ariyoshi T, Kimpara N, Sugao K, Taiko I, Takikawa K, Asanuma D, Namiki S, Hirose K. Synaptic weight set by Munc13-1 supramolecular assemblies. Nat Neurosci 2017; 21:41-49. [DOI: 10.1038/s41593-017-0041-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/07/2017] [Indexed: 01/03/2023]
|
26
|
Padamsey Z, Tong R, Emptage N. Glutamate is required for depression but not potentiation of long-term presynaptic function. eLife 2017; 6:29688. [PMID: 29140248 PMCID: PMC5714480 DOI: 10.7554/elife.29688] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
Hebbian plasticity is thought to require glutamate signalling. We show this is not the case for hippocampal presynaptic long-term potentiation (LTPpre), which is expressed as an increase in transmitter release probability (Pr). We find that LTPpre can be induced by pairing pre- and postsynaptic spiking in the absence of glutamate signalling. LTPpre induction involves a non-canonical mechanism of retrograde nitric oxide signalling, which is triggered by Ca2+ influx from L-type voltage-gated Ca2+ channels, not postsynaptic NMDA receptors (NMDARs), and does not require glutamate release. When glutamate release occurs, it decreases Pr by activating presynaptic NMDARs, and promotes presynaptic long-term depression. Net changes in Pr, therefore, depend on two opposing factors: (1) Hebbian activity, which increases Pr, and (2) glutamate release, which decreases Pr. Accordingly, release failures during Hebbian activity promote LTPpre induction. Our findings reveal a novel framework of presynaptic plasticity that radically differs from traditional models of postsynaptic plasticity. Neurons communicate with one another at junctions called synapses. One neuron at the synapse releases a chemical substance called a neurotransmitter, which binds to and activates the other neuron. The release of neurotransmitter thus enables the electrical activity of one cell to influence the electrical activity of another. The efficiency of this communication can change over time, as is thought to occur during learning. If the neurons on both sides of a synapse are repeatedly active at the same time, the ability of the neurons to transmit electrical signals to each other increases. One way that communication between neurons can become more efficient is if the first neuron becomes more likely to release neurotransmitter. Most synapses in the brain release a neurotransmitter called glutamate, and most types of learning involve changes in the efficiency of communication at glutamatergic synapses. But glutamate release is unreliable. Active glutamatergic neurons fail to release glutamate about 80% of the time. If glutamate has a key role in learning, how does the brain learn efficiently when glutamate release is so unlikely? To find out, Padamsey et al. studied glutamatergic synapses in slices of tissue from mouse and rat brains. When both neurons at a synapse were repeatedly active at the same time, the first neuron would sometimes become more likely to release glutamate. But this only happened at synapses in which the first neuron usually failed to release glutamate in the first place. This suggests that communication failures help to drive change at synapses. When two neurons that are often active at the same time do not communicate efficiently, this failure triggers molecular changes that make future communication more reliable. Previous results have shown that synapses can change when glutamate release occurs. The current results show that they can also change when it does not. This means that the brain can continue to learn despite frequent communication failures between neurons. Many neurological disorders, including Alzheimer’s disease, show altered glutamate signalling at synapses. Padamsey et al. hope that a better understanding of this process will lead to new therapies for these disorders.
Collapse
Affiliation(s)
- Zahid Padamsey
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rudi Tong
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nigel Emptage
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Beyene AG, McFarlane IR, Pinals RL, Landry MP. Stochastic Simulation of Dopamine Neuromodulation for Implementation of Fluorescent Neurochemical Probes in the Striatal Extracellular Space. ACS Chem Neurosci 2017; 8:2275-2289. [PMID: 28714693 PMCID: PMC10494912 DOI: 10.1021/acschemneuro.7b00193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Imaging the dynamic behavior of neuromodulatory neurotransmitters in the extracelluar space that arise from individual quantal release events would constitute a major advance in neurochemical imaging. Spatial and temporal resolution of these highly stochastic neuromodulatory events requires concurrent advances in the chemical development of optical nanosensors selective for neuromodulators in concert with advances in imaging methodologies to capture millisecond neurotransmitter release. Herein, we develop and implement a stochastic model to describe dopamine dynamics in the extracellular space (ECS) of the brain dorsal striatum to guide the design and implementation of fluorescent neurochemical probes that record neurotransmitter dynamics in the ECS. Our model is developed from first-principles and simulates release, diffusion, and reuptake of dopamine in a 3D simulation volume of striatal tissue. We find that in vivo imaging of neuromodulation requires simultaneous optimization of dopamine nanosensor reversibility and sensitivity: dopamine imaging in the striatum or nucleus accumbens requires nanosensors with an optimal dopamine dissociation constant (Kd) of 1 μM, whereas Kds above 10 μM are required for dopamine imaging in the prefrontal cortex. Furthermore, as a result of the probabilistic nature of dopamine terminal activity in the striatum, our model reveals that imaging frame rates of 20 Hz are optimal for recording temporally resolved dopamine release events. Our work provides a modeling platform to probe how complex neuromodulatory processes can be studied with fluorescent nanosensors and enables direct evaluation of nanosensor chemistry and imaging hardware parameters. Our stochastic model is generic for evaluating fluorescent neurotransmission probes, and is broadly applicable to the design of other neurotransmitter fluorophores and their optimization for implementation in vivo.
Collapse
Affiliation(s)
- Abraham G. Beyene
- Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Ian R. McFarlane
- Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Rebecca L. Pinals
- Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Markita P. Landry
- Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
28
|
Pulido C, Marty A. Quantal Fluctuations in Central Mammalian Synapses: Functional Role of Vesicular Docking Sites. Physiol Rev 2017; 97:1403-1430. [DOI: 10.1152/physrev.00032.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/23/2022] Open
Abstract
Quantal fluctuations are an integral part of synaptic signaling. At the frog neuromuscular junction, Bernard Katz proposed that quantal fluctuations originate at “reactive sites” where specific structures of the presynaptic membrane interact with synaptic vesicles. However, the physical nature of reactive sites has remained unclear, both at the frog neuromuscular junction and at central synapses. Many central synapses, called simple synapses, are small structures containing a single presynaptic active zone and a single postsynaptic density of receptors. Several lines of evidence indicate that simple synapses may release several synaptic vesicles in response to a single action potential. However, in some synapses at least, each release event activates a significant fraction of the postsynaptic receptors, giving rise to a sublinear relation between vesicular release and postsynaptic current. Partial receptor saturation as well as synaptic jitter gives to simple synapse signaling the appearance of a binary process. Recent investigations of simple synapses indicate that the number of released vesicles follows binomial statistics, with a maximum reflecting the number of docking sites present in the active zone. These results suggest that at central synapses, vesicular docking sites represent the reactive sites proposed by Katz. The macromolecular architecture and molecular composition of docking sites are presently investigated with novel combinations of techniques. It is proposed that variations in docking site numbers are central in defining intersynaptic variability and that docking site occupancy is a key parameter regulating short-term synaptic plasticity.
Collapse
Affiliation(s)
- Camila Pulido
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| | - Alain Marty
- Laboratory of Brain Physiology, CNRS UMR 8118, Paris Descartes University, Paris, France
| |
Collapse
|
29
|
García-Cabezas MÁ, Barbas H. Anterior Cingulate Pathways May Affect Emotions Through Orbitofrontal Cortex. Cereb Cortex 2017; 27:4891-4910. [PMID: 27655930 PMCID: PMC6075591 DOI: 10.1093/cercor/bhw284] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022] Open
Abstract
The anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) are associated with emotional regulation. These regions are old in phylogeny and have widespread connections with eulaminate neocortices, intricately linking areas associated with emotion and cognition. The ACC and pOFC have distinct cortical and subcortical connections and are also interlinked, but the pattern of their connections-which may be used to infer the flow of information between them-is not well understood. Here we found that pathways from ACC area 32 innervated all pOFC areas with a significant proportion of large and efficient terminals, seen at the level of the system and the synapse. The pathway from area 32 targeted overwhelmingly elements of excitatory neurons in pOFC, with few postsynaptic sites found on presumed inhibitory neurons. Moreover, pathways from area 32 originated mostly in the upper layers and innervated preferentially the middle-deep layers of the least differentiated pOFC areas, in a pattern reminiscent of feedforward communication. Pathway terminations from area 32 overlapped in the deep layers of pOFC with output pathways that project to the thalamus and the amygdala, and may have cascading downstream effects on emotional and cognitive processes and their disruption in psychiatric disorders.
Collapse
Affiliation(s)
- Miguel Á. García-Cabezas
- Department of Health Sciences, Boston University, Neural Systems Lab, 635 Commonwealth Ave., Boston, MA02215, USA
| | - Helen Barbas
- Department of Health Sciences, Boston University, Neural Systems Lab, 635 Commonwealth Ave., Boston, MA02215, USA
| |
Collapse
|
30
|
A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements. PLoS Comput Biol 2017; 13:e1005542. [PMID: 28574992 PMCID: PMC5456035 DOI: 10.1371/journal.pcbi.1005542] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/26/2017] [Indexed: 01/21/2023] Open
Abstract
The computational and cognitive properties of neural systems are often thought to be implemented in terms of their (stochastic) network dynamics. Hence, recovering the system dynamics from experimentally observed neuronal time series, like multiple single-unit recordings or neuroimaging data, is an important step toward understanding its computations. Ideally, one would not only seek a (lower-dimensional) state space representation of the dynamics, but would wish to have access to its statistical properties and their generative equations for in-depth analysis. Recurrent neural networks (RNNs) are a computationally powerful and dynamically universal formal framework which has been extensively studied from both the computational and the dynamical systems perspective. Here we develop a semi-analytical maximum-likelihood estimation scheme for piecewise-linear RNNs (PLRNNs) within the statistical framework of state space models, which accounts for noise in both the underlying latent dynamics and the observation process. The Expectation-Maximization algorithm is used to infer the latent state distribution, through a global Laplace approximation, and the PLRNN parameters iteratively. After validating the procedure on toy examples, and using inference through particle filters for comparison, the approach is applied to multiple single-unit recordings from the rodent anterior cingulate cortex (ACC) obtained during performance of a classical working memory task, delayed alternation. Models estimated from kernel-smoothed spike time data were able to capture the essential computational dynamics underlying task performance, including stimulus-selective delay activity. The estimated models were rarely multi-stable, however, but rather were tuned to exhibit slow dynamics in the vicinity of a bifurcation point. In summary, the present work advances a semi-analytical (thus reasonably fast) maximum-likelihood estimation framework for PLRNNs that may enable to recover relevant aspects of the nonlinear dynamics underlying observed neuronal time series, and directly link these to computational properties.
Collapse
|
31
|
Luo F, Südhof TC. Synaptotagmin-7-Mediated Asynchronous Release Boosts High-Fidelity Synchronous Transmission at a Central Synapse. Neuron 2017; 94:826-839.e3. [DOI: 10.1016/j.neuron.2017.04.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/31/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022]
|
32
|
Kulasiri D, Liang J, He Y, Samarasinghe S. Global sensitivity analysis of a model related to memory formation in synapses: Model reduction based on epistemic parameter uncertainties and related issues. J Theor Biol 2017; 419:116-136. [PMID: 28189671 DOI: 10.1016/j.jtbi.2017.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 11/28/2022]
Abstract
We investigate the epistemic uncertainties of parameters of a mathematical model that describes the dynamics of CaMKII-NMDAR complex related to memory formation in synapses using global sensitivity analysis (GSA). The model, which was published in this journal, is nonlinear and complex with Ca2+ patterns with different level of frequencies as inputs. We explore the effects of parameter on the key outputs of the model to discover the most sensitive ones using GSA and partial ranking correlation coefficient (PRCC) and to understand why they are sensitive and others are not based on the biology of the problem. We also extend the model to add presynaptic neurotransmitter vesicles release to have action potentials as inputs of different frequencies. We perform GSA on this extended model to show that the parameter sensitivities are different for the extended model as shown by PRCC landscapes. Based on the results of GSA and PRCC, we reduce the original model to a less complex model taking the most important biological processes into account. We validate the reduced model against the outputs of the original model. We show that the parameter sensitivities are dependent on the inputs and GSA would make us understand the sensitivities and the importance of the parameters. A thorough phenomenological understanding of the relationships involved is essential to interpret the results of GSA and hence for the possible model reduction.
Collapse
Affiliation(s)
- Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand.
| | - Jingyi Liang
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| | - Yao He
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Molecular Biosciences Department, Lincoln University, Christchurch, New Zealand
| |
Collapse
|
33
|
Riessland M, Kaczmarek A, Schneider S, Swoboda KJ, Löhr H, Bradler C, Grysko V, Dimitriadi M, Hosseinibarkooie S, Torres-Benito L, Peters M, Upadhyay A, Biglari N, Kröber S, Hölker I, Garbes L, Gilissen C, Hoischen A, Nürnberg G, Nürnberg P, Walter M, Rigo F, Bennett CF, Kye MJ, Hart AC, Hammerschmidt M, Kloppenburg P, Wirth B. Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis. Am J Hum Genet 2017; 100:297-315. [PMID: 28132687 DOI: 10.1016/j.ajhg.2017.01.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
Homozygous SMN1 loss causes spinal muscular atrophy (SMA), the most common lethal genetic childhood motor neuron disease. SMN1 encodes SMN, a ubiquitous housekeeping protein, which makes the primarily motor neuron-specific phenotype rather unexpected. SMA-affected individuals harbor low SMN expression from one to six SMN2 copies, which is insufficient to functionally compensate for SMN1 loss. However, rarely individuals with homozygous absence of SMN1 and only three to four SMN2 copies are fully asymptomatic, suggesting protection through genetic modifier(s). Previously, we identified plastin 3 (PLS3) overexpression as an SMA protective modifier in humans and showed that SMN deficit impairs endocytosis, which is rescued by elevated PLS3 levels. Here, we identify reduction of the neuronal calcium sensor Neurocalcin delta (NCALD) as a protective SMA modifier in five asymptomatic SMN1-deleted individuals carrying only four SMN2 copies. We demonstrate that NCALD is a Ca2+-dependent negative regulator of endocytosis, as NCALD knockdown improves endocytosis in SMA models and ameliorates pharmacologically induced endocytosis defects in zebrafish. Importantly, NCALD knockdown effectively ameliorates SMA-associated pathological defects across species, including worm, zebrafish, and mouse. In conclusion, our study identifies a previously unknown protective SMA modifier in humans, demonstrates modifier impact in three different SMA animal models, and suggests a potential combinatorial therapeutic strategy to efficiently treat SMA. Since both protective modifiers restore endocytosis, our results confirm that endocytosis is a major cellular mechanism perturbed in SMA and emphasize the power of protective modifiers for understanding disease mechanism and developing therapies.
Collapse
|
34
|
Miceli S, Nadif Kasri N, Joosten J, Huang C, Kepser L, Proville R, Selten MM, van Eijs F, Azarfar A, Homberg JR, Celikel T, Schubert D. Reduced Inhibition within Layer IV of Sert Knockout Rat Barrel Cortex is Associated with Faster Sensory Integration. Cereb Cortex 2017; 27:933-949. [PMID: 28158484 PMCID: PMC5390402 DOI: 10.1093/cercor/bhx016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/07/2016] [Accepted: 01/11/2017] [Indexed: 12/19/2022] Open
Abstract
Neural activity is essential for the maturation of sensory systems. In the rodent primary somatosensory cortex (S1), high extracellular serotonin (5-HT) levels during development impair neural transmission between the thalamus and cortical input layer IV (LIV). Rodent models of impaired 5-HT transporter (SERT) function show disruption in their topological organization of S1 and in the expression of activity-regulated genes essential for inhibitory cortical network formation. It remains unclear how such alterations affect the sensory information processing within cortical LIV. Using serotonin transporter knockout (Sert-/-) rats, we demonstrate that high extracellular serotonin levels are associated with impaired feedforward inhibition (FFI), fewer perisomatic inhibitory synapses, a depolarized GABA reversal potential and reduced expression of KCC2 transporters in juvenile animals. At the neural population level, reduced FFI increases the excitatory drive originating from LIV, facilitating evoked representations in the supragranular layers II/III. The behavioral consequence of these changes in network excitability is faster integration of the sensory information during whisker-based tactile navigation, as Sert-/- rats require fewer whisker contacts with tactile targets and perform object localization with faster reaction times. These results highlight the association of serotonergic homeostasis with formation and excitability of sensory cortical networks, and consequently with sensory perception.
Collapse
Affiliation(s)
- Stéphanie Miceli
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Neural Networks, Center of Advanced European Studies and Research (caesar), Max Planck Society, Germany
| | - Nael Nadif Kasri
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joep Joosten
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Chao Huang
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lara Kepser
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Rémi Proville
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Martijn M. Selten
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Fenneke van Eijs
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alireza Azarfar
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
35
|
Oleinick A, Svir I, Amatore C. 'Full fusion' is not ineluctable during vesicular exocytosis of neurotransmitters by endocrine cells. Proc Math Phys Eng Sci 2017; 473:20160684. [PMID: 28265193 PMCID: PMC5312129 DOI: 10.1098/rspa.2016.0684] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/17/2016] [Indexed: 11/12/2022] Open
Abstract
Vesicular exocytosis is an essential and ubiquitous process in neurons and endocrine cells by which neurotransmitters are released in synaptic clefts or extracellular fluids. It involves the fusion of a vesicle loaded with chemical messengers with the cell membrane through a nanometric fusion pore. In endocrine cells, unless it closes after some flickering ('Kiss-and-Run' events), this initial pore is supposed to expand exponentially, leading to a full integration of the vesicle membrane into the cell membrane-a stage called 'full fusion'. We report here a compact analytical formulation that allows precise measurements of the fusion pore expansion extent and rate to be extracted from individual amperometric spike time courses. These data definitively establish that, during release of catecholamines, fusion pores enlarge at most to approximately one-fifth of the radius of their parent vesicle, hence ruling out the ineluctability of 'full fusion'.
Collapse
Affiliation(s)
| | | | - Christian Amatore
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Paris 06, CNRS UMR 8640 PASTEUR, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
36
|
Held RG, Liu C, Kaeser PS. ELKS controls the pool of readily releasable vesicles at excitatory synapses through its N-terminal coiled-coil domains. eLife 2016; 5. [PMID: 27253063 PMCID: PMC4935463 DOI: 10.7554/elife.14862] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
In a presynaptic nerve terminal, synaptic strength is determined by the pool of readily releasable vesicles (RRP) and the probability of release (P) of each RRP vesicle. These parameters are controlled at the active zone and vary across synapses, but how such synapse specific control is achieved is not understood. ELKS proteins are enriched at vertebrate active zones and enhance P at inhibitory hippocampal synapses, but ELKS functions at excitatory synapses are not known. Studying conditional knockout mice for ELKS, we find that ELKS enhances the RRP at excitatory synapses without affecting P. Surprisingly, ELKS C-terminal sequences, which interact with RIM, are dispensable for RRP enhancement. Instead, the N-terminal ELKS coiled-coil domains that bind to Liprin-α and Bassoon are necessary to control RRP. Thus, ELKS removal has differential, synapse-specific effects on RRP and P, and our findings establish important roles for ELKS N-terminal domains in synaptic vesicle priming.
Collapse
Affiliation(s)
- Richard G Held
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
37
|
Quantifying Repetitive Transmission at Chemical Synapses: A Generative-Model Approach. eNeuro 2016; 3:eN-MNT-0113-15. [PMID: 27200414 PMCID: PMC4867027 DOI: 10.1523/eneuro.0113-15.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 03/28/2016] [Accepted: 04/02/2016] [Indexed: 12/13/2022] Open
Abstract
The dependence of the synaptic responses on the history of activation and their large variability are both distinctive features of repetitive transmission at chemical synapses. Quantitative investigations have mostly focused on trial-averaged responses to characterize dynamic aspects of the transmission—thus disregarding variability—or on the fluctuations of the responses in steady conditions to characterize variability—thus disregarding dynamics. We present a statistically principled framework to quantify the dynamics of the probability distribution of synaptic responses under arbitrary patterns of activation. This is achieved by constructing a generative model of repetitive transmission, which includes an explicit description of the sources of stochasticity present in the process. The underlying parameters are then selected via an expectation-maximization algorithm that is exact for a large class of models of synaptic transmission, so as to maximize the likelihood of the observed responses. The method exploits the information contained in the correlation between responses to produce highly accurate estimates of both quantal and dynamic parameters from the same recordings. The method also provides important conceptual and technical advances over existing state-of-the-art techniques. In particular, the repetition of the same stimulation in identical conditions becomes unnecessary. This paves the way to the design of optimal protocols to estimate synaptic parameters, to the quantitative comparison of synaptic models over benchmark datasets, and, most importantly, to the study of repetitive transmission under physiologically relevant patterns of synaptic activation.
Collapse
|
38
|
Li X, Hu H, Zhao S, Liu YM. Microfluidic Platform with In-Chip Electrophoresis Coupled to Mass Spectrometry for Monitoring Neurochemical Release from Nerve Cells. Anal Chem 2016; 88:5338-44. [PMID: 27111409 DOI: 10.1021/acs.analchem.6b00638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chemical stimulus-induced neurotransmitter release from neuronal cells is well-documented. However, the dynamic changes in neurochemical release remain to be fully explored. In this work, a three-layered microfluidic chip was fabricated and evaluated for studying the dynamics of neurotransmitter release from PC-12 cells. The chip features integration of a nanoliter sized chamber for cell perfusion, pneumatic pressure valves for fluidic control, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Deploying this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) was developed to simultaneously quantify important neurotransmitters, including dopamine (DA), serotonin (5-HT), aspartic acid (Asp), and glutamic acid (Glu) without need for labeling or enrichment. Monitoring neurotransmitter release from PC-12 cells exposed to KCl (or alcohol) revealed that all four neurotransmitters investigated were released. Two release patterns were observed, one for the two monoamine neurotransmitters (i.e., DA and 5-HT) and another for the two amino acid neurotransmitters. Release dynamics for the two monoamine neurotransmitters was significantly different. The cells released DA most quickly and heavily in response to the stimulation. After exposure to the chemical stimulus for 4 min, the DA level in the perfusate from the cells was 86% lower than that at the beginning. Very interestingly, the cells started to release 5-HT in large quantities when they stopped releasing DA. These results suggest that DA and 5-HT are packaged into different vesicle pools and they are mobilized differently in response to chemical stimuli. The microfluidic platform proposed is proven useful for monitoring cellular release in biological studies.
Collapse
Affiliation(s)
- Xiangtang Li
- Department of Chemistry and Biochemistry, Jackson State University , 1400 Lynch Street, Jackson, Mississippi 39217, United States.,Wuhan Yaogu Bio-tech Company, Ltd. , Wuhan 430075, China
| | - Hankun Hu
- Wuhan Yaogu Bio-tech Company, Ltd. , Wuhan 430075, China.,Zhongnan Hospital, Wuhan University , Wuhan 430071, China
| | - Shulin Zhao
- College of Chemistry and Chemical Engineering, Guangxi Normal University , Guilin 51004, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University , 1400 Lynch Street, Jackson, Mississippi 39217, United States.,Wuhan Yaogu Bio-tech Company, Ltd. , Wuhan 430075, China
| |
Collapse
|
39
|
Klockow JL, Hettie KS, Secor KE, Barman DN, Glass TE. Tunable Molecular Logic Gates Designed for Imaging Released Neurotransmitters. Chemistry 2015; 21:11446-51. [DOI: 10.1002/chem.201501379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jessica L. Klockow
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Kenneth S. Hettie
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Kristen E. Secor
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Dipti N. Barman
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| | - Timothy E. Glass
- Department of Chemistry, University of Missouri, 601 S. College Ave. Columbia, MO 65211 (USA)
| |
Collapse
|
40
|
García-Cabezas MÁ, Barbas H. A direct anterior cingulate pathway to the primate primary olfactory cortex may control attention to olfaction. Brain Struct Funct 2015; 219:1735-54. [PMID: 23797208 DOI: 10.1007/s00429-013-0598-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/05/2013] [Indexed: 11/25/2022]
Abstract
Behavioral and functional studies in humans suggest that attention plays a key role in activating the primary olfactory cortex through an unknown circuit mechanism. We report that a novel pathway from the anterior cingulate cortex, an area which has a key role in attention, projects directly to the primary olfactory cortex in rhesus monkeys, innervating mostly the anterior olfactory nucleus. Axons from the anterior cingulate cortex formed synapses mostly with spines of putative excitatory pyramidal neurons and with a small proportion of a neurochemical class of inhibitory neurons that are thought to have disinhibitory effect on excitatory neurons. This novel pathway from the anterior cingulate is poised to exert a powerful excitatory effect on the anterior olfactory nucleus, which is a critical hub for odorant processing via extensive bilateral connections with primary olfactory cortices and the olfactory bulb. Acting on the anterior olfactory nucleus, the anterior cingulate may activate the entire primary olfactory cortex to mediate the process of rapid attention to olfactory stimuli.
Collapse
|
41
|
Hsu CC, Parker AC. Dynamic spike threshold and nonlinear dendritic computation for coincidence detection in neuromorphic circuits. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:461-4. [PMID: 25569996 DOI: 10.1109/embc.2014.6943628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present an electronic cortical neuron incorporating dynamic spike threshold and active dendritic properties. The circuit is simulated using a carbon nanotube field-effect transistor SPICE model. We demonstrate that our neuron has lower spike threshold for coincident synaptic inputs; however when the synaptic inputs are not in synchrony, it requires larger depolarization to evoke the neuron to fire. We also demonstrate that a dendritic spike is key to precisely-timed input-output transformation, produces reliable firing and results in more resilience to input jitter within an individual neuron.
Collapse
|
42
|
Li YT, Zhang SH, Wang L, Xiao RR, Liu W, Zhang XW, Zhou Z, Amatore C, Huang WH. Nanoelectrode for Amperometric Monitoring of Individual Vesicular Exocytosis Inside Single Synapses. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404744] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Li YT, Zhang SH, Wang L, Xiao RR, Liu W, Zhang XW, Zhou Z, Amatore C, Huang WH. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew Chem Int Ed Engl 2014; 53:12456-60. [PMID: 25060546 DOI: 10.1002/anie.201404744] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/10/2014] [Indexed: 01/31/2023]
Abstract
Chemical neurotransmission occurs at chemical synapses and endocrine glands, but up to now there was no means for direct monitoring of neurotransmitter exocytosis fluxes and their precise kinetics from inside an individual synapse. The fabrication of a novel finite conical nanoelectrode is reported perfectly suited in size and electrochemical properties for probing amperometrically inside what appears to be single synapses and monitoring individual vesicular exocytotic events in real time. This allowed obtaining direct and important physiological evidences which may yield important and new insights into the nature of synaptic communications.
Collapse
Affiliation(s)
- Yu-Tao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
ATP release through lysosomal exocytosis from peripheral nerves: the effect of lysosomal exocytosis on peripheral nerve degeneration and regeneration after nerve injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:936891. [PMID: 25101301 PMCID: PMC4101216 DOI: 10.1155/2014/936891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/29/2014] [Accepted: 06/16/2014] [Indexed: 01/18/2023]
Abstract
Studies have shown that lysosomal activation increases in Schwann cells after nerve injury. Lysosomal activation is thought to promote the engulfment of myelin debris or fragments of injured axons in Schwann cells during Wallerian degeneration. However, a recent interpretation of lysosomal activation proposes a different view of the phenomenon. During Wallerian degeneration, lysosomes become secretory vesicles and are activated for lysosomal exocytosis. The lysosomal exocytosis triggers adenosine 5′-triphosphate (ATP) release from peripheral neurons and Schwann cells during Wallerian degeneration. Exocytosis is involved in demyelination and axonal degradation, which facilitate nerve regeneration following nerve degeneration. At this time, released ATP may affect the communication between cells in peripheral nerves. In this review, our description of the relationship between lysosomal exocytosis and Wallerian degeneration has implications for the understanding of peripheral nerve degenerative diseases and peripheral neuropathies, such as Charcot-Marie-Tooth disease or Guillain-Barré syndrome.
Collapse
|
45
|
Bunce JG, Zikopoulos B, Feinberg M, Barbas H. Parallel prefrontal pathways reach distinct excitatory and inhibitory systems in memory-related rhinal cortices. J Comp Neurol 2014; 521:4260-83. [PMID: 23839697 DOI: 10.1002/cne.23413] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 06/28/2013] [Indexed: 01/19/2023]
Abstract
To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases.
Collapse
Affiliation(s)
- Jamie G Bunce
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, 02215
| | | | | | | |
Collapse
|
46
|
Random dispersion in excitatory synapse response. Cogn Neurodyn 2014; 8:327-34. [PMID: 25009674 DOI: 10.1007/s11571-014-9285-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/07/2014] [Accepted: 03/12/2014] [Indexed: 10/25/2022] Open
Abstract
The excitatory synaptic function is subject to a huge amount of researches and fairly all the structural elements of the synapse are investigated to determine their specific contribution to the response. A model of an excitatory (hippocampal) synapse, based on time discretized Langevin equations (time-step = 40 fs), was introduced to describe the Brownian motion of Glutamate molecules (GLUTs) within the synaptic cleft and their binding to postsynaptic receptors. The binding has been computed by the introduction of a binding probability related to the hits of GLUTs on receptor binding sites. This model has been utilized in computer simulations aimed to describe the random dispersion of the synaptic response, evaluated from the dispersion of the peak amplitude of the excitatory post-synaptic current. The results of the simulation, presented here, have been used to find a reliable numerical quantity for the unknown value of the binding probability. Moreover, the same results have shown that the coefficient of variation decreases when the number of postsynaptic receptors increases, all the other parameters of the process being unchanged. Due to its possible relationships with the learning and memory, this last finding seems to furnish an important clue for understanding the basic mechanisms of the brain activity.
Collapse
|
47
|
Fast neurotransmitter release regulated by the endocytic scaffold intersectin. Proc Natl Acad Sci U S A 2013; 110:8266-71. [PMID: 23633571 DOI: 10.1073/pnas.1219234110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Sustained fast neurotransmission requires the rapid replenishment of release-ready synaptic vesicles (SVs) at presynaptic active zones. Although the machineries for exocytic fusion and for subsequent endocytic membrane retrieval have been well characterized, little is known about the mechanisms underlying the rapid recruitment of SVs to release sites. Here we show that the Down syndrome-associated endocytic scaffold protein intersectin 1 is a crucial factor for the recruitment of release-ready SVs. Genetic deletion of intersectin 1 expression or acute interference with intersectin function inhibited the replenishment of release-ready vesicles, resulting in short-term depression, without significantly affecting the rate of endocytic membrane retrieval. Acute perturbation experiments suggest that intersectin-mediated vesicle replenishment involves the association of intersectin with the fissioning enzyme dynamin and with the actin regulatory GTPase CDC42. Our data indicate a role for the endocytic scaffold intersectin in fast neurotransmitter release, which may be of prime importance for information processing in the brain.
Collapse
|
48
|
Possible ATP release through lysosomal exocytosis from primary sensory neurons. Biochem Biophys Res Commun 2012; 430:488-93. [PMID: 23237805 DOI: 10.1016/j.bbrc.2012.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/04/2012] [Indexed: 12/12/2022]
Abstract
The adenosine triphosphate (ATP) plays important roles under physiological and pathological conditions such as traumatic brain injury, neuroinflammation and neuropathic pain. In the present study, we set out to study the role of lysosomal vesicles on ATP release from the dorsal root ganglion neurons. We found that the lysosomal vesicles, which contain the quinacrine-positive fluorescence and express the vesicular nucleotide transporter (VNUT), were localized within the soma and growth cone of the cultured dorsal root ganglion neurons. In addition, the number of the quinacrine staining was decreased by application of lysosomal exocytosis activators, and this decrease was suppressed by the metformin and vacuolin-1, which suppressed lysosomal exocytosis. Thus, these findings suggest that ATP release via the lysosomal exocytosis may be one of the pathways for ATP release in response to stimulation.
Collapse
|
49
|
Khanbabaie R, Jahanshahi M. Revolutionary impact of nanodrug delivery on neuroscience. Curr Neuropharmacol 2012; 10:370-92. [PMID: 23730260 PMCID: PMC3520046 DOI: 10.2174/157015912804143513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/09/2012] [Accepted: 08/28/2012] [Indexed: 12/23/2022] Open
Abstract
Brain research is the most expanding interdisciplinary research that is using the state of the art techniques to overcome limitations in order to conduct more accurate and effective experiments. Drug delivery to the target site in the central nervous system (CNS) is one of the most difficult steps in neuroscience researches and therapies. Taking advantage of the nanoscale structure of neural cells (both neurons and glia); nanodrug delivery (second generation of biotechnological products) has a potential revolutionary impact into the basic understanding, visualization and therapeutic applications of neuroscience. Current review article firstly provides an overview of preparation and characterization, purification and separation, loading and delivering of nanodrugs. Different types of nanoparticle bioproducts and a number of methods for their fabrication and delivery systems including (carbon) nanotubes are explained. In the second part, neuroscience and nervous system drugs are deeply investigated. Different mechanisms in which nanoparticles enhance the uptake and clearance of molecules form cerebrospinal fluid (CSF) are discussed. The focus is on nanodrugs that are being used or have potential to improve neural researches, diagnosis and therapy of neurodegenerative disorders.
Collapse
Affiliation(s)
- Reza Khanbabaie
- Nanotechnology Research Institute, Babol University of Technology, Babol, Iran
- Faculty of Basic Science, Department of Physics, Babol University of Technology, Babol, Iran
- Department of Physics, University of Ottawa, Ottawa, Canada
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Babol University of Technology, Babol, Iran
- Faculty of Chemical Engineering, Babol University of Technology, Babol, Iran
| |
Collapse
|
50
|
Multiple roles for mammalian target of rapamycin signaling in both glutamatergic and GABAergic synaptic transmission. J Neurosci 2012; 32:11441-52. [PMID: 22895726 DOI: 10.1523/jneurosci.1283-12.2012] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway in neurons integrates a variety of extracellular signals to produce appropriate translational responses. mTOR signaling is hyperactive in neurological syndromes in both humans and mouse models that are characterized by epilepsy, autism, and cognitive disturbances. In addition, rapamycin, a clinically important immunosuppressant, is a specific and potent inhibitor of mTOR signaling. While mTOR is known to regulate growth and synaptic plasticity of glutamatergic neurons, its effects on basic parameters of synaptic transmission are less well studied, and its role in regulating GABAergic transmission is unexplored. We therefore performed an electrophysiological and morphological comparison of glutamatergic and GABAergic neurons in which mTOR signaling was either increased by loss of the repressor Pten or decreased by treatment with rapamycin. We found that hyperactive mTOR signaling increased evoked synaptic responses in both glutamatergic and GABAergic neurons by ∼50%, due to an increase in the number of synaptic vesicles available for release, the number of synapses formed, and the miniature event size. Prolonged (72 h) rapamycin treatment prevented these abnormalities and also decreased synaptic transmission in wild-type glutamatergic, but not GABAergic, neurons. Further analyses suggested that hyperactivation of the mTOR pathway also impairs presynaptic function, possibly by interfering with vesicle fusion. Despite this presynaptic impairment, the net effect of Pten loss is enhanced synaptic transmission in both GABAergic and glutamatergic neurons, which has numerous implications, depending on where in the brain mutations of an mTOR suppressor gene occur.
Collapse
|