1
|
Vaissiere T, Michaelson SD, Creson T, Goins J, Fürth D, Balazsfi D, Rojas C, Golovin R, Meletis K, Miller CA, O’Connor D, Fontolan L, Rumbaugh G. Syngap1 Promotes Cognitive Function through Regulation of Cortical Sensorimotor Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559787. [PMID: 37808765 PMCID: PMC10557642 DOI: 10.1101/2023.09.27.559787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Perception, a cognitive construct, emerges through sensorimotor integration (SMI). The genetic mechanisms that shape SMI required for perception are unknown. Here, we demonstrate in mice that expression of the autism/intellectual disability gene, Syngap1, in cortical excitatory neurons is required for formation of somatomotor networks that promote SMI-mediated perception. Cortical Syngap1 expression was necessary and sufficient for setting tactile sensitivity, sustaining tactile object exploration, and promoting tactile learning. Mice with deficient Syngap1 expression exhibited impaired neural dynamics induced by exploratory touches within a cortical-thalamic network known to promote attention and perception. Disrupted neuronal dynamics were associated with circuit-specific long-range synaptic connectivity abnormalities. Our data support a model where autonomous Syngap1 expression in cortical excitatory neurons promotes cognitive abilities through assembly of circuits that integrate temporally-overlapping sensory and motor signals, a process that promotes perception and attention. These data provide systems-level insights into the robust association between Syngap1 expression and cognitive ability.
Collapse
Affiliation(s)
- Thomas Vaissiere
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Sheldon D. Michaelson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Thomas Creson
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Jessie Goins
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Daniel Fürth
- SciLifeLab, Department of Immunology, Genetics & Pathology, Uppsala University, Uppsala, Sweden
| | - Diana Balazsfi
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Camilo Rojas
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Randall Golovin
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | | | - Courtney A. Miller
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL, USA
| | - Daniel O’Connor
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorenzo Fontolan
- Aix-Marseille Université, INSERM, INMED, Turing Centre for Living Systems, Marseille, 13009, France
| | - Gavin Rumbaugh
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| |
Collapse
|
2
|
Kawatani M, Horio K, Ohkuma M, Li WR, Yamashita T. Interareal Synaptic Inputs Underlying Whisking-Related Activity in the Primary Somatosensory Barrel Cortex. J Neurosci 2024; 44:e1148232023. [PMID: 38050130 PMCID: PMC10860602 DOI: 10.1523/jneurosci.1148-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
Body movements influence brain-wide neuronal activities. In the sensory cortex, thalamocortical bottom-up inputs and motor-sensory top-down inputs are thought to affect the dynamics of membrane potentials (Vm ) of neurons and change their processing of sensory information during movements. However, direct perturbation of the axons projecting to the sensory cortex from other remote areas during movements has remained unassessed, and therefore the interareal circuits generating motor-related signals in sensory cortices remain unclear. Using a Gi/o -coupled opsin, eOPN3, we here inhibited interareal signals incoming to the whisker primary somatosensory barrel cortex (wS1) of awake male mice and tested their effects on whisking-related changes in neuronal activities in wS1. Spontaneous whisking in air induced the changes in spike rates of a subset of wS1 neurons, which were accompanied by depolarization and substantial reduction of slow-wave oscillatory fluctuations of Vm Despite an extensive innervation, inhibition of inputs from the whisker primary motor cortex (wM1) to wS1 did not alter the spike rates and Vm dynamics of wS1 neurons during whisking. In contrast, inhibition of axons from the whisker-related thalamus (wTLM) and the whisker secondary somatosensory cortex (wS2) to wS1 largely attenuated the whisking-related supra- and sub-threshold Vm dynamics of wS1 neurons. Notably, silencing inputs from wTLM markedly decreased the modulation depth of whisking phase-tuned neurons in wS1, while inhibiting wS2 inputs did not impact the whisking variable tuning of wS1 neurons. Thus, sensorimotor integration in wS1 during spontaneous whisking is predominantly facilitated by direct synaptic inputs from wTLM and wS2 rather than from wM1.
Collapse
Affiliation(s)
- Masahiro Kawatani
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Kayo Horio
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Mahito Ohkuma
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
| | - Wan-Ru Li
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, 466-8550, Japan
| | - Takayuki Yamashita
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, 470-1192, Japan
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
3
|
Sharma H, Azouz R. Global and local neuronal coding of tactile information in the barrel cortex. Front Neurosci 2024; 17:1291864. [PMID: 38249584 PMCID: PMC10796699 DOI: 10.3389/fnins.2023.1291864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024] Open
Abstract
During tactile sensation in rodents, the whisker movements across surfaces give rise to intricate whisker motions that encompass discrete and transient stick-slip events, effectively conveying valuable information regarding surface properties. These surface characteristics are transformed into cortical neuronal responses. This study examined the coding strategies underlying these transformations in rat whiskers. We found that changes in surface coarseness modified the number and magnitude of stick-slip events, which in turn both modulated properties of neuronal responses. Global changes in the number of stick-slip events primarily affected neuronal discharge rates and the degree of neuronal synchronization. In contrast, local changes in the magnitude of stick-slip events affected the transformation of these kinematic and kinetic characteristics into neuronal discharges. Most cortical neurons exhibited surface coarseness selectivity through global and local stick-slip event properties. However, this selectivity varied across coding strategies in the same neurons, given that each coding strategy reflected different aspects of changes in whisker-surface interactions. The degree of spatial similarity in surface coarseness preference in adjacently recorded neurons differed among these coding strategies. Adjacently recorded neurons exhibited the same surface coarseness preference in their firing rates but not through other coding strategies. Through these results, we were able to show that local stick-slip event properties contribute to texture discrimination, complementing and surpassing global coding in this context. These findings suggest that the representation of surface coarseness in the cortex may rely on concurrent coding strategies that integrate tactile information across different spatiotemporal scales.
Collapse
Affiliation(s)
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Be'er Sheva, Southern District, Israel
| |
Collapse
|
4
|
Ding Y, Vlasov Y. Pre-neuronal processing of haptic sensory cues via dispersive high-frequency vibrational modes. Sci Rep 2023; 13:14370. [PMID: 37658126 PMCID: PMC10474056 DOI: 10.1038/s41598-023-40675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Sense of touch is one of the major perception channels. Neural coding of object textures conveyed by rodents' whiskers has been a model to study early stages of haptic information uptake. While high-precision spike timing has been observed during whisker sweeping across textured surfaces, the exact nature of whisker micromotions that spikes encode remains elusive. Here, we discovered that a single micro-collision of a whisker with surface features generates vibrational eigenmodes spanning frequencies up to 10 kHz. While propagating along the whisker, these high-frequency modes can carry up to 80% of shockwave energy, exhibit 100× smaller damping ratio, and arrive at the follicle 10× faster than low frequency components. The mechano-transduction of these energy bursts into time-sequenced population spike trains may generate temporally unique "bar code" with ultra-high information capacity. This hypothesis of pre-neuronal processing of haptic signals based on dispersive temporal separation of the vibrational modal frequencies can shed light on neural coding of haptic signals in many whisker-like sensory organs across the animal world as well as in texture perception in primate's glabrous skin.
Collapse
Affiliation(s)
- Yu Ding
- Department of Physics, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA
| | - Yurii Vlasov
- Department of Physics, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
- Department of BioEngineering, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, 208 North Wright Street, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Mugnaini M, Mehrotra D, Davoine F, Sharma V, Mendes AR, Gerhardt B, Concha-Miranda M, Brecht M, Clemens AM. Supra-orbital whiskers act as wind-sensing antennae in rats. PLoS Biol 2023; 21:e3002168. [PMID: 37410722 DOI: 10.1371/journal.pbio.3002168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
We know little about mammalian anemotaxis or wind sensing. Recently, however, Hartmann and colleagues showed whisker-based anemotaxis in rats. To investigate how whiskers sense airflow, we first tracked whisker tips in anesthetized rats under low (0.5 m/s) and high (1.5 m/s) airflow. Whisker tips showed increasing movement from low to high airflow conditions, with all whisker tips moving during high airflow. Low airflow conditions-most similar to naturally occurring wind stimuli-engaged whisker tips differentially. Most whiskers moved little, but the long supra-orbital (lSO) whisker showed maximal displacement, followed by the α, β, and A1 whiskers. The lSO whisker differs from other whiskers in its exposed dorsal position, upward bending, length and thin diameter. Ex vivo extracted lSO whiskers also showed exceptional airflow displacement, suggesting whisker-intrinsic biomechanics mediate the unique airflow-sensitivity. Micro computed tomography (micro-CT) revealed that the ring-wulst-the follicle structure receiving the most sensitive afferents-was more complete/closed in the lSO, and other wind-sensitive whiskers, than in non-wind-sensitive whiskers, suggesting specialization of the supra-orbital for omni-directional sensing. We localized and targeted the cortical supra-orbital whisker representation in simultaneous Neuropixels recordings with D/E-row whisker barrels. Responses to wind-stimuli were stronger in the supra-orbital whisker representation than in D/E-row barrel cortex. We assessed the behavioral significance of whiskers in an airflow-sensing paradigm. We observed that rats spontaneously turn towards airflow stimuli in complete darkness. Selective trimming of wind-responsive whiskers diminished airflow turning responses more than trimming of non-wind-responsive whiskers. Lidocaine injections targeted to supra-orbital whisker follicles also diminished airflow turning responses compared to control injections. We conclude that supra-orbital whiskers act as wind antennae.
Collapse
Affiliation(s)
- Matias Mugnaini
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Laboratory of Physiology and Algorithms of the Brain, Leloir Institute (IIBBA-CONICET), Buenos Aires, Argentina
| | - Dhruv Mehrotra
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute and Hospital, Montréal, Québec, Canada
| | - Federico Davoine
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Varun Sharma
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- School of Biological Sciences & Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Ana Rita Mendes
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Champalimaud Neuroscience Programme; Champalimaud Foundation, Doca de Pedrouços, Lisbon, Portugal
| | - Ben Gerhardt
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Michael Brecht
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- Bernstein Center for Computational Neuroscience, Humboldt University of Berlin, Berlin, Germany
| | - Ann M Clemens
- Neural Systems & Behavior, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
- University of Edinburgh, Simons Initiative for the Developing Brain, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
6
|
Matteucci G, Guyoton M, Mayrhofer JM, Auffret M, Foustoukos G, Petersen CCH, El-Boustani S. Cortical sensory processing across motivational states during goal-directed behavior. Neuron 2022; 110:4176-4193.e10. [PMID: 36240769 DOI: 10.1016/j.neuron.2022.09.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/25/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how altered neuronal sensory representations in these states relate to task performance and learning. We trained water-restricted mice in a two-whisker discrimination task to study cortical circuits underlying perceptual decision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas identified populations selective to sensory or motor events. Analysis of task performance during individual sessions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning was better explained by improvements in motivational state control rather than sensorimotor association. Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker stimuli could be better decoded from neuronal activity during high task performance states, suggesting that state-dependent changes of sensory processing influence decision-making.
Collapse
Affiliation(s)
- Giulio Matteucci
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Maëlle Guyoton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| | - Sami El-Boustani
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland; Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
7
|
Demonstration of three-dimensional contact point determination and contour reconstruction during active whisking behavior of an awake rat. PLoS Comput Biol 2022; 18:e1007763. [PMID: 36108064 PMCID: PMC9477318 DOI: 10.1371/journal.pcbi.1007763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
The rodent vibrissal (whisker) system has been studied for decades as a model of active touch sensing. There are no sensors along the length of a whisker; all sensing occurs at the whisker base. Therefore, a large open question in many neuroscience studies is how an animal could estimate the three-dimensional (3D) location at which a whisker makes contact with an object. In the present work we simulated the shape of a real rat whisker to demonstrate the existence of several unique mappings from triplets of mechanical signals at the whisker base to the three-dimensional whisker-object contact point. We then used high speed video to record whisker deflections as an awake rat whisked against a peg, and used the mechanics resulting from those deflections to extract the contact points along the peg surface. These results demonstrate that measurement of specific mechanical triplets at the base of a biological whisker can enable 3D contact point determination during natural whisking behavior. The approach is viable even though the biological whisker has non-ideal, non-planar curvature, and even given the rat’s real-world choices of whisking parameters. Visual intuition for the quality of the approach is provided in a video that shows the contour of the peg gradually emerging during active whisking behavior.
Collapse
|
8
|
Lemercier CE, Krieger P. Reducing Merkel cell activity in the whisker follicle disrupts cortical encoding of whisker movement amplitude and velocity. IBRO Neurosci Rep 2022; 13:356-363. [PMID: 36281438 PMCID: PMC9586890 DOI: 10.1016/j.ibneur.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Merkel cells (MCs) and associated primary sensory afferents of the whisker follicle-sinus complex, accurately code whisker self-movement, angle, and whisk phase during whisking. However, little is known about their roles played in cortical encoding of whisker movement. To this end, the spiking activity of primary somatosensory barrel cortex (wS1) neurons was measured in response to varying the whisker deflection amplitude and velocity in transgenic mice with previously established reduced mechanoelectrical coupling at MC-associated afferents. Under reduced MC activity, wS1 neurons exhibited increased sensitivity to whisker deflection. This appeared to arise from a lack of variation in response magnitude to varying the whisker deflection amplitude and velocity. This latter effect was further indicated by weaker variation in the temporal profile of the evoked spiking activity when either whisker deflection amplitude or velocity was varied. Nevertheless, under reduced MC activity, wS1 neurons retained the ability to differentiate stimulus features based on the timing of their first post-stimulus spike. Collectively, results from this study suggest that MCs contribute to cortical encoding of both whisker amplitude and velocity, predominantly by tuning wS1 response magnitude, and by patterning the evoked spiking activity, rather than by tuning wS1 response latency. The role of Merkel cells (MCs) in cortical encoding of whisker deflection amplitude and velocity was investigated. Reducing MC synaptic activity increased barrel cortex neurons response sensitivity to whisker deflection. This effect occurred from a lack of variation in response magnitude to varying whisker deflection amplitude and velocity. However, stimuli differentiation through changes in cortical response latency was preserved. MCs are thus suggested to play a predominant role in tuning the cortical response magnitude over the response latency.
Collapse
|
9
|
Antonietti A, Geminiani A, Negri E, D'Angelo E, Casellato C, Pedrocchi A. Brain-Inspired Spiking Neural Network Controller for a Neurorobotic Whisker System. Front Neurorobot 2022; 16:817948. [PMID: 35770277 PMCID: PMC9234954 DOI: 10.3389/fnbot.2022.817948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
It is common for animals to use self-generated movements to actively sense the surrounding environment. For instance, rodents rhythmically move their whiskers to explore the space close to their body. The mouse whisker system has become a standard model for studying active sensing and sensorimotor integration through feedback loops. In this work, we developed a bioinspired spiking neural network model of the sensorimotor peripheral whisker system, modeling trigeminal ganglion, trigeminal nuclei, facial nuclei, and central pattern generator neuronal populations. This network was embedded in a virtual mouse robot, exploiting the Human Brain Project's Neurorobotics Platform, a simulation platform offering a virtual environment to develop and test robots driven by brain-inspired controllers. Eventually, the peripheral whisker system was adequately connected to an adaptive cerebellar network controller. The whole system was able to drive active whisking with learning capability, matching neural correlates of behavior experimentally recorded in mice.
Collapse
Affiliation(s)
- Alberto Antonietti
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- *Correspondence: Alberto Antonietti
| | - Alice Geminiani
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Edoardo Negri
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Egidio D'Angelo
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Neurocomputational Laboratory, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alessandra Pedrocchi
- Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
10
|
Baruchin LJ, Ghezzi F, Kohl MM, Butt SJB. Contribution of Interneuron Subtype-Specific GABAergic Signaling to Emergent Sensory Processing in Mouse Somatosensory Whisker Barrel Cortex. Cereb Cortex 2021; 32:2538-2554. [PMID: 34613375 PMCID: PMC9201598 DOI: 10.1093/cercor/bhab363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 11/12/2022] Open
Abstract
Mammalian neocortex is important for conscious processing of sensory information with balanced glutamatergic and GABAergic signaling fundamental to this function. Yet little is known about how this interaction arises despite increasing insight into early GABAergic interneuron (IN) circuits. To study this, we assessed the contribution of specific INs to the development of sensory processing in the mouse whisker barrel cortex, specifically the role of INs in early speed coding and sensory adaptation. In wild-type animals, both speed processing and adaptation were present as early as the layer 4 critical period of plasticity and showed refinement over the period leading to active whisking onset. To test the contribution of IN subtypes, we conditionally silenced action-potential-dependent GABA release in either somatostatin (SST) or vasoactive intestinal peptide (VIP) INs. These genetic manipulations influenced both spontaneous and sensory-evoked cortical activity in an age- and layer-dependent manner. Silencing SST + INs reduced early spontaneous activity and abolished facilitation in sensory adaptation observed in control pups. In contrast, VIP + IN silencing had an effect towards the onset of active whisking. Silencing either IN subtype had no effect on speed coding. Our results show that these IN subtypes contribute to early sensory processing over the first few postnatal weeks.
Collapse
Affiliation(s)
- Liad J Baruchin
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Filippo Ghezzi
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Michael M Kohl
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Simon J B Butt
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
11
|
Sherf N, Shamir M. STDP and the distribution of preferred phases in the whisker system. PLoS Comput Biol 2021; 17:e1009353. [PMID: 34534208 PMCID: PMC8480728 DOI: 10.1371/journal.pcbi.1009353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/29/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Rats and mice use their whiskers to probe the environment. By rhythmically swiping their whiskers back and forth they can detect the existence of an object, locate it, and identify its texture. Localization can be accomplished by inferring the whisker’s position. Rhythmic neurons that track the phase of the whisking cycle encode information about the azimuthal location of the whisker. These neurons are characterized by preferred phases of firing that are narrowly distributed. Consequently, pooling the rhythmic signal from several upstream neurons is expected to result in a much narrower distribution of preferred phases in the downstream population, which however has not been observed empirically. Here, we show how spike timing dependent plasticity (STDP) can provide a solution to this conundrum. We investigated the effect of STDP on the utility of a neural population to transmit rhythmic information downstream using the framework of a modeling study. We found that under a wide range of parameters, STDP facilitated the transfer of rhythmic information despite the fact that all the synaptic weights remained dynamic. As a result, the preferred phase of the downstream neuron was not fixed, but rather drifted in time at a drift velocity that depended on the preferred phase, thus inducing a distribution of preferred phases. We further analyzed how the STDP rule governs the distribution of preferred phases in the downstream population. This link between the STDP rule and the distribution of preferred phases constitutes a natural test for our theory. The distribution of preferred phases of whisking neurons in the somatosensory system of rats and mice presents a conundrum: a simple pooling model predicts a distribution that is an order of magnitude narrower than what is observed empirically. Here, we suggest that this non-trivial distribution may result from activity-dependent plasticity in the form of spike timing dependent plasticity (STDP). We show that under STDP, the synaptic weights do not converge to a fixed value, but rather remain dynamic. As a result, the preferred phases of the whisking neurons vary in time, hence inducing a non-trivial distribution of preferred phases, which is governed by the STDP rule. Our results imply that the considerable synaptic volatility which has long been viewed as a difficulty that needs to be overcome, may actually be an underlying principle of the organization of the central nervous system.
Collapse
Affiliation(s)
- Nimrod Sherf
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| | - Maoz Shamir
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Physiology and Cell Biology Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
12
|
Leszczynski M, Chaieb L, Staudigl T, Enkirch SJ, Fell J, Schroeder CE. Neural activity in the human anterior thalamus during natural vision. Sci Rep 2021; 11:17480. [PMID: 34471183 PMCID: PMC8410783 DOI: 10.1038/s41598-021-96588-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
In natural vision humans and other primates explore environment by active sensing, using saccadic eye movements to relocate the fovea and sample different bits of information multiple times per second. Saccades induce a phase reset of ongoing neuronal oscillations in primary and higher-order visual cortices and in the medial temporal lobe. As a result, neuron ensembles are shifted to a common state at the time visual input propagates through the system (i.e., just after fixation). The extent of the brain’s circuitry that is modulated by saccades is not yet known. Here, we evaluate the possibility that saccadic phase reset impacts the anterior nuclei of the thalamus (ANT). Using recordings in the human thalamus of three surgical patients during natural vision, we found that saccades and visual stimulus onset both modulate neural activity, but with distinct field potential morphologies. Specifically, we found that fixation-locked field potentials had a component that preceded saccade onset. It was followed by an early negativity around 50 ms after fixation onset which is significantly faster than any response to visual stimulus presentation. The timing of these events suggests that the ANT is predictively modulated before the saccadic eye movement. We also found oscillatory phase concentration, peaking at 3–4 Hz, coincident with suppression of Broadband High-frequency Activity (BHA; 80–180 Hz), both locked to fixation onset supporting the idea that neural oscillations in these nuclei are reorganized to a low excitability state right after fixation onset. These findings show that during real-world natural visual exploration neural dynamics in the human ANT is influenced by visual and oculomotor events, which supports the idea that ANT, apart from their contribution to episodic memory, also play a role in natural vision.
Collapse
Affiliation(s)
- Marcin Leszczynski
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University Medical Center, 1051 Riverside Drive Kolb Annex Rm 561, New York, NY, 10032, USA. .,Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| | - Leila Chaieb
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Juergen Fell
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Charles E Schroeder
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University Medical Center, 1051 Riverside Drive Kolb Annex Rm 561, New York, NY, 10032, USA.,Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| |
Collapse
|
13
|
Bush NE, Solla SA, Hartmann MJZ. Continuous, multidimensional coding of 3D complex tactile stimuli by primary sensory neurons of the vibrissal system. Proc Natl Acad Sci U S A 2021; 118:e2020194118. [PMID: 34353902 PMCID: PMC8364131 DOI: 10.1073/pnas.2020194118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Across all sensory modalities, first-stage sensory neurons are an information bottleneck: they must convey all information available for an animal to perceive and act in its environment. Our understanding of coding properties of primary sensory neurons in the auditory and visual systems has been aided by the use of increasingly complex, naturalistic stimulus sets. By comparison, encoding properties of primary somatosensory afferents are poorly understood. Here, we use the rodent whisker system to examine how tactile information is represented in primary sensory neurons of the trigeminal ganglion (Vg). Vg neurons have long been thought to segregate into functional classes associated with separate streams of information processing. However, this view is based on Vg responses to restricted stimulus sets which potentially underreport the coding capabilities of these neurons. In contrast, the current study records Vg responses to complex three-dimensional (3D) stimulation while quantifying the complete 3D whisker shape and mechanics, thereby beginning to reveal their full representational capabilities. The results show that individual Vg neurons simultaneously represent multiple mechanical features of a stimulus, do not preferentially encode principal components of the stimuli, and represent continuous and tiled variations of all available mechanical information. These results directly contrast with proposed codes in which subpopulations of Vg neurons encode select stimulus features. Instead, individual Vg neurons likely overcome the information bottleneck by encoding large regions of a complex sensory space. This proposed tiled and multidimensional representation at the Vg directly constrains the computations performed by more central neurons of the vibrissotrigeminal pathway.
Collapse
Affiliation(s)
- Nicholas E Bush
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208
| | - Sara A Solla
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
- Department of Physiology, Northwestern University, Chicago, IL 60611
| | - Mitra J Z Hartmann
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208;
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208
| |
Collapse
|
14
|
Ebert C, Bagdasarian K, Haidarliu S, Ahissar E, Wallach A. Interactions of Whisking and Touch Signals in the Rat Brainstem. J Neurosci 2021; 41:4826-4839. [PMID: 33893218 PMCID: PMC8260172 DOI: 10.1523/jneurosci.1410-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/21/2022] Open
Abstract
Perception is an active process, requiring the integration of both proprioceptive and exteroceptive information. In the rat's vibrissal system, a classical model for active sensing, the relative contribution of the two information streams was previously studied at the peripheral, thalamic, and cortical levels. Contributions of brainstem neurons were only indirectly inferred for some trigeminal nuclei according to their thalamic projections. The current work addressed this knowledge gap by performing the first comparative study of the encoding of proprioceptive whisking and exteroceptive touch signals in the oralis (SpVo), interpolaris (SpVi), and paratrigeminal (Pa5) brainstem nuclei. We used artificial whisking in anesthetized male rats, which allows a systematic analysis of the relative contribution of the proprioceptive and exteroceptive information streams along the ascending pathways in the absence of motor or cognitive top-down modulations. We found that (1) neurons in the rostral and caudal parts of the SpVi convey whisking and touch information, respectively, as predicted by their thalamic projections; (2) neurons in the SpVo encode both whisking and (primarily) touch information; and (3) neurons of the Pa5 encode a complex combination of whisking and touch information. In particular, the Pa5 contains a relatively large fraction of neurons that are inhibited by active touch, a response observed so far only in the thalamus. Overall, our systematic characterization of afferent responses to active touch in the trigeminal brainstem approves the hypothesized functions of SpVi neurons and presents evidence that SpVo and Pa5 neurons are involved in the processing of active vibrissal touch.SIGNIFICANCE STATEMENT The present work constitutes the first comparative study of the encoding of proprioceptive (whisking) and exteroceptive (touch) information in the rat's brainstem trigeminal nuclei, the first stage of vibrissal processing in the CNS. It shows that (1) as expected, the rostral and caudal interpolaris neurons convey primarily whisking and touch information, respectively; (2) the oralis nucleus, whose function was previously unknown, encodes both whisking and (primarily) touch touch information; (3) a subtractive computation, reported at the thalamic level, already occurs at the brainstem level; and (4) a novel afferent pathway probably ascends via the paratrigeminal nucleus, encoding both proprioceptive and exteroceptive information.
Collapse
Affiliation(s)
- Coralie Ebert
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | | | | - Ehud Ahissar
- Weizmann Institute of Science, Rehovot, Israel 7610001
| | | |
Collapse
|
15
|
O'Connor DH, Krubitzer L, Bensmaia S. Of mice and monkeys: Somatosensory processing in two prominent animal models. Prog Neurobiol 2021; 201:102008. [PMID: 33587956 PMCID: PMC8096687 DOI: 10.1016/j.pneurobio.2021.102008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/26/2020] [Accepted: 02/07/2021] [Indexed: 11/20/2022]
Abstract
Our understanding of the neural basis of somatosensation is based largely on studies of the whisker system of mice and rats and the hands of macaque monkeys. Results across these animal models are often interpreted as providing direct insight into human somatosensation. Work on these systems has proceeded in parallel, capitalizing on the strengths of each model, but has rarely been considered as a whole. This lack of integration promotes a piecemeal understanding of somatosensation. Here, we examine the functions and morphologies of whiskers of mice and rats, the hands of macaque monkeys, and the somatosensory neuraxes of these three species. We then discuss how somatosensory information is encoded in their respective nervous systems, highlighting similarities and differences. We reflect on the limitations of these models of human somatosensation and consider key gaps in our understanding of the neural basis of somatosensation.
Collapse
Affiliation(s)
- Daniel H O'Connor
- Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, United States; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, United States
| | - Leah Krubitzer
- Department of Psychology and Center for Neuroscience, University of California at Davis, United States
| | - Sliman Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, United States; Committee on Computational Neuroscience, University of Chicago, United States; Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, United States.
| |
Collapse
|
16
|
Basso JC, Satyal MK, Rugh R. Dance on the Brain: Enhancing Intra- and Inter-Brain Synchrony. Front Hum Neurosci 2021; 14:584312. [PMID: 33505255 PMCID: PMC7832346 DOI: 10.3389/fnhum.2020.584312] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Dance has traditionally been viewed from a Eurocentric perspective as a mode of self-expression that involves the human body moving through space, performed for the purposes of art, and viewed by an audience. In this Hypothesis and Theory article, we synthesize findings from anthropology, sociology, psychology, dance pedagogy, and neuroscience to propose The Synchronicity Hypothesis of Dance, which states that humans dance to enhance both intra- and inter-brain synchrony. We outline a neurocentric definition of dance, which suggests that dance involves neurobehavioral processes in seven distinct areas including sensory, motor, cognitive, social, emotional, rhythmic, and creative. We explore The Synchronicity Hypothesis of Dance through several avenues. First, we examine evolutionary theories of dance, which suggest that dance drives interpersonal coordination. Second, we examine fundamental movement patterns, which emerge throughout development and are omnipresent across cultures of the world. Third, we examine how each of the seven neurobehaviors increases intra- and inter-brain synchrony. Fourth, we examine the neuroimaging literature on dance to identify the brain regions most involved in and affected by dance. The findings presented here support our hypothesis that we engage in dance for the purpose of intrinsic reward, which as a result of dance-induced increases in neural synchrony, leads to enhanced interpersonal coordination. This hypothesis suggests that dance may be helpful to repattern oscillatory activity, leading to clinical improvements in autism spectrum disorder and other disorders with oscillatory activity impairments. Finally, we offer suggestions for future directions and discuss the idea that our consciousness can be redefined not just as an individual process but as a shared experience that we can positively influence by dancing together.
Collapse
Affiliation(s)
- Julia C Basso
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States.,Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute, Virginia Tech, Blacksburg, VA, United States.,School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Medha K Satyal
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Rachel Rugh
- Center for Communicating Science, Virginia Tech, Blacksburg, VA, United States.,School of Performing Arts, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
17
|
Kim J, Erskine A, Cheung JA, Hires SA. Behavioral and Neural Bases of Tactile Shape Discrimination Learning in Head-Fixed Mice. Neuron 2020; 108:953-967.e8. [PMID: 33002411 DOI: 10.1016/j.neuron.2020.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
Tactile shape recognition requires the perception of object surface angles. We investigate how neural representations of object angles are constructed from sensory input and how they reorganize across learning. Head-fixed mice learned to discriminate object angles by active exploration with one whisker. Calcium imaging of layers 2-4 of the barrel cortex revealed maps of object-angle tuning before and after learning. Three-dimensional whisker tracking demonstrated that the sensory input components that best discriminate angles (vertical bending and slide distance) also have the greatest influence on object-angle tuning. Despite the high turnover in active ensemble membership across learning, the population distribution of object-angle tuning preferences remained stable. Angle tuning sharpened, but only in neurons that preferred trained angles. This was correlated with a selective increase in the influence of the most task-relevant sensory component on object-angle tuning. These results show how discrimination training enhances stimulus selectivity in the primary somatosensory cortex while maintaining perceptual stability.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Erskine
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Andrew Cheung
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samuel Andrew Hires
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
18
|
Harrell ER, Goldin MA, Bathellier B, Shulz DE. An elaborate sweep-stick code in rat barrel cortex. SCIENCE ADVANCES 2020; 6:6/38/eabb7189. [PMID: 32938665 PMCID: PMC7494352 DOI: 10.1126/sciadv.abb7189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
In rat barrel cortex, feature encoding schemes uncovered during broadband whisker stimulation are hard to reconcile with the simple stick-slip code observed during natural tactile behaviors, and this has hindered the development of a generalized computational framework. By designing broadband artificial stimuli to sample the inputs encoded under natural conditions, we resolve this disparity while markedly increasing the percentage of deep layer neurons found to encode whisker movements, as well as the diversity of these encoded features. Deep layer neurons encode two main types of events, sticks and sweeps, corresponding to high angular velocity bumps and large angular displacements with high velocity, respectively. Neurons can exclusively encode sticks or sweeps, or they can encode both, with or without direction selectivity. Beyond unifying coding theories from naturalistic and artificial stimulation studies, these findings delineate a simple and generalizable set of whisker movement features that can support a range of perceptual processes.
Collapse
Affiliation(s)
- Evan R Harrell
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay (NeuroPSI), Building 32/33, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| | - Matías A Goldin
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay (NeuroPSI), Building 32/33, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Brice Bathellier
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay (NeuroPSI), Building 32/33, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Daniel E Shulz
- Université Paris-Saclay, CNRS, Institut des neurosciences Paris-Saclay (NeuroPSI), Building 32/33, 1 avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
20
|
Touch: Fluctuating Waves of Perception. Curr Biol 2020; 30:R934-R936. [PMID: 32810452 DOI: 10.1016/j.cub.2020.06.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Does sensory input flow into the brain as a stream, or does it come in waves? New research shows that tactile information in the cortex rises and falls in phase with the forward and back motion of whiskers during surface exploration.
Collapse
|
21
|
Parker PRL, Brown MA, Smear MC, Niell CM. Movement-Related Signals in Sensory Areas: Roles in Natural Behavior. Trends Neurosci 2020; 43:581-595. [PMID: 32580899 PMCID: PMC8000520 DOI: 10.1016/j.tins.2020.05.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated prominent and widespread movement-related signals in the brain of head-fixed mice, even in primary sensory areas. However, it is still unknown what role these signals play in sensory processing. Why are these sensory areas 'contaminated' by movement signals? During natural behavior, animals actively acquire sensory information as they move through the environment and use this information to guide ongoing actions. In this context, movement-related signals could allow sensory systems to predict self-induced sensory changes and extract additional information about the environment. In this review we summarize recent findings on the presence of movement-related signals in sensory areas and discuss how their study, in the context of natural freely moving behaviors, could advance models of sensory processing.
Collapse
Affiliation(s)
- Philip R L Parker
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | - Morgan A Brown
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Matthew C Smear
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Department of Psychology, University of Oregon, Eugene, OR 97403, USA
| | - Cristopher M Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Department of Biology, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
22
|
Isett BR, Feldman DE. Cortical Coding of Whisking Phase during Surface Whisking. Curr Biol 2020; 30:3065-3074.e5. [PMID: 32531284 DOI: 10.1016/j.cub.2020.05.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/16/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022]
Abstract
In rodent whisker sensation, whisker position signals, including whisking phase, are integrated with touch signals to enable spatially accurate tactile perception, but other functions of phase coding are unclear. We investigate how phase coding affects the neural coding of surface features during surface whisking. In mice performing rough-smooth discrimination, S1 units exhibit much stronger phase tuning during surface whisking than in prior studies of whisking in air. Among putative pyramidal cells, preferred phase tiles phase space, but protraction phases are strongly over-represented. Fast-spiking units are nearly all protraction tuned. This protraction bias increases the coding of stick-slip whisker events during protraction, suggesting that surface features are preferentially encoded during protraction. Correspondingly, protraction-tuned units encode rough-smooth texture better than retraction-tuned units and encode the precise spatial location of surface ridges with higher acuity. This suggests that protraction is the main information-gathering phase for high-resolution surface features, with phase coding organized to support this function.
Collapse
Affiliation(s)
- Brian R Isett
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E Feldman
- Department of Molecular and Cellular Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Predictive whisker kinematics reveal context-dependent sensorimotor strategies. PLoS Biol 2020; 18:e3000571. [PMID: 32453721 PMCID: PMC7274460 DOI: 10.1371/journal.pbio.3000571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 06/05/2020] [Accepted: 05/11/2020] [Indexed: 01/27/2023] Open
Abstract
Animals actively move their sensory organs in order to acquire sensory information. Some rodents, such as mice and rats, employ cyclic scanning motions of their facial whiskers to explore their proximal surrounding, a behavior known as whisking. Here, we investigated the contingency of whisking kinematics on the animal's behavioral context that arises from both internal processes (attention and expectations) and external constraints (available sensory and motor degrees of freedom). We recorded rat whisking at high temporal resolution in 2 experimental contexts-freely moving or head-fixed-and 2 spatial sensory configurations-a single row or 3 caudal whiskers on each side of the snout. We found that rapid sensorimotor twitches, called pumps, occurring during free-air whisking carry information about the rat's upcoming exploratory direction, as demonstrated by the ability of these pumps to predict consequent head and body locomotion. Specifically, pump behavior during both voluntary motionlessness and imposed head fixation exposed a backward redistribution of sensorimotor exploratory resources. Further, head-fixed rats employed a wide range of whisking profiles to compensate for the loss of head- and body-motor degrees of freedom. Finally, changing the number of intact vibrissae available to a rat resulted in an alteration of whisking strategy consistent with the rat actively reallocating its remaining resources. In sum, this work shows that rats adapt their active exploratory behavior in a homeostatic attempt to preserve sensorimotor coverage under changing environmental conditions and changing sensory capacities, including those imposed by various laboratory conditions.
Collapse
|
24
|
Somatosensation: The Cellular and Physical Basis of Tactile Experience. Curr Biol 2020; 30:R215-R217. [PMID: 32155422 DOI: 10.1016/j.cub.2020.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental question in sensory neuroscience is how perceptual experience arises from the cellular properties of sensory neurons. A new, tour de force study has dissected out the functional properties of identified mechanosensory nerve endings that innervate whisker follicles.
Collapse
|
25
|
Neural Networks: How a Multi-Layer Network Learns to Disentangle Exogenous from Self-Generated Signals. Curr Biol 2020; 30:R224-R226. [PMID: 32155426 DOI: 10.1016/j.cub.2020.01.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Artificial multi-layer networks can learn difficult tasks, such as recognizing faces, but their architecture and learning rules appear to be very different from those of biological neural networks. Experimental and computational studies of a two-layered biological neural network have revealed how the learning rules used in artificial neural networks can be efficiently implemented by neurons with complex dynamics and precisely organized connectivity.
Collapse
|
26
|
Deutsch D, Schneidman E, Ahissar E. Generalization of Object Localization From Whiskers to Other Body Parts in Freely Moving Rats. Front Integr Neurosci 2019; 13:64. [PMID: 31736724 PMCID: PMC6839537 DOI: 10.3389/fnint.2019.00064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/16/2019] [Indexed: 11/13/2022] Open
Abstract
Rats can be trained to associate relative spatial locations of objects with the spatial location of rewards. Here we ask whether rats can localize static silent objects with other body parts in the dark, and if so with what resolution. We addressed these questions in trained rats, whose interactions with the objects were tracked at high-resolution before and after whisker trimming. We found that rats can use other body parts, such as trunk and ears, to localize objects. Localization resolution with non-whisking body parts (henceforth, ‘body’) was poorer than that obtained with whiskers, even when left with a single whisker at each side. Part of the superiority of whiskers was obtained via the use of multiple contacts. Transfer from whisker to body localization occurred within one session, provided that body contacts with the objects occurred before whisker trimming, or in the next session otherwise. This transfer occurred whether temporal cues were used for discrimination or when discrimination was based on spatial cues alone. Rats’ decision in each trial was based on the sensory cues acquired in that trial and on decisions and reward locations in previous trials. When sensory cues were acquired by body contacts, rat decisions relied more on the reward location in previous trials. Overall, the results suggest that rats can generalize the idea of relative object location across different body parts, while preferring to rely on whiskers-based localization, which occurs earlier and conveys higher resolution.
Collapse
Affiliation(s)
- David Deutsch
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Elad Schneidman
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Ahissar
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
27
|
Tsur O, Khrapunsky Y, Azouz R. Sensorimotor integration in the whisker somatosensory brain stem trigeminal loop. J Neurophysiol 2019; 122:2061-2075. [PMID: 31533013 DOI: 10.1152/jn.00116.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rodent's vibrissal system is a useful model system for studying sensorimotor integration in perception. This integration determines the way in which sensory information is acquired by sensory organs and the motor commands that control them. The initial instance of sensorimotor integration in the whisker somatosensory system is implemented in the brain stem loop and may be essential to the way rodents explore and sense their environment. To examine the nature of these sensorimotor interactions, we recorded from lightly anesthetized rats in vivo and brain stem slices in vitro and isolated specific parts of this loop. We found that motor feedback to the vibrissal pad serves as a dynamic gain controller that controls the response of first-order sensory neurons by increasing and decreasing sensitivity to lower and higher tactile stimulus magnitudes, respectively. This delicate mechanism is mediated through tactile stimulus magnitude-dependent motor feedback. Conversely, tactile inputs affect the motor whisking output through influences on the rhythmic whisking circuitry, thus changing whisking kinetics. Similarly, tactile influences also modify the whisking amplitude through synaptic and intrinsic neuronal interaction in the facial nucleus, resulting in facilitation or suppression of whisking amplitude. These results point to the vast range of mechanisms underlying sensorimotor integration in the brain stem loop.NEW & NOTEWORTHY Sensorimotor integration is a process in which sensory and motor information is combined to control the flow of sensory information, as well as to adjust the motor system output. We found in the rodent's whisker somatosensory system mutual influences between tactile inputs and motor output, in which motor neurons control the flow of sensory information depending on their magnitude. Conversely, sensory information can control the magnitude and kinetics of whisker movement.
Collapse
Affiliation(s)
- Omer Tsur
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yana Khrapunsky
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rony Azouz
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
28
|
The Sensorimotor Basis of Whisker-Guided Anteroposterior Object Localization in Head-Fixed Mice. Curr Biol 2019; 29:3029-3040.e4. [PMID: 31474537 PMCID: PMC6771421 DOI: 10.1016/j.cub.2019.07.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/26/2019] [Accepted: 07/23/2019] [Indexed: 11/22/2022]
Abstract
Active tactile perception combines directed motion with sensory signals to generate mental representations of objects in space. Competing models exist for how mice use these signals to determine the precise location of objects along their face. We tested six of these models using behavioral manipulations and statistical learning in head-fixed mice. Trained mice used a whisker to locate a pole in a continuous range of locations along the anteroposterior axis. Mice discriminated locations to ≤0.5 mm (<2°) resolution. Their motor program was noisy, adaptive to touch, and directed to the rewarded range. This exploration produced several sets of sensorimotor features that could discriminate location. Integration of two features, touch count and whisking midpoint at touch, was the simplest model that explained behavior best. These results show how mice locate objects at hyperacute resolution using a learned motor strategy and minimal set of mentally accessible sensorimotor features.
Collapse
|
29
|
Adibi M. Whisker-Mediated Touch System in Rodents: From Neuron to Behavior. Front Syst Neurosci 2019; 13:40. [PMID: 31496942 PMCID: PMC6712080 DOI: 10.3389/fnsys.2019.00040] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/02/2019] [Indexed: 01/02/2023] Open
Abstract
A key question in systems neuroscience is to identify how sensory stimuli are represented in neuronal activity, and how the activity of sensory neurons in turn is “read out” by downstream neurons and give rise to behavior. The choice of a proper model system to address these questions, is therefore a crucial step. Over the past decade, the increasingly powerful array of experimental approaches that has become available in non-primate models (e.g., optogenetics and two-photon imaging) has spurred a renewed interest for the use of rodent models in systems neuroscience research. Here, I introduce the rodent whisker-mediated touch system as a structurally well-established and well-organized model system which, despite its simplicity, gives rise to complex behaviors. This system serves as a behaviorally efficient model system; known as nocturnal animals, along with their olfaction, rodents rely on their whisker-mediated touch system to collect information about their surrounding environment. Moreover, this system represents a well-studied circuitry with a somatotopic organization. At every stage of processing, one can identify anatomical and functional topographic maps of whiskers; “barrelettes” in the brainstem nuclei, “barreloids” in the sensory thalamus, and “barrels” in the cortex. This article provides a brief review on the basic anatomy and function of the whisker system in rodents.
Collapse
Affiliation(s)
- Mehdi Adibi
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.,Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), Trieste, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| |
Collapse
|
30
|
Leszczynski M, Schroeder CE. The Role of Neuronal Oscillations in Visual Active Sensing. Front Integr Neurosci 2019; 13:32. [PMID: 31396059 PMCID: PMC6664014 DOI: 10.3389/fnint.2019.00032] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023] Open
Abstract
Visual perception is most often studied as a "passive" process in which an observer fixates steadily at point in space so that stimuli can be delivered to the system with spatial precision. Analysis of neuronal signals related to vision is generally keyed to stimulus onset, stimulus movement, etc.; i.e., events external to the observer. In natural "active" vision, however, information is systematically acquired by using eye movements including rapid (saccadic) eye movements, as well as smooth ocular pursuit of moving objects and slower drifts. Here we consider the use of alternating saccades and fixations to gather information from a visual scene. The underlying motor sampling plan contains highly reliable information regarding "where" and "when" the eyes will land, this information can be used predictively to modify firing properties of neurons precisely at the time when this "contextual" information is most useful - when a volley of retinal input enters the system at the onset of each fixation. Analyses focusing on neural events leading to and resulting from shifts in fixation, as well as visual events external to the observer, can provide a more complete and mechanistic understanding of visual information processing. Studies thus far suggest that active vision may be a fundamentally different from that process we usually study with more traditional passive viewing paradigms. In this Perspective we note that active saccadic sampling behavior imposes robust temporal patterning on the activity of neuron ensembles and large-scale neural dynamics throughout the brain's visual pathways whose mechanistic effects on information processing are not yet fully understood. The spatio-temporal sequence of eye movements elicits a succession of temporally predictable quasi-rhythmic sensory inputs, whose encoding is enhanced by entrainment of low frequency oscillations to the rate of eye movements. Review of the pertinent findings underscores the fact that temporal coordination between motor and visual cortices is critical for understanding neural dynamics of active vision and posits that phase entrainment of neuronal oscillations plays a mechanistic role in this process.
Collapse
Affiliation(s)
- Marcin Leszczynski
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Translational Neuroscience Laboratories, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Charles E. Schroeder
- Department of Neurological Surgery, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Translational Neuroscience Laboratories, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| |
Collapse
|
31
|
Functional properties of mechanoreceptors in mouse whisker hair follicles determined by the pressure-clamped single-fiber recording technique. Neurosci Lett 2019; 707:134321. [PMID: 31181301 DOI: 10.1016/j.neulet.2019.134321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 01/13/2023]
Abstract
Several types of mechanoreceptors have been identified anatomically in rodent whisker hair follicles, but their functional properties have not been fully studied. Here we developed a pressure-clamped single-fiber recording technique to record impulses on mouse whisker hair follicle afferent nerves following displacements of whisker hair follicles. On the basis of the patterns of impulses evoked by the mechanical stimulation, three functional types of mechanoreceptors were identified, including rapidly adapting (RA), slowly adapting type 1 (SA1), and slowly adapting type 2 (SA2) mechanoreceptors. Impulses of all these mechanoreceptors were almost completely abolished by 30 nM TTX, and were largely suppressed by cooling temperatures at 15°C. Tested at different displacement distances as different stimulation intensity, RA mechanoreceptors showed a limited capacity for stimulation intensity encoding, but both SA1 and SA2 mechanoreceptors displayed linear increases of impulse numbers with increased stimulation intensity. Tested with different ramp speed of displacements, RA impulses were only evoked by rapid ramp stimulation but SA1 and SA2 impulses could be evoked by both rapid and slow ramp stimulation. Tested with different stimulation frequency, all three types of mechanoreceptors well followed the stimulation at 10-100 Hz. Taken together, this study revealed some important functional properties of RA, SA1 and SA2 mechanoreceptors, which helps better understand the encoding of tactile information by different types of low-threshold mechanoreceptors.
Collapse
|
32
|
Whisker Vibrations and the Activity of Trigeminal Primary Afferents in Response to Airflow. J Neurosci 2019; 39:5881-5896. [PMID: 31097620 DOI: 10.1523/jneurosci.2971-18.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/18/2019] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
Rodents are the most commonly studied model system in neuroscience, but surprisingly few studies investigate the natural sensory stimuli that rodent nervous systems evolved to interpret. Even fewer studies examine neural responses to these natural stimuli. Decades of research have investigated the rat vibrissal (whisker) system in the context of direct touch and tactile stimulation, but recent work has shown that rats also use their whiskers to help detect and localize airflow. The present study investigates the neural basis for this ability as dictated by the mechanical response of whiskers to airflow. Mechanical experiments show that a whisker's vibration magnitude depends on airspeed and the intrinsic shape of the whisker. Surprisingly, the direction of the whisker's vibration changes as a function of airflow speed: vibrations transition from parallel to perpendicular with respect to the airflow as airspeed increases. Recordings from primary sensory trigeminal ganglion neurons show that these neurons exhibit responses consistent with those that would be predicted from direct touch. Trigeminal neuron firing rate increases with airspeed, is modulated by the orientation of the whisker relative to the airflow, and is influenced by the whisker's resonant frequencies. We develop a simple model to describe how a population of neurons could leverage mechanical relationships to decode both airspeed and direction. These results open new avenues for studying vibrissotactile regions of the brain in the context of evolutionarily important airflow-sensing behaviors and olfactory search. Although this study used only female rats, all results are expected to generalize to male rats.SIGNIFICANCE STATEMENT The rodent vibrissal (whisker) system has been studied for decades in the context of direct tactile sensation, but recent work has indicated that rats also use whiskers to help localize airflow. Neural circuits in somatosensory regions of the rodent brain thus likely evolved in part to process airflow information. This study investigates the whiskers' mechanical response to airflow and the associated neural response. Airspeed affects the magnitude of whisker vibration and the response magnitude of whisker-sensitive primary sensory neurons in the trigeminal ganglion. Surprisingly, the direction of vibration and the associated directionally dependent neural response changes with airspeed. These findings suggest a population code for airflow speed and direction and open new avenues for studying vibrissotactile regions of the brain.
Collapse
|
33
|
Response Adaptation in Barrel Cortical Neurons Facilitates Stimulus Detection during Rhythmic Whisker Stimulation in Anesthetized Mice. eNeuro 2019; 6:eN-NWR-0471-18. [PMID: 30957014 PMCID: PMC6449164 DOI: 10.1523/eneuro.0471-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 11/21/2022] Open
Abstract
Rodents use rhythmic whisker movements at frequencies between 4 and 12 Hz to sense the environment that will be disturbed when the animal touches an object. The aim of this work is to study the response adaptation to rhythmic whisker stimulation trains at 4 Hz in the barrel cortex and the sensitivity of cortical neurons to changes in the timing of the stimulation pattern. Longitudinal arrays of four iridium oxide electrodes were used to obtain single-unit recordings in supragranular, granular, and infragranular neurons in urethane anesthetized mice. The stimulation protocol consisted in a stimulation train of three air puffs (20 ms duration each) in which the time interval between the first and the third stimuli was fixed (500 ms) and the time interval between the first and the second stimuli changed (regular: 250 ms; “accelerando”: 375 ms; or “decelerando” stimulation train: 125 ms interval). Cortical neurons adapted strongly their response to regular stimulation trains. Response adaptation was reduced when accelerando or decelerando stimulation trains were applied. This facilitation of the shifted stimulus was mediated by activation of NMDA receptors because the effect was blocked by AP5. The facilitation was not observed in thalamic nuclei. Facilitation increased during periods of EEG activation induced by systemic application of IGF-I, probably by activation of NMDA receptors, as well. We suggest that response adaptation is the outcome of an intrinsic cortical information processing aimed at contributing to improve the detection of “unexpected” stimuli that disturbed the rhythmic behavior of exploration.
Collapse
|
34
|
Prediction of Choice from Competing Mechanosensory and Choice-Memory Cues during Active Tactile Decision Making. J Neurosci 2019; 39:3921-3933. [PMID: 30850514 PMCID: PMC6520515 DOI: 10.1523/jneurosci.2217-18.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/15/2023] Open
Abstract
Perceptual decision making is an active process where animals move their sense organs to extract task-relevant information. To investigate how the brain translates sensory input into decisions during active sensation, we developed a mouse active touch task where the mechanosensory input can be precisely measured and that challenges animals to use multiple mechanosensory cues. Male mice were trained to localize a pole using a single whisker and to report their decision by selecting one of three choices. Using high-speed imaging and machine vision, we estimated whisker-object mechanical forces at millisecond resolution. Mice solved the task by a sensory-motor strategy where both the strength and direction of whisker bending were informative cues to pole location. We found competing influences of immediate sensory input and choice memory on mouse choice. On correct trials, choice could be predicted from the direction and strength of whisker bending, but not from previous choice. In contrast, on error trials, choice could be predicted from previous choice but not from whisker bending. This study shows that animal choices during active tactile decision making can be predicted from mechanosensory and choice-memory signals, and provides a new task well suited for the future study of the neural basis of active perceptual decisions.SIGNIFICANCE STATEMENT Due to the difficulty of measuring the sensory input to moving sense organs, active perceptual decision making remains poorly understood. The whisker system provides a way forward since it is now possible to measure the mechanical forces due to whisker-object contact during behavior. Here we train mice in a novel behavioral task that challenges them to use rich mechanosensory cues but can be performed using one whisker and enables task-relevant mechanical forces to be precisely estimated. This approach enables rigorous study of how sensory cues translate into action during active, perceptual decision making. Our findings provide new insight into active touch and how sensory/internal signals interact to determine behavioral choices.
Collapse
|
35
|
Severson KS, Xu D, Yang H, O'Connor DH. Coding of whisker motion across the mouse face. eLife 2019; 8:41535. [PMID: 30816844 PMCID: PMC6395061 DOI: 10.7554/elife.41535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
Haptic perception synthesizes touch with proprioception, the sense of body position. Humans and mice alike experience rich active touch of the face. Because most facial muscles lack proprioceptor endings, the sensory basis of facial proprioception remains unsolved. Facial proprioception may instead rely on mechanoreceptors that encode both touch and self-motion. In rodents, whisker mechanoreceptors provide a signal that informs the brain about whisker position. Whisking involves coordinated orofacial movements, so mechanoreceptors innervating facial regions other than whiskers could also provide information about whisking. To define all sources of sensory information about whisking available to the brain, we recorded spikes from mechanoreceptors innervating diverse parts of the face. Whisker motion was encoded best by whisker mechanoreceptors, but also by those innervating whisker pad hairy skin and supraorbital vibrissae. Redundant self-motion responses may provide the brain with a stable proprioceptive signal despite mechanical perturbations during active touch.
Collapse
Affiliation(s)
- Kyle S Severson
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Duo Xu
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Hongdian Yang
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| | - Daniel H O'Connor
- The Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Brain Science Institute, The Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
36
|
Chaudhary R, Rema V. Deficits in Behavioral Functions of Intact Barrel Cortex Following Lesions of Homotopic Contralateral Cortex. Front Syst Neurosci 2018; 12:57. [PMID: 30524251 PMCID: PMC6262316 DOI: 10.3389/fnsys.2018.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
Focal unilateral injuries to the somatosensory whisker barrel cortex have been shown cause long-lasting deficits in the activity and experience-dependent plasticity of neurons in the intact contralateral barrel cortex. However, the long-term effect of these deficits on behavioral functions of the intact contralesional cortex is not clear. In this study, we used the “Gap-crossing task” a barrel cortex-dependent, whisker-sensitive, tactile behavior to test the hypothesis that unilateral lesions of the somatosensory cortex would affect behavioral functions of the intact somatosensory cortex and degrade the execution of a bilaterally learnt behavior. Adult rats were trained to perform the Gap-crossing task using whiskers on both sides of the face. The barrel cortex was then lesioned unilaterally by subpial aspiration. As observed in other studies, when rats used whiskers that directly projected to the lesioned hemisphere the performance of Gap-crossing was drastically compromised, perhaps due to direct effect of lesion. Significant and persistent deficits were present when the lesioned rats performed Gap-crossing task using whiskers that projected to the intact cortex. The deficits were specific to performance of the task at the highest levels of sensitivity. Comparable deficits were seen when normal, bilaterally trained, rats performed the Gap-crossing task with only the whiskers on one side of the face or when they used only two rows of whiskers (D row and E row) intact on both side of the face. These findings indicate that the prolonged impairment in execution of the learnt task by rats with unilateral lesions of somatosensory cortex could be because sensory inputs from one set of whiskers to the intact cortex is insufficient to provide adequate sensory information at higher thresholds of detection. Our data suggest that optimal performance of somatosensory behavior requires dynamic activity-driven interhemispheric interactions from the entire somatosensory inputs between homotopic areas of the cerebral cortex. These results imply that focal unilateral cortical injuries, including those in humans, are likely to have widespread bilateral effects on information processing including in intact areas of the cortex.
Collapse
Affiliation(s)
| | - V Rema
- National Brain Research Centre, Manesar, India
| |
Collapse
|
37
|
Azarfar A, Calcini N, Huang C, Zeldenrust F, Celikel T. Neural coding: A single neuron's perspective. Neurosci Biobehav Rev 2018; 94:238-247. [PMID: 30227142 DOI: 10.1016/j.neubiorev.2018.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/15/2022]
Abstract
What any sensory neuron knows about the world is one of the cardinal questions in Neuroscience. Information from the sensory periphery travels across synaptically coupled neurons as each neuron encodes information by varying the rate and timing of its action potentials (spikes). Spatiotemporally correlated changes in this spiking regimen across neuronal populations are the neural basis of sensory representations. In the somatosensory cortex, however, spiking of individual (or pairs of) cortical neurons is only minimally informative about the world. Recent studies showed that one solution neurons implement to counteract this information loss is adapting their rate of information transfer to the ongoing synaptic activity by changing the membrane potential at which spike is generated. Here we first introduce the principles of information flow from the sensory periphery to the primary sensory cortex in a model sensory (whisker) system, and subsequently discuss how the adaptive spike threshold gates the intracellular information transfer from the somatic post-synaptic potential to action potentials, controlling the information content of communication across somatosensory cortical neurons.
Collapse
Affiliation(s)
- Alireza Azarfar
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands
| | - Niccoló Calcini
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands
| | - Chao Huang
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands
| | - Fleur Zeldenrust
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain, Cognition, and Behaviour Radboud University, the Netherlands.
| |
Collapse
|
38
|
Caria MA, Biagi F, Mameli O. The mesencephalic-hypoglossal nuclei loop as a possible central pattern generator for rhythmical whisking in rats. Exp Brain Res 2018; 236:2899-2911. [PMID: 30073387 DOI: 10.1007/s00221-018-5347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 07/26/2018] [Indexed: 11/25/2022]
Abstract
It has been previously demonstrated that the Me5 nucleus is involved in the genesis of reflex activities at whisker pad level. Specific Me5 neurons, which provide sensory innervation of the macrovibrissae, are monosynaptically connected with small hypoglossal neurons innervating the extrinsic muscles that control macrovibrissal movements. Artificial whisking, induced by the electrical stimulation of the peripheral stump of the facial nerve and the electrical stimulation of the XII nucleus or the infraorbital nerve, induced evoked responses in the whisker pad extrinsic motor units, along with a significant increase in the electromyographic activity of the extrinsic pad muscles (Mameli et al. in Acta Oto-Laryngol 126:1334-1338, 2006; in Pfűgers Arch Eur J Physiol 456:1189-1198, 2008; in Brain Res 1283:34-40, 2009; in Exp Brain Res 234:753-761, 2016). In anaesthetized rats, we evaluated the possible involvement of this Me5-XII loop in the genesis of rhythmical whisking. The anatomical findings showed that in addition to the ipsilateral, even the contralateral Me5 nucleus could be retrogradely labeled by the Dil tracer injected into the whisker pad of one side, they, furthermore, showed labeled axons extending across the midline between the two nuclei. The electrophysiological findings agreed with the neuroanatomical results, since the mechanical or artificially induced deflection of the whiskers of one side, evoked in the Me5 contralateral nucleus different patterns of responses. The hypothesis that the Me5-XII loops, along with their cross-linked relationship, could act as a "central generator" responsible for the stereotyped symmetrical pattern of macrovibrissal movements such as rhythmical whisking has been discussed.
Collapse
Affiliation(s)
- Marcello Alessandro Caria
- Human Physiology Division, Department of Clinical and Experimental Medicine, Università degli Studi di Sassari, Sassari, Italy
| | - Francesca Biagi
- Anatomy of Domestic Animals Division, Department of Veterinary Medicine, Università degli Studi di Sassari, Sassari, Italy
| | - Ombretta Mameli
- Human Physiology Division, Department of Clinical and Experimental Medicine, Università degli Studi di Sassari, Sassari, Italy.
| |
Collapse
|
39
|
Vaxenburg R, Wyche I, Svoboda K, Efros AL, Hires SA. Dynamic cues for whisker-based object localization: An analytical solution to vibration during active whisker touch. PLoS Comput Biol 2018; 14:e1006032. [PMID: 29584719 PMCID: PMC5889188 DOI: 10.1371/journal.pcbi.1006032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/06/2018] [Accepted: 02/08/2018] [Indexed: 11/24/2022] Open
Abstract
Vibrations are important cues for tactile perception across species. Whisker-based sensation in mice is a powerful model system for investigating mechanisms of tactile perception. However, the role vibration plays in whisker-based sensation remains unsettled, in part due to difficulties in modeling the vibration of whiskers. Here, we develop an analytical approach to calculate the vibrations of whiskers striking objects. We use this approach to quantify vibration forces during active whisker touch at a range of locations along the whisker. The frequency and amplitude of vibrations evoked by contact are strongly dependent on the position of contact along the whisker. The magnitude of vibrational shear force and bending moment is comparable to quasi-static forces. The fundamental vibration frequencies are in a detectable range for mechanoreceptor properties and below the maximum spike rates of primary sensory afferents. These results suggest two dynamic cues exist that rodents can use for object localization: vibration frequency and comparison of vibrational to quasi-static force magnitude. These complement the use of quasi-static force angle as a distance cue, particularly for touches close to the follicle, where whiskers are stiff and force angles hardly change during touch. Our approach also provides a general solution to calculation of whisker vibrations in other sensing tasks. Vibrations play an important role in the sense of touch in many species, but exactly how they influence touch perception remains mysterious. An important reason for this mystery is the difficulty in measuring vibrations during touch. Mice are a powerful model system for investigating touch perception because they actively sweep their whiskers into objects and the resulting bending from touch can be video recorded. However, vibrations of the whiskers during touch are usually too small and fast to be seen. To overcome this limitation, we develop a new mathematical approach to calculating whisker vibrations from the speed at impact, maximum whisker bending during touch, and location of contact along a whisker, which is more easily observed. We find that vibration frequency and amplitude is strongly dependent on the location of contact along the whisker, which mice may use to deduce the distance between their face and touched objects. We confirm our calculations with high-speed imaging of whisker vibration during touch.
Collapse
Affiliation(s)
- Roman Vaxenburg
- Computational Materials Science Center, George Mason University, Fairfax, Virginia, United States of America
| | - Isis Wyche
- Section of Neurobiology, Department of Biological Sciences, University of South California, Los Angeles, California, United States of America
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - Alexander L. Efros
- Center for Computational Material Science, Code 6390, Naval Research Laboratory, Washington, DC, United States of America
| | - Samuel Andrew Hires
- Section of Neurobiology, Department of Biological Sciences, University of South California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Mameli O, Caria MA, Biagi F, Zedda M, Farina V. Neurons within the trigeminal mesencephalic nucleus encode for the kinematic parameters of the whisker pad macrovibrissae. Physiol Rep 2018; 5:e13206. [PMID: 28546281 PMCID: PMC5449554 DOI: 10.14814/phy2.13206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/20/2017] [Indexed: 11/24/2022] Open
Abstract
It has been recently shown in rats that spontaneous movements of whisker pad macrovibrissae elicited evoked responses in the trigeminal mesencephalic nucleus (Me5). In the present study, electrophysiological and neuroanatomical experiments were performed in anesthetized rats to evaluate whether, besides the whisker displacement per se, the Me5 neurons are also involved in encoding the kinematic properties of macrovibrissae movements, and also whether, as reported for the trigeminal ganglion, even within the Me5 nucleus exists a neuroanatomical representation of the whisker pad macrovibrissae. Extracellular electrical activity of single Me5 neurons was recorded before, during, and after mechanical deflection of the ipsilateral whisker pad macrovibrissae in different directions, and with different velocities and amplitudes. In several groups of animals, single or multiple injections of the tracer Dil were performed into the whisker pad of one side, in close proximity to the vibrissae follicles, in order to label the peripheral terminals of the Me5 neurons innervating the macrovibrissae (whisking‐neurons), and therefore, the respective perikaria within the nucleus. Results showed that: (1) the whisker pad macrovibrissae were represented in the medial‐caudal part of the Me5 nucleus by a single cluster of cells whose number seemed to match that of the macrovibrissae; (2) macrovibrissae mechanical deflection elicited significant responses in the Me5 whisking‐neurons, which were related to the direction, amplitude, and frequency of the applied deflection. The specific functional role of Me5 neurons involved in encoding proprioceptive information arising from the macrovibrissae movements is discussed within the framework of the whole trigeminal nuclei activities.
Collapse
Affiliation(s)
- Ombretta Mameli
- Department Clinical and Experimental Medicine: Human Physiology Division, Sassari, Italy
| | - Marcello A Caria
- Department Clinical and Experimental Medicine: Human Physiology Division, Sassari, Italy
| | - Francesca Biagi
- Department Veterinary Medicine: Anatomy of Domestic Animals Division, Sassari, Italy
| | - Marco Zedda
- Department Veterinary Medicine: Anatomy of Domestic Animals Division, Sassari, Italy
| | - Vittorio Farina
- Department Veterinary Medicine: Anatomy of Domestic Animals Division, Sassari, Italy
| |
Collapse
|
41
|
Buckley CL, Toyoizumi T. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback. PLoS Comput Biol 2018; 14:e1005926. [PMID: 29342146 PMCID: PMC5809098 DOI: 10.1371/journal.pcbi.1005926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/12/2018] [Accepted: 11/28/2017] [Indexed: 11/23/2022] Open
Abstract
During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone. Animals actively exploring or interacting with their surroundings must process a cyclical flow of information from the environment through sensory receptors, the central nervous system, the musculoskeletal system and back to the environment. This closed-loop sensorimotor system is essential for an animal's ability to adapt and survive in complex environments. Importantly, closed loop feedback signals also regulate brainwide neural circuits for behavior. Specifically, the activity of coherent populations of neurons inform motor behaviours and in turn are influenced by sensory feedback signals mediated by the environment. We develop a theory that suggests that this feedback can explain the marked changes in large-scale neural dynamics and sensory processing (together referred to as brain state) that coincide with the onset of active behaviours. This feedback may contribute to flexible context dependent neural computations in brain systems.
Collapse
Affiliation(s)
- Christopher L. Buckley
- Laboratory for Neural Computation and Adaptation, RIKEN Brain Science Institute, Saitama, Japan
- Department of Informatics and Engineering, University of Sussex, Falmer, United Kingdom
- * E-mail: (CLB); (TT)
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Brain Science Institute, Saitama, Japan
- * E-mail: (CLB); (TT)
| |
Collapse
|
42
|
Deolindo CS, Kunicki ACB, da Silva MI, Lima Brasil F, Moioli RC. Neuronal Assemblies Evidence Distributed Interactions within a Tactile Discrimination Task in Rats. Front Neural Circuits 2018; 11:114. [PMID: 29375324 PMCID: PMC5768614 DOI: 10.3389/fncir.2017.00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/26/2017] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence suggests that neural interactions are distributed and relate to animal behavior, but many open questions remain. The neural assembly hypothesis, formulated by Hebb, states that synchronously active single neurons may transiently organize into functional neural circuits-neuronal assemblies (NAs)-and that would constitute the fundamental unit of information processing in the brain. However, the formation, vanishing, and temporal evolution of NAs are not fully understood. In particular, characterizing NAs in multiple brain regions over the course of behavioral tasks is relevant to assess the highly distributed nature of brain processing. In the context of NA characterization, active tactile discrimination tasks with rats are elucidative because they engage several cortical areas in the processing of information that are otherwise masked in passive or anesthetized scenarios. In this work, we investigate the dynamic formation of NAs within and among four different cortical regions in long-range fronto-parieto-occipital networks (primary somatosensory, primary visual, prefrontal, and posterior parietal cortices), simultaneously recorded from seven rats engaged in an active tactile discrimination task. Our results first confirm that task-related neuronal firing rate dynamics in all four regions is significantly modulated. Notably, a support vector machine decoder reveals that neural populations contain more information about the tactile stimulus than the majority of single neurons alone. Then, over the course of the task, we identify the emergence and vanishing of NAs whose participating neurons are shown to contain more information about animal behavior than randomly chosen neurons. Taken together, our results further support the role of multiple and distributed neurons as the functional unit of information processing in the brain (NA hypothesis) and their link to active animal behavior.
Collapse
Affiliation(s)
| | | | | | | | - Renan C. Moioli
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Brazil
| |
Collapse
|
43
|
McElvain LE, Friedman B, Karten HJ, Svoboda K, Wang F, Deschênes M, Kleinfeld D. Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions. Neuroscience 2018; 368:152-170. [PMID: 28843993 PMCID: PMC5849401 DOI: 10.1016/j.neuroscience.2017.08.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
The world view of rodents is largely determined by sensation on two length scales. One is within the animal's peri-personal space; sensorimotor control on this scale involves active movements of the nose, tongue, head, and vibrissa, along with sniffing to determine olfactory clues. The second scale involves the detection of more distant space through vision and audition; these detection processes also impact repositioning of the head, eyes, and ears. Here we focus on orofacial motor actions, primarily vibrissa-based touch but including nose twitching, head bobbing, and licking, that control sensation at short, peri-personal distances. The orofacial nuclei for control of the motor plants, as well as primary and secondary sensory nuclei associated with these motor actions, lie within the hindbrain. The current data support three themes: First, the position of the sensors is determined by the summation of two drive signals, i.e., a fast rhythmic component and an evolving orienting component. Second, the rhythmic component is coordinated across all orofacial motor actions and is phase-locked to sniffing as the animal explores. Reverse engineering reveals that the preBötzinger inspiratory complex provides the reset to the relevant premotor oscillators. Third, direct feedback from somatosensory trigeminal nuclei can rapidly alter motion of the sensors. This feedback is disynaptic and can be tuned by high-level inputs. A holistic model for the coordination of orofacial motor actions into behaviors will encompass feedback pathways through the midbrain and forebrain, as well as hindbrain areas.
Collapse
Affiliation(s)
- Lauren E McElvain
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Beth Friedman
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Harvey J Karten
- Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Karel Svoboda
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Martin Deschênes
- Department of Psychiatry and Neuroscience, Laval University, Québec City, G1J 2G3, Canada
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA; Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Abstract
Understanding how perception emerges depends on the understanding of sensory acquisition by sensory organs. In this issue of Neuron, Severson et al. (2017) present a brilliant leap towards understanding active sensory coding by mechanoreceptors.
Collapse
|
45
|
Bale MR, Maravall M. Organization of sensory feature selectivity in the whisker system. Neuroscience 2017; 368:70-80. [PMID: 28918260 PMCID: PMC5798594 DOI: 10.1016/j.neuroscience.2017.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/14/2022]
Abstract
Neurons in the whisker system are selective to spatial and dynamical properties – features – of sensory stimuli. At each stage of the pathway, different neurons encode distinct features, generating a rich population representation. Whisker touch is robustly represented; neurons respond to touch-driven fast fluctuations in forces at the whisker base. Cortical neurons have more complex and context-dependent selectivity than subcortical, e.g., to collective whisker motion. Understanding how these signals are integrated to construct whisker-mediated percepts requires further research.
Our sensory receptors are faced with an onslaught of different environmental inputs. Each sensory event or encounter with an object involves a distinct combination of physical energy sources impinging upon receptors. In the rodent whisker system, each primary afferent neuron located in the trigeminal ganglion innervates and responds to a single whisker and encodes a distinct set of physical stimulus properties – features – corresponding to changes in whisker angle and shape and the consequent forces acting on the whisker follicle. Here we review the nature of the features encoded by successive stages of processing along the whisker pathway. At each stage different neurons respond to distinct features, such that the population as a whole represents diverse properties. Different neuronal types also have distinct feature selectivity. Thus, neurons at the same stage of processing and responding to the same whisker nevertheless play different roles in representing objects contacted by the whisker. This diversity, combined with the precise timing and high reliability of responses, enables populations at each stage to represent a wide range of stimuli. Cortical neurons respond to more complex stimulus properties – such as correlated motion across whiskers – than those at early subcortical stages. Temporal integration along the pathway is comparatively weak: neurons up to barrel cortex (BC) are sensitive mainly to fast (tens of milliseconds) fluctuations in whisker motion. The topographic organization of whisker sensitivity is paralleled by systematic organization of neuronal selectivity to certain other physical features, but selectivity to touch and to dynamic stimulus properties is distributed in “salt-and-pepper” fashion.
Collapse
Affiliation(s)
- Michael R Bale
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
46
|
The brain during free movement - What can we learn from the animal model. Brain Res 2017; 1716:3-15. [PMID: 28893579 DOI: 10.1016/j.brainres.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 11/21/2022]
Abstract
Animals, just like humans, can freely move. They do so for various important reasons, such as finding food and escaping predators. Observing these behaviors can inform us about the underlying cognitive processes. In addition, while humans can convey complicated information easily through speaking, animals need to move their bodies to communicate. This has prompted many creative solutions by animal neuroscientists to enable studying the brain during movement. In this review, we first summarize how animal researchers record from the brain while an animal is moving, by describing the most common neural recording techniques in animals and how they were adapted to record during movement. We further discuss the challenge of controlling or monitoring sensory input during free movement. However, not only is free movement a necessity to reflect the outcome of certain internal cognitive processes in animals, it is also a fascinating field of research since certain crucial behavioral patterns can only be observed and studied during free movement. Therefore, in a second part of the review, we focus on some key findings in animal research that specifically address the interaction between free movement and brain activity. First, focusing on walking as a fundamental form of free movement, we discuss how important such intentional movements are for understanding processes as diverse as spatial navigation, active sensing, and complex motor planning. Second, we propose the idea of regarding free movement as the expression of a behavioral state. This view can help to understand the general influence of movement on brain function. Together, the technological advancements towards recording from the brain during movement, and the scientific questions asked about the brain engaged in movement, make animal research highly valuable to research into the human "moving brain".
Collapse
|
47
|
Abstract
A fundamental question in the investigation of any sensory system is what physical signals drive its sensory neurons during natural behavior. Surprisingly, in the whisker system, it is only recently that answers to this question have emerged. Here, we review the key developments, focussing mainly on the first stage of the ascending pathway - the primary whisker afferents (PWAs). We first consider a biomechanical framework, which describes the fundamental mechanical forces acting on the whiskers during active sensation. We then discuss technical progress that has allowed such mechanical variables to be estimated in awake, behaving animals. We discuss past electrophysiological evidence concerning how PWAs function and reinterpret it within the biomechanical framework. Finally, we consider recent studies of PWAs in awake, behaving animals and compare the results to related studies of the cortex. We argue that understanding 'what the whiskers tell the brain' sheds valuable light on the computational functions of downstream neural circuits, in particular, the barrel cortex.
Collapse
|
48
|
The Nature of the Sensory Input to the Neonatal Rat Barrel Cortex. J Neurosci 2017; 36:9922-32. [PMID: 27656029 DOI: 10.1523/jneurosci.1781-16.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/07/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. This early sensory input may involve: (1) stimulation arising from passive interactions with the mother and littermates and (2) sensory feedback arising from spontaneous infant movements. The relative contributions of these mechanisms under natural conditions remain largely unknown, however. Here, we show that, in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate, with comparable efficiency, in driving cortical activity. Both tactile signals arising from the littermate's movements under conditions simulating the littermates' position in the litter, and spontaneous whisker movements efficiently triggered bursts of activity in barrel cortex. Yet, whisker movements with touch were more efficient than free movements. Comparison of the various experimental conditions mimicking the natural environment showed that tactile signals arising from the whisker movements with touch and stimulation by the littermates, support: (1) a twofold higher level of cortical activity than in the isolated animal, and (2) a threefold higher level of activity than in the deafferented animal after the infraorbital nerve cut. Together, these results indicate that endogenous (self-generated movements) and exogenous (stimulation by the littermates) mechanisms cooperate in driving cortical activity in newborn rats and point to the importance of the environment in shaping cortical activity during the neonatal period. SIGNIFICANCE STATEMENT Sensory input plays critical roles in the development of the somatosensory cortex during the neonatal period. However, the origins of sensory input to the neonatal somatosensory cortex in the natural environment remain largely unknown. Here, we show that in the whisker-related barrel cortex of neonatal rats, spontaneous whisker movements and passive stimulation by the littermates cooperate, with comparable efficiency, in driving cortical activity during the critical developmental period.
Collapse
|
49
|
Radial Distance Estimation with Tapered Whisker Sensors. SENSORS 2017; 17:s17071659. [PMID: 28753949 PMCID: PMC5539565 DOI: 10.3390/s17071659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022]
Abstract
Rats use their whiskers as tactile sensors to sense their environment. Active whisking, moving whiskers back and forth continuously, is one of prominent features observed in rodents. They can discriminate different textures or extract features of a nearby object such as size, shape and distance through active whisking. There have been studies to localize objects with artificial whiskers inspired by rat whiskers. The linear whisker model based on beam theory has been used to estimate the radial distance, that is, the distance between the base of the whisker and a target object. In this paper, we investigate deflection angle measurements instead of forces or moments, based on a linear tapered whisker model to see the role of tapered whiskers found in real animals. We analyze how accurately this model estimates the radial distance, and quantify the estimation errors and noise sensitivity. We also compare the linear model simulation and nonlinear numerical solutions. It is shown that the radial distance can be estimated using deflection angles at two different positions on the tapered whisker. We argue that the tapered whisker has an advantage of estimating the radial distance better, as compared to an untapered whisker, and active sensing allows that estimation without the whisker’s material property and thickness or the moment at base. In addition, we investigate the potential of passive sensing for tactile localization.
Collapse
|
50
|
Takatoh J, Prevosto V, Wang F. Vibrissa sensory neurons: Linking distinct morphology to specific physiology and function. Neuroscience 2017; 368:109-114. [PMID: 28673712 DOI: 10.1016/j.neuroscience.2017.06.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/26/2017] [Accepted: 06/21/2017] [Indexed: 11/19/2022]
Abstract
Rodents use an array of long tactile facial hairs, the vibrissae, to locate and discriminate objects. Each vibrissa is densely innervated by multiple different types of trigeminal (TG) sensory neurons. Based on the sensory ending morphology, there are at least six types of vibrissa innervating neurons; whereas based on electrophysiological recordings, vibrissa neurons are generally classified as rapidly adapting (RA) and slowly adapting (SA), and show different responses to whisking movement and/or touch. There is a clear missing link between the morphologically defined neuronal types and their exact physiological properties and functions. We briefly summarize recent advances and consider single-cell transcriptome profiling, together with optogenetics-assisted in vivo electrophysiology, as a way to fill this major gap in our knowledge of the vibrissa sensory system.
Collapse
Affiliation(s)
- Jun Takatoh
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Vincent Prevosto
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|