1
|
Angiotensin II Inhibits Insulin Receptor Signaling in Adipose Cells. Int J Mol Sci 2022; 23:ijms23116048. [PMID: 35682723 PMCID: PMC9181642 DOI: 10.3390/ijms23116048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Angiotensin II (Ang II) is a critical regulator of insulin signaling in the cardiovascular system and metabolic tissues. However, in adipose cells, the regulatory role of Ang II on insulin actions remains to be elucidated. The effect of Ang II on insulin-induced insulin receptor (IR) phosphorylation, Akt activation, and glucose uptake was examined in 3T3-L1 adipocytes. In these cells, Ang II specifically inhibited insulin-stimulated IR and insulin receptor substrate-1 (IRS-1) tyrosine-phosphorylation, Akt activation, and glucose uptake in a time-dependent manner. These inhibitory actions were associated with increased phosphorylation of the IR at serine residues. Interestingly, Ang II-induced serine-phosphorylation of IRS was not detected, suggesting that Ang II-induced desensitization begins from IR regulation itself. PKC inhibition by BIM I restored the inhibitory effect of Ang II on insulin actions. We also found that Ang II promoted activation of several PKC isoforms, including PKCα/βI/βII/δ, and its association with the IR, particularly PKCβII, showed the highest interaction. Finally, we also found a similar regulatory effect of Ang II in isolated adipocytes, where insulin-induced Akt phosphorylation was inhibited by Ang II, an effect that was prevented by PKC inhibitors. These results suggest that Ang II may lead to insulin resistance through PKC activation in adipocytes.
Collapse
|
2
|
Abstract
The prevalence of Type 2 diabetes mellitus is predicted to increase dramatically over the coming years and the clinical implications and healthcare costs from this disease are overwhelming. In many cases, this pathological condition is linked to a cluster of metabolic disorders, such as obesity, systemic hypertension and dyslipidaemia, defined as the metabolic syndrome. Insulin resistance has been proposed as the key mediator of all of these features and contributes to the associated high cardiovascular morbidity and mortality. Although the molecular mechanisms behind insulin resistance are not completely understood, a negative cross-talk between AngII (angiotensin II) and the insulin signalling pathway has been the focus of great interest in the last decade. Indeed, substantial evidence has shown that anti-hypertensive drugs that block the RAS (renin-angiotensin system) may also act to prevent diabetes. Despite its long history, new components within the RAS continue to be discovered. Among them, Ang-(1-7) [angiotensin-(1-7)] has gained special attention as a counter-regulatory hormone opposing many of the AngII-related deleterious effects. Specifically, we and others have demonstrated that Ang-(1-7) improves the action of insulin and opposes the negative effect that AngII exerts at this level. In the present review, we provide evidence showing that insulin and Ang-(1-7) share a common intracellular signalling pathway. We also address the molecular mechanisms behind the beneficial effects of Ang-(1-7) on AngII-mediated insulin resistance. Finally, we discuss potential therapeutic approaches leading to modulation of the ACE2 (angiotensin-converting enzyme 2)/Ang-(1-7)/Mas receptor axis as a very attractive strategy in the therapy of the metabolic syndrome and diabetes-associated diseases.
Collapse
|
3
|
Oh MJ, Yi SJ, Kim HS, Kim JH, Jeong YH, van Agthoven T, Jhun BH. Functional roles of BCAR3 in the signaling pathways of insulin leading to DNA synthesis, membrane ruffling and GLUT4 translocation. Biochem Biophys Res Commun 2013; 441:911-6. [PMID: 24216110 DOI: 10.1016/j.bbrc.2013.10.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/28/2022]
Abstract
Breast cancer anti-estrogen resistance 3 (BCAR3) is an SH2-containing signal transducer and is implicated in tumorigenesis of breast cancer cells. In this study, we found that BCAR3 mediates the induction of ERK activation and DNA synthesis by insulin, but not by IGF-1. Specifically, the SH2 domain of BCAR3 is involved in insulin-stimulated DNA synthesis. Differential tyrosine-phosphorylated patterns of the BCAR3 immune complex were detected in insulin and IGF-1 signaling, suggesting that BCAR3 is a distinct target molecule of insulin and IGF-1 signaling. Moreover, microinjection of BCAR3 inhibitory materials inhibited membrane ruffling induced by insulin, while this did not affect insulin-mediated GLUT4 translocation. Taken together, these results demonstrated that BCAR3 plays an important role in the signaling pathways of insulin leading to cell cycle progression and cytoskeleton reorganization, but not GLUT4 translocation.
Collapse
Affiliation(s)
- Myung-Ju Oh
- Clinical Trials Management Division, Pharmaceutical Safety Bureau, Ministry of Food and Drug Safety, Cheongwon, Chungbuk 363-700, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
4
|
Chopra I, Li HF, Wang H, Webster KA. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia 2012; 55:783-94. [PMID: 22207502 PMCID: PMC4648248 DOI: 10.1007/s00125-011-2407-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 11/10/2011] [Indexed: 01/22/2023]
Abstract
AIMS/HYPOTHESIS Muscle may experience hypoglycaemia during ischaemia or insulin infusion. During severe hypoglycaemia energy production is blocked, and an increase of AMP:ATP activates the energy sensor and putative insulin-sensitiser AMP-activated protein kinase (AMPK). AMPK promotes energy conservation and survival by shutting down anabolism and activating catabolic pathways. We investigated the molecular mechanism of a unique glucose stress defence pathway involving AMPK-dependent, insulin-independent activation of the insulin signalling pathway. METHODS Cardiac or skeletal myocytes were subjected to glucose and insulin-free incubation for increasing intervals up to 20 h. AMPK, and components of the insulin signalling pathway and their targets were quantified by western blot using phosphor-specific antibodies. Phosphomimetics were used to determine the function of IRS-1 Ser789 phosphorylation and in vitro [³²P]ATP kinase assays were used to measure the phosphorylation of the purified insulin receptor by AMPK. RESULTS Glucose deprivation increased Akt-Thr308 and Akt-Ser473 phosphorylation by almost tenfold. Phosphorylation of glycogen synthase kinase 3 beta increased in parallel, but phosphorylation of ribosomal 70S subunit-S6 protein kinase and mammalian target of rapamycin decreased. AMPK inhibitors blocked and aminoimidazole carboxamide ribonucleotide (AICAR) mimicked the effects of glucose starvation. Glucose deprivation increased the phosphorylation of IRS-1 on serine-789, but phosphomimetics revealed that this conferred negative regulation. Glucose deprivation enhanced tyrosine phosphorylation of IRS-1 and the insulin receptor, effects that were blocked by AMPK inhibition and mimicked by AICAR. In vitro kinase assays using purified proteins confirmed that the insulin receptor is a direct target of AMPK. CONCLUSIONS/INTERPRETATION AMPK phosphorylates and activates the insulin receptor, providing a direct link between AMPK and the insulin signalling pathway; this pathway promotes energy conservation and survival of muscle exposed to severe glucose deprivation.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/antagonists & inhibitors
- AMP-Activated Protein Kinases/metabolism
- Animals
- Animals, Newborn
- Cells, Cultured
- Hep G2 Cells
- Humans
- Hypoglycemia/metabolism
- Hypoglycemic Agents/pharmacology
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Ligands
- Muscle, Skeletal/cytology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Mutant Proteins/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational/drug effects
- Rats
- Receptor, Insulin/isolation & purification
- Receptor, Insulin/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- I. Chopra
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, RMSB 6038, Miami, FL 33136, USA
| | - H. F. Li
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, RMSB 6038, Miami, FL 33136, USA
| | - H. Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, RMSB 6038, Miami, FL 33136, USA
| | - K. A. Webster
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, RMSB 6038, Miami, FL 33136, USA
| |
Collapse
|
5
|
Ryu D, Seo WY, Yoon YS, Kim YN, Kim SS, Kim HJ, Park TS, Choi CS, Koo SH. Endoplasmic reticulum stress promotes LIPIN2-dependent hepatic insulin resistance. Diabetes 2011; 60:1072-81. [PMID: 21357464 PMCID: PMC3064081 DOI: 10.2337/db10-1046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Diet-induced obesity (DIO) is linked to peripheral insulin resistance-a major predicament in type 2 diabetes. This study aims to identify the molecular mechanism by which DIO-triggered endoplasmic reticulum (ER) stress promotes hepatic insulin resistance in mouse models. RESEARCH DESIGN AND METHODS C57BL/6 mice and primary hepatocytes were used to evaluate the role of LIPIN2 in ER stress-induced hepatic insulin resistance. Tunicamycin, thapsigargin, and lipopolysaccharide were used to invoke acute ER stress conditions. To promote chronic ER stress, mice were fed with a high-fat diet for 8-12 weeks. To verify the role of LIPIN2 in hepatic insulin signaling, adenoviruses expressing wild-type or mutant LIPIN2, and shRNA for LIPIN2 were used in animal studies. Plasma glucose, insulin levels as well as hepatic free fatty acids, diacylglycerol (DAG), and triacylglycerol were assessed. Additionally, glucose tolerance, insulin tolerance, and pyruvate tolerance tests were performed to evaluate the metabolic phenotype of these mice. RESULTS LIPIN2 expression was enhanced in mouse livers by acute ER stress-inducers or by high-fat feeding. Transcriptional activation of LIPIN2 by ER stress is mediated by activating transcription factor 4, as demonstrated by LIPIN2 promoter assays, Western blot analyses, and chromatin immunoprecipitation assays. Knockdown of hepatic LIPIN2 in DIO mice reduced fasting hyperglycemia and improved hepatic insulin signaling. Conversely, overexpression of LIPIN2 impaired hepatic insulin signaling in a phosphatidic acid phosphatase activity-dependent manner. CONCLUSIONS These results demonstrate that ER stress-induced LIPIN2 would contribute to the perturbation of hepatic insulin signaling via a DAG-protein kinase C ε-dependent manner in DIO mice.
Collapse
Affiliation(s)
- Dongryeol Ryu
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo-Young Seo
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Sil Yoon
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yo-Na Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Su Sung Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Hye-Jin Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Tae-Sik Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Cheol Soo Choi
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
- Department of Internal Medicine, Gil Medical Center, Gachon University of Medicine and Science, Incheon, Korea
- Corresponding authors: Seung-Hoi Koo, , and Cheol Soo Choi,
| | - Seung-Hoi Koo
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
- Corresponding authors: Seung-Hoi Koo, , and Cheol Soo Choi,
| |
Collapse
|
6
|
Chappell DS, Patel NA, Jiang K, Li P, Watson JE, Byers DM, Cooper DR. Functional involvement of protein kinase C-betaII and its substrate, myristoylated alanine-rich C-kinase substrate (MARCKS), in insulin-stimulated glucose transport in L6 rat skeletal muscle cells. Diabetologia 2009; 52:901-11. [PMID: 19252893 PMCID: PMC2677811 DOI: 10.1007/s00125-009-1298-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/19/2009] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Insulin stimulates phosphorylation cascades, including phosphatidylinositol-3-kinase (PI3K), phosphatidylinositol-dependent kinase (PDK1), Akt, and protein kinase C (PKC). Myristoylated alanine-rich C-kinase substrate (MARCKS), a PKCbetaII substrate, could link the effects of insulin to insulin-stimulated glucose transport (ISGT) via phosphorylation of its effector domain since MARCKS has a role in cytoskeletal rearrangements. METHODS We examined phosphoPKCbetaII after insulin treatment of L6 myocytes, and cytosolic and membrane phosphoMARCKS, MARCKS and phospholipase D1 in cells pretreated with LY294002 (PI3K inhibitor), CG53353 (PKCbetaII inhibitor) or W13 (calmodulin inhibitor), PI3K, PKCbetaII and calmodulin inhibitors, respectively, before insulin treatment, using western blots. ISGT was examined after cells had been treated with inhibitors, small inhibitory RNA (siRNA) for MARCKS, or transfection with MARCKS mutated at a PKC site. MARCKS, PKCbetaII, GLUT4 and insulin receptor were immunoblotted in subcellular fractions with F-actin antibody immunoprecipitates to demonstrate changes following insulin treatment. GLUT4 membrane insertion was followed after insulin with or without CG53353. RESULTS Insulin increased phosphoPKCbetaII(Ser660 and Thr641); LY294002 blocked this, indicating its activation by PI3K. Insulin treatment increased cytosolic phosphoMARCKS, decreased membrane MARCKS and increased membrane phospholipase D1 (PLD1), a protein regulating glucose transporter vesicle fusion resulted. PhosphoMARCKS was attenuated by CG53353 or MARCKS siRNA. MARCKS siRNA blocked ISGT. Association of PKCbetaII and GLUT4 with membrane F-actin was enhanced by insulin, as was that of cytosolic and membrane MARCKS. ISGT was attenuated in myocytes transfected with mutated MARCKS (Ser152Ala), whereas overproduction of wild-type MARCKS enhanced ISGT. CG53353 blocked insertion of GLUT4 into membranes of insulin treated cells. CONCLUSIONS/INTERPRETATION The results suggest that PKCbetaII is involved in mediating downstream steps of ISGT through MARCKS phosphorylation and cytoskeletal remodelling.
Collapse
Affiliation(s)
- D. S. Chappell
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - N. A. Patel
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
- The Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA
| | - K. Jiang
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - P. Li
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - J. E. Watson
- The Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA
| | - D. M. Byers
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - D. R. Cooper
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA, e-mail:
- The Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
7
|
Osterhoff MA, Heuer S, Pfeiffer M, Tasic J, Kaiser S, Isken F, Spranger J, Weickert MO, Möhlig M, Pfeiffer AFH. Identification of a functional protein kinase Cbeta promoter polymorphism in humans related to insulin resistance. Mol Genet Metab 2008; 93:210-5. [PMID: 17950644 DOI: 10.1016/j.ymgme.2007.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 12/22/2022]
Abstract
Protein kinase Cbeta (PKCbeta) is known to inhibit insulin production in beta-cells and to support insulin action in skeletal muscle. We therefore searched for functional polymorphisms among already known genetic variants in the PKCbeta promoter and investigated their relation to glucose metabolism in humans. We found that the gene variant in the PKCbeta promoter at position -546 significantly reduced promoter activity in functional assays (P<0.05). Human subjects carrying this variant had a 3.5-fold decrease in PKCbeta2-protein expression in their thrombocytes (P=0.006). Additionally, we tested whether this variant affects parameters of glucose metabolism using 1012 humans included into the MeSyBePo study (Metabolic Syndrome Berlin Potsdam). The -546 variant was highly significant associated with increased homeostasis model assessment for insulin resistance (HOMA-IR, P=0.009) in the cohort. This association was accompanied by significantly increased fasting insulin concentrations in carriers of the homozygous polymorphism (P=0.021). Our results suggest that the -546 polymorphism in the PKCbeta promoter reduces promoter activity, which leads to a decreased expression of PKCbeta2 and subsequently is associated with decreased peripheral insulin-dependent glucose uptake.
Collapse
Affiliation(s)
- Martin A Osterhoff
- German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Department of Clinical Nutrition (KLE), Arthur-Scheunert-Allee 155, D-14558 Nuthetal, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang XM, Monia BP, Bhanot S, Shulman GI. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007; 117:739-45. [PMID: 17318260 PMCID: PMC1797607 DOI: 10.1172/jci30400] [Citation(s) in RCA: 385] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 01/03/2007] [Indexed: 12/25/2022] Open
Abstract
Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance and type 2 diabetes mellitus, but the molecular signals linking hepatic fat accumulation to hepatic insulin resistance are unknown. Three days of high-fat feeding in rats results specifically in hepatic steatosis and hepatic insulin resistance. In this setting, PKCepsilon, but not other isoforms of PKC, is activated. To determine whether PKCepsilon plays a causal role in the pathogenesis of hepatic insulin resistance, we treated rats with an antisense oligonucleotide against PKCepsilon and subjected them to 3 days of high-fat feeding. Knocking down PKCepsilon expression protects rats from fat-induced hepatic insulin resistance and reverses fat-induced defects in hepatic insulin signaling. Furthermore, we show that PKCepsilon associates with the insulin receptor in vivo and impairs insulin receptor kinase activity both in vivo and in vitro. These data support the hypothesis that PKCepsilon plays a critical role in mediating fat-induced hepatic insulin resistance and represents a novel therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Varman T. Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhen-Xiang Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Amy Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sara A. Beddow
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John G. Geisler
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mario Kahn
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xian-man Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Brett P. Monia
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sanjay Bhanot
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Veterans Administration Medical Center, West Haven, Connecticut, USA.
Isis Pharmaceuticals Inc., Carlsbad, California, USA.
Department of Cellular and Molecular Physiology and
Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Denley A, Carroll JM, Brierley GV, Cosgrove L, Wallace J, Forbes B, Roberts CT. Differential activation of insulin receptor substrates 1 and 2 by insulin-like growth factor-activated insulin receptors. Mol Cell Biol 2007; 27:3569-77. [PMID: 17325037 PMCID: PMC1899985 DOI: 10.1128/mcb.01447-06] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insulin-like growth factors (insulin-like growth factor I [IGF-I] and IGF-II) exert important effects on growth, development, and differentiation through the IGF-I receptor (IGF-IR) transmembrane tyrosine kinase. The insulin receptor (IR) is structurally related to the IGF-IR, and at high concentrations, the IGFs can also activate the IR, in spite of their generally low affinity for the latter. Two mechanisms that facilitate cross talk between the IGF ligands and the IR at physiological concentrations have been described. The first of these is the existence of an alternatively spliced IR variant that exhibits high affinity for IGF-II as well as for insulin. A second phenomenon is the ability of hybrid receptors comprised of IGF-IR and IR hemireceptors to bind IGFs, but not insulin. To date, however, direct activation of an IR holoreceptor by IGF-I at physiological levels has not been demonstrated. We have now found that IGF-I can function through both splice variants of the IR, in spite of low affinity, to specifically activate IRS-2 to levels similar to those seen with equivalent concentrations of insulin or IGF-II. The specific activation of IRS-2 by IGF-I through the IR does not result in activation of the extracellular signal-regulated kinase pathway but does induce delayed low-level activation of the phosphatidylinositol 3-kinase pathway and biological effects such as enhanced cell viability and protection from apoptosis. These findings suggest that IGF-I can function directly through the IR and that the observed effects of IGF-I on insulin sensitivity may be the result of direct facilitation of insulin action by IGF-I costimulation of the IR in insulin target tissues.
Collapse
Affiliation(s)
- Adam Denley
- Oregon National Primate Research Center, L584, 505 NW 185th Ave., Beaverton, OR 97006-3448, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang XM, Monia BP, Bhanot S, Shulman GI. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007. [PMID: 17318260 DOI: 10.1172/jci3040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance and type 2 diabetes mellitus, but the molecular signals linking hepatic fat accumulation to hepatic insulin resistance are unknown. Three days of high-fat feeding in rats results specifically in hepatic steatosis and hepatic insulin resistance. In this setting, PKCepsilon, but not other isoforms of PKC, is activated. To determine whether PKCepsilon plays a causal role in the pathogenesis of hepatic insulin resistance, we treated rats with an antisense oligonucleotide against PKCepsilon and subjected them to 3 days of high-fat feeding. Knocking down PKCepsilon expression protects rats from fat-induced hepatic insulin resistance and reverses fat-induced defects in hepatic insulin signaling. Furthermore, we show that PKCepsilon associates with the insulin receptor in vivo and impairs insulin receptor kinase activity both in vivo and in vitro. These data support the hypothesis that PKCepsilon plays a critical role in mediating fat-induced hepatic insulin resistance and represents a novel therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Samuel VT, Liu ZX, Wang A, Beddow SA, Geisler JG, Kahn M, Zhang XM, Monia BP, Bhanot S, Shulman GI. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007. [PMID: 17318260 DOI: 10.1172/jci130400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease is strongly associated with hepatic insulin resistance and type 2 diabetes mellitus, but the molecular signals linking hepatic fat accumulation to hepatic insulin resistance are unknown. Three days of high-fat feeding in rats results specifically in hepatic steatosis and hepatic insulin resistance. In this setting, PKCepsilon, but not other isoforms of PKC, is activated. To determine whether PKCepsilon plays a causal role in the pathogenesis of hepatic insulin resistance, we treated rats with an antisense oligonucleotide against PKCepsilon and subjected them to 3 days of high-fat feeding. Knocking down PKCepsilon expression protects rats from fat-induced hepatic insulin resistance and reverses fat-induced defects in hepatic insulin signaling. Furthermore, we show that PKCepsilon associates with the insulin receptor in vivo and impairs insulin receptor kinase activity both in vivo and in vitro. These data support the hypothesis that PKCepsilon plays a critical role in mediating fat-induced hepatic insulin resistance and represents a novel therapeutic target for type 2 diabetes.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 2006; 89:32-47. [PMID: 16798038 DOI: 10.1016/j.ymgme.2006.04.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 04/23/2006] [Accepted: 04/23/2006] [Indexed: 12/14/2022]
Abstract
Recent studies implicate specific PKC isoforms in the insulin-signaling cascade. Insulin activates PKCs alpha, betaII, delta and zeta in several cell types. In addition, as will be documented in this review, certain members of the PKC family may also be activated and act upstream of PI3 and MAP kinases. Each of these isoforms has been shown one way or another either to mimic or to modify insulin-stimulated effects in one or all of the insulin-responsive tissues. Moreover, each of the isoforms has been shown to be activated by insulin stimulation or conditions important for effective insulin stimulation. Studies attempting to demonstrate a definitive role for any of the isoforms have been performed on different cells, ranging from appropriate model systems for skeletal muscle, liver and fat, such as primary cultures, and cell lines and even in vivo studies, including transgenic mice with selective deletion of specific PKC isoforms. In addition, studies have been done on certain expression systems such as CHO or HEK293 cells, which are far removed from the tissues themselves and serve mainly as vessels for potential protein-protein interactions. Thus, a clear picture for many of the isoforms remains elusive in spite of over two decades of intensive research. The recent intrusion of transgenic and precise molecular biology technologies into the research armamentarium has opened a wide range of additional possibilities for direct involvement of individual isoforms in the insulin signaling cascade. As we hope to discuss within the context of this review, whereas many of the long sought-after answers to specific questions are not yet clear, major advances have been made in our understanding of precise roles for individual PKC isoforms in mediation of insulin effects. In this review, in which we shall focus our attention on isoforms in the conventional and novel categories, a clear case will be made to show that these isoforms are not only expressed but are importantly involved in regulation of insulin metabolic effects.
Collapse
|
13
|
Horovitz-Fried M, Cooper DR, Patel NA, Cipok M, Brand C, Bak A, Inbar A, Jacob AI, Sampson SR. Insulin rapidly upregulates protein kinase Cdelta gene expression in skeletal muscle. Cell Signal 2005; 18:183-93. [PMID: 16095881 DOI: 10.1016/j.cellsig.2005.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Accepted: 04/07/2005] [Indexed: 11/28/2022]
Abstract
Recent studies in our laboratories have shown that Protein Kinase C delta (PKCdelta) is essential for insulin-induced glucose transport in skeletal muscle, and that insulin rapidly stimulates PKCdelta activity skeletal muscle. The purpose of this study was to examine mechanisms of regulation of PKCdelta protein availability. Studies were done on several models of mammalian skeletal muscle and utilized whole cell lysates of differentiated myotubes. PKCdelta protein levels were determined by Western blotting techniques, and PKCdelta RNA levels were determined by Northern blotting, RT-PCR and Real-Time RT-PCR. Insulin stimulation increased PKCdelta protein levels in whole cell lysates. This effect was not due to an inhibition by insulin of the rate of PKCdelta protein degradation. Insulin also increased 35S-methionine incorporation into PKCdelta within 5-15 min. Pretreatment of cells with transcription or translation inhibitors abrogated the insulin-induced increase in PKCdelta protein levels. We also found that insulin rapidly increased the level of PKCdelta RNA, an effect abolished by inhibitors of transcription. The insulin-induced increase in PKCdelta expression was not reduced by inhibition of either PI3 Kinase or MAP kinase, indicating that these signaling mechanisms are not involved, consistent with insulin activation of PKCdelta. Studies on cells transfected with the PKCdelta promoter demonstrate that insulin activated the promoter within 5 min. This study indicates that the expression of PKCdelta may be regulated in a rapid manner during the course of insulin action in skeletal muscle and raise the possibility that PKCdelta may be an immediate early response gene activated by insulin.
Collapse
|
14
|
Wu X, Zhu L, Zilbering A, Mahadev K, Motoshima H, Yao J, Goldstein BJ. Hyperglycemia potentiates H(2)O(2) production in adipocytes and enhances insulin signal transduction: potential role for oxidative inhibition of thiol-sensitive protein-tyrosine phosphatases. Antioxid Redox Signal 2005; 7:526-37. [PMID: 15889998 PMCID: PMC1435729 DOI: 10.1089/ars.2005.7.526] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Insulin signal transduction in adipocytes is accompanied by a burst of cellular hydrogen peroxide (H(2)O(2)) that facilitates insulin signaling by inhibiting thiol-dependent protein-tyrosine phosphatases (PTPs) that are negative regulators of insulin action. As hyperglycemia is associated with increased cellular reactive oxygen species, we postulated that high glucose conditions might potentiate the H(2)O(2) generated by insulin and modulate insulin-stimulated protein phosphorylation. Basal H(2)O(2) generation was increased threefold in differentiated 3T3-L1 adipocytes by growth in 25 mM glucose versus 5 mM glucose. High glucose increased the sensitivity of the insulin-stimulated H(2)O(2) signal to lower concentrations of insulin. Basal endogenous total PTP activity and the activity of PTP1B, a PTP implicated in the negative regulation of insulin signaling, were reduced in high glucose conditions, and their further reduction by insulin stimulation was more enhanced in high versus low glucose medium. Phosphorylation of the insulin receptor, IRS-1, and Akt in response to insulin was also significantly enhanced in high glucose conditions, especially at submaximal insulin concentrations. In primary rat adipocytes, high glucose increased insulin-stimulated H(2)O(2) production and potentiated the oxidative inhibition of total PTP and PTP1B activity; however, insulin signaling was not enhanced in the primary cells in high glucose apparently due to cross-regulation of insulin-stimulated protein phosphorylation by activation of protein kinase C (PKC). These studies indicate that high glucose can enhance insulin stimulated H(2)O(2) generation and augment oxidative PTP inhibition in cultured and primary adipocytes, but the overall balance of insulin signal transduction is determined by additional signal effects in high glucose, including the activation of PKC.
Collapse
Affiliation(s)
- Xiangdong Wu
- Dorrance H. Hamilton Research Laboratories, Division of Endocrinology, Diabetes and Metabolic Diseases, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Orzechowski A, Lokociejewska M, Pawlikowska P, Kruszewski M. Preincubation with sodium ascorbate potentiates insulin-dependent PKB/Akt and c-Jun phosphorylation in L6 rat myoblasts challenged with reactive oxygen/nitrogen species. Life Sci 2005; 77:496-511. [PMID: 15904668 DOI: 10.1016/j.lfs.2004.10.078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Accepted: 10/18/2004] [Indexed: 11/21/2022]
Abstract
Previously, we reported that mitogenicity in L6 muscle cells was stimulated by insulin but inhibited by reactive oxygen/nitrogen species (ROS/RNS; []) and that preincubation with sodium ascorbate (ASC) protected from either the impaired DNA synthesis and/or loss of cell viability. Now, we addressed the question how ascorbate (AA) rescued DNA synthesis in L6 muscle cells being challenged with ROS/RNS. We assumed that AA might be able to influence insulin signaling. We found that insulin elevated the protein levels of both PKB/Akt kinase phosphorylated at Serine(473) (pS473-Akt), and c-Jun phosphorylated at Serine63, Serine73 (pS63, pS73-c-Jun) residues, respectively. A short-term treatment experiment (0 - 45 min) revealed that either insulin (0.1 muM) or hydrogen peroxide (0.1, 0.5 mM; H2O2) increased the pS473-Akt and pS63, pS73-c-Jun protein levels, although the effect of ROS/RNS peaked earlier (5 min) than that of insulin (45 min). Astonishingly, the elevated levels of both pS473-Akt and pS63, pS73-c-Jun in response to insulin were reduced by the concomitant treatment with H2O2 in a dose-dependent fashion. In contrast, a 4-hour preincubation with ASC (1 mM) augmented the signal from pS473-Akt and pS63, pS73-c-Jun, when both insulin and H2O2 were added. Moreover, a 24 h preincubation with ASC also elevated the pS473-Akt and pS63, pS73-c-Jun levels in response to insulin irrespective to ROS/RNS co-treatment. During chronic treatment studies, ROS/RNS stimulated neither phosphorylation of Akt nor c-Jun, indicating that ROS/RNS-dependent activation of the above-mentioned proteins was short-term and transient. Furthermore, higher levels of pS473 Akt and pS63, pS73-c-Jun after preincubation with ASC suggest that by this route AA could protect insulin-induced mitogenicity. Basal levels of Akt and its target p70(S6K) remained constant regardless of treatment. These results suggest that AA defends the insulin-stimulated mitogenicity hampered by ROS/RNS most likely by the amplification of insulin signal at the level of pS473-Akt and pS63, pS73-c-Jun, respectively.
Collapse
Affiliation(s)
- Arkadiusz Orzechowski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | | | | | |
Collapse
|
16
|
Poole AW, Pula G, Hers I, Crosby D, Jones ML. PKC-interacting proteins: from function to pharmacology. Trends Pharmacol Sci 2004; 25:528-35. [PMID: 15380937 DOI: 10.1016/j.tips.2004.08.006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinase C (PKC) is a ubiquitously expressed family of kinases that have key roles in regulating multiple cellular activities. The activity of this family is controlled tightly by several molecular mechanisms, including interaction with binding-partner proteins. These PKC-interacting proteins (C-KIPs) confer specificity for individual PKC isoforms by regulating the activity and cellular localization of PKC isoforms and, subsequently, the ability of these isoforms to specifically regulate cellular functional events. Although many C-KIPs have been identified by genome and proteome-mining approaches, it is important to address the specificity and function of the interactions in greater detail because they might form novel drug targets. In this article, we review recent work on C-KIPs and the implications for pharmacological and therapeutic development.
Collapse
Affiliation(s)
- Alastair W Poole
- Department of Pharmacology, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | |
Collapse
|
17
|
Patel NA, Apostolatos HS, Mebert K, Chalfant CE, Watson JE, Pillay TS, Sparks J, Cooper DR. Insulin regulates protein kinase CbetaII alternative splicing in multiple target tissues: development of a hormonally responsive heterologous minigene. Mol Endocrinol 2004; 18:899-911. [PMID: 14752056 DOI: 10.1210/me.2003-0391] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cells respond to external signals like insulin to alter metabolic pathways in response to varying physiological environments. Insulin stimulates the protein kinase C beta (PKCbeta) isozymes and preferentially switches the expression to PKCbetaII isozyme, which is shown to have a crucial role in glucose uptake, cellular proliferation, and differentiation. We have developed an insulin-responsive PKCbetaII heterologous minigene to identify cis-elements in vivo in eukaryotes by cloning the PKCbetaII exon and its flanking intronic sequences into the splicing vector pSPL3. The transfected minigene mimicked the endogenous insulin response of PKCbetaII alternative splicing in five distinct cell types, i.e. L6 skeletal muscle, 3T3-L1 pre-adipocytes, HepG2 human hepatoma cells, A10 vascular smooth muscle cells, and murine embryonic fibroblasts within 30 min of insulin stimulation. Sequential deletions of the flanking introns in the minigene demonstrated that insulin regulated elements within the 5'-intron flanking the PKCbetaII exon. Mutational studies indicated the SRp40 binding site promotes splice site selection. In these cases, splicing appears to be regulated by a phosphatidylinositol 3-kinase signaling pathway because LY294002 and wortmannin, its specific inhibitors, blocked exon inclusion. Cotransfection with constitutively active Akt2 kinase mimicked insulin action. Signal-dependent regulation of splicing by insulin is unique from tissue-specific and developmentally regulated mechanisms previously reported and serves as a prototype for studies of alternative splicing involving protein phosphorylation.
Collapse
Affiliation(s)
- Niketa A Patel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|