1
|
Huang H, Wang S, Guan Y, Ren J, Liu X. Molecular basis and current insights of atypical Rho small GTPase in cancer. Mol Biol Rep 2024; 51:141. [PMID: 38236467 DOI: 10.1007/s11033-023-09140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Atypical Rho GTPases are a subtype of the Rho GTPase family that are involved in diverse cellular processes. The typical Rho GTPases, led by RhoA, Rac1 and Cdc42, have been well studied, while relative studies on atypical Rho GTPases are relatively still limited and have great exploration potential. With the increase in studies, current evidence suggests that atypical Rho GTPases regulate multiple biological processes and play important roles in the occurrence and development of human cancers. Therefore, this review mainly discusses the molecular basis of atypical Rho GTPases and their roles in cancer. We summarize the sequence characteristics, subcellular localization and biological functions of each atypical Rho GTPase. Moreover, we review the recent advances and potential mechanisms of atypical Rho GTPases in the development of multiple cancers. A comprehensive understanding and extensive exploration of the biological functions of atypical Rho GTPases and their molecular mechanisms in tumors will provide important insights into the pathophysiology of tumors and the development of cancer therapeutic strategies.
Collapse
Affiliation(s)
- Hua Huang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Sijia Wang
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Yifei Guan
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100853, China.
| | - Xinhui Liu
- Center of Excellence for Environmental Safety and Biological Effects, Faculty of Environment and Life, Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing University of Technology, Beijing, 100124, China.
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Deng DX, Li CY, Zheng ZY, Wen B, Liao LD, Zhang XJ, Li EM, Xu LY. Prenylated PALM2 Promotes the Migration of Esophageal Squamous Cell Carcinoma Cells Through Activating Ezrin. Mol Cell Proteomics 2023; 22:100593. [PMID: 37328063 PMCID: PMC10393820 DOI: 10.1016/j.mcpro.2023.100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/28/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Proteins containing a CAAX motif at the C-terminus undergo prenylation for localization and activity and include a series of key regulatory proteins, such as RAS superfamily members, heterotrimeric G proteins, nuclear lamina protein, and several protein kinases and phosphatases. However, studies of prenylated proteins in esophageal cancer are limited. Here, through research on large-scale proteomic data of esophageal cancer in our laboratory, we found that paralemmin-2 (PALM2), a potential prenylated protein, was upregulated and associated with poor prognosis in patients. Low-throughput verification showed that the expression of PALM2 in esophageal cancer tissues was higher than that in their paired normal esophageal epithelial tissues, and it was generally expressed in the membrane and cytoplasm of esophageal cancer cells. PALM2 interacted with the two subunits of farnesyl transferase (FTase), FNTA and FNTB. Either the addition of an FTase inhibitor or mutation in the CAAX motif of PALM2 (PALM2C408S) impaired its membranous localization and reduced the membrane location of PALM2, indicating PALM2 was prenylated by FTase. Overexpression of PALM2 enhanced the migration of esophageal squamous cell carcinoma cells, whereas PALM2C408S lost this ability. Mechanistically, PALM2 interacted with the N-terminal FERM domain of ezrin of the ezrin/radixin/moesin (ERM) family. Mutagenesis indicated that lysine residues K253/K254/K262/K263 in ezrin's FERM domain and C408 in PALM2's CAAX motif were important for PALM2/ezrin interaction and ezrin activation. Knockout of ezrin prevented enhanced cancer cell migration by PALM2 overexpression. PALM2, depending on its prenylation, increased both ezrin membrane localization and phosphorylation of ezrin at Y146. In summary, prenylated PALM2 enhances the migration of cancer cells by activating ezrin.
Collapse
Affiliation(s)
- Dan-Xia Deng
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Cheng-Yu Li
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Cancer, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhen-Yuan Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Cancer, Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
| | - Lian-Di Liao
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-Jun Zhang
- Central Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China.
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Cancer, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
3
|
Wang QQ, He K, Aleem MT, Long S. Prenyl Transferases Regulate Secretory Protein Sorting and Parasite Morphology in Toxoplasma gondii. Int J Mol Sci 2023; 24:ijms24087172. [PMID: 37108334 PMCID: PMC10138696 DOI: 10.3390/ijms24087172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Protein prenylation is an important protein modification that is responsible for diverse physiological activities in eukaryotic cells. This modification is generally catalyzed by three types of prenyl transferases, which include farnesyl transferase (FT), geranylgeranyl transferase (GGT-1) and Rab geranylgeranyl transferase (GGT-2). Studies in malaria parasites showed that these parasites contain prenylated proteins, which are proposed to play multiple functions in parasites. However, the prenyl transferases have not been functionally characterized in parasites of subphylum Apicomplexa. Here, we functionally dissected functions of three of the prenyl transferases in the Apicomplexa model organism Toxoplasma gondii (T. gondii) using a plant auxin-inducible degron system. The homologous genes of the beta subunit of FT, GGT-1 and GGT-2 were endogenously tagged with AID at the C-terminus in the TIR1 parental line using a CRISPR-Cas9 approach. Upon depletion of these prenyl transferases, GGT-1 and GGT-2 had a strong defect on parasite replication. Fluorescent assay using diverse protein markers showed that the protein markers ROP5 and GRA7 were diffused in the parasites depleted with GGT-1 and GGT-2, while the mitochondrion was strongly affected in parasites depleted with GGT-1. Importantly, depletion of GGT-2 caused the stronger defect to the sorting of rhoptry protein and the parasite morphology. Furthermore, parasite motility was observed to be affected in parasites depleted with GGT-2. Taken together, this study functionally characterized the prenyl transferases, which contributed to an overall understanding of protein prenylation in T. gondii and potentially in other related parasites.
Collapse
Affiliation(s)
- Qiang-Qiang Wang
- National Key Laboratory of Veterinary Public Health Security, School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kai He
- National Key Laboratory of Veterinary Public Health Security, School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Muhammad-Tahir Aleem
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Shaojun Long
- National Key Laboratory of Veterinary Public Health Security, School of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Andronie-Cioară FL, Jurcău A, Jurcău MC, Nistor-Cseppentö DC, Simion A. Cholesterol Management in Neurology: Time for Revised Strategies? J Pers Med 2022; 12:jpm12121981. [PMID: 36556202 PMCID: PMC9784893 DOI: 10.3390/jpm12121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Statin therapy has been extensively evaluated and shown to reduce the incidence of new or recurrent vascular events, ischemic stroke included. As a consequence, each published guideline pushes for lower low-density cholesterol levels in the population at large, recommending increased statin doses and/or adding new cholesterol-lowering molecules. Neurologists find it sometimes difficult to apply these guidelines, having to confront situations such as (1) ischemic strokes, mainly cardioembolic ones, in patients with already low LDL-cholesterol levels; (2) myasthenic patients, whose lifespan has been extended by available treatment, and whose age and cholesterol levels put them at risk for ischemic stroke; (3) patients with myotonic dystrophy, whose disease often associates diabetes mellitus and heart conduction defects, and in whom blood cholesterol management is also not settled. As such, further trials are needed to address these issues.
Collapse
Affiliation(s)
- Felicia Liana Andronie-Cioară
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Maria Carolina Jurcău
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: (M.C.J.); (D.C.N.-C.); Tel.: +40-744-600-833 (M.C.J.)
| | - Aurel Simion
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
5
|
Kitzinger R, Fritz G, Henninger C. Nuclear RAC1 is a modulator of the doxorubicin-induced DNA damage response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119320. [PMID: 35817175 DOI: 10.1016/j.bbamcr.2022.119320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Rho GTPases like RAC1 are localized on the inner side of the outer cell membrane where they act as molecular switches that can trigger signal transduction pathways in response to various extracellular stimuli. Nuclear functions of RAC1 were identified that are related to mitosis, cell cycle arrest and apoptosis. Previously, we showed that RAC1 plays a role in the doxorubicin (Dox)-induced DNA damage response (DDR). In this context it is still unknown whether cytosolic RAC1 modulates the Dox-induced DDR or if a nuclear fraction of RAC1 is involved. Here, we silenced RAC1 in mouse embryonic fibroblasts (MEF) pharmacologically with EHT1864 or by using siRNA against Rac1. Additionally, we transfected MEF with RAC1 mutants (wild-type, dominant-negative, constitutively active) containing a nuclear localization sequence (NLS). Afterwards, we analysed the Dox-induced DDR by evaluation of fluorescent nuclear γH2AX and 53BP1 foci formation, as well as by detection of activated proteins of the DDR by western blot to elucidate the role of nuclear RAC1 in the DDR. Treatment with EHT1864 as well as Rac1 knock-down reduced the Dox-induced DSB-formation to a similar extent. Enhanced nuclear localization of dominant-negative as well as constitutively active RAC1 mimicked these effects. Expression of the RAC1 mutants altered the Dox-induced amount of pP53 and pKAP1 protein. The observed effects were independent of S1981 ATM phosphorylation. We conclude that RAC1 is required for a substantial activation of the Dox-induced DDR and balanced levels of active/inactive RAC1 inside the nucleus are a prerequisite for this response.
Collapse
Affiliation(s)
- Rebekka Kitzinger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christian Henninger
- Institute of Toxicology, Medical Faculty of the Heinrich Heine University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
6
|
Coradini D. De novo cholesterol biosynthesis: an additional therapeutic target for the treatment of postmenopausal breast cancer with excessive adipose tissue. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:841-852. [PMID: 36654818 PMCID: PMC9834634 DOI: 10.37349/etat.2022.00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/08/2022] [Indexed: 12/29/2022] Open
Abstract
The onset and development of breast cancer in postmenopausal women are associated with closely related individual-dependent factors, including weight gain and high levels of circulating androgens. Adipose tissue is the most peripheral site of aromatase enzyme synthesis; therefore, the excessive accumulation of visceral fat results in increased androgens aromatization and estradiol production that provides the microenvironment favorable to tumorigenesis in mammary epithelial cells expressing estrogen receptors (ERs). Moreover, to meet the increased requirement of cholesterol for cell membrane assembly and the production of steroid hormones to sustain their proliferation, ER-positive cells activate de novo cholesterol biosynthesis and subsequent steroidogenesis. Several approaches have been followed to neutralize the de novo cholesterol synthesis, including specific enzyme inhibitors, statins, and, more recently, metformin. Cumulating evidence indicated that inhibiting cholesterol biosynthesis by statins and metformin may be a promising therapeutic strategy to block breast cancer progression. Unlike antiestrogens and aromatase inhibitors (AIs) which compete for binding to ER and inhibit androgens aromatization, respectively, statins block the production of mevalonic acid by inhibiting the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, and metformin hampers the activation of the sterol regulatory element-binding protein 2 (SREBP2) transcription factor, thus inhibiting the synthesis of several enzymes involved in cholesterol biosynthesis. Noteworthy, statins and metformin not only improve the prognosis of overweight patients with ER-positive cancer but also improve the prognosis of patients with triple-negative breast cancer, the aggressive tumor subtype that lacks, at present, specific therapy.
Collapse
Affiliation(s)
- Danila Coradini
- Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, 20133 Milan, Italy,Correspondence: Danila Coradini, Department of Clinical Sciences and Community Health, Campus Cascina Rosa, University of Milan, Via Vanzetti 5, 20133 Milan, Italy.
| |
Collapse
|
7
|
Isoprenylcysteine carboxyl methyltransferase promotes the progression of tongue squamous cell carcinoma via the K-Ras and RhoA signaling pathways. Arch Oral Biol 2021; 134:105320. [PMID: 34875442 DOI: 10.1016/j.archoralbio.2021.105320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This research investigated the biological role of isoprenylcysteine carboxyl methyltransferase (ICMT) in tongue squamous cell carcinoma (TSCC) progression meanwhile to explore the conceivable mechanism. METHODS The mRNA and protein expression were measured using real-time PCR and Western blot. Cell proliferation, apoptosis, cycle distribution, migration and invasion were evaluated by CCK-8 assay, flow cytometry, wound-healing assay and transwell assay. The anti-tumor activity of ICMT silencing was observed in nude mice. RESULTS Our results indicated that silencing of ICMT-mediated methylation effectively inhibited TSCC cells proliferation in vitro and reduced tumor growth in vivo. Moreover, ICMT knockdown also induced cell apoptosis and cell cycle arrest of both CAL-27 and SCC-4 cells. In addition, CAL-27 and SCC-4 cells migration and invasion were weakened by ICMT siRNA. Mechanistically, ICMT deficiency significantly decreased the K-Ras and RhoA membrane targeting localization, leading to the suppression of K-Ras- and RhoA-mediated downstream signaling in CAL-27 and SCC-4 cells. CONCLUSIONS Altogether, our findings identified a crucial role played by ICMT in the progression of TSCC and the potential mechanisms by which exerted its effects, indicating that targeting ICMT may represent a promising therapeutic strategy for TSCC.
Collapse
|
8
|
Lee CF, Carley RE, Butler CA, Morrison AR. Rac GTPase Signaling in Immune-Mediated Mechanisms of Atherosclerosis. Cells 2021; 10:2808. [PMID: 34831028 PMCID: PMC8616135 DOI: 10.3390/cells10112808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Coronary artery disease caused by atherosclerosis is a major cause of morbidity and mortality around the world. Data from preclinical and clinical studies support the belief that atherosclerosis is an inflammatory disease that is mediated by innate and adaptive immune signaling mechanisms. This review sought to highlight the role of Rac-mediated inflammatory signaling in the mechanisms driving atherosclerotic calcification. In addition, current clinical treatment strategies that are related to targeting hypercholesterolemia as a critical risk factor for atherosclerotic vascular disease are addressed in relation to the effects on Rac immune signaling and the implications for the future of targeting immune responses in the treatment of calcific atherosclerosis.
Collapse
Affiliation(s)
- Cadence F. Lee
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Rachel E. Carley
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Celia A. Butler
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Alan R. Morrison
- Ocean State Research Institute, Inc., Providence VA Medical Center, Research (151), 830 Chalkstone Avenue, Providence, RI 02908, USA; (C.F.L.); (R.E.C.); (C.A.B.)
- Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
9
|
Tennakoon M, Senarath K, Kankanamge D, Chadee DN, Karunarathne A. A short C-terminal peptide in Gγ regulates Gβγ signaling efficacy. Mol Biol Cell 2021; 32:1446-1458. [PMID: 34106735 PMCID: PMC8351738 DOI: 10.1091/mbc.e20-11-0750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 01/03/2023] Open
Abstract
G protein beta-gamma (Gβγ) subunits anchor to the plasma membrane (PM) through the carboxy-terminal (CT) prenyl group in Gγ. This interaction is crucial for the PM localization and functioning of Gβγ, allowing GPCR-G protein signaling to proceed. The diverse Gγ family has 12 members, and we have recently shown that the signaling efficacies of major Gβγ effectors are Gγ-type dependent. This dependency is due to the distinct series of membrane-interacting abilities of Gγ. However, the molecular process allowing for Gβγ subunits to exhibit a discrete and diverse range of Gγ-type-dependent membrane affinities is unclear and cannot be explained using only the type of prenylation. The present work explores the unique designs of membrane-interacting CT residues in Gγ as a major source for this Gγ-type-dependent Gβγ signaling. Despite the type of prenylation, the results show signaling efficacy at the PM, and associated cell behaviors of Gβγ are governed by crucially located specific amino acids in the five to six residue preprenylation region of Gγ. The provided molecular picture of Gγ-membrane interactions may explain how cells gain Gγ-type-dependent G protein-GPCR signaling as well as how Gβγ elicits selective signaling at various subcellular compartments.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Kanishka Senarath
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| | - Deborah N. Chadee
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606
| |
Collapse
|
10
|
Glogowska A, Thanasupawat T, Beiko J, Pitz M, Hombach-Klonisch S, Klonisch T. Novel CTRP8-RXFP1-JAK3-STAT3 axis promotes Cdc42-dependent actin remodeling for enhanced filopodia formation and motility in human glioblastoma cells. Mol Oncol 2021; 16:368-387. [PMID: 33960104 PMCID: PMC8763656 DOI: 10.1002/1878-0261.12981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
C1q tumor necrosis factor‐related peptide 8 (CTRP8) is the least studied member of the C1Q‐TNF‐related peptide family. We identified CTRP8 as a ligand of the G protein‐coupled receptor relaxin family peptide receptor 1 (RXFP1) in glioblastoma multiforme (GBM). The CTRP8‐RXFP1 ligand–receptor system protects human GBM cells against the DNA‐alkylating damage‐inducing temozolomide (TMZ), the drug of choice for the treatment of patients with GBM. The DNA protective role of CTRP8 was dependent on a functional RXFP1‐STAT3 signaling cascade and targeted the monofunctional glycosylase N‐methylpurine DNA glycosylase (MPG) for more efficient base excision repair of TMZ‐induced DNA‐damaged sites. CTRP8 also improved the survival of GBM cells by upregulating anti‐apoptotic BCl‐2 and BCL‐XL. Here, we have identified Janus‐activated kinase 3 (JAK3) as a novel member of a novel CTRP8‐RXFP1‐JAK3‐STAT3 signaling cascade that caused an increase in cellular protein content and activity of the small Rho GTPase Cdc42. This is associated with significant F‐actin remodeling and increased GBM motility. Cdc42 was critically important for the upregulation of the actin nucleation complex N‐Wiskott–Aldrich syndrome protein/Arp3/4 and actin elongation factor profilin‐1. The activation of the RXFP1‐JAK3‐STAT3‐Cdc42 axis by both RXFP1 agonists, CTRP8 and relaxin‐2, caused extensive filopodia formation. This coincided with enhanced activity of ezrin, a key factor in tethering F‐actin to the plasma membrane, and inhibition of the actin filament severing activity of cofilin. The F‐actin remodeling and pro‐migratory activities promoted by the novel RXFP1‐JAK3‐STAT3‐Cdc42 axis were blocked by JAK3 inhibitor tofacitinib and STAT3 inhibitor STAT3 inhibitor VI. This provides a new rationale for the design of JAK3 and STAT3 inhibitors with better brain permeability for clinical treatment of the pervasive brain invasiveness of GBM.
Collapse
Affiliation(s)
- Aleksandra Glogowska
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Beiko
- Department of Surgery, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Marshall Pitz
- Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Surgery, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Research Institute in Oncology and Hematology (RIOH), CancerCare Manitoba, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada.,Department of Pathology, Rady Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
11
|
Sculpting Dendritic Spines during Initiation and Maintenance of Neuropathic Pain. J Neurosci 2021; 40:7578-7589. [PMID: 32998955 DOI: 10.1523/jneurosci.1664-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has established a firm role for synaptic plasticity in the pathogenesis of neuropathic pain. Recent advances have highlighted the importance of dendritic spine remodeling in driving synaptic plasticity within the CNS. Identifying the molecular players underlying neuropathic pain induced structural and functional maladaptation is therefore critical to understanding its pathophysiology. This process of dynamic reorganization happens in unique phases that have diverse pathologic underpinnings in the initiation and maintenance of neuropathic pain. Recent evidence suggests that pharmacological targeting of specific proteins during distinct phases of neuropathic pain development produces enhanced antinociception. These findings outline a potential new paradigm for targeted treatment and the development of novel therapies for neuropathic pain. We present a concise review of the role of dendritic spines in neuropathic pain and outline the potential for modulation of spine dynamics by targeting two proteins, srGAP3 and Rac1, critically involved in the regulation of the actin cytoskeleton.
Collapse
|
12
|
Klimpel A, Stillger K, Wiederstein JL, Krüger M, Neundorf I. Cell-permeable CaaX-peptides affect K-Ras downstream signaling and promote cell death in cancer cells. FEBS J 2020; 288:2911-2929. [PMID: 33112492 DOI: 10.1111/febs.15612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/17/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022]
Abstract
Cysteine prenylation is a post-translational modification that is used by nature to control crucial biological functions of proteins, such as membrane trafficking, signal transduction, and apoptosis. It mainly occurs in eukaryotic proteins at a C-terminal CaaX box and is mediated by prenyltransferases. Since the discovery of prenylated proteins, various tools have been developed to study the mechanisms of prenyltransferases, as well as to visualize and to identify prenylated proteins. Herein, we introduce cell-permeable peptides bearing a C-terminal CaaX motif based on Ras sequences. We demonstrate that intracellular accumulation of those peptides in different cells is controlled by the presence of their CaaX motif and that they specifically interact with intracellular prenyltransferases. As proof of concept, we further highlight their utilization to alter downstream signaling of Ras proteins, particularly of K-Ras-4B, in pancreatic cancer cells. Application of this strategy holds great promise to better understand and regulate post-translational cysteine prenylation.
Collapse
Affiliation(s)
- Annika Klimpel
- Institute for Biochemistry, University of Cologne, Germany
| | | | - Janica L Wiederstein
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Germany
| | - Ines Neundorf
- Institute for Biochemistry, University of Cologne, Germany
| |
Collapse
|
13
|
S UK, R B, D TK, Doss CGP, Zayed H. Mutational landscape of K-Ras substitutions at 12th position-a systematic molecular dynamics approach. J Biomol Struct Dyn 2020; 40:1571-1585. [PMID: 33034275 DOI: 10.1080/07391102.2020.1830177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
K-Ras is a small GTPase and acts as a molecular switch by recruiting GEFs and GAPs, and alternates between the inert GDP-bound and the dynamic GTP-bound forms. The amino acid at position 12 of K-Ras is a hot spot for oncogenic mutations (G12A, G12C, G12D, G12R, G12S, and G12V), disturbing the active fold of the protein, leading to cancer development. This study aimed to investigate the potential conformational changes induced by these oncogenic mutations at the 12th position, impairing GAP-mediated GTP hydrolysis. Comprehensive computational tools (iStable, FoldX, SNPeffect, DynaMut, and CUPSAT) were used to evaluate the effect of these six mutations on the stability of wild type K-Ras protein. The docking of GTP with K-Ras was carried out using AutoDock4.2, followed by molecular dynamics simulations. Furthermore, on comparison of binding energies between the wild type K-Ras and the six mutants, we have demonstrated that the G12A and G12V mutants exhibited the strongest binding efficiency compared to the other four mutants. Trajectory analyses of these mutations revealed that G12A encountered the least deviation, fluctuation, intermolecular H-bonds, and compactness compared to the wildtype, which was supported by the lower Gibbs free energy value. Our study investigates the molecular dynamics simulations of the mutant K-Ras forms at the 12th position, which expects to provide insights about the molecular mechanisms involved in cancer development, and may serve as a platform for targeted therapies against cancer. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Udhaya Kumar S
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bithia R
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal Kumar D
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C George Priya Doss
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
14
|
Savic S, Caseley EA, McDermott MF. Moving towards a systems-based classification of innate immune-mediated diseases. NATURE REVIEWS. RHEUMATOLOGY 2020. [PMID: 32107482 DOI: 10.1038/s41584-020-0377-5)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Autoinflammation as a distinct disease category was first reported in 1999 as a group of monogenic disorders characterized by recurrent episodes of systemic and organ-specific inflammation, known as periodic fever syndromes. Since this original description, the focus has shifted considerably to the inclusion of complex multifactorial conditions with an autoinflammatory basis. Furthermore, the boundaries of what are considered to be autoinflammatory disorders are constantly evolving and currently encompass elements of immunodeficiency and autoimmunity. Notable developments in the intervening 20 years include substantial progress in understanding how the different inflammasomes are activated, how infection is sensed by the innate immune system and how intracellular signalling systems are consequently activated and integrated with many different cellular functions in the autoinflammatory process. With these developments, the field of autoinflammation is moving from a gene-centric view of innate immune-mediated disease towards a systems-based concept, which describes how various convergent pathways, including pyrin and the actin cytoskeleton, protein misfolding and cellular stress, NF-κB dysregulation and interferon activation, contribute to the autoinflammatory process. The development and adoption of a systems-based concept of systemic autoinflammatory diseases is anticipated to have implications for the development of treatments that target specific components of the innate immune system.
Collapse
Affiliation(s)
- Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK. .,National Institute for Health Research-Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, UK. .,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK.
| | - Emily A Caseley
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK.
| |
Collapse
|
15
|
Garg R, Koo CY, Infante E, Giacomini C, Ridley AJ, Morris JDH. Rnd3 interacts with TAO kinases and contributes to mitotic cell rounding and spindle positioning. J Cell Sci 2020; 133:jcs235895. [PMID: 32041905 DOI: 10.1242/jcs.235895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 01/22/2023] Open
Abstract
Rnd3 is an atypical Rho family protein that is constitutively GTP bound, and acts on membranes to induce loss of actin stress fibers and cell rounding. Phosphorylation of Rnd3 promotes 14-3-3 binding and its relocation to the cytosol. Here, we show that Rnd3 binds to the thousand-and-one amino acid kinases TAOK1 and TAOK2 in vitro and in cells. TAOK1 and TAOK2 can phosphorylate serine residues 210, 218 and 240 near the C-terminus of Rnd3, and induce Rnd3 translocation from the plasma membrane to the cytosol. TAOKs are activated catalytically during mitosis and Rnd3 phosphorylation on serine 210 increases in dividing cells. Rnd3 depletion by RNAi inhibits mitotic cell rounding and spindle centralization, and delays breakdown of the intercellular bridge between two daughter cells. Our results show that TAOKs bind, phosphorylate and relocate Rnd3 to the cytosol and that Rnd3 contributes to mitotic cell rounding, spindle positioning and cytokinesis. Rnd3 can therefore participate in the regulation of early and late mitosis and may also act downstream of TAOKs to affect the cytoskeleton.
Collapse
Affiliation(s)
- Ritu Garg
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Chuay-Yeng Koo
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Elvira Infante
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Caterina Giacomini
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jonathan D H Morris
- King's College London, School of Cancer and Pharmaceutical Sciences, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
16
|
Moving towards a systems-based classification of innate immune-mediated diseases. Nat Rev Rheumatol 2020; 16:222-237. [DOI: 10.1038/s41584-020-0377-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 02/07/2023]
|
17
|
Pinner AL, Mueller TM, Alganem K, McCullumsmith R, Meador-Woodruff JH. Protein expression of prenyltransferase subunits in postmortem schizophrenia dorsolateral prefrontal cortex. Transl Psychiatry 2020; 10:3. [PMID: 32066669 PMCID: PMC7026430 DOI: 10.1038/s41398-019-0610-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 12/22/2022] Open
Abstract
The pathophysiology of schizophrenia includes altered neurotransmission, dysregulated intracellular signaling pathway activity, and abnormal dendritic morphology that contribute to deficits of synaptic plasticity in the disorder. These processes all require dynamic protein-protein interactions at cell membranes. Lipid modifications target proteins to membranes by increasing substrate hydrophobicity by the addition of a fatty acid or isoprenyl moiety, and recent evidence suggests that dysregulated posttranslational lipid modifications may play a role in multiple neuropsychiatric disorders, including schizophrenia. Consistent with these emerging findings, we have recently reported decreased protein S-palmitoylation in schizophrenia. Protein prenylation is a lipid modification that occurs upstream of S-palmitoylation on many protein substrates, facilitating membrane localization and activity of key intracellular signaling proteins. Accordingly, we hypothesized that, in addition to palmitoylation, protein prenylation may be abnormal in schizophrenia. To test this, we assayed protein expression of the five prenyltransferase subunits (FNTA, FNTB, PGGT1B, RABGGTA, and RABGGTB) in postmortem dorsolateral prefrontal cortex from patients with schizophrenia and paired comparison subjects (n = 13 pairs). We found decreased levels of FNTA (14%), PGGT1B (13%), and RABGGTB (8%) in schizophrenia. To determine whether upstream or downstream factors may be driving these changes, we also assayed protein expression of the isoprenoid synthases FDPS and GGPS1 and prenylation-dependent processing enzymes RCE and ICMT. We found these upstream and downstream enzymes to have normal protein expression. To rule out effects from chronic antipsychotic treatment, we assayed FNTA, PGGT1B, and RABGGTB in the cortex from rats treated long-term with haloperidol decanoate and found no change in the expression of these proteins. Given the role prenylation plays in localization of key signaling proteins found at the synapse, these data offer a potential mechanism underlying abnormal protein-protein interactions and protein localization in schizophrenia.
Collapse
Affiliation(s)
- Anita L Pinner
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA.
| | - Toni M Mueller
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| | - Khaled Alganem
- Department of Neurosciences, University of Toledo, Toledo, OH, 43614-2598, USA
| | | | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294-0021, USA
| |
Collapse
|
18
|
The Role of Membrane Surface Charge in Phagocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1246:43-54. [DOI: 10.1007/978-3-030-40406-2_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Fu H, Alabdullah M, Großmann J, Spieler F, Abdosh R, Lutz V, Kalies K, Knöpp K, Rieckmann M, Koch S, Noutsias M, Pilowski C, Dutzmann J, Sedding D, Hüttelmaier S, Umezawa K, Werdan K, Loppnow H. The differential statin effect on cytokine production of monocytes or macrophages is mediated by differential geranylgeranylation-dependent Rac1 activation. Cell Death Dis 2019; 10:880. [PMID: 31754207 PMCID: PMC6872739 DOI: 10.1038/s41419-019-2109-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
Monocytes and macrophages contribute to pathogenesis of various inflammatory diseases, including auto-inflammatory diseases, cancer, sepsis, or atherosclerosis. They do so by production of cytokines, the central regulators of inflammation. Isoprenylation of small G-proteins is involved in regulation of production of some cytokines. Statins possibly affect isoprenylation-dependent cytokine production of monocytes and macrophages differentially. Thus, we compared statin-dependent cytokine production of lipopolysaccharide (LPS)-stimulated freshly isolated human monocytes and macrophages derived from monocytes by overnight differentiation. Stimulated monocytes readily produced tumor necrosis factor-α, interleukin-6, and interleukin-1β. Statins did not alter cytokine production of LPS-stimulated monocytes. In contrast, monocyte-derived macrophages prepared in the absence of statin lost the capacity to produce cytokines, whereas macrophages prepared in the presence of statin still produced cytokines. The cells expressed indistinguishable nuclear factor-kB activity, suggesting involvement of separate, statin-dependent regulation pathways. The presence of statin was necessary during the differentiation phase of the macrophages, indicating that retainment-of-function rather than costimulation was involved. Reconstitution with mevalonic acid, farnesyl pyrophosphate, or geranylgeranyl pyrophosphate blocked the retainment effect, whereas reconstitution of cholesterol synthesis by squalene did not. Inhibition of geranylgeranylation by GGTI-298, but not inhibition of farnesylation or cholesterol synthesis, mimicked the retainment effect of the statin. Inhibition of Rac1 activation by the Rac1/TIAM1-inhibitor NSC23766 or by Rac1-siRNA (small interfering RNA) blocked the retainment effect. Consistent with this finding, macrophages differentiated in the presence of statin expressed enhanced Rac1-GTP-levels. In line with the above hypothesis that monocytes and macrophages are differentially regulated by statins, the CD14/CD16-, merTK-, CX3CR1-, or CD163-expression (M2-macrophage-related) correlated inversely to the cytokine production. Thus, monocytes and macrophages display differential Rac1-geranylgeranylation-dependent functional capacities, that is, statins sway monocytes and macrophages differentially.
Collapse
Affiliation(s)
- Hang Fu
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany.,Pädiatrische Immunologie, Otto-von-Guericke-Universität Magdeburg, Universitätsklinikum Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Mohamad Alabdullah
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany.,Institut für Molekulare und Klinische Immunologie, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Julia Großmann
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Florian Spieler
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Reem Abdosh
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Veronika Lutz
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany.,Zentrum für Tumor- und Immunbiologie (ZTI), Forschungsbereich Gastroenterologie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 3, 35043, Marburg, Germany
| | - Katrin Kalies
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Kai Knöpp
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Max Rieckmann
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Susanne Koch
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Michel Noutsias
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Claudia Pilowski
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Jochen Dutzmann
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Daniel Sedding
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institut für Molekulare Medizin, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, Aichi Medical University School of Medicine, 480-1195, Nagakute, Aichi, Japan
| | - Karl Werdan
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Harald Loppnow
- Universitätsklinik und Poliklinik für Innere Medizin III, Universitätsmedizin Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
20
|
Li S, Bronnimann MP, Williams SJ, Campos SK. Glutathione contributes to efficient post-Golgi trafficking of incoming HPV16 genome. PLoS One 2019; 14:e0225496. [PMID: 31743367 PMCID: PMC6863556 DOI: 10.1371/journal.pone.0225496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted pathogen in the United States, causing 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires transport of the viral genome (vDNA) into the nucleus of basal keratinocytes. During this process, minor capsid protein L2 facilitates subcellular retrograde trafficking of the vDNA from endosomes to the Golgi, and accumulation at host chromosomes during mitosis for nuclear retention and localization during interphase. Here we investigated the relationship between cellular glutathione (GSH) and HPV16 infection. siRNA knockdown of GSH biosynthetic enzymes results in a partial decrease of HPV16 infection. Likewise, infection of HPV16 in GSH depleted keratinocytes is inefficient, an effect that was not seen with adenoviral vectors. Analysis of trafficking revealed no defects in cellular binding, entry, furin cleavage of L2, or retrograde trafficking of HPV16, but GSH depletion hindered post-Golgi trafficking and translocation, decreasing nuclear accumulation of vDNA. Although precise mechanisms have yet to be defined, this work suggests that GSH is required for a specific post-Golgi trafficking step in HPV16 infection.
Collapse
Affiliation(s)
- Shuaizhi Li
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| | - Matthew P. Bronnimann
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| | - Spencer J. Williams
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, United States of America
| | - Samuel K. Campos
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, United States of America
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States of America
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
21
|
Zauner S, Heimerl T, Moog D, Maier UG. The Known, the New, and a Possible Surprise: A Re-Evaluation of the Nucleomorph-Encoded Proteome of Cryptophytes. Genome Biol Evol 2019; 11:1618-1629. [PMID: 31124562 PMCID: PMC6559170 DOI: 10.1093/gbe/evz109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Nucleomorphs are small nuclei that evolved from the nucleus of former eukaryotic endosymbionts of cryptophytes and chlorarachniophytes. These enigmatic organelles reside in their complex plastids and harbor the smallest and most compacted eukaryotic genomes investigated so far. Although the coding capacity of the nucleomorph genomes is small, a significant percentage of the encoded proteins (predicted nucleomorph-encoded proteins, pNMPs) is still not functionally annotated. We have analyzed pNMPs with unknown functions via Phyre2, a bioinformatic tool for prediction and modeling of protein structure, resulting in a functional annotation of 215 pNMPs out of 826 uncharacterized open reading frames of cryptophytes. The newly annotated proteins are predicted to participate in nucleomorph-specific functions such as chromosome organization and expression, as well as in modification and degradation of nucleomorph-encoded proteins. Additionally, we have functionally assigned nucleomorph-encoded, putatively plastid-targeted proteins among the reinvestigated pNMPs. Hints for a putative function in the periplastid compartment, the cytoplasm surrounding the nucleomorphs, emerge from the identification of pNMPs that might be homologs of endomembrane system-related proteins. These proteins are discussed in respect to their putative functions.
Collapse
Affiliation(s)
- Stefan Zauner
- Department for Cell Biology, Philipps-Universität Marburg, Germany
| | - Thomas Heimerl
- SYNMIKRO Research Center, Philipps-Universität Marburg, Germany
| | - Daniel Moog
- Department for Cell Biology, Philipps-Universität Marburg, Germany.,SYNMIKRO Research Center, Philipps-Universität Marburg, Germany
| | - Uwe G Maier
- Department for Cell Biology, Philipps-Universität Marburg, Germany.,SYNMIKRO Research Center, Philipps-Universität Marburg, Germany
| |
Collapse
|
22
|
Wang C, Liu X, He R, Li J, Pan R. Prenylation-dependent Ras inhibition by pamidronate inhibits pediatric acute myeloid leukemia stem and differentiated cell growth and survival. Biochem Biophys Res Commun 2019; 517:439-444. [DOI: 10.1016/j.bbrc.2019.07.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 11/25/2022]
|
23
|
Xu J, Zhu Y, Wang F, Zhou Y, Xia G, Xu W. ICMT contributes to hepatocellular carcinoma growth, survival, migration and chemoresistance via multiple oncogenic pathways. Biochem Biophys Res Commun 2019; 518:584-589. [PMID: 31451223 DOI: 10.1016/j.bbrc.2019.08.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022]
Abstract
Isoprenylcysteine carboxylmethyltransferase (Icmt) which catalyzes the final step of prenylation of many oncoproteins, such as Ras. Despite studies on Icmt and its regulation in biological activities of various cancers, little is known on the expression, function and mechanisms of the impact of Icmt on hepatocellular carcinoma (HCC). We report here the findings that Icmt is critical for HCC growth, migration, survival and chemoresistance by multiple oncogenic pathways. Expression analysis on primary patient and cell line samples demonstrated that Icmt protein level was significantly higher in the majority (∼70%) of HCC tissues and cells than corresponding normal counterparts. Icmt depletion inhibited growth, survival and migration in HCC cells, and augmented the inhibitory effects of doxorubicin. Consistently, Icmt also inhibited growth, and migration, and induced apoptosis in HCC cells that are resistant to doxorubicin. In contrast, Icmt overexpression promoted growth and migration in normal liver cells. Mechanistically, Icmt inhibition suppressed Ras/Raf/Mek/Erk signaling and epithelial-mesenchymal transition (EMT) in HCC cells. Several different approaches demonstrated that Icmt was critical for HCC biological activities with the predominant role in cell response to chemotherapy. This previously unappreciated function of Icmt can be targeted to enhance chemotherapy in particular those HCC patients with high Icmt expression.
Collapse
Affiliation(s)
- Jianguo Xu
- Department of Liver Disease Center, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Ying Zhu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| | - Fang Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Yan Zhou
- Information Management Section, Bethune International Peace Hospital, Shijiazhuang City, Hebei province, China
| | - Guili Xia
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Wen Xu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Isoprenylcysteine carboxylmethyltransferase is associated with nasopharyngeal carcinoma chemoresistance and Ras activation. Biochem Biophys Res Commun 2019; 516:784-789. [PMID: 31253403 DOI: 10.1016/j.bbrc.2019.06.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/29/2022]
Abstract
Development of chemo-resistance in nasopharyngeal carcinoma (NPC) poses the therapeutic challenge and its mechanisms are still poorly understood. In this work, we demonstrate that targeting isoprenylcysteine carboxylmethyltransferase (Icmt) is a therapeutic strategy to overcome NPC chemo-resistance. We found that Icmt mRNA and protein levels were increased in NPC cells after prolonged exposure to chemotherapy. Using pharmacological inhibitor cysmethynil or genetic siRNA approaches, we showed that Icmt inhibition was more effective against chemoresistant compared to chemosensitive NPC cells, suggesting that chemoresistant NPC cells is more dependent on Icmt function. The combination of Icmt inhibition with 5-FU or cisplatin resulted in greater efficacy than single chemotherapeutic agent alone in NPC. Notably, we demonstrated that the in vitro observations were translatable to in vivo NPC cancer xenograft mouse model. Mechanism analysis indicated that Icmt inhibition decreased Ras and RhoA activities, leading to the suppression of Ras and RhoA-mediated downstream signaling in NPC cells. The reverse of the inhibitory effects of cysmethynil by constitutively active Ras suggests that Ras is the critical effector of Icmt in NPC cells. Our work is the first to show that Icmt plays an important role in the development of NPC chemoresistance. Our findings also suggest that targeting Icmt represents a promising strategy to inhibit Ras function.
Collapse
|
25
|
Hanafusa H, Yagi T, Ikeda H, Hisamoto N, Nishioka T, Kaibuchi K, Shirakabe K, Matsumoto K. LRRK1 phosphorylation of Rab7 at S72 links trafficking of EGFR-containing endosomes to its effector RILP. J Cell Sci 2019; 132:jcs.228809. [PMID: 31085713 DOI: 10.1242/jcs.228809] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 01/02/2023] Open
Abstract
Ligand-induced activation of epidermal growth factor receptor (EGFR) initiates trafficking events that re-localize the receptor from the cell surface to intracellular endocytic compartments. EGFR-containing endosomes are transported to lysosomes for degradation by the dynein-dynactin motor protein complex. However, this cargo-dependent endosomal trafficking mechanism remains largely uncharacterized. Here, we show that GTP-bound Rab7 is phosphorylated on S72 by leucine-rich repeat kinase 1 (LRRK1) at the endosomal membrane. This phosphorylation promotes the interaction of Rab7 (herein referring to Rab7a) with its effector RILP, resulting in recruitment of the dynein-dynactin complex to Rab7-positive vesicles. This, in turn, facilitates the dynein-driven transport of EGFR-containing endosomes toward the perinuclear region. These findings reveal a mechanism regulating the cargo-specific trafficking of endosomes.
Collapse
Affiliation(s)
- Hiroshi Hanafusa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takuya Yagi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Haruka Ikeda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Naoki Hisamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Showa-ku, Nagoya 466-8550, Japan
| | - Kyoko Shirakabe
- Department of Biomedical Sciences, Graduate School of Life Sciences, Ritsumeikan University, Noji-higashi, Kusatsu 525-8577, Japan
| | - Kunihiro Matsumoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
26
|
Nmezi B, Xu J, Fu R, Armiger TJ, Rodriguez-Bey G, Powell JS, Ma H, Sullivan M, Tu Y, Chen NY, Young SG, Stolz DB, Dahl KN, Liu Y, Padiath QS. Concentric organization of A- and B-type lamins predicts their distinct roles in the spatial organization and stability of the nuclear lamina. Proc Natl Acad Sci U S A 2019; 116:4307-4315. [PMID: 30765529 PMCID: PMC6410836 DOI: 10.1073/pnas.1810070116] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nuclear lamina is an intermediate filament meshwork adjacent to the inner nuclear membrane (INM) that plays a critical role in maintaining nuclear shape and regulating gene expression through chromatin interactions. Studies have demonstrated that A- and B-type lamins, the filamentous proteins that make up the nuclear lamina, form independent but interacting networks. However, whether these lamin subtypes exhibit a distinct spatial organization or whether their organization has any functional consequences is unknown. Using stochastic optical reconstruction microscopy (STORM) our studies reveal that lamin B1 and lamin A/C form concentric but overlapping networks, with lamin B1 forming the outer concentric ring located adjacent to the INM. The more peripheral localization of lamin B1 is mediated by its carboxyl-terminal farnesyl group. Lamin B1 localization is also curvature- and strain-dependent, while the localization of lamin A/C is not. We also show that lamin B1's outer-facing localization stabilizes nuclear shape by restraining outward protrusions of the lamin A/C network. These two findings, that lamin B1 forms an outer concentric ring and that its localization is energy-dependent, are significant as they suggest a distinct model for the nuclear lamina-one that is able to predict its behavior and clarifies the distinct roles of individual nuclear lamin proteins and the consequences of their perturbation.
Collapse
Affiliation(s)
- Bruce Nmezi
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Jianquan Xu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rao Fu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
- College of Chemical Engineering, Northeast Electric Power University, Jilin Province, China 132012
| | - Travis J Armiger
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
| | | | - Juliana S Powell
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Hongqiang Ma
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Mara Sullivan
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Natalie Y Chen
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213;
| | - Yang Liu
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213;
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
| | - Quasar S Padiath
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261;
| |
Collapse
|
27
|
Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem Soc Trans 2018; 47:13-22. [PMID: 30559268 DOI: 10.1042/bst20170525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023]
Abstract
Small GTPases regulate many aspects of cell logistics by alternating between an inactive, GDP-bound form and an active, GTP-bound form. This nucleotide switch is coupled to a cytosol/membrane cycle, such that GTP-bound small GTPases carry out their functions at the periphery of endomembranes. A global understanding of the molecular determinants of the interaction of small GTPases with membranes and of the resulting supramolecular organization is beginning to emerge from studies of model systems. Recent studies highlighted that small GTPases establish multiple interactions with membranes involving their lipid anchor, their lipididated hypervariable region and elements in their GTPase domain, which combine to determine the strength, specificity and orientation of their association with lipids. Thereby, membrane association potentiates small GTPase interactions with GEFs, GAPs and effectors through colocalization and positional matching. Furthermore, it leads to small GTPase nanoclustering and to lipid demixing, which drives the assembly of molecular platforms in which proteins and lipids co-operate in producing high-fidelity signals through feedback and feedforward loops. Although still fragmentary, these observations point to an integrated model of signaling by membrane-attached small GTPases that involves a diversity of direct and indirect interactions, which can inspire new therapeutic strategies to block their activities in diseases.
Collapse
|
28
|
Counihan JL, Grossman EA, Nomura DK. Cancer Metabolism: Current Understanding and Therapies. Chem Rev 2018; 118:6893-6923. [DOI: 10.1021/acs.chemrev.7b00775] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jessica L. Counihan
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Elizabeth A. Grossman
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Abstract
Fruit ripening is a complex developmental process that involves the synthesis and modification of the cell wall leading up to the formation of an edible fruit. During the period of fruit ripening, new cell wall polymers and enzymes are synthesized and trafficked to the apoplast. Vesicle trafficking has been shown to play a key role in facilitating the synthesis and modification of cell walls in fruits. Through reverse genetics and gene expression studies, the importance of Rab guanosine triphosphatases (GTPases) as integral regulators of vesicle trafficking to the cell wall has been revealed. It has been a decade since a rich literature on the involvement of Rab GTPase in ripening was published. Therefore, this review sets out to summarize the progress in studies on the pivotal roles of Rab GTPases in fruit development and sheds light on new approaches that could be adopted in the fields of postharvest biology and fruit-ripening research.
Collapse
Affiliation(s)
- Tamunonengiyeofori Lawson
- a School of Biosciences, Faculty of Science , The University of Nottingham, Malaysia Campus , Semenyih , Selangor , Malaysia.,b Division of Plant and Crop Sciences, School of Biosciences , University of Nottingham , Sutton Bonington Campus, Loughborough , Leicestershire , UK.,c Crops for the Future (CFF) , Semenyih , Malaysia
| | - Sean Mayes
- b Division of Plant and Crop Sciences, School of Biosciences , University of Nottingham , Sutton Bonington Campus, Loughborough , Leicestershire , UK.,c Crops for the Future (CFF) , Semenyih , Malaysia
| | - Grantley W Lycett
- b Division of Plant and Crop Sciences, School of Biosciences , University of Nottingham , Sutton Bonington Campus, Loughborough , Leicestershire , UK
| | - Chiew Foan Chin
- a School of Biosciences, Faculty of Science , The University of Nottingham, Malaysia Campus , Semenyih , Selangor , Malaysia
| |
Collapse
|
30
|
Liu Q, Chen J, Fu B, Dai J, Zhao Y, Lai L. Isoprenylcysteine carboxylmethyltransferase regulates ovarian cancer cell response to chemotherapy and Ras activation. Biochem Biophys Res Commun 2018; 501:556-562. [DOI: 10.1016/j.bbrc.2018.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 11/16/2022]
|
31
|
Harapas CR, Steiner A, Davidson S, Masters SL. An Update on Autoinflammatory Diseases: Inflammasomopathies. Curr Rheumatol Rep 2018; 20:40. [PMID: 29846819 DOI: 10.1007/s11926-018-0750-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Autoinflammatory diseases are driven by abnormal innate immune activation. In the case of inflammasomopathies, these are all attributable to activation of an inflammasome complex, nucleated by an innate immune sensor such as NLRP3. This review will focus on recent advances that have helped to elucidate the role of three other sensors (NLRP1, NLRC4 and pyrin) which can also cause inflammasomopathies. RECENT FINDINGS Mutations in pyrin (S242R or E244K) destroy an inhibitory 14-3-3 binding site and result in the newly characterised disease pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). Moreover, a separate autoinflammatory disease driven by mevalonate kinase deficiency leads to defective RhoGTPase prenylation and subsequent loss of pyrin S242R phosphorylation, suggesting a shared mechanism of disease. Other inflammasomes such as NLRP1 and NLRC4 have had novel mutations described recently, which inform about the specific domains required for activation and autoinhibition. This review covers recent advances in the study of inflammasomopathies, focussing on gene discoveries that elucidate new pathogenic mechanisms.
Collapse
Affiliation(s)
- Cassandra R Harapas
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia
| | - Annemarie Steiner
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sophia Davidson
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia.
| | - Seth L Masters
- Inflammation division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 3052, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
32
|
Ito E, Ebine K, Choi SW, Ichinose S, Uemura T, Nakano A, Ueda T. Integration of two RAB5 groups during endosomal transport in plants. eLife 2018; 7:34064. [PMID: 29749929 DOI: 10.7554/elife.34064.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/11/2018] [Indexed: 05/26/2023] Open
Abstract
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells.
Collapse
Affiliation(s)
- Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI, Okazaki, Japan
| | - Seung-Won Choi
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Sakura Ichinose
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI, Okazaki, Japan
- Japan Science and Technology Agency, PRESTO, Saitama, Japan
| |
Collapse
|
33
|
Ito E, Ebine K, Choi SW, Ichinose S, Uemura T, Nakano A, Ueda T. Integration of two RAB5 groups during endosomal transport in plants. eLife 2018; 7:34064. [PMID: 29749929 PMCID: PMC5947987 DOI: 10.7554/elife.34064] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/11/2018] [Indexed: 12/31/2022] Open
Abstract
RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. Living cells often contain compartments that pass proteins, fats and other biological molecules to one another via a process called membrane trafficking. Endosomes are one of the key platforms of membrane trafficking. These structures accumulate molecules from the outside of the cell, sort them, and then redirect them back to the cell surface or send them to other compartments within the cell where they can be broken down. Proteins known as RAB5s regulate many of the activities of endosomes. Some are found in a wide range of organisms, including animals, fungi, and plants, and are referred to as the “canonical” RAB5 group. Another group of RAB5 proteins are unique to land plants and some green algae. The existence of two RAB5 groups (i.e. canonical and plant-unique) is a distinctive feature of plant cells. In 2011, researchers showed that a plant-unique RAB5 could interfere with and counteract the activities of a canonical RAB5. However, it remained ambiguous how these proteins could do this. To resolve this question, Ito et al. – who include several researchers from the 2011 study – set out to find proteins that interact with a plant-unique RAB5 from Arabidopsis thaliana. The experiments identified one partner of a plant-unique RAB5, which was named PUF2. Unexpectedly, further experiments revealed that PUF2 also regulates canonical RAB5. PUF2 was found on the surface of the endosome together with RAB5s and a protein that activates RAB5s. Notably, PUF2 also interacted with the activating factor and the inactive form of canonical RAB5. Based on these findings, Ito et al. propose that PUF2 acts as a landmark to bring inactive canonical RAB5 close to its activating factor, which helps to activate canonical RAB5. They suggest that the plant-unique RAB5 also competitively binds to the landmark and blocks the canonical RAB5. Membrane trafficking is a universal system for all living organisms, yet the system seems to be customized among different organisms. These new findings provide further evidence that land plants have evolved a unique mechanism to regulate the activities of their endosomes. The next step is to reconstruct how this system evolved and unravel its relevance to the evolution of plant-specific traits.
Collapse
Affiliation(s)
- Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan
| | - Seung-Won Choi
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Sakura Ichinose
- Department of Natural Sciences, International Christian University, Tokyo, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki, Japan.,Department of Basic Biology, SOKENDAI, Okazaki, Japan.,Japan Science and Technology Agency, PRESTO, Saitama, Japan
| |
Collapse
|
34
|
Pan Q, Liu R, Banu H, Ma L, Li H. Inhibition of isoprenylcysteine carboxylmethyltransferase sensitizes common chemotherapies in cervical cancer via Ras-dependent pathway. Biomed Pharmacother 2018; 99:169-175. [PMID: 29331763 DOI: 10.1016/j.biopha.2018.01.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/24/2017] [Accepted: 01/05/2018] [Indexed: 11/30/2022] Open
Abstract
Isoprenylcysteine carboxylmethyltransferase (Icmt) catalyzes the last step of post-translational protein prenylation, which is essential for the stability and proper functions of many oncogenic proteins, such as Ras. Despite extensive studies on the roles of Icmt in tumor transformation and progression, little is known on the involvement ofIcmt in the development of tumor resistance to chemotherapy. Here we show the upregulation of Icmt as a persistent response to chemotherapy in cervical cancer cells. In-depth functional analysis demonstrated that Icmt inhibition significantly inhibited growth, induced apoptosis and augmented the inhibitory effects of chemotherapy drugs in cervical cancer in cell culture system and xenograft mouse model. Importantly, combination of Icmt specific inhibitor cysmethynil with doxorubicin or paclitaxel at sublethal concentration achieved almost full inhibition of tumor cell growth and survival. The remarkable synergy between chemotherapy drugs and Icmt inhibition in cervical cancer cells is likely due to the additional suppression of Ras and its downstream signaling pathways. We are the first to demonstrate the contribution of Icmt in tumor cells in response to chemotherapy. Our work also highlights Icmt inhibition as a sensitizing strategy for the treatment of cervical cancer or other Ras-driven tumors.
Collapse
Affiliation(s)
- Qin Pan
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, The Clinical Second Clinical Medical College of Yangtze University, Jingzhou, Hubei, China
| | - Rong Liu
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, The Clinical Second Clinical Medical College of Yangtze University, Jingzhou, Hubei, China
| | - Hasina Banu
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, The Clinical Second Clinical Medical College of Yangtze University, Jingzhou, Hubei, China
| | - Liang Ma
- Department of Orthopedics, Jingzhou Central Hospital, The Clinical Second Clinical Medical College of Yangtze University, Renmin Road 1, Jingzhou, Hubei, China.
| | - Hui Li
- Department of Obstetrics and Gynecology, Jingzhou Central Hospital, The Clinical Second Clinical Medical College of Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
35
|
Azoulay-Alfaguter I, Strazza M, Peled M, Novak HK, Muller J, Dustin ML, Mor A. The tyrosine phosphatase SHP-1 promotes T cell adhesion by activating the adaptor protein CrkII in the immunological synapse. Sci Signal 2017; 10:10/491/eaal2880. [PMID: 28790195 DOI: 10.1126/scisignal.aal2880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The adaptor protein CrkII regulates T cell adhesion by recruiting the guanine nucleotide exchange factor C3G, an activator of Rap1. Subsequently, Rap1 stimulates the integrin LFA-1, which leads to T cell adhesion and interaction with antigen-presenting cells (APCs). The adhesion of T cells to APCs is critical for their proper function and education. The interface between the T cell and the APC is known as the immunological synapse. It is characterized by the specific organization of proteins that can be divided into central supramolecular activation clusters (c-SMACs) and peripheral SMACs (p-SMACs). Through total internal reflection fluorescence (TIRF) microscopy and experiments with supported lipid bilayers, we determined that activated Rap1 was recruited to the immunological synapse and localized to the p-SMAC. C3G and the active (dephosphorylated) form of CrkII also localized to the same compartment. In contrast, inactive (phosphorylated) CrkII was confined to the c-SMAC. Activation of CrkII and its subsequent movement from the c-SMAC to the p-SMAC depended on the phosphatase SHP-1, which acted downstream of the T cell receptor. In the p-SMAC, CrkII recruited C3G, which led to Rap1 activation and LFA-1-mediated adhesion of T cells to APCs. Functionally, SHP-1 was necessary for both the adhesion and migration of T cells. Together, these data highlight a signaling pathway in which SHP-1 acts through CrkII to reshape the pattern of Rap1 activation in the immunological synapse.
Collapse
Affiliation(s)
| | - Marianne Strazza
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Michael Peled
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Hila K Novak
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.,Kennedy Institute for Rheumatology, Oxford University, Oxford, UK
| | - James Muller
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Michael L Dustin
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.,Kennedy Institute for Rheumatology, Oxford University, Oxford, UK
| | - Adam Mor
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA. .,Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
36
|
Muratcioglu S, Jang H, Gursoy A, Keskin O, Nussinov R. PDEδ Binding to Ras Isoforms Provides a Route to Proper Membrane Localization. J Phys Chem B 2017; 121:5917-5927. [PMID: 28540724 PMCID: PMC7891760 DOI: 10.1021/acs.jpcb.7b03035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To signal, Ras isoforms must be enriched at the plasma membrane (PM). It was suggested that phosphodiesterase-δ (PDEδ) can bind and shuttle some farnesylated Ras isoforms to the PM, but not all. Among these, interest focused on K-Ras4B, the most abundant oncogenic Ras isoform. To study PDEδ/Ras interactions, we modeled and simulated the PDEδ/K-Ras4B complex. We obtained structures, which were similar to two subsequently determined crystal structures. We next modeled and simulated complexes of PDEδ with the farnesylated hypervariable regions of K-Ras4A and N-Ras. Earlier data suggested that PDEδ extracts K-Ras4B and N-Ras from the PM, but surprisingly not K-Ras4A. Earlier analysis of the crystal structures advanced that the presence of large/charged residues adjacent to the farnesylated site precludes the PDEδ interaction. Here, we show that PDEδ can bind to farnesylated K-Ras4A and N-Ras like K-Ras4B, albeit not as strongly. This weaker binding, coupled with the stronger anchoring of K-Ras4A in the membrane (but not of electrostatically neutral N-Ras), can explain the observation why PDEδ is unable to effectively extract K-Ras4A. We thus propose that farnesylated Ras isoforms can bind PDEδ to fulfill the required PM enrichment, and argue that the different environments, PM versus solution, can resolve apparently puzzling Ras observations. These are novel insights that would not be expected based on the crystal structures alone, which provide an elegant rationale for previously puzzling observations of the differential effects of PDEδ on farnesylated Ras family proteins.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick and Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
| | - Attila Gursoy
- Department of Computer Engineering, Koc University, Istanbul 34450, Turkey
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul 34450, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick and Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
37
|
Kajiura H, Suzuki N, Tokumoto Y, Yoshizawa T, Takeno S, Fujiyama K, Kaneko Y, Matsumura H, Nakazawa Y. Two Eucommia farnesyl diphosphate synthases exhibit distinct enzymatic properties leading to end product preferences. Biochimie 2017; 139:95-106. [PMID: 28478108 DOI: 10.1016/j.biochi.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/22/2017] [Accepted: 05/01/2017] [Indexed: 01/06/2023]
Abstract
Farnesyl diphosphate synthase (FPS) is an essential enzyme in the biosynthesis of prenyl precursors for the production of primary and secondary metabolites, including sterols, dolichols, carotenoids and ubiquinones, and for the modification of proteins. Here we identified and characterized two FPSs (EuFPS1 and EuFPS2) from the plant Eucommia ulmoides. The EuFPSs had seven highly conserved prenyltransferase-specific domains that are critical for activity. Complementation and biochemical analyses using bacterially produced recombinant EuFPS isoforms showed that the EuFPSs had FPP synthesis activities both in vivo and in vitro. In addition to the typical reaction mechanisms of FPS, EuFPSs utilized farnesyl diphosphate (FPP) as an allylic substrate and participated in further elongation of the isoprenyl chain, resulting in the synthesis of geranylgeranyl diphosphate. However, despite the high amino acid similarities between the two EuFPS isozymes, their specific activities, substrate preferences, and final reaction products were different. The use of dimethylallyl diphosphate (DMAPP) as an allylic substrate highlighted the differences between the two enzymes: depending on the pH, the metal ion cofactor, and the cofactor concentration, EuFPS2 accumulated geranyl diphosphate as an intermediate product at a constant rate, whereas EuFPS1 synthesized little geranyl diphosphate. The reaction kinetics of the EuFPSs demonstrated that isopentenyl diphosphate and DMAPP were used both as substrates and as inhibitors of EuFPS activity. Taken together, the results indicate that the biosynthesis of FPP is highly regulated by various factors indispensable for EuFPS reactions in plants.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Nobuaki Suzuki
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Yuji Tokumoto
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan; Laboratory of Forest Ecology & Physiology, Graduate School of Bioagricultural Science, Nagoya University, E1-1 (300), Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Shinya Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Kaneko
- Yeast Genetic Resources Lab, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoshihisa Nakazawa
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.
| |
Collapse
|
38
|
Moutinho M, Nunes MJ, Rodrigues E. The mevalonate pathway in neurons: It's not just about cholesterol. Exp Cell Res 2017; 360:55-60. [PMID: 28232115 DOI: 10.1016/j.yexcr.2017.02.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/20/2017] [Indexed: 11/26/2022]
Abstract
Cholesterol homeostasis greatly impacts neuronal function due to the essential role of this sterol in the brain. The mevalonate (MVA) pathway leads to the synthesis of cholesterol, but also supplies cells with many other intermediary molecules crucial for neuronal function. Compelling evidence point to a model in which neurons shutdown cholesterol synthesis, and rely on a shuttle derived from astrocytes to meet their cholesterol needs. Nevertheless, several reports suggest that neurons maintain the MVA pathway active, even with sustained cholesterol supply by astrocytes. Hence, in this review we focus not on cholesterol production, but rather on the role of the MVA pathway in the synthesis of particular intermediaries, namely isoprenoids, and on their role on neuronal function. Isoprenoids act as anchors for membrane association, after being covalently bound to proteins, such as most of the small guanosine triphosphate-binding proteins, which are critical to neuronal cell function. Based on literature, on our own results, and on the analysis of public transcriptomics databases, we raise the idea that in neurons there is a shift of the MVA pathway towards the non-sterol branch, responsible for isoprenoid synthesis, in detriment to post-squalene branch, and that this is ultimately essential for synaptic activity. Nevertheless new tools that facilitate imaging and the biochemical characterization and quantification of the prenylome in neurons and astrocytes are needed to understand the regulation of isoprenoid production and protein prenylation in the brain, and to analyze its differences on diverse physiological or pathological conditions, such as aging and neurodegenerative states.
Collapse
Affiliation(s)
- Miguel Moutinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
39
|
Manu KA, Chai TF, Teh JT, Zhu WL, Casey PJ, Wang M. Inhibition of Isoprenylcysteine Carboxylmethyltransferase Induces Cell-Cycle Arrest and Apoptosis through p21 and p21-Regulated BNIP3 Induction in Pancreatic Cancer. Mol Cancer Ther 2017; 16:914-923. [DOI: 10.1158/1535-7163.mct-16-0703] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/09/2022]
|
40
|
Hentschel A, Zahedi RP, Ahrends R. Protein lipid modifications--More than just a greasy ballast. Proteomics 2016; 16:759-82. [PMID: 26683279 DOI: 10.1002/pmic.201500353] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/24/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022]
Abstract
Covalent lipid modifications of proteins are crucial for regulation of cellular plasticity, since they affect the chemical and physical properties and therefore protein activity, localization, and stability. Most recently, lipid modifications on proteins are increasingly attracting important regulatory entities in diverse signaling events and diseases. In all cases, the lipid moiety of modified proteins is essential to allow water-soluble proteins to strongly interact with membranes or to induce structural changes in proteins that are critical for elemental processes such as respiration, transport, signal transduction, and motility. Until now, roughly about ten lipid modifications on different amino acid residues are described at the UniProtKB database and even well-known modifications are underrepresented. Thus, it is of fundamental importance to develop a better understanding of this emerging and so far under-investigated type of protein modification. Therefore, this review aims to give a comprehensive and detailed overview about enzymatic and nonenzymatic lipidation events, will report their role in cellular biology, discuss their relevancy for diseases, and describe so far available bioanalytical strategies to analyze this highly challenging type of modification.
Collapse
Affiliation(s)
- Andreas Hentschel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Dortmund, Germany
| |
Collapse
|
41
|
The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation. Cell Res 2016; 27:202-225. [PMID: 27910850 DOI: 10.1038/cr.2016.141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 09/18/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Wnt/β-catenin signaling is essential for the initiation of dorsal-ventral patterning during vertebrate embryogenesis. Maternal β-catenin accumulates in dorsal marginal nuclei during cleavage stages, but its critical target genes essential for dorsalization are silent until mid-blastula transition (MBT). Here, we find that zebrafish net1, a guanine nucleotide exchange factor, is specifically expressed in dorsal marginal blastomeres after MBT, and acts as a zygotic factor to promote the specification of dorsal cell fates. Loss- and gain-of-function experiments show that the GEF activity of Net1 is required for the activation of Wnt/β-catenin signaling in zebrafish embryos and mammalian cells. Net1 dissociates and activates PAK1 dimers, and PAK1 kinase activation causes phosphorylation of S675 of β-catenin after MBT, which ultimately leads to the transcription of downstream target genes. In summary, our results reveal that Net1-regulated β-catenin activation plays a crucial role in the dorsal axis formation during zebrafish development.
Collapse
|
42
|
Koubek EJ, Santy LC. ARF1 and ARF6 regulate recycling of GRASP/Tamalin and the Rac1-GEF Dock180 during HGF-induced Rac1 activation. Small GTPases 2016; 9:242-259. [PMID: 27562622 DOI: 10.1080/21541248.2016.1219186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a potent signaling factor that acts on epithelial cells, causing them to dissociate and scatter. This migration is coordinated by a number of small GTPases, such as ARF6 and Rac1. Active ARF6 is required for HGF-stimulated migration and intracellular levels of ARF6-GTP and Rac1-GTP increase following HGF treatment. During migration, cross talk between ARF6 and Rac1 occurs through formation of a multi-protein complex containing the ARF-GEF cytohesin-2, the scaffolding protein GRASP/Tamalin, and the Rac1-GEF Dock180. Previously, the role of ARF6 in this process was unclear. We have now found that ARF6 and ARF1 regulate trafficking of GRASP and Dock180 to the plasma membrane following HGF treatment. Trafficking of GRASP and Dock180 is impaired by blocking ARF6-mediated recycling pathways and is required for HGF-stimulated Rac1 activation. Finally, HGF treatment stimulates association of GRASP and Dock180. Inhibition of ARF6 trafficking pathways traps GRASP and Dock180 as a complex in the cell.
Collapse
Affiliation(s)
- Emily J Koubek
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , PA , USA
| | - Lorraine C Santy
- a Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
43
|
Rohrbeck A, Fühner V, Schröder A, Hagemann S, Vu XK, Berndt S, Hust M, Pich A, Just I. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody. Toxins (Basel) 2016; 8:100. [PMID: 27043630 PMCID: PMC4848626 DOI: 10.3390/toxins8040100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 01/03/2023] Open
Abstract
Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Viola Fühner
- Biotechnology and Bioinformatics, Department of Biotechnology, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | - Anke Schröder
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Sandra Hagemann
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Xuan-Khang Vu
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Sarah Berndt
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Michael Hust
- Biotechnology and Bioinformatics, Department of Biotechnology, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
44
|
Singh S, Vijaya Prabhu S, Suryanarayanan V, Bhardwaj R, Singh SK, Dubey VK. Molecular docking and structure-based virtual screening studies of potential drug target, CAAX prenyl proteases, of Leishmania donovani. J Biomol Struct Dyn 2016; 34:2367-86. [PMID: 26551589 DOI: 10.1080/07391102.2015.1116411] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Targeting CAAX prenyl proteases of Leishmania donovani can be a good approach towards developing a drug molecule against Leishmaniasis. We have modeled the structure of CAAX prenyl protease I and II of L. donovani, using homology modeling approach. The structures were further validated using Ramachandran plot and ProSA. Active site prediction has shown difference in the amino acid residues present at the active site of CAAX prenyl protease I and CAAX prenyl protease II. The electrostatic potential surface of the CAAX prenyl protease I and II has revealed that CAAX prenyl protease I has more electropositive and electronegative potentials as compared CAAX prenyl protease II suggesting significant difference in their activity. Molecular docking with known bisubstrate analog inhibitors of protein farnesyl transferase and peptidyl (acyloxy) methyl ketones reveals significant binding of these molecules with CAAX prenyl protease I, but comparatively less binding with CAAX prenyl protease II. New and potent inhibitors were also found using structure-based virtual screening. The best docked compounds obtained from virtual screening were subjected to induced fit docking to get best docked configurations. Prediction of drug-like characteristics has revealed that the best docked compounds are in line with Lipinski's rule. Moreover, best docked protein-ligand complexes of CAAX prenyl protease I and II are found to be stable throughout 20 ns simulation. Overall, the study has identified potent drug molecules targeting CAAX prenyl protease I and II of L. donovani whose drug candidature can be verified further using biochemical and cellular studies.
Collapse
Affiliation(s)
- Shalini Singh
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Sitrarasu Vijaya Prabhu
- b Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu 630004 , India
| | - Venkatesan Suryanarayanan
- b Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu 630004 , India
| | - Ruchika Bhardwaj
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| | - Sanjeev Kumar Singh
- b Computer Aided Drug Designing and Molecular Modeling Laboratory, Department of Bioinformatics , Alagappa University , Karaikudi , Tamil Nadu 630004 , India
| | - Vikash Kumar Dubey
- a Department of Biosciences and Bioengineering , Indian Institute of Technology Guwahati , Guwahati , Assam 781039 , India
| |
Collapse
|
45
|
Giblin JP, Comes N, Strauss O, Gasull X. Ion Channels in the Eye: Involvement in Ocular Pathologies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 104:157-231. [PMID: 27038375 DOI: 10.1016/bs.apcsb.2015.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology.
Collapse
Affiliation(s)
- Jonathan P Giblin
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nuria Comes
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Xavier Gasull
- Universitat de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
46
|
Yu HH, Dohn MR, Markham NO, Coffey RJ, Reynolds AB. p120-catenin controls contractility along the vertical axis of epithelial lateral membranes. J Cell Sci 2015; 129:80-94. [PMID: 26585313 DOI: 10.1242/jcs.177550] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/12/2015] [Indexed: 12/26/2022] Open
Abstract
In vertebrate epithelia, p120-catenin (hereafter referred to as p120; also known as CTNND1) mediates E-cadherin stability and suppression of RhoA. Genetic ablation of p120 in various epithelial tissues typically causes striking alterations in tissue function and morphology. Although these effects could very well involve p120's activity towards Rho, ascertaining the impact of this relationship has been complicated by the fact that p120 is also required for cell-cell adhesion. Here, we have molecularly uncoupled p120's cadherin-stabilizing and RhoA-suppressing activites. Unexpectedly, removing p120's Rho-suppressing activity dramatically disrupted the integrity of the apical surface, irrespective of E-cadherin stability. The physical defect was tracked to excessive actomyosin contractility along the vertical axis of lateral membranes. Thus, we suggest that p120's distinct activities towards E-cadherin and Rho are molecularly and functionally coupled and this, in turn, enables the maintenance of cell shape in the larger context of an epithelial monolayer. Importantly, local suppression of contractility by cadherin-bound p120 appears to go beyond regulating cell shape, as loss of this activity also leads to major defects in epithelial lumenogenesis.
Collapse
Affiliation(s)
- Huapeng H Yu
- Department of Cancer Biology, Vanderbilt University, 37232 Nashville, TN, USA
| | - Michael R Dohn
- Department of Cancer Biology, Vanderbilt University, 37232 Nashville, TN, USA Department of Pharmacology, Vanderbilt University, 37232 Nashville, TN, USA
| | - Nicholas O Markham
- Department of Cancer Biology, Vanderbilt University, 37232 Nashville, TN, USA School of Medicine, Vanderbilt University, 37232 Nashville, TN, USA
| | - Robert J Coffey
- School of Medicine, Vanderbilt University, 37232 Nashville, TN, USA
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, 37232 Nashville, TN, USA
| |
Collapse
|
47
|
Edvardson S, Wang H, Dor T, Atawneh O, Yaacov B, Gartner J, Cinnamon Y, Chen S, Elpeleg O. Microcephaly-dystonia due to mutated PLEKHG2 with impaired actin polymerization. Neurogenetics 2015; 17:25-30. [PMID: 26573021 DOI: 10.1007/s10048-015-0464-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/12/2015] [Indexed: 01/15/2023]
Abstract
Rearrangement of the actin cytoskeleton is controlled by RhoGTPases which are activated by RhoGEFs. We identified homozygosity for Arg204Trp mutation in the Rho guanidine exchange factor (RhoGEF) PLEKHG2 gene in five patients with profound mental retardation, dystonia, postnatal microcephaly, and distinct neuroimaging pattern. The activity of the mutant PLEKHG2 was significantly decreased, both in basal state and when Gβγ- or lysophosphatidic acid (LPA)-stimulated. SDF1a-stimulated actin polymerization was significantly impaired in patient cells, and this abnormality was duplicated in control cells when PLEKHG2 expression was downregulated. These results underscore the role of PLEKHG2 in actin polymerization and delineate the clinical and radiological findings in PLEKHG2 deficiency.
Collapse
Affiliation(s)
- Simon Edvardson
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haibo Wang
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Talya Dor
- Pediatric Neurology Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Osamah Atawneh
- Department of Pediatrics, Palestinian Red Cross Society Hospital, Hebron, Palestine
| | - Barak Yaacov
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Jutta Gartner
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center, Göttingen, Germany
| | - Yuval Cinnamon
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Songhai Chen
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA. .,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - Orly Elpeleg
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
48
|
Jaé N, McEwan DG, Manavski Y, Boon RA, Dimmeler S. Rab7a and Rab27b control secretion of endothelial microRNA through extracellular vesicles. FEBS Lett 2015; 589:3182-8. [PMID: 26348397 DOI: 10.1016/j.febslet.2015.08.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 01/08/2023]
Abstract
By transporting regulatory RNAs like microRNAs, extracellular vesicles provide a novel layer of intercellular gene regulation. However, the underlying secretory pathways and the mechanisms of cargo selection are poorly understood. Rab GTPases are central coordinators of membrane trafficking with distinct members of this family being responsible for specific transport pathways. Here we identified a vesicular export mechanism for miR-143, induced by the shear stress responsive transcription factor KLF2, and demonstrate its dependency on Rab7a/Rab27b in endothelial cells.
Collapse
Affiliation(s)
- Nicolas Jaé
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - David G McEwan
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
| | - Yosif Manavski
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Reinier A Boon
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
49
|
Progesterone Inhibits Endothelial Cell Migration Through Suppression of the Rho Activity Mediated by cSrc Activation. J Cell Biochem 2015; 116:1411-8. [DOI: 10.1002/jcb.25101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 01/23/2015] [Indexed: 01/13/2023]
|
50
|
Eller-Borges R, Batista WL, da Costa PE, Tokikawa R, Curcio MF, Strumillo ST, Sartori A, Moraes MS, de Oliveira GA, Taha MO, Fonseca FV, Stern A, Monteiro HP. Ras, Rac1, and phosphatidylinositol-3-kinase (PI3K) signaling in nitric oxide induced endothelial cell migration. Nitric Oxide 2015; 47:40-51. [PMID: 25819133 DOI: 10.1016/j.niox.2015.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK.
Collapse
Affiliation(s)
- Roberta Eller-Borges
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Wagner L Batista
- Department of Biological Sciences, Universidade Federal de São Paulo/Campus Diadema, SP, Brazil
| | - Paulo E da Costa
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Rita Tokikawa
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Marli F Curcio
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Scheilla T Strumillo
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Adriano Sartori
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Miriam S Moraes
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Graciele A de Oliveira
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Murched O Taha
- Department of Surgery, Escola Paulista de Medicina/Universidade Federal de São Paulo, SP, Brazil
| | - Fábio V Fonseca
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western University, Cleveland, OH, USA
| | - Arnold Stern
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA; Escuela de Medicina, Universidad Espíritu Santo, Guayaquil, Ecuador.
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|