1
|
Nnamchi CI, Okolo BN, Moneke AN, Nwanguma BC, Amadi OC, Efimov I. Spectroscopic and Kinetic Properties of Purified Peroxidase from Germinated Sorghum Grains. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2021. [DOI: 10.1080/03610470.2021.1939639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | - Anene N. Moneke
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | | | | | - Igor Efimov
- Department of Chemistry, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Shumayrikh NM, Warren JJ, Bennet AJ, Sen D. A heme•DNAzyme activated by hydrogen peroxide catalytically oxidizes thioethers by direct oxygen atom transfer rather than by a Compound I-like intermediate. Nucleic Acids Res 2021; 49:1803-1815. [PMID: 33476369 PMCID: PMC7913675 DOI: 10.1093/nar/gkab007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Hemin [Fe(III)-protoporphyrin IX] is known to bind tightly to single-stranded DNA and RNA molecules that fold into G-quadruplexes (GQ). Such complexes are strongly activated for oxidative catalysis. These heme•DNAzymes and ribozymes have found broad utility in bioanalytical and medicinal chemistry and have also been shown to occur within living cells. However, how a GQ is able to activate hemin is poorly understood. Herein, we report fast kinetic measurements (using stopped-flow UV-vis spectrophotometry) to identify the H2O2-generated activated heme species within a heme•DNAzyme that is active for the oxidation of a thioether substrate, dibenzothiophene (DBT). Singular value decomposition and global fitting analysis was used to analyze the kinetic data, with the results being consistent with the heme•DNAzyme's DBT oxidation being catalyzed by the initial Fe(III)heme-H2O2 complex. Such a complex has been predicted computationally to be a powerful oxidant for thioether substrates. In the heme•DNAzyme, the DNA GQ enhances both the kinetics of formation of the active intermediate as well as the oxidation step of DBT by the active intermediate. We show, using both stopped flow spectrophotometry and EPR measurements, that a classic Compound I is not observable during the catalytic cycle for thioether sulfoxidation.
Collapse
Affiliation(s)
- Nisreen M Shumayrikh
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Andrew J Bennet
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dipankar Sen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
3
|
Somasundar Y, Lu IC, Mills MR, Qian LY, Olivares X, Ryabov AD, Collins TJ. Oxidative Catalysis by TAMLs: Obtaining Rate Constants for Non-Absorbing Targets by UV-Vis Spectroscopy. Chemphyschem 2020; 21:1083-1086. [PMID: 32291857 DOI: 10.1002/cphc.202000222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/13/2020] [Indexed: 11/07/2022]
Abstract
Understanding the catalysis of oxidative reactions by TAML activators of peroxides, i. e. iron(III) complexes of tetraamide macrocyclic ligands, advocated a spectrophotometric procedure for quantifying the catalytic activity of TAMLs for colorless targets (kII ', M-1 s-1 ), which is incomparably more advantageous in terms of time, cost, energy, and ecology than NMR, HPLC, UPLC, GC-MS and other similar techniques. Dyes Orange II or Safranin O (S) are catalytically bleached by non-excessive amount of H2 O2 in the presence of colorless substrates (S1 ) according to the rate law: -d[S]/dt=kI kII [H2 O2 ][S][TAML]/(kI [H2 O2 ]+kII [S]+kII '[S1 ]). The bleaching rate is thus a descending hyperbolic function of S1 : v=ab/(b+[S1 ]). Values of kII ' found from a and b for phenol and propranolol with commonly used TAML [FeIII {o,o'-C6 H4 (NCONMe2 CO)2 CMe2 }2 (OH2 )]+ are consistent with those for S1 (phenol, propranolol) obtained directly by UPLC. The study sends vital messages to enzymologists and environmentalists.
Collapse
Affiliation(s)
- Yogesh Somasundar
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Iris C Lu
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Matthew R Mills
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Lisa Y Qian
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Ximena Olivares
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Alexander D Ryabov
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| | - Terrence J Collins
- Institute for Green Science, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Influence of Varying Functionalization on the Peroxidase Activity of Nickel(II)–Pyridine Macrocycle Catalysts: Mechanistic Insights from Density Functional Theory. COMPUTATION 2020. [DOI: 10.3390/computation8020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nickel(II) complexes of mono-functionalized pyridine-tetraazamacrocycles (PyMACs) are a new class of catalysts that possess promising activity similar to biological peroxidases. Experimental studies with ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), substrate) and H2O2 (oxidant) proposed that hydrogen-bonding and proton-transfer reactions facilitated by their pendant arm were responsible for their catalytic activity. In this work, density functional theory calculations were performed to unravel the influence of pendant arm functionalization on the catalytic performance of Ni(II)–PyMACs. Generated frontier orbitals suggested that Ni(II)–PyMACs activate H2O2 by satisfying two requirements: (1) the deprotonation of H2O2 to form the highly nucleophilic HOO−, and (2) the generation of low-spin, singlet state Ni(II)–PyMACs to allow the binding of HOO−. COSMO solvation-based energies revealed that the O–O Ni(II)–hydroperoxo bond, regardless of pendant arm type, ruptures favorably via heterolysis to produce high-spin (S = 1) [(L)Ni3+–O·]2+ and HO−. Aqueous solvation was found crucial in the stabilization of charged species, thereby favoring the heterolytic process over homolytic. The redox reaction of [(L)Ni3+–O·]2+ with ABTS obeyed a 1:2 stoichiometric ratio, followed by proton transfer to produce the final intermediate. The regeneration of Ni(II)–PyMACs at the final step involved the liberation of HO−, which was highly favorable when protons were readily available or when the pKa of the pendant arm was low.
Collapse
|
5
|
Smulevich G. Solution and crystal phase resonance Raman spectroscopy: Valuable tools to unveil the structure and function of heme proteins. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present review, examples are provided illustrating the application of resonance Raman microscopy to heme protein single crystals to highlight the artifacts induced by the crystallization process or the conformational alteration induced by cooling. Moreover, the structural information determined from the RR spectra of heme proteins in solution and crystals is compared to that obtained from their X-ray structures to show how the combined spectroscopic/crystallographic approach is a powerful weapon in the structural biologist’s armamentarium.
Collapse
Affiliation(s)
- Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff,” Università di Firenze, Via Della Lastruccia 3-13, 50019 Sesto Fiorentino(Fi), Italy
| |
Collapse
|
6
|
Sahinkaya M, Colak DN, Ozer A, Canakci S, Deniz I, Belduz AO. Cloning, characterization and paper pulp applications of a newly isolated DyP type peroxidase from Rhodococcus sp. T1. Mol Biol Rep 2018; 46:569-580. [PMID: 30474775 DOI: 10.1007/s11033-018-4509-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/17/2018] [Indexed: 11/26/2022]
Abstract
A newly identified ligninolytic Rhodococcus strain (Rhodococcus sp. T1) was isolated from forestry wastes (Trabzon/Turkey). The DyP type peroxidase of Rhodococcus sp. T1 (DyPT1) was cloned, characterized and paper treated for industrial applications. Molecular weight of the protein was about 38 kDa. The kinetic parameters were 0.94 mM and 1417.53 µmol/min/mg for Km and Vmax, respectively. The enzyme was active at the temperature range of 25-65 °C and optimum temperature was 35 °C, enzyme was stable up to 6 days at room temperature. Optimum pH of the DyPT1 was 4.0 and it was stable between pH 4.0-6.0 up to 8 days at room temperature. Effects of some metal ions, Hemin, and some chemical agents on DyPT1 were determined. Hemin has implemented protective effects on the stability and the activity of the enzyme in long time periods when added into growing medium. DyPT1 was applied to eucalyptus kraft pulp for analyzing the bleaching efficiency, physical and optical tests of the manufuctared paper were carried out. Application of lignin peroxidase to kraft pulp caused a decrease of 5.2 units for kappa number and an increase from 52.05 to 64.18% in the delignification rate.
Collapse
Affiliation(s)
- Miray Sahinkaya
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Dilsat Nigar Colak
- Department of Forestry, Vocational School of Dereli, Giresun University, Giresun, Turkey
| | - Aysegul Ozer
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Sabriye Canakci
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ilhan Deniz
- Department of Forest Industrial Engineering, Faculty of Forestry, Karadeniz Technical University, 61080, Trabzon, Turkey
| | - Ali Osman Belduz
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
7
|
Kathiresan M, English AM. LC-MS/MS Proteoform Profiling Exposes Cytochrome c Peroxidase Self-Oxidation in Mitochondria and Functionally Important Hole Hopping from Its Heme. J Am Chem Soc 2018; 140:12033-12039. [PMID: 30145880 DOI: 10.1021/jacs.8b05966] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
LC-MS/MS profiling reveals that the proteoforms of cytochrome c peroxidase (Ccp1) isolated from respiring yeast mitochondria are oxidized at numerous Met, Trp, and Tyr residues. In vitro oxidation of recombinant Ccp1 by H2O2 in the absence of its reducing substrate, ferrocytochrome c, gives rise to similar proteoforms, indicating uncoupling of Ccp1 oxidation and reduction in mitochondria. The oxidative modifications found in the Ccp1 proteoforms are consistent with radical transfer (hole hopping) from the heme along several chains of redox-active residues (Trp, Met, Tyr). These modifications delineate likely hole-hopping pathways to novel substrate-binding sites. Moreover, a decrease in recombinant Ccp1 oxidation by H2O2 in vitro in the presence of glutathione supports a protective role for hole hopping to this antioxidant. Isolation and characterization of extramitochondrial Ccp1 proteoforms reveals that hole hopping from the heme in these proteoforms results in selective oxidation of the proximal heme ligand (H175) and heme labilization. Previously, we demonstrated that this labilized heme is recruited for catalase maturation (Kathiresan, M.; Martins, D.; English, A. M. Respiration triggers heme transfer from cytochrome c peroxidase to catalase in yeast mitochondria. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 17468-17473; DOI: 10.1073/pnas.1409692111 ). Following heme release, apoCcp1 exits mitochondria, yielding the extramitochondrial proteoforms that we characterize here. The targeting of Ccp1 for selective H175 oxidation may be linked to the phosphorylation status of Y153 close to the heme since pY153 is abundant in certain proteoforms. In sum, when insufficient electrons from ferrocytochrome c are available to Ccp1 in mitochondria, hole hopping from its heme expands its physiological functions. Specifically, we observe an unprecedented hole-hopping sequence for heme labilization and identify hole-hopping pathways from the heme to novel substrates and to glutathione at Ccp1's surface. Furthermore, our results underscore the power of proteoform profiling by LC-MS/MS in exploring the cellular roles of oxidoreductases.
Collapse
Affiliation(s)
- Meena Kathiresan
- Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO), and Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada
| | - Ann M English
- Quebec Network for Research on Protein Function, Structure and Engineering (PROTEO), and Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada
| |
Collapse
|
8
|
Improved rate of substrate oxidation catalyzed by genetically-engineered myoglobin. Arch Biochem Biophys 2018; 639:44-51. [DOI: 10.1016/j.abb.2017.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022]
|
9
|
Kathiresan M, English AM. LC-MS/MS suggests that hole hopping in cytochrome c peroxidase protects its heme from oxidative modification by excess H 2O 2. Chem Sci 2017; 8:1152-1162. [PMID: 28451256 PMCID: PMC5369544 DOI: 10.1039/c6sc03125k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 12/20/2022] Open
Abstract
We recently reported that cytochrome c peroxidase (Ccp1) functions as a H2O2 sensor protein when H2O2 levels rise in respiring yeast. The availability of its reducing substrate, ferrocytochrome c (CycII), determines whether Ccp1 acts as a H2O2 sensor or peroxidase. For H2O2 to serve as a signal it must modify its receptor so we employed high-performance LC-MS/MS to investigate in detail the oxidation of Ccp1 by 1, 5 and 10 M eq. of H2O2 in the absence of CycII to prevent peroxidase activity. We observe strictly heme-mediated oxidation, implicating sequential cycles of binding and reduction of H2O2 at Ccp1's heme. This results in the incorporation of ∼20 oxygen atoms predominantly at methionine and tryptophan residues. Extensive intramolecular dityrosine crosslinking involving neighboring residues was uncovered by LC-MS/MS sequencing of the crosslinked peptides. The proximal heme ligand, H175, is converted to oxo-histidine, which labilizes the heme but irreversible heme oxidation is avoided by hole hopping to the polypeptide until oxidation of the catalytic distal H52 in Ccp1 treated with 10 M eq. of H2O2 shuts down heterolytic cleavage of H2O2 at the heme. Mapping of the 24 oxidized residues in Ccp1 reveals that hole hopping from the heme is directed to three polypeptide zones rich in redox-active residues. This unprecedented analysis unveils the remarkable capacity of a polypeptide to direct hole hopping away from its active site, consistent with heme labilization being a key outcome of Ccp1-mediated H2O2 signaling. LC-MS/MS identification of the oxidized residues also exposes the bias of electron paramagnetic resonance (EPR) detection toward transient radicals with low O2 reactivity.
Collapse
Affiliation(s)
- Meena Kathiresan
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| | - Ann M English
- Concordia University Faculty of Arts and Science, and PROTEOhttp://www.proteo.ca/index.html , Chemistry and Biochemistry , Montreal , Canada .
| |
Collapse
|
10
|
Streit BR, Celis AI, Shisler K, Rodgers KR, Lukat-Rodgers GS, DuBois JL. Reactions of Ferrous Coproheme Decarboxylase (HemQ) with O 2 and H 2O 2 Yield Ferric Heme b. Biochemistry 2016; 56:189-201. [PMID: 27982566 DOI: 10.1021/acs.biochem.6b00958] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recently discovered pathway for the biosynthesis of heme b ends in an unusual reaction catalyzed by coproheme decarboxylase (HemQ), where the Fe(II)-containing coproheme acts as both substrate and cofactor. Because both O2 and H2O2 are available as cellular oxidants, pathways for the reaction involving either can be proposed. Analysis of reaction kinetics and products showed that, under aerobic conditions, the ferrous coproheme-decarboxylase complex is rapidly and selectively oxidized by O2 to the ferric state. The subsequent second-order reaction between the ferric complex and H2O2 is slow, pH-dependent, and further decelerated by D2O2 (average kinetic isotope effect of 2.2). The observation of rapid reactivity with peracetic acid suggested the possible involvement of Compound I (ferryl porphyrin cation radical), consistent with coproheme and harderoheme reduction potentials in the range of heme proteins that heterolytically cleave H2O2. Resonance Raman spectroscopy nonetheless indicated a remarkably weak Fe-His interaction; how the active site structure may support heterolytic H2O2 cleavage is therefore unclear. From a cellular perspective, the use of H2O2 as an oxidant in a catalase-positive organism is intriguing, as is the unusual generation of heme b in the Fe(III) rather than Fe(II) state as the end product of heme synthesis.
Collapse
Affiliation(s)
- Bennett R Streit
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Arianna I Celis
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Krista Shisler
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| | - Kenton R Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University , Fargo, North Dakota 58102, United States
| | - Jennifer L DuBois
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59715, United States
| |
Collapse
|
11
|
Sánchez-Alejandro F, Juarez-Moreno K, Baratto MC, Basosi R, Vazquez-Duhalt R. Tryptophan-surface modification of versatile peroxidase from Bjerkandera adusta enhances its catalytic performance. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Asad S, Dastgheib SMM, Khajeh K. Construction of a horseradish peroxidase resistant toward hydrogen peroxide by saturation mutagenesis. Biotechnol Appl Biochem 2015; 63:789-794. [DOI: 10.1002/bab.1437] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/18/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Sedigheh Asad
- Department of Biotechnology; College of Science; University of Tehran; Tehran Iran
| | | | - Khosro Khajeh
- Department of Biochemistry; Faculty of Biological Science; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
13
|
Wu H, Liu Y, Li M, Chong Y, Zeng M, Lo YM, Yin JJ. Size-dependent tuning of horseradish peroxidase bioreactivity by gold nanoparticles. NANOSCALE 2015; 7:4505-13. [PMID: 25684572 DOI: 10.1039/c4nr07056a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Molecules with diverse biological functions, such as heme peroxidases, can be useful tools for identifying potential biological effects of gold nanoparticles (AuNPs) at the molecular level. Here, using UV-Vis, circular dichroism, dynamic light scattering, and electron spin resonance spectroscopy, we report tuning of horseradish peroxidase (HRP) bioactivity by reactant-free AuNPs with diameters of 5, 10, 15, 30 and 60 nm (Au-5 nm, Au-10 nm, Au-15 nm, Au-30 nm and Au-60 nm). HRP conjugation to AuNPs was observed with only Au-5 nm and Au-10 nm prominently increasing the α-helicity of the enzyme to extents inversely related to their size. Au-5 nm inhibited both HRP peroxidase activity toward 3,3',5,5'-tetramethylbenzidine and HRP compound I/II reactivity toward 5,5-dimethyl-1-pyrroline N-oxide. Au-5 nm enhanced the HRP peroxidase activity toward ascorbic acid and the HRP compound I/II reactivity toward redox-active residues in the HRP protein moiety. Further, Au-5 nm also decreased the catalase- and oxidase-like activities of HRP. Au-10 nm showed similar, but weaker effects, while Au-15 nm, Au-30 nm and Au-60 nm had no effect. Results suggest that AuNPs can size-dependently enhance or inhibit HRP bioreactivity toward substrates with different redox potentials via a mechanism involving extension of the HRP substrate access channel and decline in the redox potentials of HRP catalytic intermediates.
Collapse
Affiliation(s)
- Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Sharma SK, Rogler PJ, Karlin KD. Reactions of a heme-superoxo complex toward a cuprous chelate and •NO (g): C cO and NOD chemistry. J PORPHYR PHTHALOCYA 2015; 19:352-360. [PMID: 26056423 PMCID: PMC4457333 DOI: 10.1142/s108842461550025x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Following up on the characterization of a new (heme)FeIII-superoxide species formed from the cryogenic oxygenation of a ferrous-heme (PPy)FeII (1) (PPy = a tetraarylporphyrinate with a covalently tethered pyridine group as a potential axial base), giving (PPy)FeIII-O2•- (2) (Li Y et al., Polyhedron 2013; 58: 60-64), we report here on (i) its use in forming a cytochrome c oxidase (CcO) model compound, or (ii) in a reaction with nitrogen monoxide (•NO; nitric oxide) to mimic nitric oxide dioxygenase (NOD) chemistry. Reaction of (2) with the cuprous chelate [CuI(AN)][B(C6F5)4] (AN = bis[3-(dimethylamino) propyl]amine) gives a meta-stable product [(PPy)FeIII-([Formula: see text])-CuII(AN)][B(C6F5)4] (3a), possessing a high-spin iron(III) and Cu(II) side-on bridged peroxo moiety with a μ-η2:η2-binding motif. This complex thermally decays to a corresponding μ-oxo complex [(PPy)FeIII-(O2-)-CuII(AN)][B(C6F5)4] (3). Both (3) and (3a) have been characterized by UV-vis, 2H NMR and EPR spectroscopies. When (2) is exposed to •NO(g), a ferric heme nitrato compound forms; if 2,4-di-tert-butylphenol is added prior to •NO(g) exposure, phenol ortho-nitration occurs with the iron product being the ferric hydroxide complex (PPy) FeIII(OH) (5). The latter reactions mimic the action of NOD's.
Collapse
Affiliation(s)
- Savita K. Sharma
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
15
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
16
|
Faiella M, Maglio O, Nastri F, Lombardi A, Lista L, Hagen WR, Pavone V. De novo design, synthesis and characterisation of MP3, a new catalytic four-helix bundle hemeprotein. Chemistry 2012; 18:15960-71. [PMID: 23150230 DOI: 10.1002/chem.201201404] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/12/2012] [Indexed: 12/31/2022]
Abstract
A new artificial metalloenzyme, MP3 (MiniPeroxidase 3), designed by combining the excellent structural properties of four-helix bundle protein scaffolds with the activity of natural peroxidases, was synthesised and characterised. This new hemeprotein model was developed by covalently linking the deuteroporphyrin to two peptide chains of different compositions to obtain an asymmetric helix-loop-helix/heme/helix-loop-helix sandwich arrangement, characterised by 1) a His residue on one chain that acts as an axial ligand to the iron ion; 2) a vacant distal site that is able to accommodate exogenous ligands or substrates; and 3) an Arg residue in the distal site that should assist in hydrogen peroxide activation to give an HRP-like catalytic process. MP3 was synthesised and characterised as its iron complex. CD measurements revealed the high helix-forming propensity of the peptide, confirming the appropriateness of the model procedure; UV/Vis, MCD and EPR experiments gave insights into the coordination geometry and the spin state of the metal. Kinetic experiments showed that Fe(III)-MP3 possesses peroxidase-like activity comparable to R38A-hHRP, highlighting the possibility of mimicking the functional features of natural enzymes. The synergistic application of de novo design methods, synthetic procedures, and spectroscopic characterisation, described herein, demonstrates a method by which to implement and optimise catalytic activity for an enzyme mimetic.
Collapse
Affiliation(s)
- Marina Faiella
- Department of Chemical Sciences, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Via Cintia, 80126 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
17
|
Fu J, Nyanhongo GS, Gübitz GM, Cavaco-Paulo A, Kim S. Enzymatic colouration with laccase and peroxidases: Recent progress. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.649563] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Phosphate buffer effects on thermal stability and H2O2-resistance of horseradish peroxidase. Int J Biol Macromol 2011; 48:566-70. [DOI: 10.1016/j.ijbiomac.2011.01.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/23/2011] [Accepted: 01/24/2011] [Indexed: 11/18/2022]
|
19
|
Gumiero A, Murphy EJ, Metcalfe CL, Moody PC, Raven EL. An analysis of substrate binding interactions in the heme peroxidase enzymes: A structural perspective. Arch Biochem Biophys 2010; 500:13-20. [DOI: 10.1016/j.abb.2010.02.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 02/23/2010] [Accepted: 02/27/2010] [Indexed: 11/29/2022]
|
20
|
Battistuzzi G, Bellei M, Bortolotti CA, Sola M. Redox properties of heme peroxidases. Arch Biochem Biophys 2010; 500:21-36. [PMID: 20211593 DOI: 10.1016/j.abb.2010.03.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
Peroxidases are heme enzymes found in bacteria, fungi, plants and animals, which exploit the reduction of hydrogen peroxide to catalyze a number of oxidative reactions, involving a wide variety of organic and inorganic substrates. The catalytic cycle of heme peroxidases is based on three consecutive redox steps, involving two high-valent intermediates (Compound I and Compound II), which perform the oxidation of the substrates. Therefore, the thermodynamics and the kinetics of the catalytic cycle are influenced by the reduction potentials of three redox couples, namely Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+. In particular, the oxidative power of heme peroxidases is controlled by the (high) reduction potential of the latter two couples. Moreover, the rapid H2O2-mediated two-electron oxidation of peroxidases to Compound I requires a stable ferric state in physiological conditions, which depends on the reduction potential of the Fe3+/Fe2+ couple. The understanding of the molecular determinants of the reduction potentials of the above redox couples is crucial for the comprehension of the molecular determinants of the catalytic properties of heme peroxidases. This review provides an overview of the data available on the redox properties of Fe3+/Fe2+, Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+ couples in native and mutated heme peroxidases. The influence of the electron donor properties of the axial histidine and of the polarity of the heme environment is analyzed and the correlation between the redox properties of the heme group with the catalytic activity of this important class of metallo-enzymes is discussed.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | | | | | |
Collapse
|
21
|
Carneiro AP, Rodríguez O, Mota FL, Tavares APM, Macedo EA. Kinetic and Stability Study of the Peroxidase Inhibition in Ionic Liquids. Ind Eng Chem Res 2009. [DOI: 10.1021/ie9007612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aristides P. Carneiro
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n. 4200-465 Porto, Portugal
| | - Oscar Rodríguez
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n. 4200-465 Porto, Portugal
| | - Fátima L. Mota
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n. 4200-465 Porto, Portugal
| | - Ana P. M. Tavares
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n. 4200-465 Porto, Portugal
| | - Eugénia A. Macedo
- LSRE-Laboratory of Separation and Reaction Engineering, Associate Laboratory LSRE/LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n. 4200-465 Porto, Portugal
| |
Collapse
|
22
|
Ruiz-Dueñas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:441-52. [PMID: 18987391 DOI: 10.1093/jxb/ern261] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Versatile peroxidase (VP) is defined by its capabilities to oxidize the typical substrates of other basidiomycete peroxidases: (i) Mn(2+), the manganese peroxidase (MnP) substrate (Mn(3+) being able to oxidize phenols and initiate lipid peroxidation reactions); (ii) veratryl alcohol (VA), the typical lignin peroxidase (LiP) substrate; and (iii) simple phenols, which are the substrates of Coprinopsis cinerea peroxidase (CIP). Crystallographic, spectroscopic, directed mutagenesis, and kinetic studies showed that these 'hybrid' properties are due to the coexistence in a single protein of different catalytic sites reminiscent of those present in the other basidiomycete peroxidase families. Crystal structures of wild and recombinant VP, and kinetics of mutated variants, revealed certain differences in its Mn-oxidation site compared with MnP. These result in efficient Mn(2+) oxidation in the presence of only two of the three acidic residues forming its binding site. On the other hand, a solvent-exposed tryptophan is the catalytically-active residue in VA oxidation, initiating an electron transfer pathway to haem (two other putative pathways were discarded by mutagenesis). Formation of a tryptophanyl radical after VP activation by peroxide was detected using electron paramagnetic resonance. This was the first time that a protein radical was directly demonstrated in a ligninolytic peroxidase. In contrast with LiP, the VP catalytic tryptophan is not beta-hydroxylated under hydrogen peroxide excess. It was also shown that the tryptophan environment affected catalysis, its modification introducing some LiP properties in VP. Moreover, some phenols and dyes are oxidized by VP at the edge of the main haem access channel, as found in CIP. Finally, the biotechnological interest of VP is discussed.
Collapse
|
23
|
Ghosh A, Mitchell DA, Chanda A, Ryabov AD, Popescu DL, Upham EC, Collins GJ, Collins TJ. Catalase-peroxidase activity of iron(III)-TAML activators of hydrogen peroxide. J Am Chem Soc 2008; 130:15116-26. [PMID: 18928252 DOI: 10.1021/ja8043689] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exceptionally high peroxidase-like and catalase-like activities of iron(III)-TAML activators of H 2O 2 ( 1: Tetra-Amidato-Macrocyclic-Ligand Fe (III) complexes [ F e{1,2-X 2C 6H 2-4,5-( NCOCMe 2 NCO) 2CR 2}(OH 2)] (-)) are reported from pH 6-12.4 and 25-45 degrees C. Oxidation of the cyclometalated 2-phenylpyridine organometallic complex, [Ru (II)( o-C 6H 4py)(phen) 2]PF 6 ( 2) or "ruthenium dye", occurs via the equation [ Ru II ] + 1/2 H 2 O 2 + H +-->(Fe III - TAML) [ Ru III ] + H 2 O, following a simple rate law rate = k obs (per)[ 1][H 2O 2], that is, the rate is independent of the concentration of 2 at all pHs and temperatures studied. The kinetics of the catalase-like activity (H 2 O 2 -->(Fe III - TAML) H 2 O + 1/2 O 2) obeys a similar rate law: rate = k obs (cat)[ 1][H 2O 2]). The rate constants, k obs (per) and k obs (cat), are strongly and similarly pH dependent, with a maximum around pH 10. Both bell-shaped pH profiles are quantitatively accounted for in terms of a common mechanism based on the known speciation of 1 and H 2O 2 in this pH range. Complexes 1 exist as axial diaqua species [FeL(H 2O) 2] (-) ( 1 aqua) which are deprotonated to afford [FeL(OH)(H 2O)] (2-) ( 1 OH) at pH 9-10. The pathways 1 aqua + H 2O 2 ( k 1), 1 OH + H 2O 2 ( k 2), and 1 OH + HO 2 (-) ( k 4) afford one or more oxidized Fe-TAML species that further rapidly oxidize the dye (peroxidase-like activity) or a second H 2O 2 molecule (catalase-like activity). This mechanism is supported by the observations that (i) the catalase-like activity of 1 is controllably retarded by addition of reducing agents into solution and (ii) second order kinetics in H 2O 2 has been observed when the rate of O 2 evolution was monitored in the presence of added reducing agents. The performances of the 1 complexes in catalyzing H 2O 2 oxidations are shown to compare favorably with the peroxidases further establishing Fe (III)-TAML activators as miniaturized enzyme replicas with the potential to greatly expand the technological utility of hydrogen peroxide.
Collapse
Affiliation(s)
- Anindya Ghosh
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Active Iron-Oxo and Iron-Peroxo Species in Cytochromes P450 and Peroxidases; Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins. STRUCTURE AND BONDING 2007. [DOI: 10.1007/3-540-46592-8_1] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Pfister TD, Mirarefi AY, Gengenbach AJ, Zhao X, Danstrom C, Conatser N, Gao YG, Robinson H, Zukoski CF, Wang AHJ, Lu Y. Kinetic and crystallographic studies of a redesigned manganese-binding site in cytochrome c peroxidase. J Biol Inorg Chem 2006; 12:126-37. [PMID: 17021923 DOI: 10.1007/s00775-006-0171-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Manganese peroxidase (MnP) from the white rot fungus Phanerochaete chrysosporium contains a manganese-binding site that plays a critical role in its function. Previously, a Mn(II)-binding site was designed into cytochrome c peroxidase (CcP) based on sequence homology (Yeung et al. in Chem. Biol. 4:215-222, 1997; Gengenbach et al. in Biochemistry 38:11425-11432, 1999). Here, we report a redesign of this site based on X-ray structural comparison of MnP and CcP. The variant, CcP(D37E, V45E, H181E), displays 2.5-fold higher catalytic efficiency (k (cat)/K (M)) than the variant in the original design, mostly due to a stronger K (M) of 1.9 mM (vs. 4.1 mM). High-resolution X-ray crystal structures of a metal-free form and a form with Co(II) at the designed Mn(II) site were also obtained. The metal ion in the engineered metal-binding site overlays well with Mn(II) bound in MnP, suggesting that this variant is the closest structural model of the Mn(II)-binding site in MnP for which a crystal structure exists. A major difference arises in the distances of the ligands to the metal; the metal-ligand interactions in the CcP variant are much weaker than the corresponding interactions in MnP, probably owing to partial occupancy of metal ion at the designed site, difference in the identity of metal ions (Co(II) rather than Mn(II)) and other interactions in the second coordination sphere. These results indicate that the metal ion, the ligands, and the environment around the metal-binding site play important roles in tuning the structure and function of metalloenzymes.
Collapse
Affiliation(s)
- Thomas D Pfister
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ferapontova EE, Castillo J, Gorton L. Bioelectrocatalytic properties of lignin peroxidase from Phanerochaete chrysosporium in reactions with phenols, catechols and lignin-model compounds. Biochim Biophys Acta Gen Subj 2006; 1760:1343-54. [PMID: 16781814 DOI: 10.1016/j.bbagen.2006.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/09/2006] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
Bioelectrocatalytic reduction of H(2)O(2) catalysed by lignin peroxidase from Phanerochaete chrysosporium (LiP) was studied with LiP-modified graphite electrodes to elucidate the ability of LiP to electro-enzymatically oxidise phenols, catechols, as well as veratryl alcohol (VA) and some other high-redox-potential lignin model compounds (LMC). Flow-through amperometric experiments performed at +0.1 V vs. Ag|AgCl demonstrated that LiP displayed significant bioelectrocatalytic activity for the reduction of H(2)O(2) both directly (i.e., in direct electron transfer (ET) reaction between LiP and the electrode) and using most of studied compounds acting as redox mediators in the LiP bioelectrocatalytic cycle, with a pH optimum of 3.0. The bioelectrocatalytic reduction of H(2)O(2) mediated by VA and effects of VA on the efficiency of bioelectrocatalytic oxidation of other co-substrates acting as mediators were investigated. The bioelectrocatalytic oxidation of phenol- and catechol derivatives and 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulphonate) by LiP was independent of the presence of VA, whereas the efficiency of the LiP bioelectrocatalysis with the majority of other LMC acting as mediators increased upon addition of VA. Special cases were phenol and 4-methoxymandelic acid (4-MMA). Both phenol and 4-MMA suppressed the bioelectrocatalytic activity of LiP below the direct ET level, which was, however, restored and increased in the presence of VA mediating the ET between LiP and these two compounds. The obtained results suggest different mechanisms for the bioelectrocatalysis of LiP depending on the chemical nature of the mediators and are of a special interest both for fundamental science and for application of LiP in biotechnological processes as solid-phase bio(electro)catalyst for decomposition/detection of recalcitrant aromatic compounds.
Collapse
Affiliation(s)
- Elena E Ferapontova
- School of Chemistry, College of Science and Engineering, the University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK.
| | | | | |
Collapse
|
27
|
Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT. Versatile Peroxidase Oxidation of High Redox Potential Aromatic Compounds: Site-directed Mutagenesis, Spectroscopic and Crystallographic Investigation of Three Long-range Electron Transfer Pathways. J Mol Biol 2005; 354:385-402. [PMID: 16246366 DOI: 10.1016/j.jmb.2005.09.047] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/09/2005] [Accepted: 09/16/2005] [Indexed: 11/16/2022]
Abstract
Versatile peroxidases (VP), a recently described family of ligninolytic peroxidases, show a hybrid molecular architecture combining different oxidation sites connected to the heme cofactor. High-resolution crystal structures as well as homology models of VP isoenzymes from the fungus Pleurotus eryngii revealed three possibilities for long-range electron transfer for the oxidation of high redox potential aromatic compounds. The possible pathways would start either at Trp164 or His232 of isoenzyme VPL, and at His82 or Trp170 of isoenzyme VPS1. These residues are exposed, and less than 11 A apart from the heme. With the purpose of investigating their functionality, two single mutations (W164S and H232F) and one double mutation (W164S/P76H) were introduced in VPL that: (i) removed the two pathways in this isoenzyme; and (ii) incorporated the absent putative pathway. Analysis of the variants showed that Trp164 is required for oxidation of two high redox potential model substrates (veratryl alcohol and Reactive Black 5), whereas the two other pathways (starting at His232 and His82) are not involved in long-range electron transfer (LRET). None of the mutations affected Mn2+ oxidation, which would take place at the opposite side of the enzyme. Substitution of Trp164 by His also resulted in an inactive variant, indicating that an indole side-chain is required for activity. It is proposed that substrate oxidation occurs via a protein-based radical. For the first time in a ligninolytic peroxidase such an intermediate species could be detected by low-temperature electron paramagnetic resonance of H2O2-activated VP, and was found to exist at Trp164 as a neutral radical. The H2O2-activated VP was self-reduced in the absence of reducing substrates. Trp164 is also involved in this reaction, which in the W164S variant was blocked at the level of compound II. When analyzing VP crystal structures close to atomic resolution, no hydroxylation of the Trp164 Cbeta atom was observed (even after addition of several equivalents of H2O2). This is in contrast to lignin peroxidase Trp171. Analysis of the crystal structures of both peroxidases showed differences in the environment of the protein radical-forming residue that could affect its reactivity. These variations would also explain differences found for the oxidation of some high redox potential aromatic substrates.
Collapse
Affiliation(s)
- Marta Pérez-Boada
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Abstract
Reactions of substrate-free ferric cytochrome P450cam with peracids to generate Fe=O intermediates have previously been investigated with contradictory results. Using stopped-flow spectrophotometry, the reaction with m-chloroperoxybenzoic acid demonstrated an Fe(IV)=O + porphyrin pi-cation radical (Cpd I) (Egawa, T., Shimada, H., and Ishimura, Y. (1994) Biochem. Biophys. Res. Commun. 201, 1464-1469). By contrast, with peracetic acid, Fe(IV)=O plus a tyrosyl radical were observed by freeze-quench Mossbauer and EPR spectroscopy (Schunemann, V., Jung, C., Trautwein, A. X., Mandon, D., and Weiss, R. (2000) FEBS Lett. 479, 149-154). Our detailed kinetic studies have resolved these contradictory results. At pH >7, a significant fraction of Cpd I is formed transiently, whereas at low pH only a species with a Soret band at 406 nm, presumably Fe(IV)=O + tyrosyl radical, is observed. Evidence for formation of an acylperoxo complex en route to Cpd I was obtained. Because of rapid heme destruction, steps subsequent to formation of the highly oxidized forms could not be fully characterized. Heme destruction was avoided by including peroxidase substrates (e.g. guaiacol), which were oxidized to characteristic peroxidase products as the Fe(III)-P450 was regenerated. Addition of ascorbate to either of the high valent species also reforms the Fe(III) state with only a small loss of heme absorbance. These results indicate that typical peroxidase chemistry occurs with P450cam and offer an explanation for the contrasting results reported earlier. The delineation of improved conditions (pH, temperature, choice of peracid) for generating highly oxidized species with P450cam should be valuable for their further characterization.
Collapse
Affiliation(s)
- Tatyana Spolitak
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA
| | | | | |
Collapse
|
30
|
Dias JM, Alves T, Bonifácio C, Pereira AS, Trincão J, Bourgeois D, Moura I, Romão MJ. Structural basis for the mechanism of Ca(2+) activation of the di-heme cytochrome c peroxidase from Pseudomonas nautica 617. Structure 2004; 12:961-73. [PMID: 15274917 DOI: 10.1016/j.str.2004.03.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/15/2004] [Accepted: 03/19/2004] [Indexed: 10/26/2022]
Abstract
Cytochrome c peroxidase (CCP) catalyses the reduction of H(2)O(2) to H(2)O, an important step in the cellular detoxification process. The crystal structure of the di-heme CCP from Pseudomonas nautica 617 was obtained in two different conformations in a redox state with the electron transfer heme reduced. Form IN, obtained at pH 4.0, does not contain Ca(2+) and was refined at 2.2 A resolution. This inactive form presents a closed conformation where the peroxidatic heme adopts a six-ligand coordination, hindering the peroxidatic reaction from taking place. Form OUT is Ca(2+) dependent and was crystallized at pH 5.3 and refined at 2.4 A resolution. This active form shows an open conformation, with release of the distal histidine (His71) ligand, providing peroxide access to the active site. This is the first time that the active and inactive states are reported for a di-heme peroxidase.
Collapse
Affiliation(s)
- João M Dias
- REQUIMTE/CQFB, Departamento de Química, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Silaghi-Dumitrescu R. The nature of the high-valent complexes in the catalytic cycles of hemoproteins. J Biol Inorg Chem 2004; 9:471-6. [PMID: 15106002 DOI: 10.1007/s00775-004-0543-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 03/29/2004] [Indexed: 10/26/2022]
Abstract
We report geometry optimization results on heme compound I (ferryl-oxo + porphyrin cation radical), compound II (ferryl-oxo) and ferric-hydroxo species with thiolate or imidazole axial ligands. We also examine protonated forms of compound I and compound II species, prompted by recent reports that, in at least two different hemoproteins, compound II may in fact contain a hydroxo rather than an oxo ligand. We propose that the stable compound I and compound II species of hemoproteins (e.g., peroxidases and myoglobin) most likely contain a hydroxo rather than the oxo ligand traditionally assumed, whereas the extremely transient compound I species of monooxygenase hemoproteins (P450) would contain an oxo atom. We show evidence impacting the previously accepted notion in hemoprotein computational chemistry that non-covalent interactions and medium polarization effects are essential in properly describing the electronic structure of heme-thiolate high-valent complexes. On a different note, we find that the charge density on the iron remains essentially the same throughout the catalytic cycles of heme-containing oxygenases and peroxidases, despite clear changes in bond lengths and spin densities suggestive of various iron oxidation states. The iron thus appears to simply relay the electron flux between the porphyrin and the axial dioxygen/superoxo/peroxo/oxo/hydroxo ligands.
Collapse
Affiliation(s)
- Radu Silaghi-Dumitrescu
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|
32
|
Battistuzzi G, Bellei M, Bortolotti CA, Rocco GD, Leonardi A, Sola M. Characterization of the solution reactivity of a basic heme peroxidase from Cucumis sativus. Arch Biochem Biophys 2004; 423:317-31. [PMID: 15001396 DOI: 10.1016/j.abb.2003.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/10/2003] [Indexed: 10/26/2022]
Abstract
A basic heme peroxidase has been isolated from cucumber (Cucumis sativus) peelings and characterized through electronic and (1)H NMR spectra from pH 3 to 11. The protein, as isolated, contains a high-spin ferriheme which in the low pH region is sensitive to two acid-base equilibria with apparent pK(a) values of approximately 5 and 3.6, assigned to the distal histidine and to a heme propionate, respectively. At high pH, a new low-spin species develops with an apparent pK(a) of 11, likely due to the binding of an hydroxide ion to the sixth (axial) coordination position of the Fe(III). A number of acid-base equilibria involving heme propionates and residues in the distal cavity also affect the binding of inorganic anions such as cyanide, azide, and fluoride to the ferriheme, as well as the catalytic activity. The reduction potentials of the native protein and of its cyanide derivative, determined through UV-Vis spectroelectrochemistry, result to be -0.320+/-0.015 and -0.412+/-0.010V, respectively. Overall, the reactivity of this protein parallels those of other plant peroxidases, especially horseradish peroxidase. However, some differences exist in the acid-base equilibria affecting its reactivity and in the reduction potential, likely as a result of small structural differences in the heme distal and proximal cavities.
Collapse
Affiliation(s)
- Gianantonio Battistuzzi
- Department of Chemistry, Centro SCS, University of Modena and Reggio Emilia, Via Campi 183, Modena 41100, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Silaghi-Dumitrescu R. Heme ferrous–hydroperoxo complexes: some theoretical considerations. Arch Biochem Biophys 2004; 424:137-40. [PMID: 15047185 DOI: 10.1016/j.abb.2004.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Revised: 02/17/2004] [Indexed: 11/22/2022]
Abstract
We report density functional calculations on complexes of ferrous hemes with hydroperoxide, where the axial ligand trans to OOH(-) is imidazole, thiolate, or phenoxide. The geometrical parameters and charge distributions within the Fe-O-O-H moiety are identical between the ferrous complexes reported here and their ferric counterparts previously described, even though the latter contain one unpaired electron on iron as opposed to the former, which are diamagnetic. The extra negative charge upon going from a formally ferric state to formally ferrous appears to be distributed essentially on the porphyrin. These findings support recent experimental data showing that the ferrous state of certain hemoproteins can interact with peroxides in a catalytically competent fashion, cleaving the O-O bond heterolytically in a manner reminiscent of the "canonical" ferric-peroxo complexes, and contrary to any expectations based on the Fenton concept commonly invoked in non-heme chemistry.
Collapse
Affiliation(s)
- Radu Silaghi-Dumitrescu
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
34
|
TRANSITION METAL CHEMISTRY OF GLUCOSE OXIDASE, HORSERADISH PEROXIDASE, AND RELATED ENZYMES. ADVANCES IN INORGANIC CHEMISTRY 2004. [DOI: 10.1016/s0898-8838(03)55004-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Feng M, Tachikawa H, Wang X, Pfister TD, Gengenbach AJ, Lu Y. Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase. J Biol Inorg Chem 2003; 8:699-706. [PMID: 14505074 DOI: 10.1007/s00775-003-0460-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2002] [Accepted: 03/28/2003] [Indexed: 11/28/2022]
Abstract
Cytochrome c peroxidase (C cP) variants with an engineered Mn(II) binding site, including MnC cP [C cP(MI, G41E, V45E, H181D)], MnC cP(W191F), and MnC cP(W191F, W51F), that mimic manganese peroxidase (MnP), have been characterized by resonance Raman (RR) spectroscopy. Analysis of the Raman bands in the 200-700 cm(-1) and 1300-1650 cm(-1) regions indicates that both the coordination and spin state of the heme iron in the variants differ from that of C cP(MI), the recombinant yeast C cP containing additional Met-Ile residues at the N-terminus. At neutral pH the frequencies of the nu(3) mode indicate that a pure five-coordinate heme iron exists in C cP(MI) whereas a six-coordinate low-spin iron is the dominant species in the C cP variants with the engineered Mn(II) binding site. The H181D mutation, which weakens the proximal linkage to the heme iron, may be responsible for these spectral and structural changes. Raman spectra of the variants C cP(MI, W191F) and C cP(MI, W191F, W51F) were also obtained to clarify the structural and functional roles of mutations at two tryptophan sites. The W51F mutation was found to disrupt H-bonding to the distal water molecules and the resulting variants tended to form transitional or mixed coordination states that possess spectral and structural features similar to that of MnP. Such structural features, with a loosened distal water, may facilitate the binding of H(2)O(2) and increase the rate constant for compound I formation. This effect, in addition to the elimination of an H-bond to ferryl oxygen by the same mutation, accounts for the increased MnP specific activity of MnC cP(W191F, W51F).
Collapse
Affiliation(s)
- Manliang Feng
- Department of Chemistry, Jackson State University, Box 17910, Jackson, MS 39217-0510, USA
| | | | | | | | | | | |
Collapse
|
36
|
Francesca Gerini M, Roccatano D, Baciocchi E, Di Nola A. Molecular dynamics simulations of lignin peroxidase in solution. Biophys J 2003; 84:3883-93. [PMID: 12770894 PMCID: PMC1302970 DOI: 10.1016/s0006-3495(03)75116-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The dynamical and structural properties of lignin peroxidase and its Trp171Ala mutant have been investigated in aqueous solution using molecular dynamics (MD) simulations. In both cases, the enzyme retained its overall backbone structure and all its noncovalent interactions in the course of the MD simulations. Very interestingly, the analysis of the MD trajectories showed the presence of large fluctuations in correspondence of the residues forming the heme access channel; these movements enlarge the opening and facilitate the access of substrates to the enzyme active site. Moreover, steered molecular dynamics docking simulations have shown that lignin peroxidase natural substrate (veratryl alcohol) can easily approach the heme edge through the access channel.
Collapse
Affiliation(s)
- M Francesca Gerini
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, Rome, Italy
| | | | | | | |
Collapse
|
37
|
Denisov IG, Makris TM, Sligar SG. Formation and decay of hydroperoxo-ferric heme complex in horseradish peroxidase studied by cryoradiolysis. J Biol Chem 2002; 277:42706-10. [PMID: 12215454 DOI: 10.1074/jbc.m207949200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using radiolytic reduction of the oxy-ferrous horseradish peroxidase (HRP) at 77 K, we observed the formation and decay of the putative intermediate, the hydroperoxo-ferric heme complex, often called "Compound 0." This intermediate is common for several different enzyme systems as the precursor of the Compound I (ferryl-oxo pi-cation radical) intermediate. EPR and UV-visible absorption spectra show that protonation of the primary intermediate of radiolytic reduction, the peroxo-ferric complex, to form the hydroperoxo-ferric complex is completed only after annealing at temperatures 150-180 K. After further annealing at 195-205 K, this complex directly transforms to ferric HRP without any observable intervening species. The lack of Compound I formation is explained by inability of the enzyme to deliver the second proton to the distal oxygen atom of hydroperoxide ligand, shown to be necessary for dioxygen bond heterolysis on the "oxidase pathway," which is non-physiological for HRP. Alternatively, the physiological substrate H2O2 brings both protons to the active site of HRP, and Compound I is subsequently formed via rearrangement of the proton from the proximal to the distal oxygen atom of the bound peroxide.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry, Center for Biophysics and Computational Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | | | | |
Collapse
|
38
|
Kadnikova EN, Kostić NM. Oxidation of ABTS by hydrogen peroxide catalyzed by horseradish peroxidase encapsulated into sol–gel glass. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1381-1177(02)00057-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Hiner ANP, Raven EL, Thorneley RNF, García-Cánovas F, Rodríguez-López JN. Mechanisms of compound I formation in heme peroxidases. J Inorg Biochem 2002; 91:27-34. [PMID: 12121759 DOI: 10.1016/s0162-0134(02)00390-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The formation of compound I is the first step in the reaction mechanism of plant heme peroxidases. This intermediate stores two oxidizing equivalents from hydrogen peroxide as an oxyferryl iron center and a radical, either on the porphyrin ring or on a tryptophan residue. Site-directed mutagenesis has proved to be a most useful tool for the identification of the intermediates involved and the resulting nature of the compound I formed. Although there is no doubt that an acid-base mechanism operates in heme peroxidase during the formation of compound I, the roles of several distal pocket residues are currently the subject of intensive research. It is now generally accepted that the conserved distal histidine in the active site of heme peroxidases is the acid-base catalyst that promotes the heterolytic cleavage of hydrogen peroxide. Other residues, such as the distal arginine and asparagine, participate in a range of roles assisting catalysis by the distal histidine. Recent advances in the elucidation of the mechanism at the molecular level are discussed. Another aspect related to the nature of compound I is the location of the radical center. Novel radical species have been detected in the reactions of ascorbate peroxidase, lignin peroxidase and several mutants of horseradish peroxidase. Detailed kinetic and spectroscopic studies of these radical species have provided important insights about the factors that control porphyrin-protein radical exchange. The wide range of data being obtained on compound I will lead to an understanding of its vital function in peroxidase catalysis and the physiological roles played by these enzymes.
Collapse
Affiliation(s)
- Alexander N P Hiner
- Departamento de Biología Vegetal, Fisiología Vegetal, Facultad de Biología, Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
| | | | | | | | | |
Collapse
|
40
|
Abstract
Peroxidases are oxidoreductases that utilize hydrogen peroxide to catalyze oxidative reactions. A large number of peroxidases have been identified in fungal species and are being characterized at the molecular level. In this manuscript we review the current knowledge on the molecular aspects of this type of enzymes. We present an overview of the research efforts undertaken in deciphering the structural basis of the catalytic properties of fungal peroxidases and discuss molecular genetics and protein homology aspects of this enzyme class. Finally, we summarize the potential biotechnological applications of these enzymes and evaluate recent advances on their expression in heterologous systems for production purposes.
Collapse
Affiliation(s)
- Ana Conesa
- Department of Applied Microbiology and Gene Technology, TNO Nutrition and Food Research Institute, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | | | | |
Collapse
|
41
|
Marques HM, Brown KL. Molecular mechanics and molecular dynamics simulations of porphyrins, metalloporphyrins, heme proteins and cobalt corrinoids. Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(01)00411-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Hiner AN, Martínez JI, Arnao MB, Acosta M, Turner DD, Lloyd Raven E, Rodríguez-López JN. Detection of a tryptophan radical in the reaction of ascorbate peroxidase with hydrogen peroxide. ACTA ACUST UNITED AC 2001; 268:3091-8. [PMID: 11358529 DOI: 10.1046/j.1432-1327.2001.02208.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reactivity of recombinant pea cytosolic ascorbate peroxidase (rAPX) towards H2O2, the nature of the intermediates and the products of the reaction have been examined using UV/visible and EPR spectroscopies together with HPLC. Compound I of rAPX, generated by reaction of rAPX with 1 molar equivalent of H2O2, contains a porphyrin pi-cation radical. This species is unstable and, in the absence of reducing substrate, decays within 60 s to a second species, compound I*, that has a UV/visible spectrum [lambda(max) (nm) = 414, 527, 558 and 350 (sh)] similar, but not identical, to those of both horseradish peroxidase compound II and cytochrome c peroxidase compound I. Small but systematic differences were observed in the UV/visible spectra of compound I* and authentic rAPX compound II, generated by reaction of rAPX with 1 molar equivalent H2O2 in the presence of 1 molar equivalent of ascorbate [lambda(max) (nm) = 416, 527, 554, 350 (sh) and 628 (sh)]. Compound I* decays to give a 'ferric-like' species (lambda(max) = 406 nm) that is not spectroscopically identical to ferric rAPX (lambda(max) = 403 nm) with a first order rate constant, k(decay)' = (2.7 +/- 0.3) x 10(-4) s(-1). Authentic samples of compound II evolve to ferric rAPX [k(decay) = (1.1 +/- 0.2) x 10(-3) s(-1)]. Low temperature (10 K) EPR spectra are consistent with the formation of a protein-based radical, with g values for compound I* (g parallel = 2.038, g perpendicular = 2.008) close to those previously reported for the Trp191 radical in cytochrome c peroxidase (g parallel = 2.037, g perpendicular = 2.005). The EPR spectrum of rAPX compound II was essentially silent in the g = 2 region. Tryptic digestion of the 'ferric-like' rAPX followed by RP-HPLC revealed a fragment with a new absorption peak near 330 nm, consistent with the formation of a hydroxylated tryptophan residue. The results show, for the first time, that rAPX can, under certain conditions, form a protein-based radical analogous to that found in cytochrome c peroxidase. The implications of these data are discussed in the wider context of both APX catalysis and radical formation and stability in haem peroxidases.
Collapse
Affiliation(s)
- A N Hiner
- Departamento de Biología Vegetal (Fisiología Vegetal), Facultad de Biología, Universidad de Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Haikarainen A, Sipilä J, Pietikäinen P, Pajunen A, Mutikainen I. Salen complexes with bulky substituents as useful tools for biomimetic phenol oxidation research. Bioorg Med Chem 2001; 9:1633-8. [PMID: 11408183 DOI: 10.1016/s0968-0896(01)00053-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The catalytic properties of bulky water-soluble Co-, Cu-, Fe- and Mn-salen complexes in the oxidation of phenolic lignin model compounds have been studied in aqueous water--dioxane solutions (pH 3--10). Mn catalysts were found to oxidize coniferyl alcohol in a same reaction time as horseradish peroxidase (HRP) enzyme and Mn and Co catalysts showed different regioselectivity suggesting a different substrate to catalyst interaction in the oxidative coupling. When the oxidation of material more relevant to plant polyphenolics was studied, the results indicated that the complexes catalyze one- and two-electron oxidations depending on the bulk of the substrate.
Collapse
Affiliation(s)
- A Haikarainen
- University of Helsinki, Department of Chemistry, Laboratory of Organic Chemistry, PO Box 55, FIN-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
44
|
Brück TB, Fielding RJ, Symons MC, Harvey PJ. Mechanism of nitrite-stimulated catalysis by lactoperoxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3214-22. [PMID: 11389723 DOI: 10.1046/j.1432-1327.2001.02213.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The reactions of lactoperoxidase (LPO) intermediates compound I, compound II and compound III, with nitrite (NO2(-)) were investigated. Reduction of compound I by NO2(-) was rapid (k2 = 2.3 x 10(7) M(-1) x s(-1); pH = 7.2) and compound II was not an intermediate, indicating that NO2* radicals are not produced when NO2(-) reacts with compound I. The second-order rate constant for the reaction of compound II with NO2(-) at pH = 7.2 was 3.5 x 10(5) M(-1) x s(-1). The reaction of compound III with NO2(-) exhibited saturation behaviour when the observed pseudo first-order rate constants were plotted against NO2(-) concentrations and could be quantitatively explained by the formation of a 1 : 1 ratio compound III/NO2(-) complex. The Km of compound III for NO2(-) was 1.7 x 10(-4) M and the first-order decay constant of the compound III/ NO2(-) complex was 12.5 +/- 0.6 s(-1). The second-order rate constant for the reaction of the complex with NO2(-) was 3.3 x 10(3) M(-1) x s(-1). Rate enhancement by NO2(-) does not require NO2* as a redox intermediate. NO2(-) accelerates the overall rate of catalysis by reducing compound II to the ferric state. With increasing levels of H2O2, there is an increased tendency for the catalytically dead-end intermediate compound III to form. Under these conditions, the 'rescue' reaction of NO2(-) with compound III to form compound II will maintain the peroxidatic cycle of the enzyme.
Collapse
Affiliation(s)
- T B Brück
- Department of Chemical and Life Sciences, University of Greenwich, London, UK
| | | | | | | |
Collapse
|
45
|
Battistuzzi G, D'Onofrio M, Loschi L, Sola M. Isolation and Characterization of Two Peroxidases from Cucumis sativus. Arch Biochem Biophys 2001; 388:100-12. [PMID: 11361125 DOI: 10.1006/abbi.2001.2281] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two heme peroxidases of 35.2 and 36.5 kDa have been isolated from cucumber (Cucumis sativus) peelings and characterized through electronic and 1H NMR spectra in the pH range 3.5-10.5. Their spectroscopic and catalytic properties, which are closely similar, are characteristic of highly homologous isoenzymes. Both proteins, as isolated, exist as a mixture of two ferric forms containing a high-spin and a low-spin heme in an approximately 2:1 molar ratio. The latter form likely contains a hydroxide ion axially coordinated to the heme iron and is proposed to be the result of partial irreversible protein inactivation due to the purification procedure. Both proteins in the reduced form are fully high-spin. The high-spin ferric form is sensitive to two acid-base equilibria with apparent pKa values of approximately 5 and 8.5, which have been assigned to the distal histidine and the arginine adjacent to it, respectively. These equilibria also affect the catalytic activity and the interaction with inorganic anions such as azide and fluoride. The reactivity of both proteins is closely similar to that of other plant peroxidases, primarily horseradish peroxidase; however, they also show spectroscopic properties similar to those of cytosolic ascorbate peroxidase. Therefore, overall, these two species show molecular, spectroscopic and catalytic features which are rather peculiar among plant peroxidases.
Collapse
Affiliation(s)
- G Battistuzzi
- Department of Chemistry, University of Modena and Reggio Emilia, Italy
| | | | | | | |
Collapse
|
46
|
Celik A, Cullis PM, Sutcliffe MJ, Sangar R, Raven EL. Engineering the active site of ascorbate peroxidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:78-85. [PMID: 11121105 DOI: 10.1046/j.1432-1327.2001.01851.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oxidation of a number of thioethers, namely methyl phenyl sulphide (1), ethyl phenyl sulphide (2), isopropyl phenyl sulphide (3), n-propyl phenyl sulphide (4), p-chlorophenyl methyl sulphide (5), p-nitrophenyl methyl sulphide (6) and methyl naphthalene sulphide (7), by recombinant pea cytosolic ascorbate peroxidase (rAPX) and a site-directed variant of rAPX in which the distal tryptophan 41 residue has been replaced with an alanine (W41A) has been examined. The electronic spectrum (pH 7.0, mu = 0.10 M, 25.0 degrees C) for the ferric derivative of W41A (lambda(max)/nm = 411, 534, 560, 632) is indicative of an increased quantity of 6-coordinate, high-spin and/or 6-coordinate, low-spin haem compared to rAPX. Steady state oxidation of sulphides 1-4 and 7, gave values for kcat that are approximately 10-fold and 100-fold, respectively, higher for W41A than for rAPX. For rAPX, essentially racemic mixtures of R- and S-sulphoxides were obtained for all sulphides. With the exception of sulphide 7, the W41A variant shows substantial enhancements in enantioselectivity, with R : S ratios varying between R : S = 63 : 37 (sulphides 1 and 4) and R : S = 85 : 15 (sulphide 6). Incubation of sulphide 2 with rAPX or W41A and [(18)O] H(2)O(2) shows 95% (rAPX) and 96% (W41A) transfer of labelled oxygen to the substrate. Structure-based modelling techniques have provided a fully quantitative rationalization of all the experimentally determined R : S ratios and have indicated that reorientation of the sidechain of Arg38, such that access to the haem is much less restricted, is influential in controlling the stereoselectivity for both rAPX and W41A.
Collapse
Affiliation(s)
- A Celik
- Department of Chemistry, University of Leicester, University Road, Leicester, England, UK
| | | | | | | | | |
Collapse
|
47
|
Chouchane S, Lippai I, Magliozzo RS. Catalase-peroxidase (Mycobacterium tuberculosis KatG) catalysis and isoniazid activation. Biochemistry 2000; 39:9975-83. [PMID: 10933818 DOI: 10.1021/bi0005815] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resonance Raman spectra of native, overexpressed M. tuberculosis catalase-peroxidase (KatG), the enzyme responsible for activation of the antituberculosis antibiotic isoniazid (isonicotinic acid hydrazide), have confirmed that the heme iron in the resting (ferric) enzyme is high-spin five-coordinate. Difference Raman spectra did not reveal a change in coordination number upon binding of isoniazid to KatG. Stopped-flow spectrophotometric studies of the reaction of KatG with stoichiometric equivalents or small excesses of hydrogen peroxide revealed only the optical spectrum of the ferric enzyme with no hypervalent iron intermediates detected. Large excesses of hydrogen peroxide generated oxyferrous KatG, which was unstable and rapidly decayed to the ferric enzyme. Formation of a pseudo-stable intermediate sharing optical characteristics with the porphyrin pi-cation radical-ferryl iron species (Compound I) of horseradish peroxidase was observed upon reaction of KatG with excess 3-chloroperoxybenzoic acid, peroxyacetic acid, or tert-butylhydroperoxide (apparent second-order rate constants of 3.1 x 10(4), 1.2 x 10(4), and 25 M(-1) s(-1), respectively). Identification of the intermediate as KatG Compound I was confirmed using low-temperature electron paramagnetic resonance spectroscopy. Isoniazid, as well as ascorbate and potassium ferrocyanide, reduced KatG Compound I to the ferric enzyme without detectable formation of Compound II in stopped-flow measurements. This result differed from the reaction of horseradish peroxidase Compound I with isoniazid, during which Compound II was stably generated. These results demonstrate important mechanistic differences between a bacterial catalase-peroxidase and the homologous plant peroxidases and yeast cytochrome c peroxidase, in its reactions with peroxides as well as substrates.
Collapse
Affiliation(s)
- S Chouchane
- Department of Chemistry, Brooklyn College CUNY, 2900 Bedford Avenue, Brooklyn, New York 11210-2889, USA
| | | | | |
Collapse
|
48
|
|
49
|
|
50
|
|