1
|
The Effects of Dietary Interventions on Brain Aging and Neurological Diseases. Nutrients 2022; 14:nu14235086. [PMID: 36501116 PMCID: PMC9740746 DOI: 10.3390/nu14235086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary interventions can ameliorate age-related neurological decline. Decades of research of in vitro studies, animal models, and clinical trials support their ability and efficacy to improve behavioral outcomes by inducing biochemical and physiological changes that lead to a more resilient brain. Dietary interventions including calorie restriction, alternate day fasting, time restricted feeding, and fasting mimicking diets not only improve normal brain aging but also slow down, or even reverse, the progression of neurological diseases. In this review, we focus on the effects of intermittent and periodic fasting on improving phenotypic outcomes, such as cognitive and motor-coordination decline, in the normal aging brain through an increase in neurogenesis and synaptic plasticity, and decrease in neuroinflammation, mitochondrial dysfunction, and oxidative stress. We summarize the results of various dietary interventions in animal models of age-related neurological diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, and Multiple Sclerosis and discuss the results of clinical trials that explore the feasibility of dietary interventions in the prevention and treatment of these diseases.
Collapse
|
2
|
Saris CGJ, Timmers S. Ketogenic diets and Ketone suplementation: A strategy for therapeutic intervention. Front Nutr 2022; 9:947567. [PMID: 36458166 PMCID: PMC9705794 DOI: 10.3389/fnut.2022.947567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/13/2022] [Indexed: 07/24/2023] Open
Abstract
Ketogenic diets and orally administered exogenous ketone supplements are strategies to increase serum ketone bodies serving as an alternative energy fuel for high energy demanding tissues, such as the brain, muscles, and the heart. The ketogenic diet is a low-carbohydrate and fat-rich diet, whereas ketone supplements are usually supplied as esters or salts. Nutritional ketosis, defined as serum ketone concentrations of ≥ 0.5 mmol/L, has a fasting-like effect and results in all sorts of metabolic shifts and thereby enhancing the health status. In this review, we thus discuss the different interventions to reach nutritional ketosis, and summarize the effects on heart diseases, epilepsy, mitochondrial diseases, and neurodegenerative disorders. Interest in the proposed therapeutic benefits of nutritional ketosis has been growing the past recent years. The implication of this nutritional intervention is becoming more evident and has shown interesting potential. Mechanistic insights explaining the overall health effects of the ketogenic state, will lead to precision nutrition for the latter diseases.
Collapse
Affiliation(s)
- Christiaan G. J. Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Nijmegen, Netherlands
| | - Silvie Timmers
- Department of Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
3
|
Zhao X, Cheng P, Xu R, Meng K, Liao S, Jia P, Zheng X, Xiao C. Insights into the development of pentylenetetrazole-induced epileptic seizures from dynamic metabolomic changes. Metab Brain Dis 2022; 37:2441-2455. [PMID: 35838870 DOI: 10.1007/s11011-022-01018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is often considered to be a progressive neurological disease, and the nature of this progression remains unclear. Understanding the overall and common metabolic changes of epileptic seizures can provide novel clues for their control and prevention. Herein, a chronic kindling animal model was established to obtain generalized tonic-clonic seizures via the repeated injections of pentylenetetrazole (PTZ) at subconvulsive dose. Dynamic metabolomic changes in plasma and urine from PTZ-kindled rats at the different kindling phases were explored using NMR-based metabolomics, in combination with behavioral assessment, brain neurotransmitter measurement, electroencephalography and histopathology. The increased levels of glucose, lactate, glutamate, creatine and creatinine, together with the decreased levels of pyruvate, citrate and succinate, ketone bodies, asparagine, alanine, leucine, valine and isoleucine in plasma and/or urine were involved in the development and progression of seizures. These altered metabolites reflected the pathophysiological processes including the compromised energy metabolism, the disturbed amino acid metabolism, the peripheral inflammation and changes in gut microbiota functions. NMR-based metabolomics could provide brain disease information by the dynamic plasma and urinary metabolic changes during chronic epileptic seizures, yielding classification of seizure stages and profound insights into controlling epilepsy via targeting deficient energy metabolism.
Collapse
Affiliation(s)
- Xue Zhao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Peixuan Cheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Ru Xu
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Kaili Meng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Sha Liao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Pu Jia
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Xiaohui Zheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Chaoni Xiao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China.
| |
Collapse
|
4
|
Yuskaitis CJ, Modasia JB, Schrötter S, Rossitto LA, Groff KJ, Morici C, Mithal DS, Chakrabarty RP, Chandel NS, Manning BD, Sahin M. DEPDC5-dependent mTORC1 signaling mechanisms are critical for the anti-seizure effects of acute fasting. Cell Rep 2022; 40:111278. [PMID: 36044864 PMCID: PMC9508617 DOI: 10.1016/j.celrep.2022.111278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/11/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Caloric restriction and acute fasting are known to reduce seizures but through unclear mechanisms. mTOR signaling has been suggested as a potential mechanism for seizure protection from fasting. We demonstrate that brain mTORC1 signaling is reduced after acute fasting of mice and that neuronal mTORC1 integrates GATOR1 complex-mediated amino acid and tuberous sclerosis complex (TSC)-mediated growth factor signaling. Neuronal mTORC1 is most sensitive to withdrawal of leucine, arginine, and glutamine, which are dependent on DEPDC5, a component of the GATOR1 complex. Metabolomic analysis reveals that Depdc5 neuronal-specific knockout mice are resistant to sensing significant fluctuations in brain amino acid levels after fasting. Depdc5 neuronal-specific knockout mice are resistant to the protective effects of fasting on seizures or seizure-induced death. These results establish that acute fasting reduces seizure susceptibility in a DEPDC5-dependent manner. Modulation of nutrients upstream of GATOR1 and mTORC1 could offer a rational therapeutic strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Christopher J Yuskaitis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinita B Modasia
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sandra Schrötter
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Leigh-Ana Rossitto
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karenna J Groff
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Morici
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Divakar S Mithal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Section of Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Ram P Chakrabarty
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Increased Hippocampal Afterdischarge Threshold in Ketogenic Diet is Accompanied by Enhanced Kynurenine Pathway Activity. Neurochem Res 2022; 47:2109-2122. [PMID: 35522366 DOI: 10.1007/s11064-022-03605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
The efficacy of a ketogenic diet (KD) in controlling seizure has been shown in many experimental and clinical studies, however, its mechanism of action still needs further clarification. The major goal of the present study was to investigate the influence of the commercially available KD and caloric restriction (CR) on the hippocampal afterdischarge (AD) threshold in rats, and concomitant biochemical changes, specifically concerning the kynurenine pathway, in plasma and the hippocampus. As expected, the rats on the KD showed higher AD threshold accompanied by increased plasma β-hydroxybutyrate level compared to the control group and the CR rats. This group presented also lowered tryptophan and elevated kynurenic acid levels in plasma with similar changes in the hippocampus. Moreover, the KD rats showed decreased levels of branched chain amino acids (BCAA) and aromatic amino acids (AAA) in plasma and the hippocampus. No regular biochemical changes were observed in the CR group. Our results are analogous to those detected after single administrations of fatty acids and valproic acid in our previous studies, specifically to an increase in the kynurenine pathway activity and changes in peripheral and central BCAA and AAA levels. This suggests that the anticonvulsant effect of the KD may be at least partially associated with those observed biochemical alternations.
Collapse
|
6
|
Zhao X, Liang L, Xu R, Cheng P, Jia P, Bai Y, Zhang Y, Zhao X, Zheng X, Xiao C. Revealing the Antiepileptic Effect of α-Asaronol on Pentylenetetrazole-Induced Seizure Rats Using NMR-Based Metabolomics. ACS OMEGA 2022; 7:6322-6334. [PMID: 35224394 PMCID: PMC8867478 DOI: 10.1021/acsomega.1c06922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 05/04/2023]
Abstract
α-Asaronol from Acorus tatarinowii (known as "Shichangpu" in Traditional Chinese medicine) has been proved to possess more efficient antiepileptic activity and lower toxicity than α-asarone (namely "Xixinnaojiaonang" as an antiepileptic drug in China) in our previous study. However, the molecular mechanism of α-asaronol against epilepsy needs to be known if to become a novel antiepileptic medicine. Nuclear magnetic resonance (NMR)-based metabolomics was applied to investigate the metabolic patterns of plasma and the brain tissue extract from pentylenetetrazole (PTZ)-induced seizure rats when treated with α-asaronol or α-asarone. The results showed that α-asaronol can regulate the metabolomic level of epileptic rats to normal to some extent, and four metabolic pathways were associated with the antiepileptic effect of α-asaronol, including alanine, aspartate, and glutamate metabolism; synthesis and degradation of ketone bodies; glutamine and glutamate metabolism; and glycine, serine, and threonine metabolism. It was concluded that α-asaronol plays a vital role in enhancing energy metabolism, regulating the balance of excitatory and inhibitory neurotransmitters, and inhibiting cell membrane damage to prevent the occurrence of epilepsy. These findings are of great significance in developing α-asaronol into a promising antiepileptic drug derived from Traditional Chinese medicine.
Collapse
|
7
|
Anticonvulsant mechanisms of the ketogenic diet and caloric restriction. Epilepsy Res 2020; 168:106499. [PMID: 33190066 DOI: 10.1016/j.eplepsyres.2020.106499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 01/29/2023]
Abstract
Many treatments have been proposed to control epileptic seizures, such as the ketogenic diet and caloric restriction. However, seizure control has not yet been improved completely in all patients. Probably, due to the lack of understanding regarding this neurological disorder pathogenesis or pathophysiology, including its molecular approach. Currently, there is not much information about the molecular processes and genes involved, and their relation to the possible beneficial effects of diet therapy on epilepsy. The ketogenic diet and caloric restriction are implicated in potential anti-seizure mechanisms related to the gut microbiome, metabolic pathways, hormones and neurotransmitters, mitochondria improvement, a role in inflammation, and oxidative stress, among others. In this review, we pretend to describe the molecular mechanism and the possible genes involved in the different ketogenic diet and caloric restriction mechanisms of action described to decrease neural excitability and, therefore, epileptic seizures, especially when conventional treatment is not enough to achieve control of epilepsy.
Collapse
|
8
|
Yuen AWC, Walcutt IA, Sander JW. An acidosis-sparing ketogenic (ASK) diet to improve efficacy and reduce adverse effects in the treatment of refractory epilepsy. Epilepsy Behav 2017; 74:15-21. [PMID: 28667864 DOI: 10.1016/j.yebeh.2017.05.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2017] [Accepted: 05/13/2017] [Indexed: 12/13/2022]
Abstract
Diets that increase production of ketone bodies to provide alternative fuel for the brain are evolving from the classic ketogenic diet for epilepsy devised nearly a century ago. The classic ketogenic diet and its more recent variants all appear to have similar efficacy with approximately 50% of users showing a greater than 50% seizure reduction. They all require significant medical and dietetic support, and there are tolerability issues. A review suggests that low-grade chronic metabolic acidosis associated with ketosis is likely to be an important contributor to the short term and long term adverse effects of ketogenic diets. Recent studies, particularly with the characterization of the acid sensing ion channels, suggest that chronic metabolic acidosis may increase the propensity for seizures. It is also known that low-grade chronic metabolic acidosis has a broad range of negative health effects and an increased risk of early mortality in the general population. The modified ketogenic dietary treatment we propose is formulated to limit acidosis by measures that include monitoring protein intake and maximizing consumption of alkaline mineral-rich, low carbohydrate green vegetables. We hypothesize that this acidosis-sparing ketogenic diet is expected to be associated with less adverse effects and improved efficacy. A case history of life-long intractable epilepsy shows this diet to be a successful long-term strategy but, clearly, clinical studies are needed.
Collapse
Affiliation(s)
- Alan W C Yuen
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, WC1N 3BG London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, UK.
| | | | - Josemir W Sander
- NIHR University College London Hospitals Biomedical Research Centre, Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, WC1N 3BG London, UK; Chalfont Centre for Epilepsy, Chalfont St Peter, UK; Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW Heemstede, The Netherlands
| |
Collapse
|
9
|
Buchhalter JR, D'Alfonso S, Connolly M, Fung E, Michoulas A, Sinasac D, Singer R, Smith J, Singh N, Rho JM. The relationship between d-beta-hydroxybutyrate blood concentrations and seizure control in children treated with the ketogenic diet for medically intractable epilepsy. Epilepsia Open 2017; 2:317-321. [PMID: 29588960 PMCID: PMC5862113 DOI: 10.1002/epi4.12058] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2017] [Indexed: 01/05/2023] Open
Abstract
Objective The ketogenic diet (KD) is a proven treatment for drug‐resistant (DR) seizures in children and adolescents. However, the relationship between seizure control and the most commonly measured metabolite of the diet, the ketone body d‐beta‐hydroxybutyrate (D‐BHB), is controversial. This study was performed to clarify the relationship because specific ketone bodies may be useful as biomarkers of diet efficacy. Methods Families of children with DR seizures were approached for participation in this open‐label, prospective study when they were referred for the KD at two western Canadian children's hospitals. Inclusion criteria included documentation of DR seizures without exclusion based on age, sex, seizure, or syndrome type. Patients were excluded if they were referred for treatment of a metabolic disorder independent of seizures. Seizures were quantified via parental report and standardized as seizure frequency per 28 days. Epilepsy syndromes were identified on the basis of the medical record. Blood D‐BHB was determined by tandem mass spectrometry. Results A total of 23 patients were recruited from both sites. Data from five individuals were excluded because these seizures occurred in clusters, leaving 18 patients for the primary analysis. In the latter group, a clear positive correlation was present between measures of seizure frequency and D‐BHB concentrations. However, this failed to reach statistical significance, likely because of the relatively small numbers. Significance A trend clearly exists between seizure frequency and D‐BHB levels, so we should not be dissuaded by the lack of statistical significance because it possibly results from methodological techniques, especially sample size. These results call for a larger prospective study in which seizure frequency is assessed at the point of care in a standardized fashion so as to determine whether D‐BHB can be used as a reliable biomarker of KD efficacy.
Collapse
Affiliation(s)
- Jeffrey R Buchhalter
- Department of Pediatrics Cumming School of Medicine University of Calgary Calgary Alberta Canada.,Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Alberta Canada.,Alberta Children's Hospital Research Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Sabrina D'Alfonso
- Alberta Children's Hospital Research Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Mary Connolly
- Departments of Pediatrics and Neurology British Columbia Children's Hospital University of British Columbia Vancouver British Columbia Canada
| | - Ernest Fung
- Medical Genetics Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Aspasia Michoulas
- Departments of Pediatrics and Neurology British Columbia Children's Hospital University of British Columbia Vancouver British Columbia Canada
| | - David Sinasac
- Medical Genetics Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Rachel Singer
- Alberta Children's Hospital Research Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Jacklyn Smith
- Alberta Children's Hospital Research Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Narender Singh
- Alberta Children's Hospital Research Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada
| | - Jong M Rho
- Department of Pediatrics Cumming School of Medicine University of Calgary Calgary Alberta Canada.,Clinical Neurosciences Cumming School of Medicine University of Calgary Calgary Alberta Canada.,Alberta Children's Hospital Research Institute Cumming School of Medicine University of Calgary Calgary Alberta Canada.,Medical Genetics Cumming School of Medicine University of Calgary Calgary Alberta Canada.,Physiology & Pharmacology Cumming School of Medicine University of Calgary Calgary Alberta Canada
| |
Collapse
|
10
|
Different calorie restriction treatments have similar anti-seizure efficacy. Seizure 2016; 35:45-9. [DOI: 10.1016/j.seizure.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/03/2015] [Accepted: 01/03/2016] [Indexed: 11/22/2022] Open
|
11
|
Phillips-Farfán BV, Rubio Osornio MDC, Custodio Ramírez V, Paz Tres C, Carvajal Aguilera KG. Caloric restriction protects against electrical kindling of the amygdala by inhibiting the mTOR signaling pathway. Front Cell Neurosci 2015; 9:90. [PMID: 25814935 PMCID: PMC4356078 DOI: 10.3389/fncel.2015.00090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/26/2015] [Indexed: 11/26/2022] Open
Abstract
Caloric restriction (CR) has been shown to possess antiepileptic properties; however its mechanism of action is poorly understood. CR might inhibit the activity of the mammalian or mechanistic target of rapamycin (mTOR) signaling cascade, which seems to participate crucially in the generation of epilepsy. Thus, we investigated the effect of CR on the mTOR pathway and whether CR modified epilepsy generation due to electrical amygdala kindling. The former was studied by analyzing the phosphorylation of adenosine monophosphate-activated protein kinase, protein kinase B and the ribosomal protein S6. The mTOR cascade is regulated by energy and by insulin levels, both of which may be changed by CR; thus we investigated if CR altered the levels of energy substrates in the blood or the level of insulin in plasma. Finally, we studied if CR modified the expression of genes that encode proteins participating in the mTOR pathway. CR increased the after-discharge threshold and tended to reduce the after-discharge duration, indicating an anti-convulsive action. CR diminished the phosphorylation of protein kinase B and ribosomal protein S6, suggesting an inhibition of the mTOR cascade. However, CR did not change glucose, β-hydroxybutyrate or insulin levels; thus the effects of CR were independent from them. Interestingly, CR also did not modify the expression of any investigated gene. The results suggest that the anti-epileptic effect of CR may be partly due to inhibition of the mTOR pathway.
Collapse
Affiliation(s)
| | | | | | - Carlos Paz Tres
- Laboratorio de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía México City, México
| | | |
Collapse
|
12
|
Mantis JG, Meidenbauer JJ, Zimick NC, Centeno NA, Seyfried TN. Glucose reduces the anticonvulsant effects of the ketogenic diet in EL mice. Epilepsy Res 2014; 108:1137-44. [PMID: 24938543 DOI: 10.1016/j.eplepsyres.2014.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/14/2014] [Accepted: 05/19/2014] [Indexed: 01/24/2023]
Abstract
The ketogenic diet (KD) is known to be anticonvulsant and anti-epileptogenic. While the mechanism behind this therapeutic benefit is unclear, a reduction of circulating glucose levels through calorie restriction (CR) has been implicated. Foods or drinks that elevate blood glucose are known to compromise the therapeutic benefit of the KD in some children with epilepsy. We therefore evaluated the effect of a calorie restricted KD (KD-R) with supplementation of glucose in the drinking water of EL mice, a natural model of idiopathic generalized epilepsy, prior to seizure testing to assess the effect of glucose on seizure generation. Mice were fed either a standard diet or the KD unrestricted (SD-UR and KD-UR, respectively), or the KD restricted (KD-R). d-Glucose (25 mM) was supplemented in the drinking water of KD-R fed mice for 0.5h or for 2.5h prior to seizure testing. Each restricted mouse served as its own body weight control to achieve a 15-18% body weight reduction. Seizure susceptibility, body weights, and plasma glucose and β-hydroxybutyrate levels were measured over a nine-week treatment period. Body weights and glucose levels remained high over the testing period in both the SD-UR and the KD-UR groups, but were significantly reduced in all R-fed groups. A significant increase in β-hydroxybutyrate levels was observed in all KD groups. Seizure susceptibility remained highest in the SD-UR group, was slightly reduced in the KD-UR group, and was significantly reduced after three weeks in all R-fed groups. Supplementation of glucose prior to seizure testing resulted in a decrease of seizure threshold for R-fed mice, but did not alter bodyweight or circulating glucose levels. The KD has both an anticonvulsant and antiepileptogenic effect in EL mice. Here we confirm that CR enhances the anticonvulsant action of the KD in EL mice. Additionally, we show for the first time that supplementation of glucose decreases the anticonvulsant action of the KD, which further supports the hypothesis that CR works through transitioning metabolism from glucose to ketone utilization for energy.
Collapse
Affiliation(s)
- John G Mantis
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | | | | | | | | |
Collapse
|
13
|
Meidenbauer JJ, Ta N, Seyfried TN. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr Metab (Lond) 2014; 11:23. [PMID: 24910707 PMCID: PMC4047269 DOI: 10.1186/1743-7075-11-23] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diet therapies including calorie restriction, ketogenic diets, and fish-oil supplementation have been used to improve health and to treat a variety of neurological and non-neurological diseases. METHODS We investigated the effects of three diets on circulating plasma metabolites (glucose and β-hydroxybutyrate), hormones (insulin and adiponectin), and lipids over a 32-day period in C57BL/6J mice. The diets evaluated included a standard rodent diet (SD), a ketogenic diet (KD), and a standard rodent diet supplemented with fish-oil (FO). Each diet was administered in either unrestricted (UR) or restricted (R) amounts to reduce body weight by 20%. RESULTS The KD-UR increased body weight and glucose levels and promoted a hyperlipidemic profile, whereas the FO-UR decreased body weight and glucose levels and promoted a normolipidemic profile, compared to the SD-UR. When administered in restricted amounts, all three diets produced a similar plasma metabolite profile, which included decreased glucose levels and a normolipidemic profile. Linear regression analysis showed that circulating glucose most strongly predicted body weight and triglyceride levels, whereas calorie intake moderately predicted glucose levels and strongly predicted ketone body levels. CONCLUSIONS These results suggest that biomarkers of health can be improved when diets are consumed in restricted amounts, regardless of macronutrient composition.
Collapse
Affiliation(s)
| | - Nathan Ta
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
14
|
Shull S, Diaz-Medina G, Wong-Kisiel L, Nickels K, Eckert S, Wirrell E. Early efficacy of the ketogenic diet is not affected by initial body mass index percentile. Pediatr Neurol 2014; 50:469-73. [PMID: 24656208 DOI: 10.1016/j.pediatrneurol.2014.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/27/2013] [Accepted: 01/01/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Predictors of the ketogenic diet's success in treating pediatric intractable epilepsy are not well understood. The aim of this study was to determine whether initial body mass index and weight percentile impact early efficacy of the traditional ketogenic diet in children initiating therapy for intractable epilepsy. METHODS This retrospective study included all children initiating the ketogenic diet at Mayo Clinic, Rochester from January 2001 to December 2010 who had body mass index (children ≥2 years of age) or weight percentile (those <2 years of age) documented at diet initiation and seizure frequency recorded at diet initiation and one month. Responders were defined as achieving a >50% seizure reduction from baseline. RESULTS Our cohort consisted of 48 patients (20 male) with a median age of 3.1 years. There was no significant correlation between initial body mass index or weight percentile and seizure frequency reduction at one month (P = 0.72, r = 0.26 and P = 0.91, r = 0.03). There was no significant association between body mass index or weight percentile quartile and responder rates (P = 0.21 and P = 0.57). Children considered overweight or obese at diet initiation (body mass index or weight percentile ≥85) did not have lower responder rates than those with body mass index or weight percentiles <85 (6/14 vs 19/34, respectively, P = 0.41). CONCLUSIONS Greater initial body mass index and weight-for-age percentiles do not adversely affect the efficacy of the ketogenic diet.
Collapse
Affiliation(s)
- Shastin Shull
- Mayo Medical School, Mayo Clinic, Rochester, Minnesota
| | - Gloria Diaz-Medina
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, Texas
| | | | | | - Susan Eckert
- Division of Child Neurology, Mayo Clinic, Rochester, Minnesota
| | - Elaine Wirrell
- Division of Child Neurology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
15
|
Rationale for using intermittent calorie restriction as a dietary treatment for drug resistant epilepsy. Epilepsy Behav 2014; 33:110-4. [PMID: 24657501 DOI: 10.1016/j.yebeh.2014.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/18/2014] [Accepted: 02/23/2014] [Indexed: 01/23/2023]
Abstract
There has been resurgence in the use of dietary treatment, principally the classical ketogenic diet and its variants, for people with epilepsy. These diets generally require significant medical and dietician support. An effective but less restrictive dietary regimen is likely to be more acceptable and more widely used. Calorie-restricted diets appear to produce a range of biochemical and metabolic changes including reduced glucose levels, reduced inflammatory markers, increased sirtuins, increased AMPK signaling, inhibition of mTOR signaling, and increase in autophagy. There are studies in animal seizure models that suggest that these biochemical and metabolic changes may decrease ictogenesis and epileptogenesis. A calorie-restricted diet might be effective in reducing seizures in people with epilepsy. Hence, there is a sufficient rationale to undertake clinical trials to assess the efficacy and safety of calorie-restricted diets in people with epilepsy.
Collapse
|
16
|
Amigo I, Kowaltowski AJ. Dietary restriction in cerebral bioenergetics and redox state. Redox Biol 2014; 2:296-304. [PMID: 24563846 PMCID: PMC3926116 DOI: 10.1016/j.redox.2013.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022] Open
Abstract
The brain has a central role in the regulation of energy stability of the organism. It is the organ with the highest energetic demands, the most susceptible to energy deficits, and is responsible for coordinating behavioral and physiological responses related to food foraging and intake. Dietary interventions have been shown to be a very effective means to extend lifespan and delay the appearance of age-related pathological conditions, notably those associated with brain functional decline. The present review focuses on the effects of these interventions on brain metabolism and cerebral redox state, and summarizes the current literature dealing with dietary interventions on brain pathology.
Collapse
Key Words
- AD, Alzheimer's disease
- CR, caloric restriction
- Caloric restriction
- Energy metabolism
- FR, food restriction
- IF, intermittent fasting
- KA, kainic acid
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Mitochondria
- NOS, nitric oxide synthase
- Neurological diseases
- PD, Parkinson's disease
- PTZ, pentylenetetrazole
- ROS, reactive oxygen species
- TCA, tricarboxylic acid cycle
Collapse
Affiliation(s)
- Ignacio Amigo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil
| |
Collapse
|
17
|
Murphy P. Use of the ketogenic diet as a treatment for epilepsy refractory to drug treatment. Expert Rev Neurother 2014; 5:769-75. [PMID: 16274334 DOI: 10.1586/14737175.5.6.769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ketogenic diet is a high-fat, low-carbohydrate and low-protein diet used in the treatment of epilepsy that does not respond to antiepileptic drugs. The diet has been found to be very effective in treating intractable epilepsy in children. There is also some evidence that the diet is useful in treating drug-resistant epilepsy in infants, adolescents and adults. This paper traces the history and development of the ketogenic diet and reviews the clinical and animal research investigating its effects.
Collapse
Affiliation(s)
- Patricia Murphy
- University of Toronto, Department of Pharmacology, Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
18
|
Schoeler NE, Cross JH, Sander JW, Sisodiya SM. Can we predict a favourable response to Ketogenic Diet Therapies for drug-resistant epilepsy? Epilepsy Res 2013; 106:1-16. [DOI: 10.1016/j.eplepsyres.2013.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/09/2013] [Indexed: 01/01/2023]
|
19
|
Linard B, Ferrandon A, Koning E, Nehlig A, Raffo E. Ketogenic diet exhibits neuroprotective effects in hippocampus but fails to prevent epileptogenesis in the lithium-pilocarpine model of mesial temporal lobe epilepsy in adult rats. Epilepsia 2010; 51:1829-36. [PMID: 20633040 DOI: 10.1111/j.1528-1167.2010.02667.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Although the number of antiepileptic drugs (AEDs) is increasing, none displays neuroprotective or antiepileptogenic properties that could prevent status epilepticus (SE)-induced drug-resistant epilepsy. Ketogenic diet (KD) and calorie restriction (CR) are proposed as alternative treatments in epilepsy. Our goal was to assess the neuroprotective or antiepileptogenic effect of these diets in a well-characterized model of mesial temporal lobe epilepsy following initial SE induced by lithium-pilocarpine in adult rats. METHODS Seventy-five P50 male Wistar rats were fed a specific diet: normocalorie carbohydrate (NC), hypocalorie carbohydrate (HC), normocalorie ketogenic (NK), or hypocalorie ketogenic (HK). Rats were subjected to lithium-pilocarpine SE, except six NC to constitute a control group for histology (C). Four rats per group were implanted with epidural electrodes to record electroencephalography (EEG) during SE and the next six following days. From the seventh day, the animals were video-recorded 10 h daily to determine latency to epilepsy onset. Neuronal loss in hippocampus and parahippocampal cortices was analyzed 1 month after the first spontaneous seizure. RESULTS After lithium-pilocarpine injection, neither KD nor CR modified SE features or latency to epilepsy. In hippocampal layers, KD or CR exhibited a neuroprotective potential without cooperative effect. Parahippocampal cortices were not protected by the diets. CONCLUSION The antiepileptic effect of KD and/or CR is overwhelmed by lithium-pilocarpine injection. The isolated protection of hippocampal layers induced by KD or CR or their association failed to modify the course of epileptogenesis.
Collapse
|
20
|
Parinejad N, Keshavarzi S, Movahedin M, Raza M. Behavioral and histological assessment of the effect of intermittent feeding in the pilocarpine model of temporal lobe epilepsy. Epilepsy Res 2009; 86:54-65. [PMID: 19505798 DOI: 10.1016/j.eplepsyres.2009.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 04/26/2009] [Accepted: 05/01/2009] [Indexed: 01/17/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most resistant type of epilepsy. Currently available drugs for epilepsy are not antiepileptogenic. A novel treatment for epilepsy would be to block or reverse the process of epileptogenesis. We used intermittent feeding (IF) regimen of the dietary restriction (DR) to study its effect on epileptogenesis and neuroprotection in the pilocarpine model of TLE in rats. The effect of IF regimen on the induction of status epilepticus (SE), the duration of latent period, and the frequency, duration, severity and the time of occurrence of Spontaneous Recurrent Seizures (SRS) were investigated. We also studied the effect of IF regimen on hippocampal neurons against the excitotoxic damage of prolonged SE (about 4h) induced by pilocarpine. The animals (Wistar, male, 200-250g) were divided into four main groups: AL-AL (ad libitum diet throughout), AL-IF (PfS) [IF post-first seizure], AL-IF (PSE) [IF post-SE] and IF-IF (IF diet throughout), and two AL and IF control groups. SE was induced by pilocarpine (350mg/kg, i.p.) and with diazepam (6mg/kg, i.p.) injected after 3h, the behavioral signs of SE terminated at about 4h (AL animals, n=29, 260.43+/-8.74min; IF animals, n=19, 224.32+/-20.73min). Behavioral monitoring was carried out by 24h video recording for 3 weeks after the first SRS. Rat brains were then prepared for histological study with Nissl stain and cell counting was done in CA1, CA2 and CA3 regions of the hippocampus. The results show that the animals on IF diet had significantly less SE induction and significantly longer duration of latent period (the period of epileptogenesis) was seen in IF-IF group compared to the AL-AL group. The severity of SRS was significantly more in AL-IF (PfS) compared to the AL-IF (PSE) group. These results indicate that IF diet can make rats resistant to the induction of SE and can prolong the process of epileptogenesis. The results of the histological study show that the number of pyramidal neurons was statistically less in CA1, CA2 and CA3 of the hippocampus in the experimental groups compared to the control groups. However, IF regimen could not protect the hippocampal neurons against the excitotoxic injury caused by a prolonged SE. We conclude that IF regimen can significantly influence various behavioral characteristics of pilocarpine model of TLE. Further studies can elaborate the exact mechanisms as well as its possible role in the treatment of human TLE.
Collapse
Affiliation(s)
- Neda Parinejad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | | | | | | |
Collapse
|
21
|
Abstract
The ketogenic diet (KD) traditionally was initiated using specified ketogenic ratios, limited calories, and fluids. Recent work has shown that lower ketogenic ratio diets are frequently as efficacious as higher ones and result in fewer adverse effects. In animals, calorie restriction is anticonvulsant. In children, however, the need for calorie restriction is less clear, but avoidance of excessive calories may improve efficacy of the diet. There is no evidence that fluid restriction is a necessary component of the KD. Given the higher risk of nephrolithiasis, adequate fluid intake should be encouraged.
Collapse
Affiliation(s)
- Elaine C Wirrell
- Division of Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA.
| |
Collapse
|
22
|
Hansen SL, Nielsen AH, Knudsen KE, Artmann A, Petersen G, Kristiansen U, Hansen SH, Hansen HS. Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus. Neurochem Int 2008; 54:199-204. [PMID: 19100800 DOI: 10.1016/j.neuint.2008.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 10/20/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
The ketogenic diet (KD) is used for the treatment of refractory epilepsy in children, however, the mechanism(s) remains largely unknown. Also, the antiepileptogenic potential in animal models of epilepsy has been poorly addressed. Activation of cannabinoid type-1 receptor (CB(1)-R) upon seizure activity may mediate neuroprotection as may several N-acylethanolamines. It is unknown how the KD interfere with the endocannabinoid system. We investigated the antiepileptogenic potential of the KD in the pentylenetetrazole kindling model in young mice and measured the hippocampal levels of CB(1)-R by Western blot and of endocannabinoids and N-acylethanolamines by mass spectrometry. The KD significantly decreased incidence and severity of seizures, and significantly increased the latency to clonic convulsions. There were no changes in levels of endocannabinoids or CB(1)-R expression by either seizure activity or type of diet. The level of oleoylethanolamide as well as the sum of N-acylethanolamines were significantly decreased by the KD, but were unaffected by seizure activity. The study shows that the KD had clear antiepileptogenic properties in the pentylenetetrazole kindling model and does not support a role of endocannabinoids in this model. The significance of the decreased hippocampal level of oleoylethanolamide awaits further studies.
Collapse
Affiliation(s)
- Suzanne L Hansen
- Department of Pharmacology and Pharmacotherapy, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. ACTA ACUST UNITED AC 2008; 59:293-315. [PMID: 18845187 DOI: 10.1016/j.brainresrev.2008.09.002] [Citation(s) in RCA: 392] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 12/18/2022]
Abstract
Both calorie restriction and the ketogenic diet possess broad therapeutic potential in various clinical settings and in various animal models of neurological disease. Following calorie restriction or consumption of a ketogenic diet, there is notable improvement in mitochondrial function, a decrease in the expression of apoptotic and inflammatory mediators and an increase in the activity of neurotrophic factors. However, despite these intriguing observations, it is not yet clear which of these mechanisms account for the observed neuroprotective effects. Furthermore, limited compliance and concern for adverse effects hamper efforts at broader clinical application. Recent research aimed at identifying compounds that can reproduce, at least partially, the neuroprotective effects of the diets with less demanding changes to food intake suggests that ketone bodies might represent an appropriate candidate. Ketone bodies protect neurons against multiple types of neuronal injury and are associated with mitochondrial effects similar to those described during calorie restriction or ketogenic diet treatment. The present review summarizes the neuroprotective effects of calorie restriction, of the ketogenic diet and of ketone bodies, and compares their putative mechanisms of action.
Collapse
Affiliation(s)
- Marwan Maalouf
- Department of Neurobiology, David Geffen School of Medicine, University of California, 63-323 CH5, Box 951763, Los Angeles, CA 90095-1763, USA.
| | | | | |
Collapse
|
25
|
Raffo E, François J, Ferrandon A, Koning E, Nehlig A. Calorie-restricted ketogenic diet increases thresholds to all patterns of pentylenetetrazol-induced seizures: Critical importance of electroclinical assessment. Epilepsia 2008; 49:320-8. [DOI: 10.1111/j.1528-1167.2007.01380.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Kwon YS, Jeong SW, Kim DW, Choi ES, Son BK. Effects of the ketogenic diet on neurogenesis after kainic acid-induced seizures in mice. Epilepsy Res 2008; 78:186-94. [PMID: 18201870 DOI: 10.1016/j.eplepsyres.2007.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 11/23/2007] [Accepted: 11/29/2007] [Indexed: 02/09/2023]
Abstract
The ketogenic diet (KD) remains a therapy in search of explanation although it is an established treatment of intractable epilepsy. Recent studies suggest that the KD may be both anticonvulsant and antiepileptogenic. Epileptic seizures have been shown to stimulate the proliferation rate of neuronal progenitor cells in adult animals, which may be related to epileptogenesis. It is known that calorie restriction (CR) increases neurogenesis. The KD was originally formulated to reproduce the biochemical changes seen upon fasting (extreme CR). Thus, we investigated the effects of the KD on neurogenesis after kainic acid (KA)-induced seizures in mice. In the present study, quantitative analysis of BrdU labeling revealed a significant increase in the proliferation rate of neuronal progenitor cells after KA-induced seizures in the KD-fed mice. This finding may provide a clue to explain how the KD exerts antiepileptogenic effects although further studies are mandatory to elucidate the relationship between seizure-induced neurogenesis augmented by the KD and its antiepileptogenic properties. In conclusion, our results suggest that the KD enhances neurogenesis, which may be related to its beneficial effects on epilepsy.
Collapse
Affiliation(s)
- Young Se Kwon
- Department of Pediatrics, College of Medicine, Inha University, Incheon, Republic of Korea
| | | | | | | | | |
Collapse
|
27
|
Bodenant M, Moreau C, Sejourné C, Auvin S, Delval A, Cuisset JM, Derambure P, Destée A, Defebvre L. [Interest of the ketogenic diet in a refractory status epilepticus in adults]. Rev Neurol (Paris) 2008; 164:194-9. [PMID: 18358881 DOI: 10.1016/j.neurol.2007.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 08/07/2007] [Accepted: 08/17/2007] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Ketogenic diets have been employed for the treatment of intractable epilepsy in children since 1921, although underlying mechanism remains unknown. OBSERVATION We report the case of a 54-year-old man with partial refractory status epilepticus who exhibited a favourable outcome about seven days after introduction of a ketogenic diet in association with antiepileptic drugs. DISCUSSION Although its efficiency was largely demonstrated in children, little is known about the impact of a ketogenic diet in adults with refractory epilepsy. CONCLUSION Introduction of a ketogenic diet requires a multidisciplinary approach. Its usefulness in adult intractable epilepsy and/or refractory status epilepticus merits further study into its efficacy in reducing the frequency of seizures and a possible prolonged effect.
Collapse
Affiliation(s)
- M Bodenant
- EA 2683, IFR 114, service de neurologie et pathologie du Mouvement, CHRU, 59037 Lille cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
de Almeida Rabello Oliveira M, da Rocha Ataíde T, de Oliveira SL, de Melo Lucena AL, de Lira CEPR, Soares AA, de Almeida CBS, Ximenes-da-Silva A. Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats. Neurosci Lett 2008; 434:66-70. [PMID: 18281154 DOI: 10.1016/j.neulet.2008.01.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 01/07/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
The ketogenic diet (KD) is a high fat and low carbohydrate and protein diet. It is used in the clinical treatment of epilepsy, in order to decrease cerebral excitability. KD is usually composed by long-chain triglycerides (LCT) while medium-chain triglycerides (MCT) diet is beginning to be used in some clinical treatment of disorders of pyruvate carboxylase enzyme and long-chain fatty acid oxidation. Our study aimed to analyze the effects of medium- and long-chain KD on cerebral electrical activity, analyzing the propagation of the phenomenon of cortical spreading depression (CSD). Three groups of weaned rats (21 days old) received, for 7 weeks, either a control (AIN-93G diet), or a MCT-KD (rich in triheptanoin oil), or a LCT-KD (rich in soybean oil). They were compared to another three groups (21 days old) receiving the same diets for just 10 days. CSD propagation was evaluated just after ending the dietary treatments. Results showed that short-term KD treatment resulted in a significant reduction of the CSD velocity of propagation (control group: 4.02+/-1.04mm/min; MCT-KD: 0.81+/-1.46mm/min and LCT-KD: 2.26+/-0.41mm/min) compared to the control group. However, long-term treatment with both KDs had no effect on the CSD velocity (control group: 3.10+/-0.41mm/min, MCT-KD: 2.91+/-1.62mm/min, LCT-KD: 3.02+/-2.26mm/min) suggesting that both short-term KDs have a positive effect in decreasing brain cerebral excitability in young animals. These data show for the first time that triheptanoin has an effect on central nervous system.
Collapse
Affiliation(s)
- Marcela de Almeida Rabello Oliveira
- Laboratório de Eletrofisiologia e Metabolismo Cerebral, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, 57.010-020, Maceió, AL, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yudkoff M, Daikhin Y, Melø TM, Nissim I, Sonnewald U, Nissim I. The ketogenic diet and brain metabolism of amino acids: relationship to the anticonvulsant effect. Annu Rev Nutr 2007; 27:415-30. [PMID: 17444813 PMCID: PMC4237068 DOI: 10.1146/annurev.nutr.27.061406.093722] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In many epileptic patients, anticonvulsant drugs either fail adequately to control seizures or they cause serious side effects. An important adjunct to pharmacologic therapy is the ketogenic diet, which often improves seizure control, even in patients who respond poorly to medications. The mechanisms that explain the therapeutic effect are incompletely understood. Evidence points to an effect on brain handling of amino acids, especially glutamic acid, the major excitatory neurotransmitter of the central nervous system. The diet may limit the availability of oxaloacetate to the aspartate aminotransferase reaction, an important route of brain glutamate handling. As a result, more glutamate becomes accessible to the glutamate decarboxylase reaction to yield gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter and an important antiseizure agent. In addition, the ketogenic diet appears to favor the synthesis of glutamine, an essential precursor to GABA. This occurs both because ketone body carbon is metabolized to glutamine and because in ketosis there is increased consumption of acetate, which astrocytes in the brain quickly convert to glutamine. The ketogenic diet also may facilitate mechanisms by which the brain exports to blood compounds such as glutamine and alanine, in the process favoring the removal of glutamate carbon and nitrogen.
Collapse
Affiliation(s)
- Marc Yudkoff
- Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The ketogenic diet (KD) is a broadly effective treatment for medically refractory epilepsy. Despite nearly a century of use, the mechanisms underlying its clinical efficacy remain unknown. In this review, we present one intersecting view of how the KD may exert its anticonvulsant activity against the backdrop of several seemingly disparate mechanistic theories. We summarize key insights gleaned from experimental and clinical studies of the KD, and focus particular attention on the role that ketone bodies, fatty acids, and limited glucose may play in seizure control. Chronic ketosis is anticipated to modify the tricarboxcylic acid cycle to increase GABA synthesis in brain, limit reactive oxygen species (ROS) generation, and boost energy production in brain tissue. Among several direct neuro-inhibitory actions, polyunsaturated fatty acids increased after KD induce the expression of neuronal uncoupling proteins (UCPs), a collective up-regulation of numerous energy metabolism genes, and mitochondrial biogenesis. These effects further limit ROS generation and increase energy production. As a result of limited glucose and enhanced oxidative phosphorylation, reduced glycolytic flux is hypothesized to activate metabolic K(ATP) channels and hyperpolarize neurons and/or glia. Although it is unlikely that a single mechanism, however well substantiated, will explain all of the diet's clinical benefits, these diverse, coordinated changes seem poised to stabilize synaptic function and increase the resistance to seizures throughout the brain.
Collapse
Affiliation(s)
- Kristopher J Bough
- Center for Drug Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20855, USA.
| | | |
Collapse
|
31
|
Nylen K, Likhodii SS, Hum KM, Burnham WM. A ketogenic diet and diallyl sulfide do not elevate afterdischarge thresholds in adult kindled rats. Epilepsy Res 2006; 71:23-31. [PMID: 16782309 DOI: 10.1016/j.eplepsyres.2006.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/09/2006] [Accepted: 05/10/2006] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Acetone has been shown to have broad-spectrum anticonvulsant actions in animal seizure models and has been hypothesized to play a role in the anticonvulsant mechanism of the ketogenic diet (KD). The present study examined the ability of a KD to elevate amygdaloid afterdischarge thresholds (ADT) in fully kindled rats. The effects of the KD were studied in the presence and absence of diallyl sulfide (DAS), an inhibitor of acetone metabolism. METHODS Twenty-four adult male rats were kindled to 30 stage 5 seizures. Afterdischarge thresholds (ADT) were determined. Subjects were then administered one of the following diets: (1) KD+V (vehicle; KD+V); (2) KD+DAS; (3) control diet+V (CD+V); (4) CD+DAS. They were stimulated every second day. Blood sampling was performed every second day--on non-stimulating days--to determine levels of glucose, beta-hydroxybutyrate, acetoacetate, and acetone. After 20 days, ADTs were re-determined. RESULTS Blood acetone concentrations were significantly higher in the KD+DAS group as compared to the other groups, although they did not reach "therapeutic levels". None of the treatments, however, elevated ADTs. CONCLUSIONS The KD was unable to elevate amygdaloid ADTs in fully kindled rats. Although subjects in the KD+DAS group achieved significant elevations of blood acetone, these concentrations (e.g. 0.2 mM) were much lower than those (>2.0 mM) previously shown to confer anticonvulsant activity. There appears to be large difference between humans and rats in their ability to produce elevated blood acetone levels on the KD. These data suggest that adult rats are not ideal subjects for modeling the anticonvulsant actions of the KD.
Collapse
Affiliation(s)
- Kirk Nylen
- University of Toronto Epilepsy Research Program, Department of Pharmacology, Ontario, Canada M5S 1A8.
| | | | | | | |
Collapse
|
32
|
Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I. Short-term fasting, seizure control and brain amino acid metabolism. Neurochem Int 2006; 48:650-6. [PMID: 16510212 DOI: 10.1016/j.neuint.2006.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 01/10/2006] [Accepted: 01/10/2006] [Indexed: 11/26/2022]
Abstract
The ketogenic diet is an effective treatment for seizures, but the mechanism of action is unknown. It is uncertain whether the anti-epileptic effect presupposes ketosis, or whether the restriction of calories and/or carbohydrate might be sufficient. We found that a relatively brief (24 h) period of low glucose and low calorie intake significantly attenuated the severity of seizures in young Sprague-Dawley rats (50-70 gms) in whom convulsions were induced by administration of pentylenetetrazole (PTZ). The blood glucose concentration was lower in animals that received less dietary glucose, but the brain glucose level did not differ from control blood [3-OH-butyrate] tended to be higher in blood, but not in brain, of animals on a low-glucose intake. The concentration in brain of glutamine increased and that of alanine declined significantly with low-glucose intake. The blood alanine level fell more than that of brain alanine, resulting in a marked increase ( approximately 50%) in the brain:blood ratio for alanine. In contrast, the brain:blood ratio for leucine declined by about 35% in the low-glucose group. When animals received [1-(13)C]glucose, a metabolic precursor of alanine, the appearance of (13)C in alanine and glutamine increased significantly relative to control. The brain:blood ratio for [(13)C]alanine exceeded 1, indicating that the alanine must have been formed in brain and not transported from blood. The elevated brain(alanine):blood(alanine) could mean that a component of the anti-epileptic effect of low carbohydrate intake is release of alanine from brain-to-blood, in the process abetting the disposal of glutamate, excess levels of which in the synaptic cleft would contribute to the development of seizures.
Collapse
Affiliation(s)
- Marc Yudkoff
- Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Kossoff EH, McGrogan JR, Bluml RM, Pillas DJ, Rubenstein JE, Vining EP. A Modified Atkins Diet Is Effective for the Treatment of Intractable Pediatric Epilepsy. Epilepsia 2006; 47:421-4. [PMID: 16499770 DOI: 10.1111/j.1528-1167.2006.00438.x] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The Atkins diet may induce ketosis as does the ketogenic diet, without restrictions on calories, fluids, protein, or need for an inpatient fast and admission. Our objective was to evaluate the efficacy and tolerability of a modified Atkins diet for intractable childhood epilepsy. METHODS Twenty children were treated prospectively in a hospital-based ambulatory clinic from September 2003 to May 2005. Children aged 3-18 years, with at least three seizures per week, who had been treated with at least two anticonvulsants, were enrolled and received the diet over a 6-month period. Carbohydrates were initially limited to 10 g/day, and fats were encouraged. Parents measured urinary ketones semiweekly and recorded seizures daily. All children received vitamin and calcium supplementation. RESULTS In all children, at least moderate urinary ketosis developed within 4 days (mean, 1.9). Sixteen (80%) completed the 6-month study; 14 chose to remain on the diet afterward. At 6 months, 13 (65%) had >50% improvement, and seven (35%) had >90% improvement (four were seizure free). Mean seizure frequency after 6 months was 40 per week (p = 0.005). Over a 6-month period, mean serum blood urea nitrogen increased from 12 to 17 mg/dl (p = 0.01); creatinine was unchanged. Cholesterol increased from 192 to 221 mg/dl, (p = 0.06). Weight did not change significantly (34.0-33.7 kg); only six children lost weight. A stable body mass index over time correlated with >90% improvement (p = 0.004). CONCLUSIONS A modified Atkins diet is an effective and well-tolerated therapy for intractable pediatric epilepsy.
Collapse
Affiliation(s)
- Eric H Kossoff
- John M. Freeman Pediatric Epilepsy Center, Departments of Neurology and Pediatrics, the Johns Hopkins Medical Institutions, Johns Hopkins Hospital, 600 North Wolfe Street, Baltimore, MS 21287-1000, U.S.A.
| | | | | | | | | | | |
Collapse
|
34
|
Lai MC, Holmes GL, Lee KH, Yang SN, Wang CA, Wu CL, Tiao MM, Hsieh CS, Lee CH, Huang LT. Effect of neonatal isolation on outcome following neonatal seizures in rats--the role of corticosterone. Epilepsy Res 2005; 68:123-36. [PMID: 16316743 DOI: 10.1016/j.eplepsyres.2005.10.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/03/2005] [Accepted: 10/19/2005] [Indexed: 02/02/2023]
Abstract
Emerging evidence indicates that early maternal care permanently modifies the activity of hypothalamic-pituitary-adrenal (HPA) axis and is a critical factor in determining the capacity of the brain to compensate for later encountered insults. The purpose of this study was to determine the role of corticosterone (CORT) in the detrimental effects of neonatal isolation (NI) on seizures. Rats were assigned randomly to the following five groups: (1) control (CONT) rats; (2) NI rats that underwent daily separation from their dams from postnatal day 2 (P2) to P9; (3) status epilepticus (SE) rats, induced by lithium-pilocarpine (Li-Pilo) model at P10; (4) NI plus SE (NIS) rats and (5) NISM rats, a subset of NIS rats receiving metyrapone (100 mg/kg), a CORT synthesis inhibitor, immediately after SE induction. At P10, plasma CORT levels were compared at baseline in CONT and NI rats and in response to Li-Pilo-induced SE among SE, NIS and NISM rats. We evaluated the spatial memory in the Morris water maze at P50 approximately 55, the expression of hippocampal cyclic adenosine monophosphate (cAMP)-responsive element-binding protein phosphorylation at serine-133 (pCREBSer-133) at P55, hippocampal neuronal damage at P80 and seizure threshold at P100. The isolated rats exhibited higher CORT release in response to SE than non-isolated rats, and the NIS rats had greater cognitive deficits and decreased seizure threshold compared to the CONT, NI and SE groups. By contrast, the NISM group, compared to the NIS group, showed a normal CORT response to SE and better spatial memory but no difference in seizure threshold. Compared to the CONT group, the hippocampal pCREBSer-133 level was significantly reduced in all experimental groups (NI, SE, NIS, NISM) with no differences between groups. All rats were free of spontaneous seizures later in life and had no discernible neuronal loss in the hippocampus. Results in this model demonstrate repetitive NI enhances response of plasma CORT to SE, and exacerbates the neurological consequences of neonatal SE. Amelioration of neurological sequelae following reduction of the SE-induced excessive rise in plasma CORT implicates CORT in the pathogenesis of NI increasing the vulnerability to seizures.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rhodes ME, Talluri J, Harney JP, Frye CA. Ketogenic diet decreases circulating concentrations of neuroactive steroids of female rats. Epilepsy Behav 2005; 7:231-9. [PMID: 16054440 PMCID: PMC3637968 DOI: 10.1016/j.yebeh.2005.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/25/2005] [Accepted: 05/27/2005] [Indexed: 11/29/2022]
Abstract
Ketogenic diet (KD) is used to manage intractable epilepsy; however, the mechanisms underlying its therapeutic effects are not known. Steroid hormones, such as progesterone and testosterone, are derived from cholesterol, and are readily 5alpha-reduced to dihydroprogesterone and dihydrotestosterone, which are subsequently converted to 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP) and 3alpha-androstanediol, neuroactive steroids that can influence seizures. The present study examined the effects of the KD on circulating concentrations of these neuroactive steroids, and their precursors, in intact female rats. Thirty-six, 22-day-old female Sprague-Dawley rats (weaned at 21 days) were fasted for 8 hours prior to placement on one of three dietary regimens for 6 weeks: ad libitum chow, calorie-restricted chow, or KD. After 6 weeks of the diet, when six rats in each dietary condition were in diestrus and six were in behavioral estrus, all rats were administered pentylenetetrazole (PTZ, 70 mg/kg, i.p.). The latency and incidence of seizures were recorded by an observer who was uninformed of the estrous cycle and dietary treatment conditions of the rats. Immediately after each test, trunk blood was obtained for later measurement of pregnane (progesterone, dihydroprogesterone, 3alpha,5alpha-THP) and androstane (testosterone, dihydrotestosterone, 3alpha-androstanediol) neuroactive steroid concentrations in plasma by radioimmunoassay. KD tended to lengthen the latency to, and significantly reduced the number of, PTZ-induced barrel roll seizures. KD also significantly reduced plasma levels of the pregnane (dihydroprogesterone, 3alpha,5alpha-THP) and androstane (dihydrotestosterone, 3alpha-androstanediol) 5alpha-reduced metabolites. These data suggest that levels of pregnane and androstane neuroactive steroids, or their precursors, may underlie some of the antiseizure effects of KD.
Collapse
Affiliation(s)
- Madeline E. Rhodes
- Department of Biology, University of Hartford, West Hartford, CT 06117, USA
- Department of Psychology, The University at Albany–Suny, Albany, NY 12222, USA
| | - Jayanth Talluri
- Department of Biology, University of Hartford, West Hartford, CT 06117, USA
| | - Jacob P. Harney
- Department of Biology, University of Hartford, West Hartford, CT 06117, USA
| | - Cheryl A. Frye
- Department of Psychology, The University at Albany–Suny, Albany, NY 12222, USA
- Corresponding author. Fax: +1 518 442 4867. (C.A. Frye)
| |
Collapse
|
36
|
Nylen K, Likhodii S, Abdelmalik PA, Clarke J, Burnham WM. A comparison of the ability of a 4:1 ketogenic diet and a 6.3:1 ketogenic diet to elevate seizure thresholds in adult and young rats. Epilepsia 2005; 46:1198-204. [PMID: 16060928 DOI: 10.1111/j.1528-1167.2005.71204.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The pentylenetetrazol (PTZ) infusion test was used to compare seizure thresholds in adult and young rats fed either a 4:1 ketogenic diet (KD) or a 6.3:1 KD. We hypothesized that both KDs would significantly elevate seizure thresholds and that the 4:1 KD would serve as a better model of the KD used clinically. METHODS Ninety adult rats and 75 young rats were placed on one of five experimental diets: (a) a 4:1 KD, (b) a control diet balanced to the 4:1 KD, (c) a 6.3:1 KD, (d) a standard control diet, or (e) an ad libitum standard control diet. All subjects were seizure tested by using the PTZ infusion test. Blood glucose and beta-hydroxybutyrate (beta-OHB) levels were measured. RESULTS Neither KD elevated absolute "latencies to seizure" in young or adult rats. Similarly, neither KD elevated "threshold doses" in adult rats. In young rats, the 6.3:1 KD, but not the 4:1 KD, significantly elevated threshold doses. The 6.3:1 KD group showed poorer weight gain than the 4:1 KD group when compared with respective controls. The most dramatic discrepancies were seen in young rats. CONCLUSIONS "Threshold doses" and "latency to seizure" data provided conflicting measures of seizure threshold. This was likely due to the inflation of threshold doses calculated by using the much smaller body weights found in the 6.3:1 KD group. Ultimately, the PTZ infusion test in rats may not be a good preparation to model the anticonvulsant effects of the KD seen clinically, especially when dietary treatments lead to significantly mismatched body weights between the groups.
Collapse
Affiliation(s)
- Kirk Nylen
- University of Toronto Epilepsy Research Program, Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND The ketogenic diet is a low-carbohydrate, adequate-protein, and high-fat diet with a long history of use for the treatment of intractable seizures in children. This dietary therapy has been enjoying increasing popularity in recent years, despite the availability of increasing numbers of new antiepileptic drugs and surgical treatments. REVIEW SUMMARY The authors review the history of the ketogenic diet, the traditional protocol in initiating it, possible mechanisms of its action, evidence for efficacy, and side effects. In addition, they highlight some of the areas of active research in this field as well as future directions and unanswered questions. CONCLUSION The ketogenic diet is an efficacious and relatively safe treatment of intractable seizures. Despite its long history, however, much remains unknown about the diet, including its mechanisms of action, the optimal protocol, and the full range of its applicability. Investigations of the diet are providing new insight into the mechanisms behind seizures and epilepsy itself, as well as possible new therapies.
Collapse
|
38
|
Stafstrom CE. Eating your way to seizure control. Epilepsy Curr 2005; 4:135-6. [PMID: 16059475 PMCID: PMC1176347 DOI: 10.1111/j.1535-7597.2004.44004.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Abstract
Dietary therapies represent a potentially valuable adjunct to other epilepsy treatments, such as anticonvulsant medications, epilepsy surgery, and vagus nerve stimulation. Although the ketogenic diet (high fat, adequate protein, low carbohydrate) is the most well-established dietary therapy for epilepsy, other possible approaches include the Atkins diet (high fat, high protein, low carbohydrate), a diet enriched in polyunsaturated fatty acids, or overall restriction of calorie intake. This review discusses the current clinical status of each of these dietary approaches and suggests possible mechanisms by which they might suppress neuronal hyperexcitability and seizures.
Collapse
|
40
|
Mantis JG, Centeno NA, Todorova MT, McGowan R, Seyfried TN. Management of multifactorial idiopathic epilepsy in EL mice with caloric restriction and the ketogenic diet: role of glucose and ketone bodies. Nutr Metab (Lond) 2004; 1:11. [PMID: 15507133 PMCID: PMC529249 DOI: 10.1186/1743-7075-1-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/19/2004] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND: The high fat, low carbohydrate ketogenic diet (KD) was developed as an alternative to fasting for seizure management. While the mechanisms by which fasting and the KD inhibit seizures remain speculative, alterations in brain energy metabolism are likely involved. We previously showed that caloric restriction (CR) inhibits seizure susceptibility by reducing blood glucose in the epileptic EL mouse, a natural model for human multifactorial idiopathic epilepsy. In this study, we compared the antiepileptic and anticonvulsant efficacy of the KD with that of CR in adult EL mice with active epilepsy. EL mice that experienced at least 15 recurrent complex partial seizures were fed either a standard diet unrestricted (SD-UR) or restricted (SD-R), and either a KD unrestricted (KD-UR) or restricted (KD-R). All mice were fasted for 14 hrs prior to diet initiation. A new experimental design was used where each mouse in the diet-restricted groups served as its own control to achieve a 20-23% body weight reduction. Seizure susceptibility, body weights, and the levels of plasma glucose and beta-hydroxybutyrate were measured once/week over a nine-week treatment period. RESULTS: Body weights and blood glucose levels remained high over the testing period in the SD-UR and the KD-UR groups, but were significantly (p < 0.001) reduced in the SD-R and KD-R groups. Plasma beta-hydroxybutyrate levels were significantly (p < 0.001) increased in the SD-R and KD-R groups compared to their respective UR groups. Seizure susceptibility remained high in both UR-fed groups throughout the study, but was significantly reduced after three weeks in both R-fed groups. CONCLUSIONS: The results indicate that seizure susceptibility in EL mice is dependent on plasma glucose levels and that seizure control is more associated with the amount than with the origin of dietary calories. Also, CR underlies the antiepileptic and anticonvulsant action of the KD in EL mice. A transition from glucose to ketone bodies for energy is predicted to manage EL epileptic seizures through multiple integrated changes of inhibitory and excitatory neural systems.
Collapse
Affiliation(s)
- John G Mantis
- Biology Department, Boston College, Chestnut Hill, MA, USA
| | | | | | | | | |
Collapse
|
41
|
Likhodii SS, Burnham WM. Calorie restriction may not elevate the threshold of PTZ-induced seizures. Epilepsy Res 2004; 57:77-8; author reply 79-80. [PMID: 14706735 DOI: 10.1016/j.eplepsyres.2003.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Cullingford TE. The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders. Prostaglandins Leukot Essent Fatty Acids 2004; 70:253-64. [PMID: 14769484 DOI: 10.1016/j.plefa.2003.09.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 09/01/2003] [Indexed: 01/06/2023]
Abstract
This review outlines the molecular sensors that reprogram cellular metabolism in response to the ketogenic diet (KD). Special emphasis is placed on the fasting-, fatty acid- and drug-activated transcription factor, peroxisome proliferator-activated receptor alpha (PPARalpha). The KD causes a switch to ketogenesis that is coordinated with an array of changes in cellular lipid, amino acid, carbohydrate and inflammatory pathways. The role of both liver and brain PPARalpha in mediating such changes will be examined, with special reference to the anti-epileptic effects not only of the KD but a range of synthetic anti-epileptic drugs such as valproate. Finally, the implications of the KD and activated brain PPARalpha will be discussed in the context of their potential involvement in a range of disorders of neuro-degeneration and neuro-inflammation.
Collapse
Affiliation(s)
- Tim E Cullingford
- Faculty of Pharmaceutical Sciences, Department of Clinical and Molecular Pharmacokinetics/Pharmacodynamics, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| |
Collapse
|