1
|
Abd Rahman IZ, Adam SH, Hamid AA, Mokhtar MH, Mustafar R, Kashim MIAM, Febriza A, Mansor NI. Potential Neuroprotective Effects of Alpinia officinarum Hance (Galangal): A Review. Nutrients 2024; 16:3378. [PMID: 39408345 PMCID: PMC11478918 DOI: 10.3390/nu16193378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: This review aims to provide a detailed understanding of the current evidence on Alpinia officinarum Hance (A. officinarum) and its potential therapeutic role in central nervous system (CNS) disorders. CNS disorders encompass a wide range of disorders affecting the brain and spinal cord, leading to various neurological, cognitive and psychiatric impairments. In recent years, natural products have emerged as potential neuroprotective agents for the treatment of CNS disorders due to their outstanding bioactivity and favourable safety profile. One such plant is A. officinarum, also known as lesser galangal, a perennial herb from the Zingiberaceae family. Its phytochemical compounds such as flavonoids and phenols have been documented to have a powerful antioxidants effect, capable of scavenging free radicals and preventing oxidative damage. Methods: In this review, we critically evaluate the in vitro and in vivo studies and examine the mechanisms by which A. officinarum exerts its neuroprotective effect. Results: Several studies have confirmed that A. officinarum exerts its neuroprotective effects by reducing oxidative stress and cell apoptosis, promoting neurite outgrowth, and modulating neurotransmitter levels and signalling pathways. Conclusions: Although previous studies have shown promising results in various models of neurological disorders, the underlying mechanisms of A. officinarum in Alzheimer's (AD) and Parkinson's disease (PD) are still poorly understood. Further studies on brain tissue and cognitive and motor functions in animal models of AD and PD are needed to validate the results observed in in vitro studies. In addition, further clinical studies are needed to confirm the safety and efficacy of A. officinarum in CNS disorders.
Collapse
Affiliation(s)
- Izzat Zulhilmi Abd Rahman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Siti Hajar Adam
- Preclinical Department, Faculty of Medicine & Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia;
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (I.Z.A.R.); (A.A.H.); (M.H.M.)
| | - Ruslinda Mustafar
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
- Institute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Ami Febriza
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, South Sulawesi, Indonesia;
| | - Nur Izzati Mansor
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
2
|
Löscher W. Mammalian models of status epilepticus - Their value and limitations. Epilepsy Behav 2024; 158:109923. [PMID: 38944026 DOI: 10.1016/j.yebeh.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/01/2024]
Abstract
Status epilepticus (SE) is a medical and neurologic emergency that may lead to permanent brain damage, morbidity, or death. Animal models of SE are particularly important to study the pathophysiology of SE and mechanisms of SE resistance to antiseizure medications with the aim to develop new, more effective treatments. In addition to rodents (rats or mice), larger mammalian species such as dogs, pigs, and nonhuman primates are used. This short review describes and discusses the value and limitations of the most frequently used mammalian models of SE. Issues that are discussed include (1) differences between chemical and electrical SE models; (2) the role of genetic background and environment on SE in rodents; (3) the use of rodent models (a) to study the pathophysiology of SE and mechanisms of SE resistance; (b) to study developmental aspects of SE; (c) to study the efficacy of new treatments, including drug combinations, for refractory SE; (d) to study the long-term consequences of SE and identify biomarkers; (e) to develop treatments that prevent or modify epilepsy; (e) to study the pharmacology of spontaneous seizures; (4) the limitations of animal models of induced SE; and (5) the advantages (and limitations) of naturally (spontaneously) occurring SE in epileptic dogs and nonhuman primates. Overall, mammalian models of SE have significantly increased our understanding of the pathophysiology and drug resistance of SE and identified potential targets for new, more effective treatments. This paper was presented at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in April 2024.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Junghans K, Wyeth M, Buckmaster PS. Rat strain differences in seizure frequency and hilar neuron loss after systemic treatment with pilocarpine. Epilepsy Res 2024; 204:107384. [PMID: 38879905 PMCID: PMC11253724 DOI: 10.1016/j.eplepsyres.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
At least 3 months after systemic treatment with pilocarpine to induce status epilepticus, Long-Evans and Sprague-Dawley rats were video-EEG monitored for seizures continuously for 1 month. Rats were then perfused, hippocampi were processed for Nissl staining, and hilar neurons were quantified. Seizure frequency in Long-Evans rats was 1/10th of that in Sprague-Dawley rats, and more variable. Hilar neuron loss was also less severe in Long-Evans rats. However, there was no correlation between hilar neuron loss and seizure frequency in either strain. The low and variable seizure frequency suggests limited usefulness of pilocarpine-treated Long-Evans rats for some epilepsy experiments.
Collapse
Affiliation(s)
- Kristina Junghans
- Departments of Comparative Medicine, Stanford University, 3172 Porter Drive, Palo Alto, CA 94304-5475, USA
| | - Megan Wyeth
- Departments of Comparative Medicine, Stanford University, 3172 Porter Drive, Palo Alto, CA 94304-5475, USA.
| | - Paul S Buckmaster
- Departments of Comparative Medicine, Stanford University, 3172 Porter Drive, Palo Alto, CA 94304-5475, USA; Departments of Neurology & Neurological Sciences, Stanford University, 3172 Porter Drive, Palo Alto, CA 94304-5475, USA
| |
Collapse
|
4
|
Talevi A, Bellera C. An update on the novel methods for the discovery of antiseizure and antiepileptogenic medications: where are we in 2024? Expert Opin Drug Discov 2024; 19:975-990. [PMID: 38963148 DOI: 10.1080/17460441.2024.2373165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/23/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Despite the availability of around 30 antiseizure medications, 1/3 of patients with epilepsy fail to become seizure-free upon pharmacological treatment. Available medications provide adequate symptomatic control in two-thirds of patients, but disease-modifying drugs are still scarce. Recently, though, new paradigms have been explored. AREAS COVERED Three areas are reviewed in which a high degree of innovation in the search for novel antiseizure and antiepileptogenic medications has been implemented: development of novel screening approaches, search for novel therapeutic targets, and adoption of new drug discovery paradigms aligned with a systems pharmacology perspective. EXPERT OPINION In the past, worldwide leaders in epilepsy have reiteratively stated that the lack of progress in the field may be explained by the recurrent use of the same molecular targets and screening procedures to identify novel medications. This landscape has changed recently, as reflected by the new Epilepsy Therapy Screening Program and the introduction of many in vitro and in vivo models that could possibly improve our chances of identifying first-in-class medications that may control drug-resistant epilepsy or modify the course of disease. Other milestones include the study of new molecular targets for disease-modifying drugs and exploration of a systems pharmacology perspective to design new drugs.
Collapse
Affiliation(s)
- Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| | - Carolina Bellera
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, University of La Plata (UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina
| |
Collapse
|
5
|
Zhang S, Xie S, Zheng Y, Chen Z, Xu C. Current advances in rodent drug-resistant temporal lobe epilepsy models: Hints from laboratory studies. Neurochem Int 2024; 174:105699. [PMID: 38382810 DOI: 10.1016/j.neuint.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Anti-seizure drugs (ASDs) are the first choice for the treatment of epilepsy, but there is still one-third of patients with epilepsy (PWEs) who are resistant to two or more appropriately chosen ASDs, named drug-resistant epilepsy (DRE). Temporal lobe epilepsy (TLE), a common type of epilepsy usually associated with hippocampal sclerosis (HS), shares the highest proportion of drug resistance (approximately 70%). In view of the key role of the temporal lobe in memory, emotion, and other physiological functions, patients with drug-resistant temporal lobe epilepsy (DR-TLE) are often accompanied by serious complications, and surgical procedures also yield extra considerations. The exact mechanisms for the genesis of DR-TLE remain unillustrated, which makes it hard to manage patients with DR-TLE in clinical practice. Animal models of DR-TLE play an irreplaceable role in both understanding the mechanism and searching for new therapeutic strategies or drugs. In this review article, we systematically summarized different types of current DR-TLE models, and then recent advances in mechanism investigations obtained in these models were presented, especially with the development of advanced experimental techniques and tools. We are deeply encouraged that novel strategies show great therapeutic potential in those DR-TLE models. Based on the big steps reached from the bench, a new light has been shed on the precise management of DR-TLE.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shengyang Xie
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yang Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
6
|
Löscher W. Of Mice and Men: The Inter-individual Variability of the Brain's Response to Drugs. eNeuro 2024; 11:ENEURO.0518-23.2024. [PMID: 38355298 PMCID: PMC10867552 DOI: 10.1523/eneuro.0518-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Biological variation is ubiquitous in nature. Despite highly standardized breeding and husbandry under controlled environmental conditions, phenotypic diversity exists in laboratory mice and rats just as it does in humans. The resulting inter-individual variability affects various characteristics of animal disease models, including the responsiveness to drugs. Thus, the common practice of averaging data within an experimental group can lead to misinterpretations in neuroscience and other research fields. In this commentary, the impact of inter-individual variation in drug responsiveness is illustrated by examples from the testing of antiseizure medications in rodent temporal lobe epilepsy models. Individual mice and rats rendered epileptic by treatment according to standardized protocols fall into groups that either do or do not respond to antiseizure medications, thus mimicking the clinical situation in patients with epilepsy. Population responses are not normally distributed, and divergent responding is concealed in averages subjected to parametric statistical tests. Genetic, epigenetic, and environmental factors are believed to contribute to inter-individual variation in drug response but the specific molecular and physiological causes are not well understood. Being aware of inter-individual variability in rodents allows an improved interpretation of both behavioral phenotypes and drug effects in a pharmacological experiment.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
7
|
Peek SI, Twele F, Meller S, Packer RMA, Volk HA. Epilepsy is more than a simple seizure disorder: Causal relationships between epilepsy and its comorbidities. Vet J 2024; 303:106061. [PMID: 38123062 DOI: 10.1016/j.tvjl.2023.106061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 11/10/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
This review draws connections between the pathogenesis of canine epilepsy and its most commonly recognised comorbidities: cognitive impairment (CI), attention deficit hyperactivity disorder (ADHD)-like behaviour, fear and anxiety. Uni/bidirectional causalities and the possibility of a common aetiology triggering both epilepsy and the associated diseases are considered. Research on this topic is sparse in dogs, so information has been gathered and assessed from human and laboratory animal studies. Anatomical structures, functional connections, disrupted neurotransmission and neuroinflammatory processes collectively serve as a common foundation for epilepsy and its comorbidities. Specific anatomical structures, especially parts of the limbic system, such as the amygdala and the hippocampus, are involved in generating seizures, as well as cognitive- and behavioural disorders. Furthermore, disturbances in inhibitory and excitatory neurotransmission influence neuronal excitability and networks, leading to underlying brain dysfunction. Functional magnetic resonance imaging (fMRI), interictal epileptiform discharges (IEDs), and electroencephalography (EEG) have demonstrated functional brain connections that are related to the emergence of both epilepsy and its various comorbidities. Neuroinflammatory processes can either cause or be a consequence of seizures, and inflammatory mediators, oxidative stress and mitochondrial dysfunction, can equally evoke mood disorders. The extensive relationships contributing to the development and progression of seizures and comorbid cognitive and behavioural conditions illustrate the complexity of the disease that is epilepsy.
Collapse
Affiliation(s)
- Saskia I Peek
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Germany
| | - Friederike Twele
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Germany
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Germany
| | | | - Holger A Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Germany.
| |
Collapse
|
8
|
Santos VR, Tilelli CQ, Fernandes A, de Castro OW, Del-Vecchio F, Garcia-Cairasco N. Different types of Status Epilepticus may lead to similar hippocampal epileptogenesis processes. IBRO Neurosci Rep 2023; 15:68-76. [PMID: 37457787 PMCID: PMC10338355 DOI: 10.1016/j.ibneur.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
About 1-2% of people worldwide suffer from epilepsy, which is characterized by unpredictable and intermittent seizure occurrence. Despite the fact that the exact origin of temporal lobe epilepsy is frequently unknown, it is frequently linked to an early triggering insult like brain damage, tumors, or Status Epilepticus (SE). We used an experimental approach consisting of electrical stimulation of the amygdaloid complex to induce two behaviorally and structurally distinct SE states: Type I (fully convulsive), with more severe seizure behaviors and more extensive brain damage, and Type II (partial convulsive), with less severe seizure behaviors and brain damage. Our goal was to better understand how the various types of SE impact the hippocampus leading to the development of epilepsy. Despite clear variations between the two behaviors in terms of neurodegeneration, study of neurogenesis revealed a comparable rise in the number of Ki-67 + cells and an increase in Doublecortin (DCX) in both kinds of SE.
Collapse
Affiliation(s)
- Victor R. Santos
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, MG, Brazil
| | - Cristiane Q. Tilelli
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Campus Centro-Oeste Dona Lindu, Federal University of São João Del Rey, Divinópolis, MG, Brazil
| | - Artur Fernandes
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Olagide Wagner de Castro
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Pharmacology and Physiology, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Flávio Del-Vecchio
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
9
|
Löscher W, White HS. Animal Models of Drug-Resistant Epilepsy as Tools for Deciphering the Cellular and Molecular Mechanisms of Pharmacoresistance and Discovering More Effective Treatments. Cells 2023; 12:cells12091233. [PMID: 37174633 PMCID: PMC10177106 DOI: 10.3390/cells12091233] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
In the last 30 years, over 20 new anti-seizure medicines (ASMs) have been introduced into the market for the treatment of epilepsy using well-established preclinical seizure and epilepsy models. Despite this success, approximately 20-30% of patients with epilepsy have drug-resistant epilepsy (DRE). The current approach to ASM discovery for DRE relies largely on drug testing in various preclinical model systems that display varying degrees of ASM drug resistance. In recent years, attempts have been made to include more etiologically relevant models in the preclinical evaluation of a new investigational drug. Such models have played an important role in advancing a greater understanding of DRE at a mechanistic level and for hypothesis testing as new experimental evidence becomes available. This review provides a critical discussion of the pharmacology of models of adult focal epilepsy that allow for the selection of ASM responders and nonresponders and those models that display a pharmacoresistance per se to two or more ASMs. In addition, the pharmacology of animal models of major genetic epilepsies is discussed. Importantly, in addition to testing chemical compounds, several of the models discussed here can be used to evaluate other potential therapies for epilepsy such as neurostimulation, dietary treatments, gene therapy, or cell transplantation. This review also discusses the challenges associated with identifying novel therapies in the absence of a greater understanding of the mechanisms that contribute to DRE. Finally, this review discusses the lessons learned from the profile of the recently approved highly efficacious and broad-spectrum ASM cenobamate.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Bünteweg 17, 30559 Hannover, Germany
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
10
|
von Rüden EL, Janssen-Peters H, Reiber M, van Dijk RM, Xiao K, Seiffert I, Koska I, Hubl C, Thum T, Potschka H. An exploratory approach to identify microRNAs as circulatory biomarker candidates for epilepsy-associated psychiatric comorbidities in an electrical post-status epilepticus model. Sci Rep 2023; 13:4552. [PMID: 36941269 PMCID: PMC10027890 DOI: 10.1038/s41598-023-31017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Patients with epilepsy have a high risk of developing psychiatric comorbidities, and there is a particular need for early detection of these comorbidities. Here, in an exploratory, hypothesis-generating approach, we aimed to identify microRNAs as potential circulatory biomarkers for epilepsy-associated psychiatric comorbidities across different rat models of epilepsy. The identification of distress-associated biomarkers can also contribute to animal welfare assessment. MicroRNA expression profiles were analyzed in blood samples from the electrical post-status epilepticus (SE) model. Preselected microRNAs were correlated with behavioral and biochemical parameters in the electrical post-SE model, followed by quantitative real-time PCR validation in three additional well-described rat models of epilepsy. Six microRNAs (miR-376a, miR-429, miR-494, miR-697, miR-763, miR-1903) were identified showing a positive correlation with weight gain in the early post-insult phase as well as a negative correlation with social interaction, saccharin preference, and plasma BDNF. Real-time PCR validation confirmed miR-203, miR-429, and miR-712 as differentially expressed with miR-429 being upregulated across epilepsy models. While readouts from the electrical post-SE model suggest different microRNA candidates for psychiatric comorbidities, cross-model analysis argues against generalizability across models. Thus, further research is necessary to compare the predictive validity of rodent epilepsy models for detection and management of psychiatric comorbidities.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Heike Janssen-Peters
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Ke Xiao
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Christina Hubl
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany
| | - Thomas Thum
- Hannover Medical School (MHH), Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Koeniginstr. 16, 80539, Munich, Germany.
| |
Collapse
|
11
|
Insight into Drug Resistance in Status Epilepticus: Evidence from Animal Models. Int J Mol Sci 2023; 24:ijms24032039. [PMID: 36768361 PMCID: PMC9917109 DOI: 10.3390/ijms24032039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Status epilepticus (SE), a condition with abnormally prolonged seizures, is a severe type of epilepsy. At present, SE is not well controlled by clinical treatments. Antiepileptic drugs (AEDs) are the main therapeutic approaches, but they are effective for SE only with a narrow intervening window, and they easily induce resistance. Thus, in this review, we provide an updated summary for an insight into drug-resistant SE, hoping to add to the understanding of the mechanism of refractory SE and the development of active compounds. Firstly, we briefly outline the limitations of current drug treatments for SE by summarizing the extensive experimental literature and clinical data through a search of the PubMed database, and then summarize the common animal models of refractory SE with their advantages and disadvantages. Notably, we also briefly review some of the hypotheses about drug resistance in SE that are well accepted in the field, and furthermore, put forward future perspectives for follow-up research on SE.
Collapse
|
12
|
Medel‐Matus JS, Orozco‐Suárez S, Escalante RG. Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 2022; 7 Suppl 1:S81-S93. [PMID: 34967149 PMCID: PMC9340311 DOI: 10.1002/epi4.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.
Collapse
Affiliation(s)
- Jesús Servando Medel‐Matus
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Sandra Orozco‐Suárez
- Unit of Medical Research in Neurological DiseasesSpecialty Hospital “Dr. Bernardo Sepúlveda”National Medical Center S.XXIMexico CityMexico
| | - Ruby G. Escalante
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
13
|
Nowakowska M, Üçal M, Charalambous M, Bhatti SFM, Denison T, Meller S, Worrell GA, Potschka H, Volk HA. Neurostimulation as a Method of Treatment and a Preventive Measure in Canine Drug-Resistant Epilepsy: Current State and Future Prospects. Front Vet Sci 2022; 9:889561. [PMID: 35782557 PMCID: PMC9244381 DOI: 10.3389/fvets.2022.889561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Modulation of neuronal activity for seizure control using various methods of neurostimulation is a rapidly developing field in epileptology, especially in treatment of refractory epilepsy. Promising results in human clinical practice, such as diminished seizure burden, reduced incidence of sudden unexplained death in epilepsy, and improved quality of life has brought neurostimulation into the focus of veterinary medicine as a therapeutic option. This article provides a comprehensive review of available neurostimulation methods for seizure management in drug-resistant epilepsy in canine patients. Recent progress in non-invasive modalities, such as repetitive transcranial magnetic stimulation and transcutaneous vagus nerve stimulation is highlighted. We further discuss potential future advances and their plausible application as means for preventing epileptogenesis in dogs.
Collapse
Affiliation(s)
- Marta Nowakowska
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Muammer Üçal
- Research Unit of Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Marios Charalambous
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | - Sofie F. M. Bhatti
- Small Animal Department, Faculty of Veterinary Medicine, Small Animal Teaching Hospital, Ghent University, Merelbeke, Belgium
| | - Timothy Denison
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Sebastian Meller
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| | | | - Heidrun Potschka
- Faculty of Veterinary Medicine, Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
14
|
Wang Y, Wei P, Yan F, Luo Y, Zhao G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis 2022; 13:215-231. [PMID: 35111370 PMCID: PMC8782545 DOI: 10.14336/ad.2021.0723] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
Epilepsy is a serious neurological disorder characterized by abnormal, recurrent, and synchronous discharges in the brain. Long-term recurrent seizure attacks can cause serious damage to brain function, which is usually observed in patients with temporal lobe epilepsy. Controlling seizure attacks is vital for the treatment and prognosis of epilepsy. Animal models, such as the kindling model, which was the most widely used model in the past, allow the understanding of the potential epileptogenic mechanisms and selection of antiepileptic drugs. In recent years, various animal models of epilepsy have been established to mimic different seizure types, without clear merits and demerits. Accordingly, this review provides a summary of the views mentioned above, aiming to provide a reference for animal model selection.
Collapse
Affiliation(s)
- Yilin Wang
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Feng Yan
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yumin Luo
- 2Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| | - Guoguang Zhao
- 1Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China.,3Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.,4Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Custodio V, Acosta J, Rubio C, Hernández L, Brito J, Taddei E. Accurate Neurosurgery for the Establishment of the Electric Kindling Model of Epilepsy in Mice. J INVEST SURG 2022; 35:1253-1262. [DOI: 10.1080/08941939.2022.2032488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Verónica Custodio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Jorge Acosta
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Leonardo Hernández
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Javier Brito
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, México, México
| | - Elisa Taddei
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, México, México
| |
Collapse
|
16
|
Santana‐Gomez CE, Engel J, Staba R. Drug-resistant epilepsy and the hypothesis of intrinsic severity: What about the high-frequency oscillations? Epilepsia Open 2021; 7 Suppl 1:S59-S67. [PMID: 34861102 PMCID: PMC9340307 DOI: 10.1002/epi4.12565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Drug‐resistant epilepsy (DRE) affects approximately one‐third of the patients with epilepsy. Based on experimental findings from animal models and brain tissue from patients with DRE, different hypotheses have been proposed to explain the cause(s) of drug resistance. One is the intrinsic severity hypothesis that posits that drug resistance is an inherent property of epilepsy related to disease severity. Seizure frequency is one measure of epilepsy severity, but frequency alone is an incomplete measure of severity and does not fully explain basic research and clinical studies on drug resistance; thus, other measures of epilepsy severity are needed. One such measure could be pathological high‐frequency oscillations (HFOs), which are believed to reflect the neuronal disturbances responsible for the development of epilepsy and the generation of spontaneous seizures. In this manuscript, we will briefly review the intrinsic severity hypothesis, describe basic and clinical research on HFOs in the epileptic brain, and based on this evidence discuss whether HFOs could be a clinical measure of epilepsy severity. Understanding the mechanisms of DRE is critical for producing breakthroughs in the development and testing of novel strategies for treatment.
Collapse
Affiliation(s)
| | - Jerome Engel
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Brain Research InstituteDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of NeurobiologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Richard Staba
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
17
|
de Curtis M, Rossetti AO, Verde DV, van Vliet EA, Ekdahl CT. Brain pathology in focal status epilepticus: evidence from experimental models. Neurosci Biobehav Rev 2021; 131:834-846. [PMID: 34517036 DOI: 10.1016/j.neubiorev.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/01/2022]
Abstract
Status Epilepticus (SE) is often a neurological emergency characterized by abnormally sustained, longer than habitual seizures. The new ILAE classification reports that SE "…can have long-term consequences including neuronal death, neuronal injury…depending on the type and duration of seizures". While it is accepted that generalized convulsive SE exerts detrimental effects on the brain, it is not clear if other forms of SE, such as focal non-convulsive SE, leads to brain pathology and contributes to long-term deficits in patients. With the available clinical and experimental data, it is hard to discriminate the specific action of the underlying SE etiologies from that exerted by epileptiform activity. This information is highly relevant in the clinic for better treatment stratification, which may include both medical and surgical intervention for seizure control. Here we review experimental studies of focal SE, with an emphasis on focal non-convulsive SE. We present a repertoire of brain pathologies observed in the most commonly used animal models and attempt to establish a link between experimental findings and human condition(s). The extensive literature on focal SE animal models suggest that the current approaches have significant limitations in terms of translatability of the findings to the clinic. We highlight the need for a more stringent description of SE features and brain pathology in experimental studies in animal models, to improve the accuracy in predicting clinical translation.
Collapse
Affiliation(s)
- Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto NeurologicoCarlo Besta, Milano, Italy.
| | - Andrea O Rossetti
- Department of Clinical Neuroscience, University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Diogo Vila Verde
- Epilepsy Unit, Fondazione IRCCS Istituto NeurologicoCarlo Besta, Milano, Italy
| | - Erwin A van Vliet
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, P.O. Box 94246, 1090 GE, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology, Lund University, Sweden; Lund Epilepsy Center, Dept Clinical Sciences, Lund University, Sweden
| |
Collapse
|
18
|
Pérez-Pérez D, Frías-Soria CL, Rocha L. Drug-resistant epilepsy: From multiple hypotheses to an integral explanation using preclinical resources. Epilepsy Behav 2021; 121:106430. [PMID: 31378558 DOI: 10.1016/j.yebeh.2019.07.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/12/2019] [Accepted: 07/06/2019] [Indexed: 01/07/2023]
Abstract
Drug-resistant epilepsy affects approximately one-third of the patients with epilepsy. The pharmacoresistant condition in epilepsy is mainly explained by six hypotheses. In addition, several experimental models have been used to understand the mechanisms involved in pharmacoresistant epilepsy and to identify novel therapies to control this condition. However, the global prevalence of this disease persists without changes. Several factors can explain this situation. First of all, the pharmacoresistant epilepsy is explained by different and independent hypotheses. Each hypothesis indicates specific mechanisms to explain the drug-resistant condition in epilepsy. However, there are different findings suggesting common mechanisms between the different hypotheses. Other important situation is that the experimental models designed for the screening of drugs with potential anticonvulsant effect do not consider factors such as age, gender, type of epilepsy, and comorbid disorders. The present review focuses on indicating the limitations for each hypothesis and the relationships among them. The relevance to consider central and peripheral phenomena associated with the drug-resistant condition in different types of epilepsy is also indicated. The necessity to establish a global hypothesis that integrates all the phenomena associated with the pharmacoresistant epilepsy is proposed. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Daniel Pérez-Pérez
- PECEM (MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Luisa Rocha
- Pharmacobiology Department, Center of Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
19
|
Ahl M, Avdic U, Chary K, Shibata K, Chugh D, Mickelsson PL, Kettunen M, Strandberg MC, Johansson UE, Sierra A, Ekdahl CT. Inflammatory reaction in the retina after focal non-convulsive status epilepticus in mice investigated with high resolution magnetic resonance and diffusion tensor imaging. Epilepsy Res 2021; 176:106730. [PMID: 34364020 DOI: 10.1016/j.eplepsyres.2021.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/30/2021] [Accepted: 07/16/2021] [Indexed: 11/27/2022]
Abstract
Pathophysiological consequences of focal non-convulsive status epilepticus (fNCSE) have been difficult to demonstrate in humans. In rats fNCSE pathology has been identified in the eyes. Here we evaluated the use of high-resolution 7 T structural T1-weighted magnetic resonance imaging (MRI) and 9.4 T diffusion tensor imaging (DTI) for detecting hippocampal fNCSE-induced retinal pathology ex vivo in mice. Seven weeks post-fNCSE, increased number of Iba1+ microglia were evident in the retina ipsilateral to the hemisphere with fNCSE, and morphologically more activated microglia were found in both ipsi- and contralateral retina compared to non-stimulated control mice. T1-weighted intensity measurements of the contralateral retina showed a minor increase within the outer nuclear and plexiform layers of the lateral retina. T1-weighted measurements were not performed in the ipsilateral retina due to technical difficulties. DTI fractional anisotropy(FA) values were discretely altered in the lateral part of the ipsilateral retina and unaltered in the contralateral retina. No changes were observed in the distal part of the optic nerve. The sensitivity of both imaging techniques for identifying larger retinal alteration was confirmed ex vivo in retinitis pigmentosa mice where a substantial neurodegeneration of the outer retinal layers is evident. With MR imaging a 50 % decrease in DTI FA values and significantly thinner retina in T1-weighted images were detected. We conclude that retinal pathology after fNCSE in mice is subtle and present bilaterally. High-resolution T1-weighted MRI and DTI independently did not detect the entire pathological retinal changes after fNCSE, but the combination of the two techniques indicated minor patchy structural changes.
Collapse
Affiliation(s)
- Matilda Ahl
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Una Avdic
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Karthik Chary
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70 211, Kuopio, Finland
| | - Keisuke Shibata
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | - Deepti Chugh
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden
| | | | - Mikko Kettunen
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70 211, Kuopio, Finland
| | | | | | - Alejandra Sierra
- Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FIN-70 211, Kuopio, Finland
| | - Christine T Ekdahl
- Division of Clinical Neurophysiology, Sweden; Lund Epilepsy Center, Department of Clinical Sciences, Lund University, Sweden.
| |
Collapse
|
20
|
Vibholm AK, Landau AM, Møller A, Jacobsen J, Vang K, Munk OL, Orlowski D, Sørensen JC, Brooks DJ. NMDA receptor ion channel activation detected in vivo with [ 18F]GE-179 PET after electrical stimulation of rat hippocampus. J Cereb Blood Flow Metab 2021; 41:1301-1312. [PMID: 32960687 PMCID: PMC8142139 DOI: 10.1177/0271678x20954928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The positron emission tomography (PET) tracer [18F]GE-179 binds to the phencyclidine (PCP) site in the open N-methyl-D-aspartate receptor ion channel (NMDAR-IC). To demonstrate that PET can visualise increased [18F]GE-179 uptake by active NMDAR-ICs and that this can be blocked by the PCP antagonist S-ketamine, 15 rats had an electrode unilaterally implanted in their ventral hippocampus. Seven rats had no stimulation, five received pulsed 400 µA supra-threshold 60 Hz stimulation alone, and three received intravenous S-ketamine injection prior to stimulation. Six other rats were not implanted. Each rat had a 90 min [18F]GE-179 PET scan. Stimulated rats had simultaneous depth-EEG recordings of induced seizure activity. [18F]GE-179 uptake (volume of distribution, VT) was compared between hemispheres and between groups. Electrical stimulation induced a significant increase in [18F]GE-179 uptake at the electrode site compared to the contralateral hippocampus (mean 22% increase in VT, p = 0.0014) and to non-stimulated comparator groups. Rats injected with S-ketamine prior to stimulation maintained non-stimulated levels of [18F]GE-179 uptake during stimulation. In conclusion, PET visualisation of focal [18F]GE-179 uptake during electrically activated NMDAR-ICs and the demonstration of specificity for PCP sites by blockade with S-ketamine support the in vivo utility of [18F]GE-179 PET as a use-dependent marker of NMDAR-IC activation.
Collapse
Affiliation(s)
- Ali K Vibholm
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Arne Møller
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Centre of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jan Jacobsen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Vang
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Ole L Munk
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Dariusz Orlowski
- Department of Neurosurgery and CENSE, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Ch Sørensen
- Department of Neurosurgery and CENSE, Aarhus University Hospital, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
21
|
Nowakowska M, Gualtieri F, von Rüden EL, Hansmann F, Baumgärtner W, Tipold A, Potschka H. Profiling the Expression of Endoplasmic Reticulum Stress Associated Heat Shock Proteins in Animal Epilepsy Models. Neuroscience 2019; 429:156-172. [PMID: 31887356 DOI: 10.1016/j.neuroscience.2019.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Unfolded protein response is a signaling cascade triggered by misfolded proteins in the endoplasmic reticulum. Heat shock protein H4 (HSPH4) and A5 (HSPA5) are two chaperoning proteins present within the organelle, which target misfolded peptides during prolonged stress conditions. Epileptogenic insults and epileptic seizures are a notable source of stress on cells. To investigate whether they influence expression of these chaperones, we performed immunohistochemical stainings in brains from rats that experienced a status epilepticus (SE) as a trigger of epileptogenesis and from canine epilepsy patients. Quantification of HSPA5 and HSPH4 revealed alterations in hippocampus and parahippocampal cortex. In rats, SE induced up-regulation of HSPA5 in the piriform cortex and down-regulation of HSPA5 and HSPH4 in the hippocampus. Regionally restricted increases in expression of the two proteins has been observed in the chronic phase with spontaneous recurrent seizures. Confocal microscopy revealed a predominant expression of both proteins in neurons, no expression in microglia and circumscribed expression in astroglia. In canine patients, only up-regulation of HSPH4 expression was observed in Cornu Ammonis 1 region in animals diagnosed with structural epilepsy. This characterization of HSPA5 and HSPH4 expression provided extensive information regarding spatial and temporal alterations of the two proteins during SE-induced epileptogenesis and following epilepsy manifestations. Up-regulation of both proteins implies stress exerted on ER during these disease phases. Taken together suggest a differential impact of epileptogenesis on HSPA5 and HSPH4 expression and indicate them as a possible target for pharmacological modulation of unfolded protein response.
Collapse
Affiliation(s)
- Marta Nowakowska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Germany
| | - Fabio Gualtieri
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Germany
| | - Florian Hansmann
- Department of Pathology, University of Veterinary Medicine Hannover, Germany
| | | | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Germany.
| |
Collapse
|
22
|
Adotevi N, Lewczuk E, Sun H, Joshi S, Dabrowska N, Shan S, Williamson J, Kapur J. α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor Plasticity Sustains Severe, Fatal Status Epilepticus. Ann Neurol 2019; 87:84-96. [PMID: 31675128 DOI: 10.1002/ana.25635] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Generalized convulsive status epilepticus is associated with high mortality. We tested whether α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor plasticity plays a role in sustaining seizures, seizure generalization, and mortality observed during focal onset status epilepticus. We also determined whether modified AMPA receptors generated during status epilepticus could be targeted with a drug. METHODS Electrically induced status epilepticus was characterized by electroencephalogram and behavior in GluA1 knockout mice and in transgenic mice with selective knockdown of the GluA1 subunit in hippocampal principal neurons. Excitatory and inhibitory synaptic transmission in CA1 neurons was studied using patch clamp electrophysiology. The dose response of N,N,H,-trimethyl-5-([tricyclo(3.3.1.13,7)dec-1-ylmethyl]amino)-1-pentanaminiumbromide hydrobromide (IEM-1460), a calcium-permeable AMPA receptor antagonist, was determined. RESULTS Global removal of the GluA1 subunit did not affect seizure susceptibility; however, it reduced susceptibility to status epilepticus. GluA1 subunit knockout also reduced mortality, severity, and duration of status epilepticus. Absence of the GluA1 subunit prevented enhancement of glutamatergic synaptic transmission associated with status epilepticus; however, γ-aminobutyric acidergic synaptic inhibition was compromised. Selective removal of the GluA1 subunit from hippocampal principal neurons also reduced mortality, severity, and duration of status epilepticus. IEM-1460 rapidly terminated status epilepticus in a dose-dependent manner. INTERPRETATION AMPA receptor plasticity mediated by the GluA1 subunit plays a critical role in sustaining and amplifying seizure activity and contributes to mortality. Calcium-permeable AMPA receptors modified during status epilepticus can be inhibited to terminate status epilepticus. ANN NEUROL 2020;87:84-96.
Collapse
Affiliation(s)
- Nadia Adotevi
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Ewa Lewczuk
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Huayu Sun
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Natalia Dabrowska
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Sarah Shan
- College of Arts and Sciences, University of Virginia, Charlottesville, VA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA.,Department of Neuroscience, University of Virginia, Charlottesville, VA.,UVA Brain Institute, University of Virginia, Charlottesville, VA
| |
Collapse
|
23
|
von Rüden EL, Zellinger C, Gedon J, Walker A, Bierling V, Deeg CA, Hauck SM, Potschka H. Regulation of Alzheimer's disease-associated proteins during epileptogenesis. Neuroscience 2019; 424:102-120. [PMID: 31705965 DOI: 10.1016/j.neuroscience.2019.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Clinical evidence and pathological studies suggest a bidirectional link between temporal lobe epilepsy and Alzheimer's disease (AD). Data analysis from omic studies offers an excellent opportunity to identify the overlap in molecular alterations between the two pathologies. We have subjected proteomic data sets from a rat model of epileptogenesis to a bioinformatics analysis focused on proteins functionally linked with AD. The data sets have been obtained for hippocampus (HC) and parahippocampal cortex samples collected during the course of epileptogenesis. Our study confirmed a relevant dysregulation of proteins linked with Alzheimer pathogenesis. When comparing the two brain areas, a more prominent regulation was evident in parahippocampal cortex samples as compared to the HC. Dysregulated protein groups comprised those affecting mitochondrial function and calcium homeostasis. Differentially expressed mitochondrial proteins included proteins of the mitochondrial complexes I, III, IV, and V as well as of the accessory subunit of complex I. The analysis also revealed a regulation of the microtubule associated protein Tau in parahippocampal cortex tissue during the latency phase. This was further confirmed by immunohistochemistry. Moreover, we demonstrated a complex epileptogenesis-associated dysregulation of proteins involved in amyloid β processing and its regulation. Among others, the amyloid precursor protein and the α-secretase alpha disintegrin metalloproteinase 17 were included. Our analysis revealed a relevant regulation of key proteins known to be associated with AD pathogenesis. The analysis provides a comprehensive overview of shared molecular alterations characterizing epilepsy development and manifestation as well as AD development and progression.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christina Zellinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Julia Gedon
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Bierling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
24
|
A comparative evaluation of bilateral hippocampus and amygdala volumes with ADC values in pediatric primary idiopathic partial epilepsy patients. JOURNAL OF SURGERY AND MEDICINE 2019. [DOI: 10.28982/josam.630645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Gualtieri F, Nowakowska M, von Rüden EL, Seiffert I, Potschka H. Epileptogenesis-Associated Alterations of Heat Shock Protein 70 in a Rat Post-Status Epilepticus Model. Neuroscience 2019; 415:44-58. [DOI: 10.1016/j.neuroscience.2019.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
|
26
|
Barker-Haliski M, Steve White H. Validated animal models for antiseizure drug (ASD) discovery: Advantages and potential pitfalls in ASD screening. Neuropharmacology 2019; 167:107750. [PMID: 31469995 DOI: 10.1016/j.neuropharm.2019.107750] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Abstract
Since 1993, over 20 new anti-seizure drugs (ASDs) have been identified in well-established animal seizure and epilepsy models and subsequently demonstrated to be clinically effective in double-blinded, placebo-controlled clinical trials in patients with focal onset seizures. All clinically-available ASDs on the market today are effective in at least one of only three preclinical seizure and epilepsy models: the acute maximal electroshock (MES), the acute subcutaneous pentylenetetrazol (scPTZ) test, or the kindled rodent with chronic evoked seizures. Thus, it reasons that preclinical ASD discovery does not need significant revision to successfully identify ASDs for the symptomatic treatment of epilepsy. Unfortunately, a significant need still persists for more efficacious and better tolerated ASDs. This is particularly true for those patients whose seizures remain drug resistant. This review will focus on the continued utility of the acute MES and scPTZ tests, as well as the kindled rodent for current and future ASD discovery. These are the only "clinically validated" rodent models to date and been heavily used in the search for novel and more efficacious ASDs. This is to say that promising ASDs have been brought to the clinic on the basis of efficacy in these particular seizure and epilepsy models alone. This review also discusses some of the inherent advantages and limitations of these models relative to existing and emerging preclinical models. It then offers insight into future efforts to develop a preclinical model that will advance a truly transformative therapy for the symptomatic treatment of difficult to treat focal onset epilepsy. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
| | - H Steve White
- Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, WA, USA
| |
Collapse
|
27
|
Seiffert I, van Dijk RM, Koska I, Di Liberto V, Möller C, Palme R, Hellweg R, Potschka H. Toward evidence-based severity assessment in rat models with repeated seizures: III. Electrical post-status epilepticus model. Epilepsia 2019; 60:1539-1551. [PMID: 31247135 DOI: 10.1111/epi.16095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Ethical approval of experiments in chronic epilepsy models requires a careful balancing of the expected gain-in-knowledge with the level of distress. Thus recommendations for evidence-based severity assessment and classification are urgently needed for preclinical epilepsy research. METHODS Therefore, we have completed a comprehensive analysis of alterations in behavioral, biochemical, and physiological parameters in a rat electrical post-status epilepticus model. Selected parameters were repeatedly analyzed during different experimental phases to obtain information about the level of distress throughout the course of the model. RESULTS Behavioral patterns comprised an increase in activity along with a reduction in risk assessment behavior, active social interaction, saccharin preference as well as nonessential, but evolutionary-determined behavior such as nest building and burrowing. Among the biochemical parameters, fecal corticosterone metabolites proved to be increased in different phases of the experiment. In the early post-insult phase, this increase was reflected by elevated serum corticosterone concentrations. Telemetric recordings demonstrated increases in home cage activity and heart rate in selected experimental phases but argued against relevant changes in heart rate variability. Comparison between animals with tethered or telemetric recordings including a principal component analysis revealed differences between both groups. SIGNIFICANCE The present findings further confirm that burrowing behavior and saccharin preference might serve as valid parameters for severity assessment in chronic epilepsy models. Considering the course of alterations providing evidence for a more pronounced level of distress in the early phase following status epilepticus (SE), we suggest a classification of the electrical post-SE model as severe. This suggestion may serve as a guidance for laboratory-specific evaluations. Comparison between data from animals with tethered and telemetric recordings indicated an impact of the mode of recordings. However, further research is necessary to analyze the validity of telemetry as a putative refinement measure.
Collapse
Affiliation(s)
- Isabel Seiffert
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ines Koska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Valentina Di Liberto
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, Palermo, Italy
| | - Christina Möller
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Rainer Hellweg
- Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
28
|
Leclercq K, Liefferinge JV, Albertini G, Neveux M, Dardenne S, Mairet‐Coello G, Vandenplas C, Deprez T, Chong S, Foerch P, Bentea E, Sato H, Maher P, Massie A, Smolders I, Kaminski RM. Anticonvulsant and antiepileptogenic effects of system xc− inactivation in chronic epilepsy models. Epilepsia 2019; 60:1412-1423. [DOI: 10.1111/epi.16055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/10/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
| | - Joeri Van Liefferinge
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | - Giulia Albertini
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | | | | | | | | | | | | | | | - Eduard Bentea
- Department of Pharmaceutical Biotechnology and Molecular Biology Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | - Hideyo Sato
- Faculty of Medicine Niigata University Niigata Japan
| | - Pamela Maher
- Cellular Neurobiology Laboratory The Salk Institute for Biological Studies La Jolla California
| | - Ann Massie
- Department of Pharmaceutical Biotechnology and Molecular Biology Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences C4N Vrije Universiteit Brussel Brussels Belgium
| | | |
Collapse
|
29
|
Meller S, Brandt C, Theilmann W, Klein J, Löscher W. Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy. Brain Res 2019; 1712:109-123. [DOI: 10.1016/j.brainres.2019.01.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/09/2019] [Accepted: 01/26/2019] [Indexed: 02/06/2023]
|
30
|
Santos VR, Kobayashi I, Hammack R, Danko G, Forcelli PA. Impact of strain, sex, and estrous cycle on gamma butyrolactone-evoked absence seizures in rats. Epilepsy Res 2018; 147:62-70. [PMID: 30261353 PMCID: PMC6226012 DOI: 10.1016/j.eplepsyres.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/19/2022]
Abstract
Childhood absence epilepsy (CAE) is the most common pediatric epilepsy syndrome and is characterized by typical absence seizures (AS). AS are non-convulsive epileptic seizures characterized by a sudden loss of awareness and bilaterally generalized synchronous 2.5-4 Hz spike and slow-wave discharges (SWD). Gamma butyrolactone (GBL) is an acute pharmacological model of AS and induces bilaterally synchronous SWDs and behavioral arrest. Despite the long use of this model, little is known about its strain and sex-dependent features. We compared the dose-response profile of GBL-evoked SWDs in three rat strains (Long Evans, Sprague-Dawley, and Wistar), and examined the modulatory effects of estrous cycle on SWDs in female Wistar rats. We evaluated the number of seizures, the cumulative time seizing, and the average seizure duration as a function of dose, strain, and sex/estrous phase. Long Evans rats displayed the greatest sensitivity to GBL, followed by Wistar rats, and then by Sprague-Dawley rats. GBL-evoked SWDs were modulated by estrous cycle in female rats, with the lowest sensitivity to GBL occurring during metestrus. Wistar rats showed the greatest variability as a function of dose, and the least variability within dose; these features make this strain desirable for interventional studies. Moreover, our finding that the SWD response to GBL differs as a function of estrous cycle underscores the importance of cycle monitoring in studies examining female animals using this model. Together, these strain and sex-dependent findings provide guidance for future studies.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Ihori Kobayashi
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, United States
| | - Robert Hammack
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Gregory Danko
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University School of Medicine, United States; Department of Neuroscience, Georgetown University School of Medicine, United States; Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, United States.
| |
Collapse
|
31
|
Barker-Haliski M, Harte-Hargrove LC, Ravizza T, Smolders I, Xiao B, Brandt C, Löscher W. A companion to the preclinical common data elements for pharmacologic studies in animal models of seizures and epilepsy. A Report of the TASK3 Pharmacology Working Group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018; 3:53-68. [PMID: 30450485 PMCID: PMC6210039 DOI: 10.1002/epi4.12254] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Preclinical pharmacology studies in animal models of seizures and epilepsy have provided a platform to identify more than 20 antiseizure drugs in recent decades. To minimize variability in lab‐to‐lab studies and to harmonize approaches to data collection and reporting methodology in pharmacologic evaluations of the next generation of therapies, we present common data elements (CDEs), case report forms (CRFs), and this companion manuscript to help with the implementation of methods for studies in established preclinical seizure and epilepsy models in adult rodents. The development of and advocacy for CDEs in preclinical research has been encouraged previously by both clinical and preclinical groups. It is anticipated that adoption and implementation of these CDEs in preclinical studies may help standardize approaches to minimize variability and increase the reproducibility of preclinical studies. Moreover, they may provide a methodologic framework for pharmacology studies in atypical animal models or models in development, which may ultimately promote novel therapy development. In the present document, we refer selectively to animal models that have a long history of preclinical use, and in some cases, are clinically validated.
Collapse
Affiliation(s)
- Melissa Barker-Haliski
- Department of Pharmacy School of Pharmacy University of Washington Seattle Washington U.S.A
| | - Lauren C Harte-Hargrove
- ILAE/AES Joint Translational Task Force International League Against Epilepsy West Hartford Connecticut U.S.A
| | - Teresa Ravizza
- Department of Neuroscience IRCCS-Institute for Pharmacological Research Mario Negri Milan Italy
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry Drug Analysis and Drug Information Center for Neurosciences Vrije Universiteit Brussel Brussels Belgium
| | - Bo Xiao
- Department of Neurology Xiangya Hospital Central South University Changsha China
| | - Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy University of Veterinary Medicine Hannover Hannover Germany.,Center for Systems Neuroscience Hannover Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy University of Veterinary Medicine Hannover Hannover Germany.,Center for Systems Neuroscience Hannover Germany
| |
Collapse
|
32
|
Campos G, Fortuna A, Falcão A, Alves G. In vitro and in vivo experimental models employed in the discovery and development of antiepileptic drugs for pharmacoresistant epilepsy. Epilepsy Res 2018; 146:63-86. [PMID: 30086482 DOI: 10.1016/j.eplepsyres.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/16/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Epilepsy is one of the most common chronic, recurrent and progressive neurological diseases. In spite of the large number of antiepileptic drugs currently available for the suppression of seizures, about one-third of patients develop drug-resistant epilepsy, even when they are administered the most appropriate treatment available. Thus, nonclinical models can be valuable tools for the elucidation of the mechanisms underlying the development of pharmacoresistance and also for the development of new therapeutic agents that may be promising therapeutic approaches for this unmet medical need. Up today, several epilepsy and seizure models have been developed, exhibiting similar physiopathological features of human drug-resistant epilepsy; moreover, pharmacological response to antiepileptic drugs clinically available tends to be similar in animal models and humans. Therefore, they should be more intensively used in the preclinical discovery and development of new candidates to antiepileptic drugs. Although useful, in vitro models cannot completely replicate the complexity of a living being and their potential for a systematic use in antiepileptic drug screening is limited. The whole-animal models are the most commonly employed and they can be classified as per se drug-resistant due to an inherent poor drug response or be based on the selection of subgroups of epileptic animals that respond or not to a specific antiepileptic drug. Although more expensive and time-consuming, the latter are chronic models of epilepsy that better exhibit the disease-associated alterations found in human epilepsy. Several antiepileptic drugs in development or already marketed have been already tested and shown to be effective in these models of drug-resistant epilepsy, constituting a new hope for the treatment of drug-resistant epilepsy. This review will provide epilepsy researchers with detailed information on the in vitro and in vivo nonclinical models of interest in drug-resistant epilepsy, which may enable a refined selection of most relevant models for understanding the mechanisms of the disease and developing novel antiepileptic drugs.
Collapse
Affiliation(s)
- Gonçalo Campos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ana Fortuna
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Amílcar Falcão
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal; Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
| |
Collapse
|
33
|
Abstract
Epilepsy, characterized by spontaneous recurrent seizures (SRS), is a serious and common neurological disorder afflicting an estimated 1% of the population worldwide. Animal experiments, especially those utilizing small laboratory rodents, remain essential to understanding the fundamental mechanisms underlying epilepsy and to prevent, diagnose, and treat this disease. While much attention has been focused on epileptogenesis in animal models of epilepsy, there is little discussion on SRS, the hallmark of epilepsy. This is in part due to the technical difficulties of rigorous SRS detection. In this review, we comprehensively summarize both genetic and acquired models of SRS and discuss the methodology used to monitor and detect SRS in mice and rats.
Collapse
Affiliation(s)
- Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Katherine A Dalton
- Psychology & Neuroscience Program, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Becker AJ. Review: Animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 2018; 44:112-129. [DOI: 10.1111/nan.12451] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- A. J. Becker
- Section for Translational Epilepsy Research; Department of Neuropathology; University of Bonn Medical Center; Bonn Germany
| |
Collapse
|
35
|
Cui ZQ, Li WL, Luo Y, Yang JP, Qu ZZ, Zhao WQ. Methylene Blue Exerts Anticonvulsant and Neuroprotective Effects on Self-Sustaining Status Epilepticus (SSSE) Induced by Prolonged Basolateral Amygdala Stimulation in Wistar Rats. Med Sci Monit 2018; 24:161-169. [PMID: 29307885 PMCID: PMC5771162 DOI: 10.12659/msm.907758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study was designed to investigate the potential anticonvulsant and neuroprotective effects of methylene blue (MB) on self-sustaining status epilepticus (SSSE) induced by prolonged basolateral amygdala stimulation (BLA) in Wistar rats. MATERIAL AND METHODS The rats were randomly divided into 4 groups: (1) the Control group (rats without any treatment); (2) the Sham group (rats received electrode implantation but without electrical stimulation); (3) the SSSE group (rats received electrode implantation and additional electrical stimulation); and (4) the SSSE+MB group (rats received 1 mg/kg MB intraperitoneal injection 5 min after SSSE). SSSE models were established by prolonged BLA stimulation. The severities of SSSE were assessed by the number of separate seizures and the accumulated time of seizures. The variations of malondialdehyde/glutathione (MDA/GSH) were assessed 24 h after the establishment of SSSE. Nissl staining was performed to detect the surviving neurons in hippocampal CA1 and CA3 regions, and Western blotting assays were used to detect Caspase-3 (CASP3), B cell lymphoma 2 (BCL2), and BCL2-associated X protein (BAX). RESULTS Compared with the SSSE group, treatment with MB (1) markedly reduced the number and accumulated time of seizure activities; (2) significantly attenuated the increase of MDA and the decrease of GSH hippocampal levels; (3) markedly improved the cell morphology and alleviated the neuronal loss in hippocampal CA1 and CA3 regions; (4) significantly attenuated the increase of CASP3 and BAX and the decrease of BCL2 hippocampal levels. CONCLUSIONS MB has a protective effect in the SSSE model and may be useful as an adjuvant for preventing or treating epilepsy in humans.
Collapse
Affiliation(s)
- Zhi-qiang Cui
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Wen-ling Li
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yan Luo
- Department of Reproductive Genetic, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| | - Ji-peng Yang
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhen-zhen Qu
- Department of Neurosurgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Wen-qing Zhao
- Faculty of Graduate Studies, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
- Department of Functional Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
36
|
Lewczuk E, Joshi S, Williamson J, Penmetsa M, Shan S, Kapur J. Electroencephalography and behavior patterns during experimental status epilepticus. Epilepsia 2017; 59:369-380. [PMID: 29214651 DOI: 10.1111/epi.13972] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2017] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To characterize the evolution of behavioral and electrographic seizures in an experimental electrical stimulation-based model of status epilepticus (SE) in C57Bl/6 mice, and to relate SE to various outcomes, including death and epileptogenesis. METHODS SE was induced by continuous hippocampal stimulation and was evaluated by review of electroencephalographic recordings, spectral display, and behavior. RESULTS Seizures were initially locked to the electrical trains but later became independent of them. Following the end of stimulation, autonomous seizures continued for >5 minutes in 85% of the animals. There was ongoing 2-3-Hz rhythmic, high-amplitude, slow spike-wave discharges (HASDs) associated with purposeless, repetitive, continuously circling and exploratory behavior. There were high-amplitude fast discharges (HAFDs) associated with worsening of behavioral seizures that were interspersed with the ongoing HASDs. Death during SE occurred in 23% of the animals, and it was preceded by a stage 5 behavioral seizure. In the waning stage of SE, severe seizures and HAFDs dissipated, HASDs slowed down, and normal behavior was restored in most animals. Epilepsy developed in 33% of the animals monitored after SE. SIGNIFICANCE The electrical stimulation model of SE can be used to study mechanisms of SE and its adverse consequences, including death and epileptogenesis.
Collapse
Affiliation(s)
- Ewa Lewczuk
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Suchitra Joshi
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - John Williamson
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Mouna Penmetsa
- College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sarah Shan
- College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Jaideep Kapur
- Department of Neurology, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.,UVA Brain Institute, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
37
|
Keck M, Fournier A, Gualtieri F, Walker A, von Rüden EL, Russmann V, Deeg CA, Hauck SM, Krause R, Potschka H. A systems level analysis of epileptogenesis-associated proteome alterations. Neurobiol Dis 2017; 105:164-178. [PMID: 28576708 DOI: 10.1016/j.nbd.2017.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Despite intense research efforts, the knowledge about the mechanisms of epileptogenesis and epilepsy is still considered incomplete and limited. However, an in-depth understanding of molecular pathophysiological processes is crucial for the rational selection of innovative biomarkers and target candidates. Here, we subjected proteomic data from different phases of a chronic rat epileptogenesis model to a comprehensive systems level analysis. Weighted Gene Co-expression Network analysis identified several modules of interconnected protein groups reflecting distinct molecular aspects of epileptogenesis in the hippocampus and the parahippocampal cortex. Characterization of these modules did not only further validate the data but also revealed regulation of molecular processes not described previously in the context of epilepsy development. The data sets also provide valuable information about temporal patterns, which should be taken into account for development of preventive strategies in particular when it comes to multi-targeting network pharmacology approaches. In addition, principal component analysis suggests candidate biomarkers, which might inform the design of novel molecular imaging approaches aiming to predict epileptogenesis during different phases or confirm epilepsy manifestation. Further studies are necessary to distinguish between molecular alterations, which correlate with epileptogenesis versus those reflecting a mere consequence of the status epilepticus.
Collapse
Affiliation(s)
- Michael Keck
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Anna Fournier
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Fabio Gualtieri
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, 35037 Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Roland Krause
- Bioinformatics Core, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University (LMU), 80539 Munich, Germany.
| |
Collapse
|
38
|
Epileptogenesis meets Occam's Razor. Curr Opin Pharmacol 2017; 35:105-110. [PMID: 28781107 DOI: 10.1016/j.coph.2017.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/23/2017] [Accepted: 07/23/2017] [Indexed: 01/01/2023]
Abstract
Pharmacological treatment to prevent brain injury-induced temporal lobe epileptogenesis has been generally unsuccessful, raising the issues of exactly when the conversion process to an epileptic brain state occurs and reaches completion, and which cellular or network processes might be the most promising therapeutic targets. The time course of epileptogenesis is a central issue, with recent results suggesting that injury-induced epileptogenesis can be a much more rapid process than previously thought, and may be inconsistent with a delayed epileptogenic mechanism. Simplification of the seemingly complex issues involved in the use of epilepsy animal models might lead to a better understanding of the nature of injury-induced epileptogenesis, the significance of the 'latent' period, and whether current strategies should focus on preventing or modifying epilepsy.
Collapse
|
39
|
Löscher W, Ferland RJ, Ferraro TN. The relevance of inter- and intrastrain differences in mice and rats and their implications for models of seizures and epilepsy. Epilepsy Behav 2017; 73. [PMID: 28651171 PMCID: PMC5909069 DOI: 10.1016/j.yebeh.2017.05.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly clear that the genetic background of mice and rats, even in inbred strains, can have a profound influence on measures of seizure susceptibility and epilepsy. These differences can be capitalized upon through genetic mapping studies to reveal genes important for seizures and epilepsy. However, strain background and particularly mixed genetic backgrounds of transgenic animals need careful consideration in both the selection of strains and in the interpretation of results and conclusions. For instance, mice with targeted deletions of genes involved in epilepsy can have profoundly disparate phenotypes depending on the background strain. In this review, we discuss findings related to how this genetic heterogeneity has and can be utilized in the epilepsy field to reveal novel insights into seizures and epilepsy. Moreover, we discuss how caution is needed in regards to rodent strain or even animal vendor choice, and how this can significantly influence seizure and epilepsy parameters in unexpected ways. This is particularly critical in decisions regarding the strain of choice used in generating mice with targeted deletions of genes. Finally, we discuss the role of environment (at vendor and/or laboratory) and epigenetic factors for inter- and intrastrain differences and how such differences can affect the expression of seizures and the animals' performance in behavioral tests that often accompany acute and chronic seizure testing.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Neurology, Albany Medical College, Albany, NY, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
40
|
Kandeda AK, Taiwe GS, Moto FCO, Ngoupaye GT, Nkantchoua GCN, Njapdounke JSK, Omam JPO, Pale S, Kouemou N, Ngo Bum E. Antiepileptogenic and Neuroprotective Effects of Pergularia daemia on Pilocarpine Model of Epilepsy. Front Pharmacol 2017; 8:440. [PMID: 28713279 PMCID: PMC5492699 DOI: 10.3389/fphar.2017.00440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/19/2017] [Indexed: 11/13/2022] Open
Abstract
In this study, we investigated antiepileptogenic and neuroprotective effects of the aqueous extract of Pergularia daemia roots (PDR) using in vivo and in vitro experimental models. In in vivo studies, status epilepticus caused by pilocarpine injection triggers epileptogenesis which evolves during about 1–2 weeks. After 2 h of status epilepticus, mice were treated during the epileptogenesis period for 7 days with sodium valproate and vitamin C (standards which demonstrated to alter epileptogenesis), or Pergularia daemia. The animals were then, 1 week after status epilepticus, challenged with acute pentylenetetrazole (PTZ) administration to test behaviorally the susceptibility to a convulsant agent of animals treated or not with the plan extract. Memory was assessed after PTZ administration in the elevated plus maze and T-maze paradigms at 24 and 48 h. Antioxidant and acetylcholinesterase activities were determined in the hippocampus after sacrifice, in vitro studies were conducted using embryonic rat primary cortical cultures exposed to L-glutamate. Cell survival rate was measured and apoptotic and necrotic cell death determined. The results showed that chronic oral administration of PDR significantly and dose-dependently increased the latency to myoclonic jerks, clonic seizures and generalized tonic–clonic seizures, and the seizure score. In addition, PDR at all doses (from 4.9 to 49 mg/kg) significantly decreased the initial and retention transfer latencies in the elevated plus maze. Interestingly PDR at the same doses significantly increased the time spent and the number of entries in T-maze novel arm. PDR significantly increased the activities of acetylcholinesterase and antioxidant enzymes superoxide dismutase, catalase, and total glutathione and proteins, and decreased malondialdehyde level. Furthermore, PDR increased viability rate of primary cortical neurons after L-glutamate-induced excitotoxicity, in a dose dependent manner. Altogether these results suggest that PDR has antiepileptogenic and neuroprotective effects, which could be mediated by antioxidant and antiapoptotic activities.
Collapse
Affiliation(s)
- Antoine K Kandeda
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé IYaoundé, Cameroon.,Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon
| | - Germain S Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of BueaBuea, Cameroon
| | - Fleur C O Moto
- Department of Biological Sciences, Higher Teachers' Training College, University of Yaounde IYaounde, Cameroon
| | - Gwladys T Ngoupaye
- Department of Animal Biology, Faculty of Science, University of DschangDschang, Cameroon
| | - Gisele C N Nkantchoua
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon
| | | | - Jean P O Omam
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon.,Department of Biological Sciences, Higher Teachers' Training College, University of Yaounde IYaounde, Cameroon
| | - Simon Pale
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon.,Department of Zoology and Animal Physiology, Faculty of Science, University of BueaBuea, Cameroon
| | - Nadege Kouemou
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon.,Department of Zoology and Animal Physiology, Faculty of Science, University of BueaBuea, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of NgaoundereNgaoundere, Cameroon.,Institute of Mining and Petroleum Industries, University of MarouaKaele, Cameroon
| |
Collapse
|
41
|
Russmann V, Brendel M, Mille E, Helm-Vicidomini A, Beck R, Günther L, Lindner S, Rominger A, Keck M, Salvamoser JD, Albert NL, Bartenstein P, Potschka H. Identification of brain regions predicting epileptogenesis by serial [ 18F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe epilepsy. NEUROIMAGE-CLINICAL 2017; 15:35-44. [PMID: 28462087 PMCID: PMC5403805 DOI: 10.1016/j.nicl.2017.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
Excessive activation of inflammatory signaling pathways seems to be a hallmark of epileptogenesis. Positron emission tomography (PET) allows in vivo detection of brain inflammation with spatial information and opportunities for longitudinal follow-up scanning protocols. Here, we assessed whether molecular imaging of the 18 kDa translocator protein (TSPO) can serve as a biomarker for the development of epilepsy. Therefore, brain uptake of [18F]GE-180, a highly selective radioligand of TSPO, was investigated in a longitudinal PET study in a chronic rat model of temporal lobe epilepsy. Analyses revealed that the influence of the epileptogenic insult on [18F]GE-180 brain uptake was most pronounced in the earlier phase of epileptogenesis. Differences were evident in various brain regions during earlier phases of epileptogenesis with [18F]GE-180 standardized uptake value enhanced by 2.1 to 2.7fold. In contrast, brain regions exhibiting differences seemed to be more restricted with less pronounced increases of tracer uptake by 1.8-2.5fold four weeks following status epilepticus and by 1.5-1.8fold in the chronic phase. Based on correlation analysis, we were able to identify regions with a predictive value showing a correlation with seizure development. These regions include the amygdala as well as a cluster of brain areas. This cluster comprises parts of different brain regions, e.g. the hippocampus, parietal cortex, thalamus, and somatosensory cortex. In conclusion, the data provide evidence that [18F]GE-180 PET brain imaging can serve as a biomarker of epileptogenesis. The identification of brain regions with predictive value might facilitate the development of preventive concepts as well as the early assessment of the interventional success. Future studies are necessary to further confirm the predictivity of the approach.
Collapse
Affiliation(s)
- Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Erik Mille
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Angela Helm-Vicidomini
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roswitha Beck
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany; German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Lisa Günther
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany; German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Michael Keck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
42
|
Enginar N, Nurten A, Türkmen AZ, Gündoğan Gİ, Özünal ZG. Antimuscarinic-induced convulsions in fasted mice after food intake: no evidence of spontaneous seizures, behavioral changes or neuronal damage. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Szczurowska E, Ergang P, Kubová H, Druga R, Salaj M, Mareš P. Influence of early life status epilepticus on the developmental expression profile of the GluA2 subunit of AMPA receptors. Exp Neurol 2016; 283:97-109. [DOI: 10.1016/j.expneurol.2016.05.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/13/2016] [Accepted: 05/29/2016] [Indexed: 01/12/2023]
|
44
|
Fit for purpose application of currently existing animal models in the discovery of novel epilepsy therapies. Epilepsy Res 2016; 126:157-84. [PMID: 27505294 DOI: 10.1016/j.eplepsyres.2016.05.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/06/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
Animal seizure and epilepsy models continue to play an important role in the early discovery of new therapies for the symptomatic treatment of epilepsy. Since 1937, with the discovery of phenytoin, almost all anti-seizure drugs (ASDs) have been identified by their effects in animal models, and millions of patients world-wide have benefited from the successful translation of animal data into the clinic. However, several unmet clinical needs remain, including resistance to ASDs in about 30% of patients with epilepsy, adverse effects of ASDs that can reduce quality of life, and the lack of treatments that can prevent development of epilepsy in patients at risk following brain injury. The aim of this review is to critically discuss the translational value of currently used animal models of seizures and epilepsy, particularly what animal models can tell us about epilepsy therapies in patients and which limitations exist. Principles of translational medicine will be used for this discussion. An essential requirement for translational medicine to improve success in drug development is the availability of animal models with high predictive validity for a therapeutic drug response. For this requirement, the model, by definition, does not need to be a perfect replication of the clinical condition, but it is important that the validation provided for a given model is fit for purpose. The present review should guide researchers in both academia and industry what can and cannot be expected from animal models in preclinical development of epilepsy therapies, which models are best suited for which purpose, and for which aspects suitable models are as yet not available. Overall further development is needed to improve and validate animal models for the diverse areas in epilepsy research where suitable fit for purpose models are urgently needed in the search for more effective treatments.
Collapse
|
45
|
Brandt C, Rankovic V, Töllner K, Klee R, Bröer S, Löscher W. Refinement of a model of acquired epilepsy for identification and validation of biomarkers of epileptogenesis in rats. Epilepsy Behav 2016; 61:120-131. [PMID: 27343814 DOI: 10.1016/j.yebeh.2016.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 01/23/2023]
Abstract
In rodent models in which status epilepticus (SE) is used to induce epilepsy, typically most animals develop spontaneous recurrent seizures (SRS). The SE duration for induction of epileptogenesis depends on the type of SE induction. In models with electrical SE induction, the minimum duration of SE to induce epileptogenesis in >90% of animals ranges from 3-4h. A high incidence of epilepsy is an advantage in the search of antiepileptogenic treatments, whereas it is a disadvantage in the search for biomarkers of epileptogenesis, because it does not allow a comparison of potential biomarkers in animals that either develop or do not develop epilepsy. The aim of this project was the refinement of an established SE rat model so that only ~50% of the animals develop epilepsy. For this purpose, we used an electrical model of SE induction, in which a self-sustained SE develops after prolonged stimulation of the basolateral amygdala. Previous experiments had shown that the majority of rats develop SRS after 4-h SE in this model so that the SE reduced duration to 2.5h by administering diazepam. This resulted in epilepsy development in only 50% of rats, thus reaching the goal of the project. The latent period to onset of SRS wa s >2weeks in most rats. Development of epilepsy could be predicted in most rats by behavioral hyperexcitability, whereas seizure threshold did not differentiate rats that did and did not develop SRS. The refined SE model may offer a platform to identify and validate biomarkers of epileptogenesis.
Collapse
Affiliation(s)
- Claudia Brandt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Vladan Rankovic
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Rebecca Klee
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Sonja Bröer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
46
|
Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW. Mesial Temporal Lobe Epilepsy: Pathogenesis, Induced Rodent Models and Lesions. Toxicol Pathol 2016; 35:984-99. [PMID: 18098044 DOI: 10.1080/01926230701748305] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mesial temporal lobe epilepsy (MTLE), the most common epilepsy in adults, is generally intractable and is suspected to be the result of recurrent excitation or inhibition circuitry. Recurrent excitation and the development of seizures have been associated with aberrant mossy fiber sprouting in the hippocampus. Of the animal models developed to investigate the pathogenesis of MTLE, post-status epilepticus models have received the greatest acceptance because they are characterized by a latency period, the development of spontaneous motor seizures, and a spectrum of lesions like those of MTLE. Among post-status epilepticus models, induction of systemic kainic acid or pilocarpine-induced epilepsy is less labor-intensive than electrical-stimulation models and these models mirror the clinicopathologic features of MTLE more closely than do kindling, tetanus toxin, hyperthermia, post-traumatic, and perinatal hypoxia/ischemia models. Unfortunately, spontaneous motor seizures do not develop in kindling or adult hyperthermia models and are not a consistent finding in tetanus toxin-induced or perinatal hypoxia/ischemia models. This review presents the mechanistic hypotheses for seizure induction, means of model induction, and associated pathology, especially as compared to MTLE patients. Animal models are valuable tools not only to study the pathogenesis of MTLE, but also to evaluate potential antiepileptogenic drugs.
Collapse
Affiliation(s)
- Alok K. Sharma
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Department of Pathology, Covance Laboratories Inc., Madison, WI, 53704, USA
| | - Rachel Y. Reams
- Department of Pathology, Lilly Research Laboratories, Division of Eli Lilly and Co., Greenfield, IN, 46140, USA
| | - William H. Jordan
- Department of Pathology, Lilly Research Laboratories, Division of Eli Lilly and Co., Greenfield, IN, 46140, USA
| | - Margaret A. Miller
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - H. Leon Thacker
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Paul W. Snyder
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
47
|
Walker A, Russmann V, Deeg CA, von Toerne C, Kleinwort KJH, Szober C, Rettenbeck ML, von Rüden EL, Goc J, Ongerth T, Boes K, Salvamoser JD, Vezzani A, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on inflammation. Brain Behav Immun 2016; 53:138-158. [PMID: 26685804 DOI: 10.1016/j.bbi.2015.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/27/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023] Open
Abstract
Detailed knowledge about the patterns of molecular alterations during epileptogenesis is a presupposition for identifying targets for preventive or disease-modifying approaches, as well as biomarkers of the disease. Large-scale differential proteome analysis can provide unique and novel perspectives based on comprehensive data sets informing about the complex regulation patterns in the disease proteome. Thus, we have completed an elaborate differential proteome analysis based on label-free LC-MS/MS in a rat model of epileptogenesis. Hippocampus and parahippocampal cortex tissues were sampled and analyzed separately at three key time points chosen for monitoring disease development following electrically-induced status epilepticus, namely, the early post-insult phase, the latency phase, and the chronic phase with spontaneous recurrent seizures. We focused the bioinformatics analysis on proteins linked to immune and inflammatory responses, because of the emerging evidence of the specific pathogenic role of inflammatory signalings during epileptogenesis. In the early post-insult and the latency phases, pathway enrichment analysis revealed an extensive over-representation of Toll-like receptor signaling, pro-inflammatory cytokines, heat shock protein regulation, and transforming growth factor beta signaling and leukocyte transendothelial migration. The inflammatory response in the chronic phase proved to be more moderate with differential expression in the parahippocampal cortex exceeding that in the hippocampus. The data sets provide novel information about numerous differentially expressed proteins, which serve as interaction partners or modulators in key disease-associated inflammatory signaling events. Noteworthy, a set of proteins which act as modulators of the ictogenic Toll-like receptor signaling proved to be differentially expressed. In addition, we report novel data demonstrating the regulation of different Toll-like receptor ligands during epileptogenesis. Taken together, the findings deepen our understanding of modulation of inflammatory signaling during epileptogenesis providing an excellent and comprehensive basis for the identification of target and biomarker candidates.
Collapse
Affiliation(s)
- Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | | | - Kristina J H Kleinwort
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christoph Szober
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Maruja L Rettenbeck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Joanna Goc
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Tanja Ongerth
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Boes
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Annamaria Vezzani
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Neuroscience, Milano, Italy
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
48
|
Russmann V, Goc J, Boes K, Ongerth T, Salvamoser JD, Siegl C, Potschka H. Minocycline fails to exert antiepileptogenic effects in a rat status epilepticus model. Eur J Pharmacol 2016; 771:29-39. [DOI: 10.1016/j.ejphar.2015.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/27/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
|
49
|
Van Nieuwenhuyse B, Raedt R, Sprengers M, Dauwe I, Gadeyne S, Carrette E, Delbeke J, Wadman WJ, Boon P, Vonck K. The systemic kainic acid rat model of temporal lobe epilepsy: Long-term EEG monitoring. Brain Res 2015; 1627:1-11. [PMID: 26381287 DOI: 10.1016/j.brainres.2015.08.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 02/03/2023]
Abstract
Animal models reproducing the characteristics of human epilepsy are essential for the elucidation of the pathophysiological mechanisms. In epilepsy research there is ongoing debate on whether the epileptogenic process is a continuous process rather than a step function. The aim of this study was to assess progression of epileptogenesis over the long term and to evaluate possible correlations between SE duration and severity with the disease progression in the kainic acid model. Rats received repeated KA injections (5mg/kg) until a self-sustained SE was elicited. Continuous depth EEG recording started before KA injection and continued for 30 weeks. Mean seizure rate progression could be expressed as a sigmoid function and increased from 1 ± 0.2 seizures per day during the second week after SE to 24.4 ± 6.4 seizures per day during week 30. Seizure rate progressed to a plateau phase 122 ± 9 days after SE. However, the individual seizure rate during this plateau phase varied between 14.5 seizures and 48.6 seizures per day. A circadian rhythm in seizure occurrence was observed in all rats. Histological characterization of damage to the dentate gyrus in the KA treated rats confirmed the presence of astrogliosis and aberrant mossy fiber sprouting in the dentate gyrus. This long-term EEG monitoring study confirms that epileptogenesis is a continuous process rather than a step function.
Collapse
Affiliation(s)
- B Van Nieuwenhuyse
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - R Raedt
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - M Sprengers
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - I Dauwe
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - S Gadeyne
- Swammerdam Institute of Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands.
| | - E Carrette
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - J Delbeke
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - W J Wadman
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium; Swammerdam Institute of Life Sciences, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, The Netherlands.
| | - P Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| | - K Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology, and Neuropsychology, Department of Neurology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
50
|
Gorter JA, van Vliet EA, Lopes da Silva FH. Which insights have we gained from the kindling and post-status epilepticus models? J Neurosci Methods 2015; 260:96-108. [PMID: 25842270 DOI: 10.1016/j.jneumeth.2015.03.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 11/24/2022]
Abstract
Experimental animal epilepsy research got a big boost since the discovery that daily mild and short (seconds) tetanic stimulations in selected brain regions led to seizures with increasing duration and severity. This model that was developed by Goddard (1967) became known as the kindling model for epileptogenesis and has become a widely used model for temporal lobe epilepsy with complex partial seizures. During the late ninety-eighties the number of publications related to electrical kindling reached its maximum. However, since the kindling procedure is rather labor intensive and animals only develop spontaneous seizures (epilepsy) after hundreds of stimulations, research has shifted toward models in which the animals exhibit spontaneous seizures after a relatively short latent period. This led to post-status epilepticus (SE) models in which animals experience SE after injection of pharmacological compounds (e.g. kainate or pilocarpine) or via electrical stimulation of (limbic) brain regions. These post-SE models are the most widely used models in epilepsy research today. However, not all aspects of mesial temporal lobe epilepsy (MTLE) are reproduced and the widespread brain damage is often a caricature of the situation in the patient. Therefore, there is a need for models that can better replicate the disease. Kindling, although already a classic model, can still offer valid clues in this context. In this paper, we review different aspects of the kindling model with emphasis on experiments in the rat. Next, we review characteristic properties of the post-SE models and compare the neuropathological, electrophysiological and molecular differences between kindling and post-SE epilepsy models. Finally, we shortly discuss the advantages and disadvantages of these models.
Collapse
Affiliation(s)
- Jan A Gorter
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Fernando H Lopes da Silva
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands; Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|