1
|
Ruiz-López CX, Medina AC, Bello-Medina PC, Quirarte GL, Prado-Alcalá RA. Recruitment of neurons in basolateral amygdala after intense training produces a stronger memory trace. Neurobiol Learn Mem 2021; 181:107428. [PMID: 33798697 DOI: 10.1016/j.nlm.2021.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/18/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022]
Abstract
Typical amnestic treatments are ineffective when administered to subjects trained in aversively-motivated tasks using relatively high foot-shock intensities. This effect has been found when treatments that disrupt neuronal activity are administered to different regions of the brain, including the amygdala. However, the molecular mechanisms induced by this intense training are unknown. We made a detailed mapping of c-Fos-expressing neurons in four regions of the amygdala after moderate and intense one-trial inhibitory avoidance training. Rats were sacrificed 90 min after training or after appropriate control procedures, and their brains were prepared for immunohistochemical c-Fos protein detection in the central, lateral, and in the anterior and posterior parts of the basolateral amygdaloid nucleus. We found a high percentage of neurons expressing c-Fos in the anterior part of the basolateral nucleus after moderate training, and this percentage increased further after intense training. Moderate and intense training did not induce changes in c-Fos expression in the other explored amygdaloid regions. These results show that inhibitory avoidance training produces a localized expression of c-Fos in the basolateral anterior nucleus of the amygdala, which is dependent upon the intensity of training, and indicate that synaptic plastic changes in this region may be required for the formation of memory of moderate and intense aversive learning.
Collapse
Affiliation(s)
- C X Ruiz-López
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - A C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - P C Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico; División de Ciencias de Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México 52005, Mexico
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - R A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| |
Collapse
|
2
|
Magalhães SA, Foresti ML, Barros VN, Mello LE. Marmosets have a greater diversity of c-Fos response after hyperstimulation in distinct cortical regions as compared to rats. J Comp Neurol 2020; 529:1628-1641. [PMID: 32975324 DOI: 10.1002/cne.25044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 11/06/2022]
Abstract
Previous evidence indicated a potential mechanism that might support the fact that primates exhibit greater neural integration capacity as a result of the activation of different structures of the central nervous system, as compared to rodents. The current study aimed to provide further evidence to confirm previous findings by analyzing the patterns of c-Fos expression in more neocortical structures of rats and marmosets using a more robust quantitative technique and evaluating a larger number of brain areas. Nineteen Wistar rats and 21 marmosets (Callithrix jacchus) were distributed among control groups (animals without injections) and animals injected with pentylenetetrazol (PTZ) and euthanized at different time points after stimulus. Immunohistochemical detection of c-Fos was quantified using unbiased and efficient stereological cell counting in eight neocortical regions. Marmosets had a c-Fos expression that was notably more widely expressed (5× more cells) and longer lasting (up to 3 hr) than rats. c-Fos expression in rats presented similar patterns of expression according to the function of the brain cortical structures (associative, sensorial, and motor functions), which was not observed for marmosets (in which no clear pattern could be drawn, and a more diverse profile emerged). Our results provide evidence that the marmoset brain has a greater neuronal activation after intense stimulation by means of PTZ and a more complex pattern of brain activation. We speculate that these functional differences may contribute for the understanding of the different neuronal processing capacities of the neocortex in these mammals' orders.
Collapse
Affiliation(s)
| | - Maira Licia Foresti
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Botafogo, Brazil
| | | | - Luiz E Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D'Or de Pesquisa e Ensino, Botafogo, Brazil
| |
Collapse
|
3
|
Asok A, Ayers LW, Awoyemi B, Schulkin J, Rosen JB. Immediate early gene and neuropeptide expression following exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Behav Brain Res 2013; 248:85-93. [PMID: 23583519 DOI: 10.1016/j.bbr.2013.03.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 11/27/2022]
Abstract
The immediate early gene c-fos and a number of neuropeptides have been widely used to help delineate the neural circuitry of innate fear to predator odors. The present study used in situ hybridization techniques to examine the expression of the immediate early gene transcription factors c-fos and egr-1, and the neuropeptides corticotropin-releasing hormone (crh) and enkephalin (enk) following exposure to the predator odor 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Rats were exposed to water (H2O), TMT, or the irritating odor butyric acid (BA) and freezing was used to measure fear behavior. Changes in gene expression were analyzed in the medial prefrontal cortex (mPFC), the bed nucleus of the stria terminalis (BNST), paraventricular nucleus of the hypothalamus (PVN), and central nucleus of the amygdala (CeA). Animals froze more to TMT than BA and H2O, and more to BA than H2O. Compared to H2O and BA, c-fos and egr-1 were elevated within the BNST, PVN, and CeA in rats exposed to TMT, but not the mPFC. Crh was also elevated in rats exposed to TMT within the CeA and PVN, but not the BNST or mPFC. Enk was elevated within the PVN in TMT and BA exposed rats compared to H2O exposure. These data indicate that exposure to the predator odor TMT induces similar expression patterns for c-fos and egr-1, but different patterns for crh and enk, with partial overlap of the immediate-early genes and neuropeptides within specific brain regions.
Collapse
Affiliation(s)
- Arun Asok
- Program in Behavioral Neuroscience, Department of Psychology, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | |
Collapse
|
4
|
Segovia KN, Correa M, Lennington JB, Conover JC, Salamone JD. Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training. Eur J Neurosci 2012; 35:1354-67. [PMID: 22462413 DOI: 10.1111/j.1460-9568.2012.08036.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Nucleus accumbens is involved in several aspects of instrumental behavior, motivation and learning. Recent studies showed that dopamine (DA) release in the accumbens shell was significantly increased on the first day of training on a fixed ratio (FR) 5 schedule (i.e. the transition from FR1 to FR5) compared with those rats that continued FR1 training, even though the rats on their first day of FR5 training received less food reinforcement than rats continuing on the FR1 schedule. Additionally, the second day of FR5 responding was marked by a significant increase in DA release in accumbens core. The present studies employed immunohistochemical methods to characterize the changes in cellular markers of accumbens and neostriatal neural activity that occur during various stages of food-reinforced FR5 training. c-Fos and DARPP-32 immunoreactivity in accumbens shell was significantly increased on the first day of FR5 training, while core c-Fos and DARPP-32 expression showed large increases on the second day of FR5 training. Additional studies showed that c-Fos and DARPP-32 expression in neostriatum increased after more extensive training. Double-labeling studies with immunofluorescence methods indicated that increases in accumbens c-Fos and DARPP-32 expression were primarily seen in substance-P-positive neurons. These increases in accumbens c-Fos and DARPP-32 immunoreactivity seen during the initial phases of FR training may reflect several factors, including novelty, learning, stress or the presentation of a work-related challenge to the organism. Moreover, it appears that the separate subregions of the striatal complex are differentially activated at distinct phases of instrumental training.
Collapse
Affiliation(s)
- Kristen N Segovia
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA
| | | | | | | | | |
Collapse
|
5
|
Kadar E, Aldavert-Vera L, Huguet G, Costa-Miserachs D, Morgado-Bernal I, Segura-Torres P. Intracranial self-stimulation induces expression of learning and memory-related genes in rat amygdala. GENES BRAIN AND BEHAVIOR 2010; 10:69-77. [DOI: 10.1111/j.1601-183x.2010.00609.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Suge R, Kato H, McCabe BJ. Rapid induction of the immediate early gene c-fos in a chick forebrain system involved in memory. Exp Brain Res 2009; 200:183-8. [DOI: 10.1007/s00221-009-2006-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/01/2009] [Indexed: 02/02/2023]
|
7
|
Roth TL, Moriceau S, Sullivan RM. Opioid modulation of Fos protein expression and olfactory circuitry plays a pivotal role in what neonates remember. Learn Mem 2006; 13:590-8. [PMID: 17015856 PMCID: PMC1783613 DOI: 10.1101/lm.301206] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/18/2006] [Indexed: 01/02/2023]
Abstract
Paradoxically, fear conditioning (odor-0.5 mA shock) yields a learned odor preference in the neonate, presumably due to a unique learning and memory circuit that does not include apparent amygdala participation. Post-training opioid antagonism with naltrexone (NTX) blocks consolidation of this odor preference and instead yields memory of a learned odor aversion. Here we characterize the neural circuitry underlying this switch during memory consolidation. Experiment 1 assessed post-training opioid modulation of Fos protein expression within olfactory circuitry (olfactory bulb, piriform cortex, amygdala). Odor-shock conditioning with no post-training treatment (odor preference) induced significant changes in Fos protein expression in the granule cell layer of the olfactory bulb and anterior piriform cortex. Post-training opioid receptor antagonism (odor aversion) prevented the learning-induced changes in the anterior piriform cortex and also induced significant changes in Fos protein expression in the central nucleus of the amygdala. Experiment 2 assessed intra-amygdala opioid modulation of neonate memory consolidation. Post-training infusion of NTX within the amygdala permitted consolidation of an odor aversion, while vehicle-infused pups continued to demonstrate an odor preference. Overall, results demonstrate that opioids modulate memory consolidation in the neonate via modulating Fos protein expression in olfactory circuitry. Furthermore, these results suggest that opioids are instrumental in suppressing neonate fear behavior via modulating the amygdala.
Collapse
Affiliation(s)
- Tania L Roth
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | |
Collapse
|
8
|
Quirk GJ, Garcia R, González-Lima F. Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 2006; 60:337-43. [PMID: 16712801 DOI: 10.1016/j.biopsych.2006.03.010] [Citation(s) in RCA: 482] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 10/16/2005] [Accepted: 03/03/2006] [Indexed: 11/29/2022]
Abstract
Interest in the medial prefrontal cortex (mPFC) as a source of behavioral inhibition has increased with the mounting evidence for a functional role of the mPFC in extinction of conditioned fear. In fear extinction, a tone-conditioned stimulus (CS) previously paired with a footshock is presented repeatedly in the absence of footshock, causing fear responses to diminish. Here, we review converging evidence from different laboratories implicating the mPFC in memory circuits for fear extinction: (1) lesions of mPFC impair recall of extinction under various conditions, (2) extinction potentiates mPFC physiological responses to the CS, (3) mPFC potentiation is correlated with extinction behavior, and (4) stimulation of mPFC strengthens extinction memory. These findings support Pavlov's original notion that extinction is new learning, rather than erasure of conditioning. In people suffering from posttraumatic stress disorder (PTSD), homologous areas of ventral mPFC show morphological and functional abnormalities, suggesting that extinction circuits are compromised in PTSD. Strategies for augmenting prefrontal function for clinical benefit are discussed.
Collapse
Affiliation(s)
- Gregory J Quirk
- Department of Physiology, Ponce School of Medicine, Ponce, Puerto Rico.
| | | | | |
Collapse
|
9
|
Knapska E, Walasek G, Nikolaev E, Neuhäusser-Wespy F, Lipp HP, Kaczmarek L, Werka T. Differential involvement of the central amygdala in appetitive versus aversive learning. Learn Mem 2006; 13:192-200. [PMID: 16547163 PMCID: PMC1409843 DOI: 10.1101/lm.54706] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Understanding the function of the distinct amygdaloid nuclei in learning comprises a major challenge. In the two studies described herein, we used c-Fos immunolabeling to compare the engagement of various nuclei of the amygdala in appetitive and aversive instrumental training procedures. In the first experiment, rats that had already acquired a bar-pressing response to a partial food reinforcement were further trained to learn that an acoustic stimulus signaled either continuous food reinforcement (appetitive training) or a footshock (aversive training). The first training session of the presentation of the acoustic stimulus resulted in significant increases of c-Fos immunolabeling throughout the amygdala; however, the pattern of activation of the nuclei of the amygdala differed according to the valence of motivation. The medial part of the central amygdala (CE) responded, surprisingly, to the appetitive conditioning selectively. The second experiment was designed to extend the aversive versus appetitive conditioning to mice, trained either for place preference or place avoidance in an automated learning system (INTELLICAGE). Again, much more intense c-Fos expression was observed in the medial part of the CE after the appetitive training as compared to the aversive training. These data, obtained in two species and by means of novel experimental approaches balancing appetitive versus aversive conditioning, support the hypothesis that the central nucleus of the amygdala is particularly involved in appetitively motivated learning processes.
Collapse
Affiliation(s)
- Ewelina Knapska
- Department of Neurophysiology, Nencki Institute, Pasteur 3, PL-02-093 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
10
|
Knapska E, Nikolaev E, Boguszewski P, Walasek G, Blaszczyk J, Kaczmarek L, Werka T. Between-subject transfer of emotional information evokes specific pattern of amygdala activation. Proc Natl Acad Sci U S A 2006; 103:3858-62. [PMID: 16497832 PMCID: PMC1533786 DOI: 10.1073/pnas.0511302103] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Indexed: 11/18/2022] Open
Abstract
Emotional states displayed by an animal or a human can seriously affect behavior of their conspecifics. The amygdala plays a crucial role in the processing of emotions. In this study, we describe an experimental rat model of between-subject transfer of emotional information and its effects on activation of the amygdala. The rats were kept in pairs, and one animal (designated as "demonstrator") was treated to specific behavioral training of either foot-shock-reinforced context conditioning or just exposure to a novel context. We next examined the influence of the demonstrators on the exploratory behavior of their cagemates (called "observers") and the observers' performance of the acoustic startle response. We report that we can distinguish both groups of observers from the control animals (as shown by startle-response measure) and distinguish between observers (by means of indexing the exploration), with respect to whether they were paired with demonstrators treated to different experimental conditions. Furthermore, we show that the observers have most of their amygdala activated (as revealed by c-Fos mapping) to the same level as the demonstrators and, in the case of the central amygdala, to an even higher level. Moreover, the level of c-Fos expression in the observers reflected the specific behavioral treatment of the demonstrators with whom they were paired. Thus, in this study, we have shown that undefined emotional information transferred by a cohabitant rat can be evaluated and measured and that it evokes very strong and information-specific activation of the amygdala.
Collapse
Affiliation(s)
| | - Evgeni Nikolaev
- Molecular and Cellular Neurobiology, Nencki Institute, Pasteur 3, PL-02-093, Warsaw, Poland
| | | | | | | | - Leszek Kaczmarek
- Molecular and Cellular Neurobiology, Nencki Institute, Pasteur 3, PL-02-093, Warsaw, Poland
| | | |
Collapse
|
11
|
Dardou D, Datiche F, Cattarelli M. Fos and Egr1 expression in the rat brain in response to olfactory cue after taste-potentiated odor aversion retrieval. Learn Mem 2006; 13:150-60. [PMID: 16547160 PMCID: PMC1409841 DOI: 10.1101/lm.148706] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 12/08/2005] [Indexed: 11/25/2022]
Abstract
When an odor is paired with a delayed illness, rats acquire a relatively weak odor aversion. In contrast, rats develop a strong aversion to an olfactory cue paired with delayed illness if it is presented simultaneously with a gustatory cue. Such a conditioning effect has been referred to as taste-potentiated odor aversion learning (TPOA). TPOA is an interesting model for studying neural mechanisms of plasticity because of its robustness and rapid acquisition. However, the neural substrate involved in TPOA retrieval has not been well characterized. To address this question, we used immunocytochemical detection of inducible transcription factors encoded by the immediate-early genes Fos and Egr1. Thirsty male rats were conditioned to TPOA learning, and they were submitted to retrieval in the presence of the learned odor 3 d later. Significant increases in both Fos and Egr1 expressions were observed in basolateral amygdala, insular cortex, and hippocampus in aversive rats in comparison with the all the control groups. The pattern of neuronal activity seemed unlikely to be related to the sole LiCl injection. Lastly, opposite patterns of Fos and Egr1 were noted in the entorhinal cortex and the central nucleus of amygdala, suggesting a differential involvement of these markers in retrieval of TPOA.
Collapse
Affiliation(s)
- David Dardou
- Centre Européen des Sciences du Goût, Centre National de la Recherche Scientifique (CESG-CNRS), UMR 5170, 21000 Dijon, France.
| | | | | |
Collapse
|
12
|
Roth TL, Sullivan RM. Memory of early maltreatment: neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning. Biol Psychiatry 2005; 57:823-31. [PMID: 15820702 DOI: 10.1016/j.biopsych.2005.01.032] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 12/15/2004] [Accepted: 01/13/2005] [Indexed: 01/20/2023]
Abstract
BACKGROUND While children form an attachment to their abusive caregiver, they are susceptible to mental illness and brain abnormalities. To understand this important clinical issue, we have developed a rat animal model of abusive attachment where odor paired with shock paradoxically produces an odor preference. Here, we extend this model to a seminaturalistic paradigm using a stressed, "abusive" mother during an odor presentation and assess the underlying learning neural circuit. METHODS We used a classical conditioning paradigm pairing a novel odor with a stressed mother that predominantly abused pups to assess olfactory learning in a seminaturalistic environment. Additionally, we used Fos protein immunohistochemistry to assess brain areas involved in learning this pain-induced odor preference within a more controlled maltreatment environment (odor-shock conditioning). RESULTS Odor-maternal maltreatment pairings within a seminatural setting and odor-shock pairings both resulted in paradoxical odor preferences. Learning-induced gene expression was altered in the olfactory bulb and anterior piriform cortex (part of olfactory cortex) but not the amygdala. CONCLUSIONS Infants appear to use a unique brain circuit that optimizes learned odor preferences necessary for attachment. A fuller understanding of infant brain function may provide insight into why early maltreatment affects psychiatric well-being.
Collapse
Affiliation(s)
- Tania L Roth
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | |
Collapse
|
13
|
Chen J, Lin W, Wang W, Shao F, Yang J, Wang B, Kuang F, Duan X, Ju G. Enhancement of antibody production and expression of c-Fos in the insular cortex in response to a conditioned stimulus after a single-trial learning paradigm. Behav Brain Res 2004; 154:557-65. [PMID: 15313045 DOI: 10.1016/j.bbr.2004.03.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2003] [Revised: 03/25/2004] [Accepted: 03/26/2004] [Indexed: 11/17/2022]
Abstract
Immune responses can be modulated by Pavlovian conditioning techniques. In this study, to evaluate the conditionability of antibody response via a single-trial conditioning paradigm, we used a protein antigen ovalbumin as an unconditioned stimulus (UCS) that was paired with a novel taste of saccharin in a single-trial learning protocol. A significant enhancement of anti-ovalbumin antibody production was observed in the conditioned rats at Days 15, 20 and 25 after re-exposure to the conditioned stimulus. The pattern of conditioned antibody response is similar to that of antigen-induced antibody response. Furthermore, to identify the involvement of a limbic brain structure in the expression of conditioned antibody response, immediate-early gene c-fos expression was used as a marker of neuronal activation to detect the functional activation in the insular cortex (IC) in response to the conditioned stimulus. The re-exposure of conditioned rats to the conditioned stimulus resulted in a significant increase of c-Fos immunoreactivity in all three areas of the IC including the agranular, dysgranular, and granular areas, suggesting that IC is involved in the neural mechanism of expression of conditioned immune response.
Collapse
Affiliation(s)
- Jihuan Chen
- Brain-Behavior Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wright JW, Harding JW. The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 2004; 72:263-93. [PMID: 15142685 DOI: 10.1016/j.pneurobio.2004.03.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 03/18/2004] [Indexed: 01/25/2023]
Abstract
The brain renin-angiotensin system (RAS) has long been known to regulate several classic physiologies including blood pressure, sodium and water balance, cyclicity of reproductive hormones and sexual behaviors, and pituitary gland hormones. These physiologies are thought to be under the control of the angiotensin II (AngII)/AT1 receptor subtype system. The AT2 receptor subtype is expressed during fetal development and is less abundant in the adult. This receptor appears to oppose growth responses facilitated by the AT1 receptor, as well as growth factor receptors. Recent evidence points to an important contribution by the brain RAS to non-classic physiologies mediated by the newly discovered angiotensin IV (AngIV)/AT4 receptor subtype system. These physiologies include the regulation of blood flow, modulation of exploratory behavior, and a facilitory role in learning and memory acquisition. This system appears to interact with brain matrix metalloproteinases in order to modify extracellular matrix molecules thus permitting the synaptic remodeling critical to the neural plasticity presumed to underlie memory consolidation, reconsolidation, and retrieval. There is support for an inhibitory influence by AngII activation of the AT1 subtype, and a facilitory role by AngIV activation of the AT4 subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning. The discovery of the AT4 receptor subtype, and its facilitory influence upon learning and memory, suggest an important role for the brain RAS in normal cognitive processing and perhaps in the treatment of dysfunctional memory disease states.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA.
| | | |
Collapse
|
15
|
Dzwonek J, Rylski M, Kaczmarek L. Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Lett 2004; 567:129-35. [PMID: 15165905 DOI: 10.1016/j.febslet.2004.03.070] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/03/2004] [Accepted: 03/07/2004] [Indexed: 11/29/2022]
Abstract
More than 20 matrix metalloproteinases (MMPs) and four of their endogenous tissue inhibitors (TIMPs) act together to control tightly temporally restricted, focal proteolysis of extracellular matrix. In the neurons of the adult brain several components of the TIMP/MMP system are expressed and are responsive to changes in neuronal activity. Furthermore, functional studies, especially involving blocking of MMP activities, along with the identification of MMP substrates in the brain strongly suggest that this enzymatic system plays an important physiological role in adult brain neurons, possibly being pivotal for neuronal plasticity.
Collapse
Affiliation(s)
- Joanna Dzwonek
- Department of Molecular and Cellular Neurobiology, Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland
| | | | | |
Collapse
|
16
|
Liu X, Tang X, Sanford LD. Fear-conditioned suppression of REM sleep: relationship to Fos expression patterns in limbic and brainstem regions in BALB/cJ mice. Brain Res 2004; 991:1-17. [PMID: 14575871 DOI: 10.1016/j.brainres.2003.07.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In fear conditioning, shock training (ST) and shock-associated fearful cues (FC) produce relatively selective decreases in rapid eye movement sleep (REM) in mice that vary with strain, and can last for an extended period. We examined sleep in BALB/cJ mice over 6 h after ST and FC, and in handling and tone control conditions. In separate groups of mice, we used immunohistochemical techniques to examine Fos expression in limbic and brainstem regions involved in fear conditioning and in the regulation of REM in 2-h intervals over this period. Significant reductions in REM were observed at 2 and 4 h after ST. Fos expression in the brainstem was significantly elevated at 2 h after ST in the laterodorsal and peduculopontine tegmentum, up to 4 h in the dorsal raphe nucleus (DRN) and up to 6 h in the locus coeruleus (LC). Significant elevations in Fos expression were observed in several regions of the amygdala up to 4 and 6 h after ST. Decreases in REM after FC were significant at 2 h. Increased Fos expression was observed in LC at 2 h and in DRN up to 6 h after FC. Increased Fos expression in the amygdala was observed in several regions of the amygdala at 2 h after FC, but not longer. Significant changes in Fos expression in the central nucleus of the amygdala were not observed at any time point examined or in any condition. The data are discussed with respect to the putative role of brainstem nuclei in regulating REM and the role of the amygdala in conditioned fear.
Collapse
Affiliation(s)
- Xianling Liu
- Department of Pathology and Anatomy, Eastern Virginia Medical School, PO Box 1980, Norfolk, VA 23501-1980, USA
| | | | | |
Collapse
|
17
|
Savonenko A, Werka T, Nikolaev E, Zieliñski K, Kaczmarek L. Complex effects of NMDA receptor antagonist APV in the basolateral amygdala on acquisition of two-way avoidance reaction and long-term fear memory. Learn Mem 2003; 10:293-303. [PMID: 12888548 PMCID: PMC202320 DOI: 10.1101/lm.58803] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although much has been learned about the role of the amygdala in Pavlovian fear conditioning, relatively little is known about an involvement of this structure in more complex aversive learning, such as acquisition of an active avoidance reaction. In the present study, rats with a pretraining injection of the N-methyl-D-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonopentanoic acid (APV), into the basolateral amygdala (BLA) were found to be impaired in two-way active avoidance learning. During multitrial training in a shuttle box, the APV-injected rats were not different from the controls in sensitivity to shock or in acquisition of freezing to contextual cues. However, APV injection led to impaired retention of contextual fear when tested 48 h later, along with an attenuation of c-Fos expression in the amygdala. These results are consistent with the role of NMDA receptors of the BLA in long-term memory of fear, previously documented in Pavlovian conditioning paradigms. The APV-induced impairment in the active avoidance learning coincided with deficits in directionality of the escape reaction and in attention to conditioned stimuli. These data indicate that normal functioning of NMDA receptors in the basolateral amygdala is required during acquisition of adaptive instrumental responses in a shuttle box but is not necessary for acquisition of short-term contextual fear in this situation.
Collapse
Affiliation(s)
- Alena Savonenko
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|