1
|
Wight TN, Day AJ, Kang I, Harten IA, Kaber G, Briggs DC, Braun KR, Lemire JM, Kinsella MG, Hinek A, Merrilees MJ. V3: an enigmatic isoform of the proteoglycan versican. Am J Physiol Cell Physiol 2023; 325:C519-C537. [PMID: 37399500 PMCID: PMC10511178 DOI: 10.1152/ajpcell.00059.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
V3 is an isoform of the extracellular matrix (ECM) proteoglycan (PG) versican generated through alternative splicing of the versican gene such that the two major exons coding for sequences in the protein core that support chondroitin sulfate (CS) glycosaminoglycan (GAG) chain attachment are excluded. Thus, versican V3 isoform carries no GAGs. A survey of PubMed reveals only 50 publications specifically on V3 versican, so it is a very understudied member of the versican family, partly because to date there are no antibodies that can distinguish V3 from the CS-carrying isoforms of versican, that is, to facilitate functional and mechanistic studies. However, a number of in vitro and in vivo studies have identified the expression of the V3 transcript during different phases of development and in disease, and selective overexpression of V3 has shown dramatic phenotypic effects in "gain and loss of function" studies in experimental models. Thus, we thought it would be useful and instructive to discuss the discovery, characterization, and the putative biological importance of the enigmatic V3 isoform of versican.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Ingrid A Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - David C Briggs
- Signalling and Structural Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kathleen R Braun
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Joan M Lemire
- Department of Biology, Tufts University, Medford, Massachusetts, United States
| | - Michael G Kinsella
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mervyn J Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Rehbinder J, Vizet J, Park J, Ossikovski R, Vanel JC, Nazac A, Pierangelo A. Depolarization imaging for fast and non-invasive monitoring of cervical microstructure remodeling in vivo during pregnancy. Sci Rep 2022; 12:12321. [PMID: 35853917 PMCID: PMC9296502 DOI: 10.1038/s41598-022-15852-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022] Open
Abstract
The cervix plays a crucial role in conception, maintenance of pregnancy, and childbirth. The mechanical properties of a pregnant woman's cervix change dramatically during gestation due to a remodeling of its microstructure, necessary for delivery. However, external factors can accelerate this process and lead to prematurity, the primary cause of perinatal mortality worldwide, due to the inefficiency of existing diagnostic methods. This study shows that polarized light is a powerful tool to probe the cervical microstructure during pregnancy. A wide-field multispectral polarimetric imaging system was fabricated to explore in vivo the cervix of full-term pregnant women. The polarimetric properties of the cervix change significantly with pregnancy progression. In particular, a set of several depolarization parameters (intrinsic and extrinsic) showed a strong linear correlation with gestational age in the red part of the visible spectral range. This trend can be attributed, among other things, to a decrease in collagen density and an increase in hydration of cervical connective tissue. Wide field depolarization imaging is a very promising tool for rapid and non-invasive analysis of cervical tissue in vivo to monitor the steady progression of pregnancy, providing the practitioner with useful information to improve the detection of preterm birth.
Collapse
Affiliation(s)
- Jean Rehbinder
- ICube, CNRS, Université de Strasbourg, 67412, Illkirch Cedex, France
| | - Jérémy Vizet
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France
| | - Junha Park
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France
| | | | | | - André Nazac
- Department of Gynaecology, Iris Sud Ixelles Hospital, 1050, Ixelles, Belgium
| | - Angelo Pierangelo
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France.
| |
Collapse
|
3
|
Barnum CE, Shetye SS, Fazelinia H, Garcia BA, Fang S, Alzamora M, Li H, Brown LM, Tang C, Myers K, Wapner R, Soslowsky LJ, Vink JY. The Non-pregnant and Pregnant Human Cervix: a Systematic Proteomic Analysis. Reprod Sci 2022; 29:1542-1559. [PMID: 35266109 DOI: 10.1007/s43032-022-00892-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/13/2022] [Indexed: 10/18/2022]
Abstract
Appropriate timing of cervical remodeling (CR) is key to normal term parturition. To date, mechanisms behind normal and abnormal (premature or delayed) CR remain unclear. Recent studies show regional differences exist in human cervical tissue structure. While the entire cervix contains extracellular matrix (ECM), the internal os is highly cellular containing 50-60% cervical smooth muscle (CSM). The external os contains 10-20% CSM. Previously, we reported ECM rigidity and different ECM proteins influence CSM cell function, highlighting the importance of understanding not only how cervical cells orchestrate cervical ECM remodeling in pregnancy, but also how changes in specific ECM proteins can influence resident cellular function. To understand this dynamic process, we utilized a systematic proteomic approach to understand which soluble ECM and cellular proteins exist in the different regions of the human cervix and how the proteomic profiles change from the non-pregnant (NP) to the pregnant (PG) state. We found the human cervix proteome contains at least 4548 proteins and establish the types and relative abundance of cellular and soluble matrisome proteins found in the NP and PG human cervix. Further, we report the relative abundance of proteins involved with elastic fiber formation and ECM organization/degradation were significantly increased while proteins involved in RNA polymerase I/promoter opening, DNA methylation, senescence, immune system, and compliment activation were decreased in the PG compared to NP cervix. These findings establish an initial platform from which we can further comprehend how changes in the human cervix proteome results in normal and abnormal CR.
Collapse
Affiliation(s)
- Carrie E Barnum
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Snehal S Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Maria Alzamora
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hongyu Li
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Chuanning Tang
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Joy Y Vink
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA. .,Preterm Birth Prevention Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Colon-Caraballo M, Lee N, Nallasamy S, Myers K, Hudson D, Iozzo RV, Mahendroo M. Novel regulatory roles of small leucine-rich proteoglycans in remodeling of the uterine cervix in pregnancy. Matrix Biol 2022; 105:53-71. [PMID: 34863915 PMCID: PMC9446484 DOI: 10.1016/j.matbio.2021.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/03/2023]
Abstract
The cervix undergoes rapid and dramatic shifts in collagen and elastic fiber structure to achieve its disparate physiological roles of competence during pregnancy and compliance during birth. An understanding of the structure-function relationships of collagen and elastic fibers to maintain extracellular matrix (ECM) homeostasis requires an understanding of the mechanisms executed by non-structural ECM molecules. Small-leucine rich proteoglycans (SLRPs) play key functions in biology by affecting collagen fibrillogenesis and regulating enzyme and growth factor bioactivities. In the current study, we evaluated collagen and elastic fiber structure-function relationships in mouse cervices using mice with genetic ablation of decorin and/or biglycan genes as representative of Class I SLRPs, and lumican gene representative of Class II SLRP. We identified structural defects in collagen fibril and elastic fiber organization in nonpregnant mice lacking decorin, or biglycan or lumican with variable resolution of defects noted during pregnancy. The severity of collagen and elastic fiber defects was greater in nonpregnant mice lacking both decorin and biglycan and defects were maintained throughout pregnancy. Loss of biglycan alone reduced tissue extensibility in nonpregnant mice while loss of both decorin and biglycan manifested in decreased rupture stretch in late pregnancy. Collagen cross-link density was similar in the Class I SLRP null mice as compared to wild-type nonpregnant and pregnant controls. A broader range in collagen fibril diameter along with an increase in mean fibril spacing was observed in the mutant mice compared to wild-type controls. Collectively, these findings uncover functional redundancy and hierarchical roles of Class I and Class II SLRPs as key regulators of cervical ECM remodeling in pregnancy. These results expand our understating of the critical role SLRPs play to maintain ECM homeostasis in the cervix.
Collapse
Affiliation(s)
- Mariano Colon-Caraballo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Nicole Lee
- Department of Mechanical Engineering, Columbia University New York, New York 10027
| | - Shanmugasundaram Nallasamy
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Burlington, Vermont 05405
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University New York, New York 10027
| | - David Hudson
- Department of Orthopaedics and Sports Medicine, University of Washington Seattle, Washington 98165
| | - Renato V. Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, Texas 75390,Correspondence to: Mala Mahendroo, Ph.D, Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
5
|
Nallasamy S, Palacios HH, Setlem R, Caraballo MC, Li K, Cao E, Shankaran M, Hellerstein M, Mahendroo M. Transcriptome and proteome dynamics of cervical remodeling in the mouse during pregnancy. Biol Reprod 2021; 105:1257-1271. [PMID: 34309663 DOI: 10.1093/biolre/ioab144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/02/2021] [Accepted: 07/20/2021] [Indexed: 11/14/2022] Open
Abstract
During gestation, the female reproductive tract must maintain pregnancy while concurrently preparing for parturition. Here, we explore the transitions in gene expression and protein turnover (fractional synthesis rates [FSR]) by which the cervix implements a transition from rigid to compliant. Shifts in gene transcription to achieve immune tolerance and alter epithelial cell programs begin in early pregnancy. Subsequently, in mid-to-late pregnancy transcriptional programs emerge that promote structural reorganization of the extracellular matrix (ECM). Stable isotope labeling revealed a striking slowdown of overall FSRs across the proteome on gestation day 6 that reverses in mid-to-late pregnancy. An exception was soluble fibrillar collagens and proteins of collagen assembly, which exhibit high turnover in non-pregnant cervix compared to other tissues and FSRs that continue throughout pregnancy. This finding provides a mechanism to explain how cross-linked collagen is replaced by newly synthesized, less-cross-linked collagens, which allows increased tissue compliance during parturition. The rapid transition requires a reservoir of newly synthesized, less cross-linked collagens, which is assured by the high FSR of soluble collagens in the cervix. These findings suggest a previously unrecognized form of "metabolic flexibility" for ECM in the cervix that underlies rapid transformation in compliance to allow parturition.
Collapse
Affiliation(s)
- Shanmugasundaram Nallasamy
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Hector H Palacios
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Rohit Setlem
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Mariano Colon Caraballo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Kelvin Li
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Edward Cao
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Marc Hellerstein
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA
| | - Mala Mahendroo
- Department of Ob/Gyn and Cecil H. and Ida Green Center for Reproductive Biological Science, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
6
|
Fassini D, Wilkie IC, Pozzolini M, Ferrario C, Sugni M, Rocha MS, Giovine M, Bonasoro F, Silva TH, Reis RL. Diverse and Productive Source of Biopolymer Inspiration: Marine Collagens. Biomacromolecules 2021; 22:1815-1834. [PMID: 33835787 DOI: 10.1021/acs.biomac.1c00013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Marine biodiversity is expressed through the huge variety of vertebrate and invertebrate species inhabiting intertidal to deep-sea environments. The extraordinary variety of "forms and functions" exhibited by marine animals suggests they are a promising source of bioactive molecules and provides potential inspiration for different biomimetic approaches. This diversity is familiar to biologists and has led to intensive investigation of metabolites, polysaccharides, and other compounds. However, marine collagens are less well-known. This review will provide detailed insight into the diversity of collagens present in marine species in terms of their genetics, structure, properties, and physiology. In the last part of the review the focus will be on the most common marine collagen sources and on the latest advances in the development of innovative materials exploiting, or inspired by, marine collagens.
Collapse
Affiliation(s)
- Dario Fassini
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Iain C Wilkie
- Institute of Biodiversity Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Cinzia Ferrario
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Michela Sugni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miguel S Rocha
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marco Giovine
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Francesco Bonasoro
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy, Center for Complexity & Biosystems, Dipartimento di Fisica, Università degli Studi di Milano, 20122 Milano, Italy
| | - Tiago H Silva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
7
|
Gökçe A, Şükür YE, Özmen B, Sönmezer M, Berker B, Aytaç R, Atabekoğlu CS. The association between operative hysteroscopy prior to assisted reproductive technology and cervical insufficiency in second trimester. Arch Gynecol Obstet 2020; 303:1347-1352. [PMID: 33219481 DOI: 10.1007/s00404-020-05863-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To assess the association between operative hysteroscopy prior to assisted reproductive technology (ART) cycle and cervical insufficiency (CI) in the second trimester of pregnancy. METHODS A retrospective cohort study was conducted. The charts of all women who got pregnant following an ART cycle between January 2015 and June 2018 were reviewed. The study group consisted of pregnant women who underwent operative hysteroscopy within 6 months before conception. The control group consisted of pregnant women who did not undergo hysteroscopy or any type of cervical surgical procedure before conception. The primary outcome measure was CI during the second trimester (13-27 weeks of gestation). RESULTS A total of 363 pregnancies achieved by ART cycles were assessed. After the exclusion of multiple pregnancies (n = 19), previous surgical procedures (n = 4) and first-trimester pregnancy losses (n = 80), there were 29 women in the study group and 231 women in the control group. The mean ages of the study and control groups were 31.2 ± 4.06 and 29.82 ± 4.71 years, respectively (P = 0.13). The indications for operative hysteroscopy were uterine septum (n = 19), T-shaped uterus (n = 4), endometrial polyp (n = 4), and submucosal fibroids (n = 2). The rates of CI in the study and control groups were 13.7% (4/29) and 3.4% (8/231), respectively (P = 0.012). The term delivery rates in the study and control groups were 79.3 and 91.8%, respectively (P = 0.044). CONCLUSIONS Operative hysteroscopy prior to ART cycles is significantly associated with CI between 13 and 27 weeks of gestation. Further investigation with larger cohorts is urgently needed to clarify this issue.
Collapse
Affiliation(s)
- Ali Gökçe
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey.
| | - Yavuz Emre Şükür
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Batuhan Özmen
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Murat Sönmezer
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Bülent Berker
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Ruşen Aytaç
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| | - Cem Somer Atabekoğlu
- Department of Obstetrics and Gynaecology, Cebeci Hospital, Ankara University School of Medicine, Dikimevi, 06100, Ankara, Turkey
| |
Collapse
|
8
|
Integral Roles of Specific Proteoglycans in Hair Growth and Hair Loss: Mechanisms behind the Bioactivity of Proteoglycan Replacement Therapy with Nourkrin® with Marilex® in Pattern Hair Loss and Telogen Effluvium. Dermatol Res Pract 2020; 2020:8125081. [PMID: 32425997 PMCID: PMC7222612 DOI: 10.1155/2020/8125081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/01/2020] [Indexed: 11/30/2022] Open
Abstract
Follicular proteoglycans are key players with structural, functional, and regulatory roles in the growth and cycling behaviour of the hair follicles. The expression pattern of specific proteoglycans is strongly correlated with follicular phase transitions, which further affirms their functional involvement. Research shows that bioactive proteoglycans, e.g., versican and decorin, can actively trigger follicular phase shift by their anagen-inducing, anagen-maintaining, and immunoregulatory properties. This emerging insight has led to the recognition of “dysregulated proteoglycan metabolism” as a plausible causal or mediating pathology in hair growth disorders in both men and women. In support of this, declined expression of proteoglycans has been reported in cases of anagen shortening and follicular miniaturisation. To facilitate scientific communication, we propose designating this pathology “follicular hypoglycania (FHG),” which results from an impaired ability of follicular cells to replenish and maintain a minimum relative concentration of key proteoglycans during anagen. Lasting FHG may advance to structural decay, called proteoglycan follicular atrophy (PFA). This process is suggested to be an integral pathogenetic factor in pattern hair loss (PHL) and telogen effluvium (TE). To address FHG and PFA, a proteoglycan replacement therapy (PRT) program using oral administration of a marine-derived extract (Nourkrin® with Marilex®, produced by Pharma Medico Aps, Aarhus, Denmark) containing specific proteoglycans has been developed. In clinical studies, this treatment significantly reduced hair fall, promoted hair growth, and improved quality of life in patients with male- and female-pattern hair loss. Accordingly, PRT (using Nourkrin® with Marilex®) can be recommended as an add-on treatment or monotherapy in patients with PHL and TE.
Collapse
|
9
|
|
10
|
Abstract
The cervix is the essential gatekeeper for birth. Incomplete cervix remodeling contributes to problems with delivery at or post-term while preterm birth is a major factor in perinatal morbidity and mortality in newborns. Lack of cervix biopsies from women during the period preceding term or preterm birth have led to use of rodent models to advanced understanding of the mechanism for prepartum cervix remodeling. The critical transition from a soft cervix to a compliant prepartum lower uterine segment has only recently been recognized to occur in various mammalian species when progesterone in circulation is at or near the peak of pregnancy in preparation for birth. In rodents, characterization of ripening resembles an inflammatory process with a temporal coincidence of decreased density of cell nuclei, decline in cross-linked extracellular collagen, and increased presence of macrophages in the cervix. Although a role for inflammation in parturition and cervix remodeling is not a new concept, a comprehensive examination of literature in this review reveals that many conclusions are drawn from comparisons before and after ripening has occurred, not during the process. The present review focuses on essential phenotypes and functions of resident myeloid and possibly other immune cells to bridge the gap with evidence that specific biomarkers may assess the progress of ripening both at term and with preterm birth. Moreover, use of endpoints to determine the effectiveness of various therapeutic approaches to forestall remodeling and reduce risks for preterm birth, or facilitate ripening to promote parturition will improve the postpartum well-being of mothers and newborns.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Basic Sciences, Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
11
|
Atalay MA, Ozmen T, Demir BC, Kasapoglu I, Ozkaya G. Serum decorin measurement in prediction of the risk for preterm birth. Taiwan J Obstet Gynecol 2018; 57:23-27. [PMID: 29458898 DOI: 10.1016/j.tjog.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE To define serum decorin (sDEC) levels in healthy pregnants and in patients with preterm labor (PTL), and to introduce possible role of sDEC in predicting the risk for preterm birth (PTB). MATERIALS AND METHODS Thirty-one women with diagnosis of PTL between 24th to 32nd weeks of pregnancy were compared with 44 healthy pregnants in this prospective case-control study. Maternal blood sDEC and uterine cervical length (CL) measurements were conducted at referral. RESULTS Median sDEC level was significantly decreased in PTL group (p = 0.013). Median CL was significantly shorter in PTL group (p < 0.001). There was not any correlation between sDEC level and maternal age, BMI, and gestational age at blood sampling time within PTL (p = 0.955, p = 0.609, p = 0.079, respectively) and control groups (p = 0.652, p = 0.131, and p = 0.921, respectively). There was not any association between sDEC level and PTB within 7 days, before 34th weeks, but before 37th weeks there was (p = 0.206, 0.091, and p = 0.026, respectively). There was not any correlation between sDEC level and the CL in PTL group (p = 0.056). CONCLUSIONS sDEC has a limited effect in prediction of PTB within a week or before 34th weeks. Combination of sDEC with CL measurements predicted PTB before 37th weeks. CONCLUSION
Collapse
Affiliation(s)
- Mehmet Aral Atalay
- Department of Obstetrics and Gynecology of Uludag University School of Medicine, Bursa, Turkey
| | - Turan Ozmen
- Van State Hospital, Department of Obstetrics and Gynecology, Van, Turkey
| | - Bilge Cetinkaya Demir
- Department of Obstetrics and Gynecology of Uludag University School of Medicine, Bursa, Turkey; Division of Perinatal Medicine, Uludag University School of Medicine, Bursa, Turkey
| | - Isil Kasapoglu
- Department of Obstetrics and Gynecology of Uludag University School of Medicine, Bursa, Turkey.
| | - Guven Ozkaya
- Department of Biostatistics, Uludag University School of Medicine, Bursa, Turkey
| |
Collapse
|
12
|
Godoy‐Guzmán C, Nuñez C, Orihuela P, Campos A, Carriel V. Distribution of extracellular matrix molecules in human uterine tubes during the menstrual cycle: a histological and immunohistochemical analysis. J Anat 2018; 233:73-85. [PMID: 29663371 PMCID: PMC5987832 DOI: 10.1111/joa.12814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 11/30/2022] Open
Abstract
The uterine tube (UT) is an important and complex organ of the women's reproductive system. In general, the anatomy and basic histology of this organ are well-known. However, the composition and function of the extracellular matrix (ECM) of the UT is still poorly understood. The ECM is a complex supramolecular material produced by cells which is commonly restricted to the basement membrane and interstitial spaces. ECM molecules play not only a structural role, they are also important for cell growth, survival and differentiation in all tissues. In this context, the aim of this study was to evaluate the deposition and distribution of type I and III collagens and proteoglycans (decorin, biglycan, fibromodulin and versican) in human UT during the follicular and luteal phases by using histochemical and immunohistochemical techniques. Our results showed a broad synthesis of collagens (I and III) in the stroma of the UT. The analysis by regions showed, in the mucosa, a specific distribution of versican and fibromodulin in the epithelial surface, whereas decorin and fibromodulin were observed in the lamina propria. Versican and decorin were found in the stroma of the muscular layer, whereas all studied proteoglycans were identified in the serosa. Curiously, biglycan was restricted to the wall of the blood vessels of the serosa and muscular layers. Furthermore, there was an immunoreaction for collagens, decorin, versican and fibromodulin in the UT peripheral nerves. The differential distribution of these ECM molecules in the different layers of the UT could be related to specific structural and/or biomechanical functions needed for the oviductal transport, successful fertilization and early embryogenesis. However, further molecular studies under physiological and pathological conditions are still needed to elucidate the specific role of each molecule in the human UT.
Collapse
Affiliation(s)
- Carlos Godoy‐Guzmán
- Department of HistologyTissue Engineering GroupFaculty of MedicineUniversity of GranadaSpain
- Doctoral Program in BiomedicineUniversity of GranadaGranadaSpain
- Centro de Investigaciones Biomédicas y AplicadasEscuela de MedicinaUniversidad de Santiago de Chile, (USACH)SantiagoChile
| | - Claudio Nuñez
- Servicio de Ginecología y ObstetriciaHospital San JoséSantiagoChile
| | - Pedro Orihuela
- Laboratorio de Inmunología de la ReproduccíonFacultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
- Centro para el Desarrollo en Nanociencia y Nanotecnologıa‐CEDENNASantiagoChile
| | - Antonio Campos
- Department of HistologyTissue Engineering GroupFaculty of MedicineUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria Ibs.GRANADAEspaña
| | - Víctor Carriel
- Department of HistologyTissue Engineering GroupFaculty of MedicineUniversity of GranadaSpain
- Instituto de Investigación Biosanitaria Ibs.GRANADAEspaña
| |
Collapse
|
13
|
Tsikouras P, Anastasopoulos G, Maroulis V, Bothou A, Chalkidou A, Deuteraiou D, Anthoulaki X, Tsatsaris G, Bourazan AH, Iatrakis G, Zervoudis S, Galazios G, Inagamova LK, Csorba R, Teichmann AT. Comparative Evaluation of Arabin Pessary and Cervical Cerclage for the Prevention of Preterm Labor in Asymptomatic Women with High Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15040791. [PMID: 29670041 PMCID: PMC5923833 DOI: 10.3390/ijerph15040791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
Abstract
Objective: Preterm labor is one of the most significant obstetric problems associated with high rate of actual and long-term perinatal complications. Despite the creation of scoring systems, uterine activity monitoring, cervical ultrasound and several biochemical markers, the prediction and prevention of preterm labor is still a matter of concern. The aim of this study was to examine cervical findings for the prediction and the comparative use of Arabin pessary or cerclage for the prevention of preterm birth in asymptomatic women with high risk factors for preterm labor. Material and methods: The study group was composed of singleton pregnancies (spontaneously conceived) with high risk factors for preterm labor. Cervical length, dilatation of the internal cervical os and funneling, were estimated with transvaginal ultrasound during the first and the second trimesters of pregnancy. Results: Cervical funneling, during the second trimester of pregnancy, was the most significant factor for the prediction of preterm labor. The use of Arabin cervical pessary was found to be more effective than cerclage in the prolongation of pregnancy. Conclusion: In women at risk for preterm labor, the detection of cervical funneling in the second trimester of pregnancy may help to predict preterm labor and to apply the appropriate treatment for its prevention. Although the use of cervical pessary was found to be more effective than cerclage, more studies are needed to classify the effectiveness of different methods for such prevention.
Collapse
Affiliation(s)
- Panagiotis Tsikouras
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - George Anastasopoulos
- Medical Informatics Laboratory, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Vasileios Maroulis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Anastasia Bothou
- Department of Obstetrics and Gynecology, Rea Hospital, 17564 Athens, Greece.
| | - Anna Chalkidou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Dorelia Deuteraiou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Xanthoula Anthoulaki
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Georgios Tsatsaris
- Medical Informatics Laboratory, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Arzou Halil Bourazan
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - George Iatrakis
- Department of Obstetrics and Gynecology, Technological Educational Institute, 17564 Athens, Greece.
| | - Stefanos Zervoudis
- Department of Obstetrics and Gynecology, Rea Hospital, 17564 Athens, Greece.
| | - Georgios Galazios
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Lola-Katerina Inagamova
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Roland Csorba
- Department of Obstetrics and Gynecology, Clinicum Aschaffenburg, Teaching Hospital of University, 97070 Würzburg, Germany.
| | - Alexander-Tobias Teichmann
- Department of Obstetrics and Gynecology, Clinicum Aschaffenburg, Teaching Hospital of University, 97070 Würzburg, Germany.
| |
Collapse
|
14
|
Vink J, Myers K. Cervical alterations in pregnancy. Best Pract Res Clin Obstet Gynaecol 2018; 52:88-102. [PMID: 30314740 DOI: 10.1016/j.bpobgyn.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/28/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Spontaneous preterm birth (SPTB), defined as delivery before 37 weeks' gestation, remains a significant obstetric dilemma even after decades of research in this field. Although trends from 2007 to 2014 showed the rate of preterm birth slightly decreased, the CDC recently reported the rate of preterm birth has increased for two consecutive years since 2014. Currently, 1 in 10 pregnancies in the US still end prematurely. In this chapter, we focus on the "compartment" of the cervix. The goal is to outline the current knowledge of normal cervical structure and function in pregnancy and the current knowledge of how the cervix malfunctions lead to SPTB. We review the mechanisms by which our current interventions are hypothesized to work. Finally, we outline gaps in knowledge and future research directions that may lead to novel and effective interventions to prevent premature cervical failure and SPTB.
Collapse
Affiliation(s)
- Joy Vink
- Dept. of OB/GYN, Columbia University Medical Center, New York, NY, USA.
| | - Kristin Myers
- Dept. of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Vink J, Mourad M. The pathophysiology of human premature cervical remodeling resulting in spontaneous preterm birth: Where are we now? Semin Perinatol 2017; 41:427-437. [PMID: 28826790 PMCID: PMC6007872 DOI: 10.1053/j.semperi.2017.07.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Approximately one in ten (approximately 500,000) pregnancies results in preterm birth (PTB) annually in the United States. Although we have seen a slight decrease in the U.S. PTB rate between 2007 and 2014, data from 2014 to 2015 shows the preterm birth rate has slightly increased. It is even more intriguing to note that the rate of PTB has not significantly decreased since the 1980s. In order to decrease the rate of spontaneous preterm birth (sPTB), it is imperative that we improve our understanding of normal and abnormal reproductive tissue structure and function and how these tissues interact with each other at a cellular and biochemical level. Since other chapters in this issue will be focusing on the myometrium and fetal membranes, the goal of this chapter is to focus on the compartment of the cervix. We will review the current literature on normal and abnormal human cervical tissue remodeling and identify gaps in knowledge. Our goal is also to introduce a revised paradigm of normal cervical tissue structure and function which will provide novel research opportunities that may ultimately lead to developing safe and effective interventions to significantly decrease the rate and complications of prematurity.
Collapse
Affiliation(s)
- Joy Vink
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St, PH16-66, New York, NY 10025.
| | - Mirella Mourad
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th St, PH16-66, New York, NY 10025
| |
Collapse
|
16
|
Sundtoft I, Langhoff-Roos J, Sandager P, Sommer S, Uldbjerg N. Cervical collagen is reduced in non-pregnant women with a history of cervical insufficiency and a short cervix. Acta Obstet Gynecol Scand 2017; 96:984-990. [PMID: 28374904 DOI: 10.1111/aogs.13143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/29/2017] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Preterm cervical shortening and cervical insufficiency may be caused by a constitutional weakness of the cervix. The aim of this study was to assess the cervical collagen concentration in non-pregnant women with a history of cervical insufficiency or of a short cervix in the second trimester of pregnancy. MATERIAL AND METHODS In this case-control study we included non-pregnant women one year or more after pregnancy: 55 controls with a history of normal delivery; 27 women with a history of cervical insufficiency; and 10 women with a history of a short cervix (<5th percentile) and 10 women with a history of a long cervix (>95th percentile) at gestational weeks 18-20. We obtained biopsies (3 × 3-4 mm) from the ectocervix and determined the collagen concentration by measuring the hydroxyproline concentration. RESULTS Women with cervical insufficiency had lower collagen concentrations (63.5 ± 5.1%; mean ± SD) compared with controls (68.2 ± 5.4%; p = 0.0004); area under the ROC curve 0.73 (95% CI 0.62-0.84). A cut-off value at 67.6% collagen resulted in a positive likelihood ratio of 3.2, a sensitivity of 60%, and a specificity of 81%. Also, women with a short cervix in the second trimester had lower collagen concentrations in a non-pregnant state (62.1% ± 4.9%) compared with women with a long cervix (67.8% ± 5.0%; p = 0.02). CONCLUSIONS Both cervical insufficiency and a short cervix in the second trimester of pregnancy are associated with low cervical collagen concentrations in a non-pregnant state more than one year after pregnancy.
Collapse
Affiliation(s)
- Iben Sundtoft
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Langhoff-Roos
- Clinic of Obstetrics and Gynecology, Rigshospitalet Copenhagen University Hospital, Copenhagen, Denmark
| | - Puk Sandager
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Sommer
- Department of Obstetrics and Gynecology, The Regional Hospital Horsens, Horsens, Denmark
| | - Niels Uldbjerg
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
17
|
Thom E. Pregnancy and the hair growth cycle: anagen induction against hair growth disruption using Nourkrin ® with Marilex ® , a proteoglycan replacement therapy. J Cosmet Dermatol 2016; 16:421-427. [PMID: 27659896 DOI: 10.1111/jocd.12286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 12/27/2022]
Abstract
Postpartum effluvium is a well-known clinical fact. However, following some minor research activities in the 1960s, very little has happened on the research front of the subject. It was hypothesized that postpartum hair loss might be a manifestation of a change in the hair growth cycle occurring normally during pregnancy. Recently, new research has been published trying to explain the mechanism of action behind this frequently occurring hair growth disruption, and to develop a functional treatment schedule and regime. Under normal circumstances, postpartum effluvium will disappear by itself as a function of time, and therefore adequate information to the patient is important in order to reduce the anxiety that it will not be a permanent problem. However, in some subjects it can manifest itself for longer stages and even become permanent. At the present time, treatments aim at correcting underlying hormonal imbalances and at improving overall cosmetic appearance. Several treatments in the form of thyroid supplementation, topical progesterone and estradiol lotions, and even oral contraceptive have been studied. All the available studies have significant limitations in their scientific basis, such as small sample size, absence of control group, or highly subjective measurement of treatment response. It is evident from the available studies that no specific treatment has been investigated thoroughly enough to justify recommendation in clinical treatment or to be termed "effective." Without the ability to provide a pathogenic diagnosis or causality criteria, chances are low that a treatment by trial and error will adequately be able to control hair effluvium. Current hair treatment strategies are symptomatic and nonspecific; therefore, future research must aim at developing new and targeted methods with a point of departure in observing concomitant biological mechanisms. Based on the research in the 1960s, current knowledge about the hair follicle and the regulation of the hair cycles, we believe that an anagen inducer in the form of a specific proteoglycan replacement therapy (Nourkrin® with Marilex® from Pharma Medico) could be a proper solution to shorten the hair eclipse phenomenon - and give the patient a feeling of control and empowerment.
Collapse
|
18
|
Ultrastructural and biochemical characterization of mechanically adaptable collagenous structures in the edible sea urchin Paracentrotus lividus. ZOOLOGY 2015; 118:147-60. [DOI: 10.1016/j.zool.2014.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/26/2014] [Accepted: 10/13/2014] [Indexed: 11/16/2022]
|
19
|
Goldfien GA, Barragan F, Chen J, Takeda M, Irwin JC, Perry J, Greenblatt RM, Smith-McCune KK, Giudice LC. Progestin-Containing Contraceptives Alter Expression of Host Defense-Related Genes of the Endometrium and Cervix. Reprod Sci 2015; 22:814-28. [PMID: 25634912 DOI: 10.1177/1933719114565035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epidemiological studies indicate that progestin-containing contraceptives increase susceptibility to HIV, although the underlying mechanisms involving the upper female reproductive tract are undefined. To determine the effects of depot medroxyprogesterone acetate (DMPA) and the levonorgestrel intrauterine system (LNG-IUS) on gene expression and physiology of human endometrial and cervical transformation zone (TZ), microarray analyses were performed on whole tissue biopsies. In endometrium, activated pathways included leukocyte chemotaxis, attachment, and inflammation in DMPA and LNG-IUS users, and individual genes included pattern recognition receptors, complement components, and other immune mediators. In cervical TZ, progestin treatment altered expression of tissue remodeling and viability but not immune function genes. Together, these results indicate that progestins influence expression of immune-related genes in endometrium relevant to local recruitment of HIV target cells with potential to increase susceptibility and underscore the importance of the upper reproductive tract when assessing the safety of contraceptive products.
Collapse
Affiliation(s)
- Gabriel A Goldfien
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Fatima Barragan
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joseph Chen
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret Takeda
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Juan C Irwin
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jean Perry
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ruth M Greenblatt
- Departments of Clinical Pharmacy, Medicine, Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Karen K Smith-McCune
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Linda C Giudice
- Department of OB/GYN & Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Meinert M, Malmström A, Petersen AC, Eriksen GV, Uldbjerg N. Chorioamniontis in preterm delivery is associated with degradation of decorin and biglycan and depletion of hyaluronan in fetal membranes. Placenta 2014; 35:546-51. [PMID: 24920507 DOI: 10.1016/j.placenta.2014.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The proteoglycan decorin stabilizes collagen whereas biglycan and hyaluronan disrupt well-organized collagen. The aim was to determine the concentrations of these constituents in fetal membranes in relation to gestational age, preterm labour, PPROM and chorioamnionitis. STUDY DESIGN Preterm fetal membranes (24-34 weeks gestation) were obtained from elective caesarean deliveries (N = 4), from PPROM (N = 14), and from preterm labour (N = 14). Term fetal membranes from elective caesarean deliveries (N = 9) and spontaneous vaginal deliveries (N = 11) were used for comparison. Chorioamnionitis was assessed histologically. The proteoglycans were analysed using alcian blue precipitation, SDS-PAGE and immunostaining. Hyaluronan was estimated by a radioimmunoassay. RESULTS Preterm amniotic membranes with chorioamnionitis displayed a 8-fold decrease in hyaluronan concentration as well as a pronounced (88%) degradation of decorin and biglycan (p < 0.05). The amnion from preterm elective caesarean sections had higher decorin (3.2 vs. 1.7 μg/mg, p < 0.05) and lower biglycan (0.4 vs. 1.0 μg/mg, p < 0.05) concentrations as compared to similar term amnion (p < 0.05), whereas the hyaluronan concentrations were not associated with gestational age. Also the chorio-decidua from preterm caesarean sections had higher decorin concentrations (1.8 vs. 1.0 μg/mg, p < 0.05) whereas the biglycan concentration was unchanged. Labour (term as well as preterm) was characterized by increased hyaluronan and biglycan concentrations in the amnion (not statistically significant). CONCLUSION The biglycan/decorin balance increases during third trimester of pregnancy and during active labour. This relation might contribute to mechanical weakening of the membranes. Chorioamnionitis induces dramatic degradation of both proteoglycans and hyaluronan, which can explain the decreased biomechanical strength.
Collapse
Affiliation(s)
- M Meinert
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, 8200 Aarhus N, Denmark.
| | - A Malmström
- Department of Cell and Molecular Biology, Biomedical Center, C13, 221 84 Lund, Sweden
| | - A C Petersen
- Department of Pathology, Aalborg University Hospital, 9100 Aalborg, Denmark
| | - G V Eriksen
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - N Uldbjerg
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| |
Collapse
|
21
|
Yoshida K, Reeves C, Vink J, Kitajewski J, Wapner R, Jiang H, Cremers S, Myers K. Cervical collagen network remodeling in normal pregnancy and disrupted parturition in Antxr2 deficient mice. J Biomech Eng 2014; 136:021017. [PMID: 24390076 PMCID: PMC4023666 DOI: 10.1115/1.4026423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023]
Abstract
The remodeling of the cervix from a rigid barrier into a compliant structure, which dilates to allow for delivery, is a critical process for a successful pregnancy. Changes in the mechanical properties of cervical tissue during remodeling are hypothesized to be related to the types of collagen crosslinks within the tissue. To further understand normal and abnormal cervical remodeling, we quantify the material properties and collagen crosslink density of cervical tissue throughout pregnancy from normal wild-type and Anthrax Toxin Receptor 2 knockout (Antxr2-/-) mice. Antxr2-/- females are known to have a parturition defect, in part, due to an excessive accumulation of extracellular matrix proteins in the cervix, particularly collagen. In this study, we determined the mechanical properties in gestation-timed cervical samples by osmotic loading and measured the density of mature collagen crosslink, pyridinoline (PYD), by liquid chromatography tandem mass spectrometry (LC-MSMS). The equilibrium material response of the tissue to loading was investigated using a hyperelastic material model where the stresses in the material are balanced by the osmotic swelling tendencies of the glycosaminoglycans and the tensile restoring forces of a randomly-oriented crosslinked collagen fiber network. This study shows that the swelling response of the cervical tissue increased with decreasing PYD density in normal remodeling. In the Antxr2-/- mice, there was no significant increase in swelling volume or significant decrease in crosslink density with advancing gestation. By comparing the ECM-mechanical response relationships in normal and disrupted parturition mouse models this study shows that a reduction of collagen crosslink density is related to cervical softening and contributes to the cervical remodeling process.
Collapse
Affiliation(s)
- Kyoko Yoshida
- Graduate Research AssistantDepartment of Mechanical Engineering,Columbia University,New York, NY 10027e-mail:
| | - Claire Reeves
- Associate Managing EditorBioScience Writers, LLC,Houston, TX 77025 e-mail:
| | - Joy Vink
- Assistant Clinical ProfessorDepartment of Obstetrics and Gynecology,Columbia University Medical Center,New York, NY 10032 e-mail:
| | - Jan Kitajewski
- Charles and Marie Robertson ProfessorDepartment of Obstetrics and Gynecology,Columbia University Medical Center,New York, NY 10032 e-mail:
| | - Ronald Wapner
- Vice Chairman for ResearchDepartment of Obstetrics and Gynecology,Columbia University Medical Center,New York, NY 10032 e-mail:
| | - Hongfeng Jiang
- Associate Research ScientistIrving Institute for Clinicaland Translational Research,Department of Medicine,Columbia University Medical Center,New York, NY 10032 e-mail:
| | - Serge Cremers
- Assistant Professor of Medical SciencesIrving Institute for Clinicaland Translational Research,Department of Medicine,Columbia University Medical Center,New York, NY 10032e-mail:
| | - Kristin Myers
- Assistant ProfessorDepartment of Mechanical Engineering,Columbia University, New York, NY 10027e-mail:
| |
Collapse
|
22
|
Akgul Y, Holt R, Mummert M, Word A, Mahendroo M. Dynamic changes in cervical glycosaminoglycan composition during normal pregnancy and preterm birth. Endocrinology 2012; 153:3493-503. [PMID: 22529214 PMCID: PMC3380303 DOI: 10.1210/en.2011-1950] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Glycosaminoglycans (GAG) have diverse functions that regulate macromolecular assembly in the extracellular matrix. During pregnancy, the rigid cervix transforms to a pliable structure to allow birth. Quantitative assessment of cervical GAG is a prerequisite to identify GAG functions in term and preterm birth. In the current study, total GAG levels increased at term, yet the abundance, chain length, and sulfation levels of sulfated GAG remained constant. The increase in total GAG resulted exclusively from an increase in hyaluronan (HA). HA can form large structures that promote increased viscosity, hydration, and matrix disorganization as well as small structures that have roles in inflammation. HA levels increased from 19% of total GAG in early pregnancy to 71% at term. Activity of the HA-metabolizing enzyme, hyaluronidase, increased in labor, resulting in metabolism of large to small HA. Similar to mice, HA transitions from high to low molecular weight in term human cervix. Mouse preterm models were also characterized by an increase in HA resulting from differential expression of the HA synthase (Has) genes, with increased Has1 in preterm in contrast to Has2 induction at term. The Has2 gene but not Has1 is regulated in part by estrogen. These studies identify a shift in sulfated GAG dominance in the early pregnant cervix to HA dominance in term and preterm ripening. Increased HA synthesis along with hyaluronidase-induced changes in HA size in mice and women suggest diverse contributions of HA to macromolecular changes in the extracellular matrix, resulting in loss of tensile strength during parturition.
Collapse
Affiliation(s)
- Yucel Akgul
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas Texas 75390-9032, USA
| | | | | | | | | |
Collapse
|
23
|
Kling E, Kitahara S, Posligua L, Malpica A, Silva EG. The 2 stromal compartments of the normal cervix with distinct immunophenotypic and histomorphologic features. Ann Diagn Pathol 2012; 16:315-22. [PMID: 22503284 DOI: 10.1016/j.anndiagpath.2011.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 10/28/2022]
Abstract
Cervical plasticity is partially attributed to subepithelial stromal cells. Knowing this population of cells in its variable physiologic states, with its immunophenotypic variations, will lead to better understanding of neoplastic processes related to these stromal cells. We reviewed slides of cervices from premenopausal, postmenopausal, and postpartum patients and used mesenchymal immunohistochemical stains. Results demonstrate 2 distinct subepithelial compartments, within the ectocervix and the endocervix/transformation zone. The endocervix/transformation zone has twice the number of stromal cells as the ectocervix, regardless of age. Ectocervical stromal cells are desmin+/smooth muscle actin (SMA)-, and endocervical stromal cells are desmin+/SMA-. In postpartum/premenopausal patients, the cervix has less desmin+ ectocervical and SMA- endocervical cells. In postmenopausal/prolapse patients, the cervix has no desmin+ ectocervical cells. Desmin+/SMA, calponin, caldesmon, myogenin, myoD1, CD34- cells could represent unusual myofibroblasts that should not be confused with a neoplastic process, especially if a mass is not present.
Collapse
Affiliation(s)
- Elaine Kling
- University of Texas MD Anderson Cancer Center, Houston, USA
| | | | | | | | | |
Collapse
|
24
|
|
25
|
House M, Daniel J, Elstad K, Socrate S, Kaplan DL. Oxygen tension and formation of cervical-like tissue in two-dimensional and three-dimensional culture. Tissue Eng Part A 2011; 18:499-507. [PMID: 21919792 DOI: 10.1089/ten.tea.2011.0309] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cervical dysfunction contributes to a significant number of preterm births and is a common cause of morbidity and mortality in newborn infants. Cervical dysfunction is related to weakened load bearing properties of the collagen-rich cervical stroma. However, the mechanisms responsible for cervical collagen changes during pregnancy are not well defined. It is known that blood flow and oxygen tension significantly increase in reproductive tissues during pregnancy. To examine the effect of oxygen tension, a key mediator of tissue homeostasis, on the formation of cervical-like tissue in vitro, we grew primary human cervical cells in both two-dimensional (2D) and three-dimensional (3D) culture systems at 5% and 20% oxygen. Immunofluorescence studies revealed a stable fibroblast phenotype across six passages in all subjects studied (n=5). In 2D culture for 2 weeks, 20% oxygen was associated with significantly increased collagen gene expression (p<0.01), increased tissue wet weight (p<0.01), and increased collagen concentration (p=0.046). 3D cultures could be followed for significantly longer time frames than 2D cultures (12 weeks vs. 2 weeks). In contrast to 2D cultures, 20% oxygen in 3D cultures was associated with decreased collagen concentration (p<0.01) and unchanged collagen gene expression, which is similar to cervical collagen changes seen during pregnancy. We infer that 3D culture is more relevant for studying cervical collagen changes in vitro. The data suggest that increased oxygen tension may be related to significant cervical collagen changes seen in pregnancy.
Collapse
Affiliation(s)
- Michael House
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA 02111, USA.
| | | | | | | | | |
Collapse
|
26
|
Sundtoft I, Sommer S, Uldbjerg N. Cervical collagen concentration within 15 months after delivery. Am J Obstet Gynecol 2011; 205:59.e1-3. [PMID: 22088899 DOI: 10.1016/j.ajog.2011.03.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 02/25/2011] [Accepted: 03/17/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cervical collagen concentration decreases during pregnancy. The increased risk of preterm birth after a short interpregnancy interval may be explained by an incomplete remodeling of the cervix. The objective of this study was to describe the changes in cervical collagen concentration over 15 months after delivery. STUDY DESIGN The collagen concentrations were determined in cervical biopsy specimens that were obtained from 15 women at 3, 6, 9, 12, and 15 months after delivery. RESULTS The mean cervical collagen concentrations were 50%, 59%, 63%, 65%, and 65% of dry weight (SD, 4.2-6.5). This increase was statistically significant until month 9, but not between months 9 and 12. CONCLUSION Low collagen concentrations in the uterine cervix may contribute to the association between a short interpregnancy interval and preterm birth.
Collapse
Affiliation(s)
- Iben Sundtoft
- Department of Obstetrics and Gynecology, Aarhus University Hospital, Skejby, Aarhus, Denmark
| | | | | |
Collapse
|
27
|
Akins ML, Luby-Phelps K, Bank RA, Mahendroo M. Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse. Biol Reprod 2011; 84:1053-62. [PMID: 21248285 DOI: 10.1095/biolreprod.110.089599] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A greater understanding of the parturition process is essential in the prevention of preterm birth, which occurs in 12.7% of infants born in the United States annually. Cervical remodeling is a critical component of this process. Beginning early in pregnancy, remodeling requires cumulative, progressive changes in the cervical extracellular matrix (ECM) that result in reorganization of collagen fibril structure with a gradual loss of tensile strength. In the current study, we undertook a detailed biochemical analysis of factors in the cervix that modulate collagen structure during early mouse pregnancy, including expression of proteins involved in processing of procollagen, assembly of collagen fibrils, cross-link formation, and deposition of collagen in the ECM. Changes in these factors correlated with changes in the types of collagen cross-links formed and packing of collagen fibrils as measured by electron microscopy. Early in pregnancy there is a decline in expression of two matricellular proteins, thrombospondin 2 and tenascin C, as well as a decline in expression of lysyl hydroxylase, which is involved in cross-link formation. These changes are accompanied by a decline in both HP and LP cross-links by gestation Days 12 and 14, respectively, as well as a progressive increase in collagen fibril diameter. In contrast, collagen abundance remains constant over the course of pregnancy. We conclude that early changes in tensile strength during cervical softening result in part from changes in the number and type of collagen cross-links and are associated with a decline in expression of two matricellular proteins thrombospondin 2 and tenascin C.
Collapse
Affiliation(s)
- Meredith L Akins
- Department of Obstetrics and Gynecology, The Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | |
Collapse
|
28
|
The molecular basis for sonographic cervical shortening at term: identification of differentially expressed genes and the epithelial-mesenchymal transition as a function of cervical length. Am J Obstet Gynecol 2010; 203:472.e1-472.e14. [PMID: 20817141 DOI: 10.1016/j.ajog.2010.06.076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/13/2010] [Accepted: 06/30/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether cervical shortening of a ripe cervix at term is associated with changes in the cervical transcriptome. STUDY DESIGN Sonographically measured cervical lengths and biopsy specimens were obtained from 19 women at term who were not in labor with a ripe cervix. Affymetrix HG-U133 Plus 2.0 arrays (Affymetrix Inc, Santa Clara, CA) were used. Gene expression was analyzed as a function of cervical length. Gene Ontology, pathway analyses, quantitative real-time reverse transcription-polymerase chain reaction, and immunohistochemistry were performed. RESULTS Cervical length shortening was associated with differential expression of 687 genes. Fifty-four biologic processes, 22 molecular functions, and 9 pathways were enriched. Quantitative real-time reverse transcription-polymerase chain reaction analysis confirmed differential expression of 13 genes. Bone morphogenetic protein-7, claudin-1, integrin beta-6, and endometrial progesterone-induced protein messenger RNA, and protein expressions were down-regulated with cervical shortening. CONCLUSION Sonographic cervical shortening in patients at term who are not in labor with a ripe cervix is associated with changes in the uterine cervix transcriptome. The epithelial-mesenchymal transition may participate in the mechanism of cervical shortening at term.
Collapse
|
29
|
Xu X, Akgul Y, Mahendroo M, Jerschow A. Ex vivo assessment of mouse cervical remodeling through pregnancy via 23Na MRS. NMR IN BIOMEDICINE 2010; 23:907-912. [PMID: 20878968 PMCID: PMC3965669 DOI: 10.1002/nbm.1507] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Preterm birth occurs in 12.5% of births in the United States and can lead to risk of infant death or to lifelong serious health complications. A greater understanding by which the two main processes, uterine contraction and cervical remodeling are regulated is required to reduce rates of preterm birth. The cervix must undergo extensive remodeling through pregnancy in preparation for parturition, the process of labor and delivery of young. One key aspect of this dynamic process is a change in the composition and abundance of glycosaminoglycans (GAGs) and proteoglycans within the extracellular matrix, which influences the loss of tensile strength or stiffness of the cervix during labor. 23Na NMR spectroscopy has previously been validated as a method to quantify GAGs in tissues. In the current study, the Na+ concentration was measured at several time points through pregnancy in mouse cervices using 23Na NMR spectroscopy. The Na+ concentration increased progressively during pregnancy and peaked one day before birth followed by a rapid decline after birth. The same trend was seen in GAGs as measured by a biochemical assay using independent cervix samples over the course of pregnancy. We suggest that monitoring the Na+ concentration via 23Na NMR spectroscopy can serve as an informative physiological marker in evaluating the stages of cervical remodeling ex vivo and warrants further investigation to determine its utility as a diagnostic tool for the identification of women at risk for impending preterm birth.
Collapse
Affiliation(s)
- Xiang Xu
- Chemistry Department, New York University, 100 Washington Square East, New York, NY 10003
| | - Yucel Akgul
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75235-9032
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75235-9032
| | - Alexej Jerschow
- Chemistry Department, New York University, 100 Washington Square East, New York, NY 10003
| |
Collapse
|
30
|
Timmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab 2010; 21:353-61. [PMID: 20172738 PMCID: PMC2880223 DOI: 10.1016/j.tem.2010.01.011] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Appropriate and timely cervical remodeling is key for successful birth. Premature cervical opening can result in preterm birth which occurs in 12.5% of pregnancies. Research focused on the mechanisms of term and preterm cervical remodeling is essential to prevent prematurity. This review highlights recent findings that better define molecular processes driving progressive disorganization of the cervical extracellular matrix. This includes studies that redefine the role of immune cells and identify diverse functions of the cervical epithelia and hyaluronan in remodeling. New investigations proposing that infection-induced premature cervical remodeling is distinct from the normal process are presented. Recent advances in our understanding of term and preterm cervical remodeling provide new directions for investigation and compel investigators to reevaluate currently accepted models.
Collapse
Affiliation(s)
- Brenda Timmons
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9032, USA
| | | | | |
Collapse
|
31
|
Hassan SS, Romero R, Tarca AL, Nhan-Chang CL, Vaisbuch E, Erez O, Mittal P, Kusanovic JP, Mazaki-Tovi S, Yeo L, Draghici S, Kim JS, Uldbjerg N, Kim CJ. The transcriptome of cervical ripening in human pregnancy before the onset of labor at term: identification of novel molecular functions involved in this process. J Matern Fetal Neonatal Med 2010; 22:1183-93. [PMID: 19883264 DOI: 10.3109/14767050903353216] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to identify changes in the cervical transcriptome in the human uterine cervix as a function of ripening before the onset of labor. STUDY DESIGN Human cervical tissue was obtained from women at term not in labor with ripe (n = 11) and unripe (n = 11) cervices and profiled using Affymetrix GeneChip HGU133Plus2.0 arrays. Gene expression was analyzed using a moderated t-test (False Discovery Rate 5%). Gene ontology and pathway analysis were performed. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used for confirmation of selected differentially expressed genes. RESULTS (1) Ninety-one genes were differentially expressed between ripe and unripe groups. (2) Cervical ripening was associated with enrichment of specific biological processes (e.g. cell adhesion, regulation of anatomical structure), pathways and 11 molecular functions (e.g. extracelluar matrix (ECM)-structural constituent, protein binding, glycosaminoglycan binding). (3) qRT-PCR confirmed that 9 of 11 tested differentially expressed genes (determined by microarray) were upregulated in a ripe cervix (e.g. MYOCD, VCAN, THBS1, COL5A1). (4) Twenty-three additional genes related to ECM metabolism and adhesion molecules were differentially regulated (by qRT-PCR) in ripe cervices. CONCLUSION (1) This is the first description of the changes in the human cervical transcriptome with ripening before the onset of labor. (2) Biological processes, pathways and molecular functions were identified with the use of this unbiased approach. (3) In contrast to cervical dilation after term labor, inflammation-related genes did not emerge as differentially regulated with cervical ripening. (4) Myocardin was identified as a novel gene upregulated in human cervical ripening.
Collapse
Affiliation(s)
- Sonia S Hassan
- Department of Obstetrics and Gynecology, Wayne State University/Hutzel Women's Hospital, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dubicke A, Andersson P, Fransson E, Andersson E, Sioutas A, Malmström A, Sverremark-Ekström E, Ekman-Ordeberg G. High-mobility group box protein 1 and its signalling receptors in human preterm and term cervix. J Reprod Immunol 2009; 84:86-94. [PMID: 19962765 DOI: 10.1016/j.jri.2009.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/19/2009] [Accepted: 09/29/2009] [Indexed: 11/15/2022]
Abstract
The objective of this study was to identify possible changes in mRNA and protein expression of high-mobility group box protein 1 (HMGB1) and its suggested receptors - receptor for advanced glycation end-products (RAGE) and Toll-like receptor 2 (TLR2) and TLR4 - in human cervix during pregnancy, term and preterm labor. Cervical biopsies were taken from 58 women: 20 at preterm labor, 24 at term labor, 10 at term not in labor and 4 from non-pregnant women. Real-time RT-PCR was used to quantify mRNA expression, and immunohistochemistry and ELISA for protein analysis. HMGB1, RAGE, TLR2 and TLR4 proteins were localized and their mRNA expression was detected in the cervix. There was more extranuclear HMGB1 in the cervical epithelium and stroma in preterm and term labor compared to the term not in labor. TLR2 mRNA expression was upregulated 5-fold in term labor and 3-fold in preterm labor compared to term not in labor and non-pregnant controls. There was lower expression of TLR2 and TLR4 mRNAs in preterm labor compared to term. Lower mRNA expression of HMGB1 was found in the subgroup with preterm premature rupture of membranes than in the rest of the preterm group, where levels were significantly higher than in term labor. In conclusion, extranuclear expression of HMGB1 during labor suggests a possible role of HMGB1 during the process of cervical ripening. Changes in expression of mRNAs encoding HMGB1, TLR2 and TLR4 in preterm labor suggest differences in the mechanism of cervical ripening at preterm and term delivery.
Collapse
Affiliation(s)
- Aurelija Dubicke
- Department of Woman and Child Health, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
House M, Kaplan DL, Socrate S. Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. Semin Perinatol 2009; 33:300-7. [PMID: 19796726 PMCID: PMC2774809 DOI: 10.1053/j.semperi.2009.06.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In normal pregnancy, the cervix maintains its shape during a period of substantial fetal and uterine growth. Hence, maintenance of biomechanical integrity is an important aspect of cervical function. It is known that cervical mechanical properties arise from extracellular matrix (ECM). The most important constituent of the cervical ECM is fibrillar collagen-it is collagen protein that the cervix derives its "strength" from. Other matrix molecules known to affect the collagen network include water, proteoglycans, hyaluronan, and elastin. The objective of this review is to discuss relationships between biochemical constituents and macroscopic mechanical properties. The individual constituents of the ECM will be discussed, especially in regard to collagen remodeling during pregnancy. In addition, the macroscopic mechanical properties of cervical tissue will be reviewed. An improved understanding of the biochemistry of cervical "strength" will shed light on how the cervix maintains its shape in normal pregnancy and shortens in preterm birth.
Collapse
Affiliation(s)
- Michael House
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA 02111, USA.
| | | | | |
Collapse
|
34
|
Dailey T, Ji H, Long V, Chien EK. The role of transforming growth factor beta in cervical remodeling within the rat cervix. Am J Obstet Gynecol 2009; 201:322.e1-6. [PMID: 19631925 DOI: 10.1016/j.ajog.2009.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 04/29/2009] [Accepted: 06/01/2009] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Transforming growth factor beta (TGFbeta) plays a central role in extracellular matrix remodeling. We hypothesized that TGFbeta signaling is involved in cervical remodeling. This study evaluated patterns within this signaling pathway. STUDY DESIGN The cervices of nonpregnant and timed pregnant rats were obtained. Messenger ribonucleic acid (mRNA) expression of TGFbeta1, TGFbeta receptor 1 (TbetaR1), TbetaR2, and TbetaR3 was evaluated. Four animals were euthanized for each time point. Western blotting was performed for protein expression. Phosphorylated mothers against decapentaplegic (Smad)-2 and -3 phosphorylation was assessed to evaluate TGFbeta activation. RESULTS TGFbeta1 mRNA increased through day 21 and declined on day 22 (analysis of variance, P = .001). TbetaR1 expression was unchanged. TbetaR2 and TbetaR3 mRNA expression was similar to TGFbeta1. TbetaR3 protein expression was similar to mRNA. Smad2 phosphorylation paralleled changes in TbetaR3. CONCLUSION Components of the TGFbeta signaling pathway increase during pregnancy along with Smad2 activation. The decline on day 22 correlates with a transition to the ripening phase supporting a role in cervical remodeling.
Collapse
|
35
|
Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, Catherino WH. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci 2009; 16:1153-64. [PMID: 19700613 DOI: 10.1177/1933719109343310] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Uterine leiomyoma are common, benign tumors that are enriched in extracellular matrix. The tumors are characterized by a disoriented and loosely packed collagen fibril structure similar to other diseases with disrupted Transforming growth factor beta (TGF-beta) signaling. Here we characterized TGF-beta3 signaling and the expression patterns of the critical extracellular matrix component versican in leiomyoma and myometrial tissue and cell culture. We also demonstrate the regulation of the versican variants by TGF-beta3. Using leiomyoma and matched myometrium from 15 patients, messenger RNA (mRNA) from leiomyoma and myometrium was analyzed by semiquantitative real time reverse transcription-polymerase chain reaction (RT-PCR), while protein analysis was done by western blot. Transforming growth factor beta3 transcripts were increased 4-fold in leiomyoma versus matched myometrium. Phosphorylated-TGF-beta RII and phosphorylated-Smad 2/3 complex were greater in leiomyoma as documented by Western blot. The inhibitor Smad7 transcripts were decreased 0.44-fold. The glycosaminoglycan (GAG)-rich versican variants were elevated in leiomyoma versus myometrial tissue: specifically V0 (4.27 +/- 1.12) and V1 (2.01 +/- 0.27). Treatment of leiomyoma and myometrial cells with TGF-beta3 increased GAG-rich versican variant expression 7 to 12 fold. Neutralizing TGF-beta3 antibody decreased the expression of the GAG-rich versican variants 2 to 8 fold in leiomyoma cells. Taken together, the aberrant production of excessive and disorganized extracellular matrix that defines the leiomyoma phenotype involves the activation of the TGF-beta signaling pathway and excessive production of GAG-rich versican variants.
Collapse
Affiliation(s)
- John M Norian
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Salgado RM, Capelo LP, Favaro RR, Glazier JD, Aplin JD, Zorn TMT. Hormone-regulated expression and distribution of versican in mouse uterine tissues. Reprod Biol Endocrinol 2009; 7:60. [PMID: 19500372 PMCID: PMC2698856 DOI: 10.1186/1477-7827-7-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 06/05/2009] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Remodeling of the extracellular matrix is one of the most striking features observed in the uterus during the estrous cycle and after hormone replacement. Versican (VER) is a hyaluronan-binding proteoglycan that undergoes RNA alternative splicing, generating four distinct isoforms. This study analyzed the synthesis and distribution of VER in mouse uterine tissues during the estrous cycle, in ovariectomized (OVX) animals and after 17beta-estradiol (E2) and medroxyprogesterone (MPA) treatments, either alone or in combination. METHODS Uteri from mice in all phases of the estrous cycle, and animals subjected to ovariectomy and hormone replacement were collected for immunoperoxidase staining for versican, as well as PCR and quantitative Real Time PCR. RESULTS In diestrus and proestrus, VER was exclusively expressed in the endometrial stroma. In estrus and metaestrus, VER was present in both endometrial stroma and myometrium. In OVX mice, VER immunoreaction was abolished in all uterine tissues. VER expression was restored by E2, MPA and E2+MPA treatments. Real Time PCR analysis showed that VER expression increases considerably in the MPA-treated group. Analysis of mRNA identified isoforms V0, V1 and V3 in the mouse uterus. CONCLUSION These results show that the expression of versican in uterine tissues is modulated by ovarian steroid hormones, in a tissue-specific manner. VER is induced in the myometrium exclusively by E2, whereas MPA induces VER deposition only in the endometrial stroma.
Collapse
Affiliation(s)
- Renato M Salgado
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luciane P Capelo
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodolfo R Favaro
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jocelyn D Glazier
- Maternal and Fetal Health Research Group, School of Clinical and Laboratory Sciences, University of Manchester, Manchester, UK
| | - John D Aplin
- Maternal and Fetal Health Research Group, School of Clinical and Laboratory Sciences, University of Manchester, Manchester, UK
| | - Telma MT Zorn
- Laboratory of Reproductive and Extracellular Matrix Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Buhimschi CS, Sora N, Zhao G, Buhimschi IA. Genetic background affects the biomechanical behavior of the postpartum mouse cervix. Am J Obstet Gynecol 2009; 200:434.e1-7. [PMID: 19200937 DOI: 10.1016/j.ajog.2008.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/30/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We hypothesized that the genetic makeup has an impact on the functional behavior of the uterine cervix. Therefore, we compared the biomechanical properties of uterine cervix in postpartum in 2 strains of mice that differ in their underlying regenerative collagen remodeling characteristics: MRL/MpJ+/+ (MRL: high regenerative repair) and C57BL/6 (C57: low regenerative high fibrotic repair). STUDY DESIGN Cervical tensile proprieties were assessed on day 3, 15, and 60 postpartum in MRL (n = 14) and C57 (n = 13) mice (4-5 animals at each time point). Stress-strain curves were generated using Shimadzu EZ-test instrumentation. Cervical tissue was stretched by 0.42 mm/min until rupture. Parameters of viscoelasticity including slope (a measure of stiffness), yield point (YP; moment when tissue changes its proprieties from elastic to plastic), and break point (BP; measure of tissue strength) were recorded and analyzed blindly between strains. Data were normalized to the weight of the tissue and analyzed by 2-way analysis of variance. Histological and collagen birefringence evaluation of the uterine cervix (MRL: n = 4; C57: n = 4) was performed 5 days after delivery. RESULTS At 3 and 15 days postpartum, cervices of MRL mice were significantly more compliant than those of C57 (P < .001). MRL mice displayed a significant increase in stiffness from day 3 to day 60 (slope, median +/- SEM: day 3: 3.1 +/- 0.5 vs day 15: 20.3 +/- 4.9 vs day 60: 33.1 +/- 3.5 N/mm per gram; P < .001). In contrast, the stiffness of C57 cervices reached maximum on day 15 (slope day 3: 14.1 +/- 4.3 vs day 15: 40.0 +/- 6.5 N/mm per gram; P = .02) and rested at a similar level on day 60 (day 60: 26.1 +/- 7.0 N/mm per gram; day 60 vs day 15: P = .937). More force was required to reach YP in C57 on day 3 (C57: 72.5 +/- 14.7 vs MRL: 19.9 +/- 1.6 N/g; P < .001) but not on either day 15 (C57: 156.1 +/- 27.5 vs MRL: 109.2 +/- 26.0 N/g; P = .120) or on day 60 (C57: 143.4 +/- 26.5 vs MRL: 164.5 +/- 18.7 N/g; P = .412). There was a significant decrease in BP in both strains on both day 15 and day 60 compared with day 3 postpartum (P = .856 for strain, P = .008 for day). MRL mice displayed significantly less cervical collagen birefringence compared with C57 control (P < .001) but increased proteoglycan staining and increased water content. CONCLUSION We provide evidence that genetic makeup may have an impact on cervical tissue remodeling and function. There are significant differences in postpartum cervical stiffness and compliance that vary with the regenerative collagen remodeling phenotype.
Collapse
|
38
|
Choi SJ, Jung KL, Oh SY, Kim JH, Roh CR. Cervicovaginal matrix metalloproteinase-9 and cervical ripening in human term parturition. Eur J Obstet Gynecol Reprod Biol 2009; 142:43-7. [DOI: 10.1016/j.ejogrb.2008.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 07/01/2008] [Accepted: 08/10/2008] [Indexed: 10/21/2022]
|
39
|
Dubicke A, Akerud A, Sennstrom M, Hamad RR, Bystrom B, Malmstrom A, Ekman-Ordeberg G. Different secretion patterns of matrix metalloproteinases and IL-8 and effect of corticotropin-releasing hormone in preterm and term cervical fibroblasts. Mol Hum Reprod 2008; 14:641-7. [PMID: 18922847 PMCID: PMC2639405 DOI: 10.1093/molehr/gan060] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aims of the present study were to compare the levels of mRNA and protein expression of matrix metalloproteinase (MMP)-1, -3, -8 and -9 in human cervical tissue in preterm and term labor as well as not in labor and to determine if corticotropin-releasing hormone (CRH) has an effect on MMP-1, -3 and interleukin (IL)-8 secretion in both preterm and term cervical fibroblasts. Cervical biopsies were taken from 60 women: 18 at preterm labor, 7 at preterm not in labor, 18 at term labor and 17 at term not in labor. ELISA and Immulite were used for protein and real-time RT–PCR for mRNA analysis. Cervical fibroblast cultures were incubated for 18 h with different CRH concentrations (10−13–10−6 M). The mRNA expression of MMP-1, -3 and -9 was higher in laboring groups compared with term not in labor. Protein levels of MMP-8 and -9 were higher in term in labor group compared with non-laboring groups. There were no significant differences in mRNA and protein expression between the preterm and respective term control groups. CRH significantly increased secretion of IL-8 in preterm and term cervical fibroblasts compared with controls. The secretion of IL-8 and MMP-1 was significantly higher and MMP-3 secretion lower in preterm cervical fibroblasts. In conclusion, cervical ripening at preterm seems to be a similar inflammatory process as at term with CRH involved. However, preterm and term cervical fibroblasts might have different phenotypes based on different secretion patterns of IL-8, MMP-1 and MMP-3.
Collapse
Affiliation(s)
- A Dubicke
- Department of Women and Child Health, Karolinska Institute, 171 76 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
40
|
Malik M, Webb J, Catherino WH. Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol (Oxf) 2008; 69:462-70. [PMID: 18248652 PMCID: PMC2610401 DOI: 10.1111/j.1365-2265.2008.03207.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Uterine leiomyomas are clinically significant tumours that may develop due to an altered differentiation pathway. We have previously identified a dysregulated retinoic acid (RA) pathway that reduced retinoic exposure in human leiomyoma surgical specimens, and have shown that the leiomyoma phenotype was characterized by excessive and disorganized extracellular matrix (ECM). OBJECTIVE The goal of this study was to determine the impact of RA exposure on the disrupted ECM phenotype of leiomyomas. DESIGN AND METHODS Study of immortalized and molecularly confirmed cells generated from surgical specimens of spontaneous uterine leiomyoma and matched myometrium. RESULTS Immortalized leiomyoma and myometrial cells retained the molecular characteristics of their progenitor tissue. Proliferation of leiomyoma cells was inhibited by all-trans retinoic acid (ATRA). Furthermore, there was a dose-dependent decrease in soluble extracellular collagen protein in ATRA-treated leiomyoma cells. Exposure of leiomyoma cells to ATRA resulted in a dose-dependent inhibition of templates for specific ECM protein production including collagen 1, collagen 4, fibronectin and versican. Notably, expression levels in treated leiomyoma cells approached those found in myometrial cells. These mRNA alterations translated into altered protein. Down-regulation was also observed among the RA pathway genes such as CYP26A1 with exposure to ATRA. Finally, ATRA down-regulated TGF-beta3 mRNA expression and the TGF-beta regulated genes in leiomyoma cells. CONCLUSION Exposure of leiomyomas to ATRA down-regulated cell proliferation, ECM formation, RA metabolism and TGF-beta regulation, suggesting that RA exposure can alter the leiomyoma phenotype to one that more closely approximates normal myometrium.
Collapse
Affiliation(s)
- Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA
| | | | | |
Collapse
|
41
|
Ji H, Dailey TL, Long V, Chien EK. Prostaglandin E2-regulated cervical ripening: analysis of proteoglycan expression in the rat cervix. Am J Obstet Gynecol 2008; 198:536.e1-7. [PMID: 18191800 DOI: 10.1016/j.ajog.2007.11.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 09/27/2007] [Accepted: 11/08/2007] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Prostaglandins reduce cervical resistance by reorganizing collagen fibrils. Proteoglycans are involved in collagen fibril organization and structure. We evaluated the changes in proteoglycan composition induced by prostaglandin E(2) (PGE(2)). STUDY DESIGN Prostaglandins were administered intravaginally to induce cervical ripening in timed pregnant Sprague-Dawley rats. Changes in proteoglycan messenger ribonucleic acid (mRNA) expression were measured using reverse transcription (RT-PCR) for core protein. Fluorophore assisted carbohydrate gel electrophoresis (FACE) was used to evaluate proteoglycan glycosaminoglycan composition along with size exclusion high-performance liquid chromatography (HPLC). RESULTS No change in core protein mRNA expression was detected after PGE(2) treatment. Total glycosaminoglycan (GAG) decreased more than 20% after PGE(2) (P = .02). FACE demonstrated a shift in disaccharide subunit composition after PGE(2), with a decrease in 4-sulfated disaccharides (P = .02). HPLC confirmed a decrease in total GAG (P = .04). CONCLUSION Although there was no change in core protein mRNA expression, alterations in GAG composition was detected after PGE(2). The decrease in sulfated GAG could decrease electrostatic interactions that would weaken interfibrillar interactions. These findings would be consistent with a decline in cervical resistance.
Collapse
Affiliation(s)
- Huiling Ji
- Section of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Women and Infants' Hospital of Rhode Island, and Warren Alpert Medical School at Brown University, Providence, RI, USA
| | | | | | | |
Collapse
|
42
|
Read CP, Word RA, Ruscheinsky MA, Timmons BC, Mahendroo MS. Cervical remodeling during pregnancy and parturition: molecular characterization of the softening phase in mice. Reproduction 2007; 134:327-40. [PMID: 17660242 DOI: 10.1530/rep-07-0032] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cervical remodeling during pregnancy and parturition is a single progressive process that can be loosely divided into four overlapping phases termed softening, ripening, dilation/labor, and post partum repair. Elucidating the molecular mechanisms that facilitate all phases of cervical remodeling is critical for an understanding of parturition and for identifying processes that are misregulated in preterm labor, a significant cause of perinatal morbidity. In the present study, biomechanical measurements indicate that softening was initiated between gestation days 10 and 12 of mouse pregnancy, and in contrast to cervical ripening on day 18, the softened cervix maintains tissue strength. Although preceded by increased collagen solubility, cervical softening is not characterized by significant increases in cell proliferation, tissue hydration or changes in the distribution of inflammatory cells. Gene expression studies reveal a potentially important role of cervical epithelia during softening and ripening in maintenance of an immunomucosal barrier that protects the stromal compartment during matrix remodeling. Expression of two genes involved in repair and protection of the epithelial permeability barrier in the gut (trefoil factor 1) and skin (serine protease inhibitor Kazal type 5) were increased during softening and/or ripening. Another gene whose function remains to be elucidated, purkinje cell protein 4, declines in expression as remodeling progressed. Collectively, these results indicate that cervical softening during pregnancy is a unique phase of the tissue remodeling process characterized by increased collagen solubility, maintenance of tissue strength, and upregulation of genes involved in mucosal protection.
Collapse
Affiliation(s)
- Charles P Read
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9032, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
The cervix maintains the fetus in situ during pregnancy and dilates during labour to allow delivery of the baby. Congenital or iatrogenically-induced structural abnormalities of the cervix are associated with an increased risk of preterm birth. The role of cervical infection is less clear. Cervical studies may be useful in the prediction of preterm delivery: both a shortened cervical length identified on transvaginal ultrasound examination and an increased level of fetal fibronectin in cervico-vaginal secretions are associated with an increased risk of preterm delivery. In singleton pregnancy, cervical cerclage reduces the risk of preterm birth by 25%. There is no evidence of a reduction in neonatal mortality or morbidity, and the beneficial effects of preterm birth reduction have to be set against the increased risk of maternal infection. Neither the American College of Obstetricians and Gynecologists (ACOG) nor the Royal College of Obstetricians and Gynaecologists (RCOG) has unequivocally endorsed cervical cerclage. Further work is required to define the role of the cervix in prediction and prevention of spontaneous preterm birth.
Collapse
Affiliation(s)
- Jane E Norman
- University of Glasgow, Division of Developmental Medicine, Glasgow Royal Infirmary, 10 Alexandra Parade, Glasgow G31 2ER, Scotland, UK.
| |
Collapse
|
44
|
Malmström E, Sennström M, Holmberg A, Frielingsdorf H, Eklund E, Malmström L, Tufvesson E, Gomez MF, Westergren-Thorsson G, Ekman-Ordeberg G, Malmström A. The importance of fibroblasts in remodelling of the human uterine cervix during pregnancy and parturition. Mol Hum Reprod 2007; 13:333-41. [PMID: 17337476 DOI: 10.1093/molehr/gal117] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is well established that fibroblasts play a crucial role in pathophysiological extracellular matrix remodelling. The aim of this project is to elucidate their role in normal physiological remodelling. Specifically, the remodelling of the human cervix during pregnancy, resulting in an enabled passage of the child, is used as the model system. Fibroblast cultures were established from cervices of non-pregnant women, women after 36 weeks of pregnancy and women directly after partus. The cells were immunostained and quantified by western blots for differentiation markers. The cultures were screened for cytokine and metalloproteinase production and characterized by global proteome analysis. The cell cultures established from partal donors differ significantly from those from non-pregnant donors, which is in accordance with in vivo findings. A decrease in alpha-smooth actin and prolyl-4-hydroxylase and an increase in interleukin (IL)-6, IL-8 and matrix metalloproteinases (MMP)-1 and MMP-3 were observed in cultures from partal donors. 2D-gel electrophoresis followed by mass spectrometry showed that the expression of 59 proteins was changed significantly in cultures of partal donors. The regulated proteins are involved in protein kinase C signalling, Ca2+ binding, cytoskeletal organization, angiogenesis and degradation. Our data suggest that remodelling of the human cervix is orchestrated by fibroblasts, which are activated or recruited by the inflammatory processes occurring during the ripening cascade.
Collapse
Affiliation(s)
- Erik Malmström
- Department of Experimental Medical Science, BMC, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lemire JM, Chan CK, Bressler S, Miller J, LeBaron RG, Wight TN. Interleukin-1β selectively decreases the synthesis of versican by arterial smooth muscle cells. J Cell Biochem 2007; 101:753-66. [PMID: 17226775 DOI: 10.1002/jcb.21235] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteoglycans accumulate in lesions of atherosclerosis but little is known as to which factors regulate the synthesis of these molecules. Interleukin-1beta (IL-1beta) is a cytokine involved in vascular lesion development but it is not clear whether it has specific effects on proteoglycan synthesis by arterial smooth muscle cells (ASMC). Monkey ASMC were treated with IL-1beta and proteoglycan synthesis assessed using [(35)S]-sulfate and [(35)S]-Trans amino acid labeling. Four prominent size populations of proteoglycans, as determined by SDS-PAGE gradient gel electrophoresis, were observed in the culture medium and identified as versican, biglycan, decorin, and an unknown population that migrated to the gel interface. IL-1beta treatment decreased significantly the synthesis of versican, while increasing the synthesis of decorin, but having no effect on biglycan synthesis. Northern blot analyses confirmed this selective effect on versican and decorin mRNA transcripts. Nuclear run-on and RNA inhibition studies showed that decreased mRNA for versican was due to increased mRNA degradation and not to changes in transcription. In addition, IL-1beta increased the synthesis of the population of proteoglycans that separated at the SDS-PAGE gel interface. Chondroitinase ABC lyase digestion of this population revealed a complex of proteins composed of versican (350 kDa), an unidentified protein (215 kDa), and a 23 kDa protein identified by sequence analyses as serglycin. These data demonstrate that IL-1beta selectively downregulates versican synthesis by ASMC, while positively regulating the synthesis of other proteoglycans.
Collapse
MESH Headings
- Amino Acids/metabolism
- Animals
- Arteries/cytology
- Arteries/drug effects
- Arteries/metabolism
- Biglycan
- Blotting, Northern
- Cells, Cultured
- Decorin
- Electrophoresis, Polyacrylamide Gel
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Interleukin-1beta/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Proteoglycans/genetics
- Proteoglycans/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sulfates/metabolism
- Sulfur Radioisotopes
- Time Factors
- Versicans/genetics
- Versicans/metabolism
Collapse
Affiliation(s)
- Joan M Lemire
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
46
|
Labour induces increased concentrations of biglycan and hyaluronan in human fetal membranes. Placenta 2006; 28:482-6. [PMID: 17125833 DOI: 10.1016/j.placenta.2006.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 09/12/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The proteoglycan decorin stabilizes collagen whereas biglycan and hyaluronan disrupt well-organized collagen. The aim was to compare hyaluronan and proteoglycans in human fetal membranes obtained before and after spontaneous labour at term. STUDY DESIGN Prelabour samples of fetal membranes (N=9) were obtained from elective caesarean sections and regionally sampled from over the cervix (cervical membranes) and mid-zone samples between this area and the placental edge. Postlabour samples (N=11) were obtained from spontaneous vaginal delivery and also regionally sampled. Amnion and chorio-decidua were analysed separately. The proteoglycans decorin and biglycan were analysed using alcian blue precipitation, SDS polyacrylamide gel electrophoresis and immunostaining. Hyaluronan was analysed using a radioimmunoassay and by histochemistry. Collagen was measured by estimating hydroxyproline content. RESULTS In prelabour membranes the biglycan concentration (microg/mg wtw) in the cervical amnion was 40% lower than in the mid-zone amnion (P<0.05). After delivery the cervical amnion showed a twofold increase in biglycan (P<0.05), a 30% decrease in collagen (P<0.05), and a 50% decrease in decorin concentration (P<0.05). In mid-zone samples after delivery the concentrations of hyaluronan showed an increase form 1.0 to 4.9 microg/mg wtw (P<0.05). Histology demonstrated a gelatinous substance, which separated amnion and chorio-decidua, in particular at the cervical site. This gelatinous substance contained hyaluronan at a concentration of 3.0 microg/mg wtw. CONCLUSION It is well established that prelabour fetal membranes are considerably stronger than postlabour fetal membranes. Two features may explain this; a weakening of the amnion combined with a separation of amnion and chorio-decidua. The biomechanical changes are consistent with the decrease in collagen and decorin, and the increase in hyaluronan and biglycan demonstrated in this study. The separation of the membranes is caused by the formation of a gelatinous substance, rich in hyaluronan. The results indicate that the biomechanical changes are not merely secondary to the stress of labour but that an active maturation process is involved.
Collapse
|
47
|
Klimaviciute A, Calciolari J, Bertucci E, Abelin-Tornblöm S, Stjernholm-Vladic Y, Byström B, Petraglia F, Ekman-Ordeberg G. Corticotropin-releasing hormone, its binding protein and receptors in human cervical tissue at preterm and term labor in comparison to non-pregnant state. Reprod Biol Endocrinol 2006; 4:29. [PMID: 16734917 PMCID: PMC1513580 DOI: 10.1186/1477-7827-4-29] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 05/31/2006] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Preterm birth is still the leading cause of neonatal morbidity and mortality. The level of corticotropin-releasing hormone (CRH) is known to be significantly elevated in the maternal plasma at preterm birth. Although, CRH, CRH-binding protein (CRH-BP), CRH-receptor 1 (CRH-R1) and CRH-R2 have been identified both at mRNA and protein level in human placenta, deciduas, fetal membranes, endometrium and myometrium, no corresponding information is yet available on cervix. Thus, the aim of this study was to compare the levels of the mRNA species coding for CRH, CRH-BP, CRH-R1 and CRH-R2 in human cervical tissue and myometrium at preterm and term labor and not in labor as well as in the non-pregnant state, and to localize the corresponding proteins employing immunohistochemical analysis. METHODS Cervical, isthmic and fundal (from non-pregnant subjects only) biopsies were taken from 67 women. Subjects were divided in 5 groups: preterm labor (14), preterm not in labor (7), term labor (18), term not in labor (21) and non-pregnant (7). Real-time RT-PCR was employed for quantification of mRNA levels and the corresponding proteins were localized by immunohistochemical analysis. RESULTS The levels of CRH-BP, CRH-R1 and CRH-R2 mRNA in the pregnant tissues were lower than those in non-pregnant subjects. No significant differences were observed between preterm and term groups. CRH-BP and CRH-R2 mRNA and the corresponding proteins were present at lower levels in the laboring cervix than in the non-laboring cervix, irrespective of gestational age. In most of the samples, with the exception of four myometrial biopsies the level of CRH mRNA was below the limit of detection. All of these proteins could be detected and localized in the cervix and the myometrium by immunohistochemical analysis. CONCLUSION Expression of CRH-BP, CRH-R1 and CRH-R2 in uterine tissues is down-regulated during pregnancy. The most pronounced down-regulation of CRH-BP and CRH-R2 occurred in laboring cervix, irrespective the length of gestation. The detection of substantial expression of the CRH and its receptor proteins, as well as receptor mRNA in the cervix suggests that the cervix may be a target for CRH action. Further studies are required to elucidate the role of CRH in cervical ripening.
Collapse
Affiliation(s)
| | - Jacopo Calciolari
- Dept. of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | - Emma Bertucci
- Dept. of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | | - Birgitta Byström
- Dept. of Woman and Child Health, Karolinska Institute, Stockholm, Sweden
| | - Felice Petraglia
- Dept. of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy
| | | |
Collapse
|
48
|
Timmons BC, Mahendroo MS. Timing of Neutrophil Activation and Expression of Proinflammatory Markers Do Not Support a Role for Neutrophils in Cervical Ripening in the Mouse1. Biol Reprod 2006; 74:236-45. [PMID: 16237151 DOI: 10.1095/biolreprod.105.044891] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mechanisms that facilitate remodeling of the cervix in preparation for and during parturition remain poorly understood. In the current study, we have evaluated the timing of inflammatory cell migration in cervix through comparisons between wild-type mice and steroid 5alpha-reductase type 1 null mice (Srd5a1-/-), which fail to undergo cervical ripening due to insufficient local progesterone metabolism. The timing of migration and distribution of macrophages, monocytes, and neutrophils were examined using cervices from wild-type and Srd5a1-/- mice before Day 15 (d15) and during cervical ripening (late d18), and postpartum (d19). Neutrophil numbers were quantitated by cell counts and activity was estimated by measurement of myeloperoxidase activity. The mRNA and/or protein expression of neutrophil chemoattractants, CXCL2 and CXCL1, and other proinflammatory and adhesion molecules, including IL1A, IL1B, TNF, CCL11, CCL5, CCL3, ITGAM, and ICAM1, were measured in cervices collected before, during, and after birth. The effect of neutrophil depletion on parturition was tested. Tissue macrophages, myeloperoxidase activity, and expression of proinflammatory molecules are not increased within the cervix until after birth. Neutrophil numbers do not change after birth and neutrophil depletion before term has no effect on timing or success of parturition. These results suggest that cervical ripening does not require neutrophils. Moreover, neutrophil activation and a general inflammatory response are not initiated within the cervix until shortly after parturition. The timing of inflammatory cell migration and activation in pregnant cervix suggest a role for these cells in postpartum remodeling of the cervix rather than in the initiation of cervical ripening at parturition.
Collapse
Affiliation(s)
- Brenda C Timmons
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9032, USA
| | | |
Collapse
|
49
|
Anderson J, Brown N, Mahendroo MS, Reese J. Utilization of different aquaporin water channels in the mouse cervix during pregnancy and parturition and in models of preterm and delayed cervical ripening. Endocrinology 2006; 147:130-40. [PMID: 16179408 DOI: 10.1210/en.2005-0896] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Biochemical changes of cervical connective tissue, including progressive disorganization of the collagen network and increased water content, occur during gestation to allow for cervical dilatation during labor, but the mechanisms that regulate cervical fluid balance are not fully understood. We examined whether aquaporins (AQPs), a family of membrane channel proteins that facilitate water transport, help mediate fluid balance in the mouse cervix during parturition. Of the 13 known murine AQPs, AQP0-2, 6, 7, 9, 11, and 12 were absent or at the limits of detection. By Northern blot and real-time PCR, AQP3 expression was low in nongravid and mid-pregnancy cervices with peak expression on d 19 and postpartum d 1 (PP1). AQP4 expression was generally low throughout pregnancy but showed a small upward trend at the time of parturition. AQP5 and AQP8 expression were significantly increased on d 12-15 but fell to nongravid/baseline by d 19 and PP1. By in situ hybridization and immunohistochemistry, AQP3 was preferentially expressed in basal cell layers of the cervical epithelium, whereas AQP4, 5, and 8 were primarily expressed in apical cell layers. Females with LPS-induced preterm labor had similar trends in AQP4, 5, and 8 expression to mice with natural labor at term gestation. Mice with delayed cervical remodeling due to deletion of the steroid 5alpha-reductase type 1 gene showed significant reduction in the levels of AQP3, 4, and 8 on d 19 or PP1. Together, these studies suggest that AQPs 3, 4, 5, and 8 regulate distinct aspects of cervical water balance during pregnancy and parturition.
Collapse
Affiliation(s)
- Judy Anderson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
50
|
Wilkie IC. Mutable collagenous tissue: overview and biotechnological perspective. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2005; 39:221-50. [PMID: 17152700 DOI: 10.1007/3-540-27683-1_10] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The mutable collagenous tissue (MCT) of echinoderms can undergo extreme changes in passive mechanical properties within a timescale of less than 1 s to a few minutes, involving a mechanism that is under direct neural control and coordinated with the activities of muscles. MCT occurs at a variety of anatomical locations in all echinoderm classes, is involved in every investigated echinoderm autotomy mechanism, and provides a mechanism for the energy-sparing maintenance of posture. It is therefore crucially important for the biology of extant echinoderms. This chapter summarises current knowledge of the physiology and organisation of MCT, with particular attention being given to its molecular organisation and the molecular mechanism of mutability. The biotechnological potential of MCT is discussed. It is argued that MCT could be a source of, or inspiration for, (1) new pharmacological agents and strategies designed to manipulate therapeutically connective tissue mechanical properties and (2) new composite materials with biomedical applications.
Collapse
Affiliation(s)
- I C Wilkie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 OBA, Scotland, UK.
| |
Collapse
|