1
|
Esteve P, Crespo I, Kaimakis P, Sandonís A, Bovolenta P. Sfrp1 Modulates Cell-signaling Events Underlying Telencephalic Patterning, Growth and Differentiation. Cereb Cortex 2020; 29:1059-1074. [PMID: 30084950 DOI: 10.1093/cercor/bhy013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
The mammalian dorsal telencephalic neuroepithelium develops-from medial to lateral-into the choroid plaque, cortical hem, hippocampal primordium and isocortex under the influence of Bmp, Wnt and Notch signaling. Correct telencephalic development requires a tight coordination of the extent/duration of these signals, but the identification of possible molecular coordinators is still limited. Here, we postulated that Secreted Frizzled Related Protein 1 (Sfrp1), a multifunctional regulator of Bmp, Wnt and Notch signaling strongly expressed during early telencephalic development, may represent 1 of such molecules. We report that in E10.5-E12.5 Sfrp1-/- embryos, the hem and hippocampal domains are reduced in size whereas the prospective neocortex is medially extended. These changes are associated with a significant reduction of the medio-lateral telencephalic expression of Axin2, a read-out of Wnt/βcatenin signaling activation. Furthermore, in the absence of Sfrp1, Notch signaling is increased, cortical progenitor cell cycle is shorter, with expanded progenitor pools and enhanced generation of early-born neurons. Hence, in postnatal Sfrp1-/- animals the anterior hippocampus is reduced and the neocortex is shorter in the antero-posterior and medio-lateral axis but is thicker. We propose that, by controlling Wnt and Notch signaling in opposite directions, Sfrp1 promotes hippocampal patterning and balances medio-lateral and antero-posterior cortex expansion.
Collapse
Affiliation(s)
- Pilar Esteve
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Inmaculada Crespo
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Polynikis Kaimakis
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Africa Sandonís
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM and CIBER de Enfermedades Raras (CIBERER), c/Nicolás Cabrera, Madrid, Spain
| |
Collapse
|
2
|
Ruiz-Villalba A, Hoppler S, van den Hoff MJB. Wnt signaling in the heart fields: Variations on a common theme. Dev Dyn 2016; 245:294-306. [PMID: 26638115 DOI: 10.1002/dvdy.24372] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/27/2022] Open
Abstract
Wnt signaling plays an essential role in development and differentiation. Heart development is initiated with the induction of precardiac mesoderm requiring the tightly and spatially controlled regulation of canonical and noncanonical Wnt signaling pathways. The role of Wnt signaling in subsequent development of the heart fields is to a large extent unclear. We will discuss the role of Wnt signaling in the development of the arterial and venous pole of the heart, highlighting the dual roles of Wnt signaling with respect to its time- and dosage-dependent effects and the balance between the canonical and noncanonical signaling. Canonical signaling appears to be involved in retaining the cardiac precursors in a proliferative and precursor state, whereas noncanonical signaling promotes their differentiation. Thereafter, both canonical and noncanonical signaling regulate specific steps in differentiation of the cardiac compartments. Because heart development is a contiguous, rather than a sequential, process, analyses tend only to show a single timeframe of development. The repetitive alternating and reciprocal effect of canonical and noncanonical signaling is lost when studied in homogenates. Without the simultaneous in vivo visualization of the different Wnt signaling pathways, the mechanism of Wnt signaling in heart development remains elusive.
Collapse
Affiliation(s)
- Adrián Ruiz-Villalba
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| | - Stefan Hoppler
- Cardiovascular Biology and Medicine Research Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Maurice J B van den Hoff
- Academic Medical Center, Department of Anatomy, Embryology and Physiology, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Canning DR, Brelsford NR, Lovett NW. Chondroitin sulfate effects on neural stem cell differentiation. In Vitro Cell Dev Biol Anim 2015; 52:35-44. [PMID: 26288008 DOI: 10.1007/s11626-015-9941-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/10/2015] [Indexed: 11/25/2022]
Abstract
We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.
Collapse
Affiliation(s)
- David R Canning
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.
| | - Natalie R Brelsford
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Neil W Lovett
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| |
Collapse
|
4
|
Schneider J, Arraf AA, Grinstein M, Yelin R, Schultheiss TM. Wnt signaling orients the proximal-distal axis of kidney nephrons. Development 2015; 142:2686-95. [DOI: 10.1242/dev.123968] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/18/2015] [Indexed: 01/03/2023]
Abstract
The nephron is the fundamental structural and functional unit of the kidney. Each mature nephron is patterned along a proximal-distal axis, with blood filtered at the proximal end and urine emerging from the distal end. In order to filter the blood and produce urine, specialized structures are formed at specific proximal-distal locations along the nephron, including the glomerulus at the proximal end, the tubule in the middle, and the collecting duct at the distal end. The developmental processes that specify these different nephron segments are very incompletely understood. Wnt ligands, which are expressed in the nephric duct and later in the nascent nephron itself, are well-characterized inducers of nephrons, being both required and sufficient for initiation of nephron formation from nephrogenic mesenchyme. Here we present evidence that Wnt signaling also patterns the proximal-distal nephron axis. Using the chick mesonephros as a model system, a Wnt ligand was ectopically expressed in the coelomic lining, thereby introducing a source of Wnt signaling that is at right angles to the endogenous Wnt signal of the nephric duct. Under these conditions, the nephron axis was re-oriented, such that the glomerulus was always located at a position farthest from the Wnt sources. This re-orientation occurred within hours of exposure to ectopic Wnt signaling, and was accompanied initially by a repression of the early glomerular podocyte markers Wt1 and Pod1, followed by their re-emergence at a position distant from the Wnt signals. In parallel, an increase in the number of tubules was observed, and some tubules were seen fusing with the Wnt-expressing coelomic epithelium instead of their normal target, the nephric duct. Activation of the Wnt signaling pathway in mesonephric explant cultures resulted in strong and specific repression of early and late glomerular markers. Together, these data indicate that Wnt signaling patterns the proximal-distal axis of the nephron, with glomeruli differentiating in regions of lowest Wnt signaling.
Collapse
Affiliation(s)
- Jenny Schneider
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Alaa A. Arraf
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mor Grinstein
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Thomas M. Schultheiss
- Department of Anatomy and Cell Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
5
|
Wnt signalling in neuronal differentiation and development. Cell Tissue Res 2014; 359:215-23. [PMID: 25234280 DOI: 10.1007/s00441-014-1996-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/25/2014] [Indexed: 12/15/2022]
Abstract
Wnts are secreted glycoproteins that play multiple roles in early development, including the differentiation of precursor cells. During this period, gradients of Wnts and other morphogens are formed and regulate the differentiation and migration of neural progenitor cells. Afterwards, Wnt signalling cascades participate in the formation of neuronal circuits, playing roles in dendrite and axon development, dendritic spine formation and synaptogenesis. Finally, in the adult brain, Wnts control hippocampal plasticity, regulating synaptic transmission and neurogenesis. In this review, we summarize the reported roles of Wnt signalling cascades in these processes with a particular emphasis on the role of Wnts in neuronal differentiation and development.
Collapse
|
6
|
Zhao X, Huang H, Chen Y, Liu Y, Zhang Z, Ma Q, Qiu M. Dynamic expression of secreted Frizzled-related protein 3 (sFRP3) in the developing mouse spinal cord and dorsal root ganglia. Neuroscience 2013; 248:594-601. [PMID: 23827310 DOI: 10.1016/j.neuroscience.2013.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Wnt proteins have been implicated in regulating a variety of developmental processes in the CNS. Secreted Frizzled-related protein 3 (sFRP3) is a member of the sFRP family that can inhibit the Wnt signaling by binding directly to Wnts via their regions of homology to the Wnt-binding domain of Frizzleds. Recent studies suggested that sFRP3 plays an important role in cell proliferation and differentiation in various tissues. To understand the role of sFRP3 in neural development, we carried out detailed studies on the expression of sFRP3 in the developing nervous system. Our results revealed that sFRP3 is initially expressed in the ventricular zone of the spinal cord and dorsal root ganglia (DRG), and later in the dorsal horn of spinal cord and subpopulation of DRG neurons. The spatiotemporally dynamic expression ofsFRP3 strongly suggests that sFRP3 has potential functions in the sensory neuron genesis and sensory circuitry formation.
Collapse
Affiliation(s)
- X Zhao
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - H Huang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - Y Chen
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - Y Liu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - Z Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China
| | - Q Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | - M Qiu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310029, PR China; Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
7
|
Strobl-Mazzulla PH, Bronner ME. A PHD12-Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition. ACTA ACUST UNITED AC 2013; 198:999-1010. [PMID: 22986495 PMCID: PMC3444776 DOI: 10.1083/jcb.201203098] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neural crest cells form within the neural tube and then undergo an epithelial to mesenchymal transition (EMT) to initiate migration to distant locations. The transcriptional repressor Snail2 has been implicated in neural crest EMT via an as of yet unknown mechanism. We report that the adaptor protein PHD12 is highly expressed before neural crest EMT. At cranial levels, loss of PHD12 phenocopies Snail2 knockdown, preventing transcriptional shutdown of the adhesion molecule Cad6b (Cadherin6b), thereby inhibiting neural crest emigration. Although not directly binding to each other, PHD12 and Snail2 both directly interact with Sin3A in vivo, which in turn complexes with histone deacetylase (HDAC). Chromatin immunoprecipitation revealed that PHD12 is recruited to the Cad6b promoter during neural crest EMT. Consistent with this, lysines on histone 3 at the Cad6b promoter are hyperacetylated before neural crest emigration, correlating with active transcription, but deacetylated during EMT, reflecting the repressive state. Knockdown of either PHD12 or Snail2 prevents Cad6b promoter deacetylation. Collectively, the results show that PHD12 interacts directly with Sin3A/HDAC, which in turn interacts with Snail2, forming a complex at the Cad6b promoter and thus revealing the nature of the in vivo Snail repressive complex that regulates neural crest EMT.
Collapse
Affiliation(s)
- Pablo H Strobl-Mazzulla
- Biología del Desarrollo, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de San Martín, 7130 Chascomús, Argentina
| | | |
Collapse
|
8
|
Mulligan KA, Cheyette BNR. Wnt signaling in vertebrate neural development and function. J Neuroimmune Pharmacol 2012; 7:774-87. [PMID: 23015196 DOI: 10.1007/s11481-012-9404-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/10/2012] [Indexed: 02/03/2023]
Abstract
Members of the Wnt family of secreted signaling proteins influence many aspects of neural development and function. Wnts are required from neural induction and axis formation to axon guidance and synapse development, and even help modulate synapse activity. Wnt proteins activate a variety of downstream signaling pathways and can induce a similar variety of cellular responses, including gene transcription changes and cytoskeletal rearrangements. This review provides an introduction to Wnt signaling pathways and discusses current research on their roles in vertebrate neural development and function.
Collapse
Affiliation(s)
- Kimberly A Mulligan
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
9
|
Sánchez-Sánchez AV, Camp E, Leal-Tassias A, Mullor JL. Wnt signaling has different temporal roles during retinal development. Dev Dyn 2010; 239:297-310. [PMID: 20014102 DOI: 10.1002/dvdy.22168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentiation of neural retinal precursor (NRP) cells in vertebrates follows an established order of cell-fate determination associated with exit from the cell cycle. Wnt signaling regulates cell cycle in colon carcinoma cells and has been implicated in different aspects of retinal development in various species. To better understand the biological roles of Wnt in the developing retina, we have used a transgenic and pharmacological approach to manipulate the Wnt signaling pathway during retinal development in medaka embryos. With the use of both approaches, we observed that during the early phase of retinal development Wnt signaling regulated cell cycle progression, proliferation, apoptosis, and differentiation of NRP cells. However, during later phases of retinal development, proliferation and apoptosis were not affected by manipulation of Wnt signaling. Instead, Wnt regulated Vsx1 expression, but not the expression of other retinal cell markers tested. Thus, the response of NRP cells to Wnt signaling is stage-dependent.
Collapse
Affiliation(s)
- Ana V Sánchez-Sánchez
- Department of Regenerative Medicine, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | | | | | | |
Collapse
|
10
|
|
11
|
Misra K, Matise MP. A critical role for sFRP proteins in maintaining caudal neural tube closure in mice via inhibition of BMP signaling. Dev Biol 2009; 337:74-83. [PMID: 19850029 DOI: 10.1016/j.ydbio.2009.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/08/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
Both the BMP and Wnt pathways have been implicated in directing aspects of dorsal neural tube closure and cell fate specification. However, the mechanisms that control the diverse responses to these signals are poorly understood. In this study, we provide genetic and functional evidence that the secreted sFRP1 and sFRP2 proteins, which have been primarily implicated as negative regulators of Wnt signaling, can also antagonize BMP signaling in the caudal neural tube and that this function is critical to maintain proper neural tube closure and dorsal cell fate segregation. Our studies thus reveal a novel role for specific sFRP proteins in balancing the response of cells to two critical extracellular signaling pathways.
Collapse
Affiliation(s)
- Kamana Misra
- Department of Neuroscience & Cell Biology, Robert Wood Johnson Medical School, University of Medicine & Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
12
|
Ruiz JM, Rodríguez J, Bovolenta P. Growth and differentiation of the retina and the optic tectum in the medaka fish requires olSfrp5. Dev Neurobiol 2009; 69:617-32. [PMID: 19507177 DOI: 10.1002/dneu.20731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Secreted Frizzled-Related Proteins (SFRPs) are extracellular modulators of Wnt and Bmp signaling. Previous studies in birds and fishes have shown that Sfrp1, a member of this family, is strongly expressed throughout the development of the eye contributing to the specification of the eye field, retina neurogenesis and providing guidance information to retina ganglion cell axons. Here, we report that in medaka fish (Oryzias latipes) the expression of olSfrp5, which is closely related to olSfrp1, largely overlaps with that of olSfrp1 in the eye, but is additionally expressed in the developing midbrain and gut primordium. Morpholino-based interference with olSfrp5 expression causes microphthalmia and reduction of the tectum size associated with an increase in apoptotic cell death in these structures. Furthermore, interference with the levels of olSfrp5 expression impairs the patterning of the ventral portion of the optic cup, leading in some cases to a fissure coloboma. These early defects are followed by an abnormal retinal and tectal neurogenesis. In particular, only reduced numbers of photoreceptor and RGC were generated in olSfrp5 morphants retinas. The results point to an important role of olSfrp5 in visual system formation and indicate that olSfrp1 and olSfrp5, despite their overlapping expression, have only partially redundant function during eye development.
Collapse
Affiliation(s)
- Jose Maria Ruiz
- Departamento de Neurobiología Molecular Celular y del Desarrollo, Instituto Cajal, CSIC, Madrid 28002, Spain
| | | | | |
Collapse
|
13
|
Quinlan R, Graf M, Mason I, Lumsden A, Kiecker C. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev 2009; 4:35. [PMID: 19732418 PMCID: PMC2757023 DOI: 10.1186/1749-8104-4-35] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/04/2009] [Indexed: 01/07/2023] Open
Abstract
Background Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. Results We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh) signalling from the zona limitans intrathalamica (ZLI), a known organising centre of forebrain development. Conclusion The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.
Collapse
Affiliation(s)
- Robyn Quinlan
- MRC Centre for Developmental Neurobiology, New Hunt's House, Guy's Hospital Campus, King's College, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
14
|
Rostral paraxial mesoderm regulates refinement of the eye field through the bone morphogenetic protein (BMP) pathway. Dev Biol 2009; 330:389-98. [PMID: 19362544 DOI: 10.1016/j.ydbio.2009.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 03/27/2009] [Accepted: 04/06/2009] [Indexed: 11/24/2022]
Abstract
The eye field is initially a large single domain at the anterior end of the neural plate and is the first indication of optic potential in the vertebrate embryo. During the course of development, this domain is subject to interactions that shape and refine the organogenic field. The action of the prechordal mesoderm in bisecting this single region into two bilateral domains has been well described, however the role of signalling interactions in the further restriction and refinement of this domain has not been previously characterised. Here we describe a role for the rostral cephalic paraxial mesoderm in limiting the extent of the eye field. The anterior transposition of this mesoderm or its ablation disrupted normal development of the eye. Importantly, perturbation of optic vesicle development occurred in the absence of any detectable changes in the pattern of neighbouring regions of the neural tube. Furthermore, negative regulation of eye development is a property unique to the rostral paraxial mesoderm. The rostral paraxial mesoderm expresses members of the bone morphogenetic protein (BMP) family of signalling molecules and manipulation of endogenous BMP signalling resulted in abnormalities of the early optic primordia.
Collapse
|
15
|
Zhang Z, Deb A, Zhang Z, Pachori A, He W, Guo J, Pratt R, Dzau VJ. Secreted frizzled related protein 2 protects cells from apoptosis by blocking the effect of canonical Wnt3a. J Mol Cell Cardiol 2008; 46:370-7. [PMID: 19109969 DOI: 10.1016/j.yjmcc.2008.11.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 11/13/2008] [Indexed: 01/08/2023]
Abstract
We have demonstrated that mesenchymal stem cells overexpressing the survival gene Akt can confer paracrine protection to ischemic myocytes both in vivo and in vitro through the release of secreted frizzled related protein 2 (Sfrp2). However, the mechanisms mediating these effects of Sfrp2 have not been fully elucidated. In this study, we studied rat cardiomyoblasts subjected to hypoxia reoxygenation (HR) injury to test the hypothesis that Sfrp2 exerts anti-apoptotic effect by antagonizing pro-apoptotic properties of specific Wnt ligands. We examined the effect of Wnt3a and Sfrp2 on HR-induced apoptosis. Wnt3a significantly increased cellular caspase activities and TUNEL staining in response to HR. Sfrp2 attenuated significantly Wnt3a-induced caspase activities in a concentration dependent fashion. Using a solid phase binding assay, our data demonstrates that Sfrp2 physically binds to Wnt3a. In addition, we observed that Sfrp2 dramatically inhibits the beta-catenin/TCF transcriptional activities induced by Wnt3a. Impressively, Dickkopf-1, a protein that binds to the Wnt coreceptor LRP, significantly inhibited the Wnt3a-activated caspase and transcriptional activities. Similarly, siRNA against beta-catenin markedly inhibited the Wnt3a-activated caspase activities. Consistent with this, significantly fewer TUNEL positive cells were observed in siRNA transfected cells than in control cells. Together, our data provide strong evidence to support the notion that Wnt3a is a canonical Wnt with pro-apoptotic action whose cellular activity is prevented by Sfrp2 through, at least in part, the direct binding of these molecules. These results can explain the in vivo protective effect of Sfrp2 and highlight its therapeutic potential for the ischemic heart.
Collapse
Affiliation(s)
- Zhongyan Zhang
- Edna and Fred L. Mandel, Jr. Center for Hypertension and Atherosclerosis Research, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lopez-Rios J, Esteve P, Ruiz JM, Bovolenta P. The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate. Neural Dev 2008; 3:19. [PMID: 18715500 PMCID: PMC2542364 DOI: 10.1186/1749-8104-3-19] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 08/20/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Secreted frizzled related proteins (SFRPs) are multifunctional modulators of Wnt and BMP (Bone Morphogenetic Protein) signalling necessary for the development of most organs and the homeostasis of different adult tissues. SFRPs fold in two independent domains: the cysteine rich domain (SfrpCRD) related to the extracellular portion of Frizzled (Fz, Wnt receptors) and the Netrin module (SfrpNTR) defined by homologies with molecules such as Netrin-1, inhibitors of metalloproteinases and complement proteins. Due to its structural relationship with Fz, it is believed that SfrpCRD interferes with Wnt signalling by binding and sequestering the ligand. In contrast, the functional relevance of the SfrpNTR has been barely addressed. RESULTS Here, we combine biochemical studies, mutational analysis and functional assays in cell culture and medaka-fish embryos to show that the Sfrp1NTR mimics the function of the entire molecule, binds to Wnt8 and antagonizes Wnt canonical signalling. This activity requires intact tertiary structure and is shared by the distantly related Netrin-1NTR. In contrast, the Sfrp1CRD cannot mirror the function of the entire molecule in vivo but interacts with Fz receptors and antagonizes Wnt8-mediated beta-catenin transcriptional activity. CONCLUSION On the basis of these results, we propose that SFRP modulation of Wnt signalling may involve multiple and differential interactions among Wnt, Fz and SFRPs.
Collapse
Affiliation(s)
- Javier Lopez-Rios
- Departamento de Neurobiología Molecular Celular y del Desarrollo, Instituto Cajal, CSIC, Dr. Arce 37, Madrid, 28002, Spain.
| | | | | | | |
Collapse
|
17
|
Bovolenta P, Esteve P, Ruiz JM, Cisneros E, Lopez-Rios J. Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 2008; 121:737-46. [PMID: 18322270 DOI: 10.1242/jcs.026096] [Citation(s) in RCA: 473] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The secreted Frizzled-related proteins (SFRPs) are a family of soluble proteins that are structurally related to Frizzled (Fz) proteins, the serpentine receptors that mediate the extensively used cell-cell communication pathway involving Wnt signalling. Because of their homology with the Wnt-binding domain on the Fz receptors, SFRPs were immediately characterised as antagonists that bind to Wnt proteins to prevent signal activation. Since these initial studies, interest in the family of SFRPs has grown progressively, offering new perspectives on their function and mechanism of action in both development and disease. These studies indicate that SFRPs are not merely Wnt-binding proteins, but can also antagonise one another's activity, bind to Fz receptors and influence axon guidance, interfere with BMP signalling by acting as proteinase inhibitors, and interact with other receptors or matrix molecules. Furthermore, their expression is altered in different types of cancers, bone pathologies, retinal degeneration and hypophosphatemic diseases, indicating that their activity is fundamental for tissue homeostasis. Here we review some of the debated aspects of SFRP-Wnt interactions and discuss the new and emerging roles of SFRPs.
Collapse
Affiliation(s)
- Paola Bovolenta
- Departamento de Neurobiología Molecular, Celular y del Desarrollo, Instituto Cajal, CSIC, Dr Arce 37, Madrid 28002, Spain.
| | | | | | | | | |
Collapse
|
18
|
Abstract
We have performed in situ hybridization to study the expression of Wise in early chick embryos. Wise expression is first detectable in the ectoderm at posterior levels of late neurula. As development proceeds, Wise expression is seen in specific patterns in the ectoderm of the trunk region, pharyngeal arches, limb buds, and feather buds. In addition to these areas, particular cartilages such as the ones in the maxillary process and limbs start to express Wise at the late pharyngula stage, and the expression in these cartilages becomes stronger than that in epidermal components at later stages. Importantly, Wise is expressed in regions where other signaling molecules such as Wnt, Bmp, and Shh are known to function in morphogenesis and differentiation. Direct comparisons of the expression of Wise and these genes are also demonstrated.
Collapse
Affiliation(s)
- Y Shigetani
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | |
Collapse
|
19
|
Merchán P, Bribián A, Sánchez-Camacho C, Lezameta M, Bovolenta P, de Castro F. Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors. Mol Cell Neurosci 2007; 36:355-68. [PMID: 17826177 DOI: 10.1016/j.mcn.2007.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/19/2007] [Accepted: 07/24/2007] [Indexed: 11/26/2022] Open
Abstract
Optic nerve (ON) oligodendrocyte precursors (OPCs) are generated under the influence of the Sonic hedgehog (Shh) in the preoptic area from where they migrate to colonise the entire nerve. The molecular events that control this migration are still poorly understood. Recent studies suggested that Shh is often used by the same cell population to control different processes, including cell proliferation and migration, raising the possibility that Shh could contribute to these aspects of OPC development. In support of this idea, we show here that Shh induces the proliferation of OPCs derived from embryonic mouse ON explants and acts as a chemoattractant for their migration. In ovo injections of hybridomas secreting Shh-specific blocking antibody decreases the number of OPCs present in chick ONs, particularly in the retinal portion of the nerve. Altogether these data indicate that Shh contributes to OPC proliferation and distribution along the ON, in addition to their specification.
Collapse
Affiliation(s)
- Paloma Merchán
- Grupo de Neurobiología del Desarrollo, Hospital Nacional de Parapléjicos, Finca La Peraleda, s/n, E-45071-Toledo, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Lin CT, Lin YT, Kuo TF. Investigation of mRNA expression for secreted frizzled-related protein 2 (sFRP2) in chick embryos. J Reprod Dev 2007; 53:801-10. [PMID: 17495425 DOI: 10.1262/jrd.18081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of secreted frizzled-related protein 2 (sFRP2) in organ development of vertebrate animals are not well understood. We investigated expression of sFRP2 during embryogenesis of Arbor Acre broiler chicken eggs. Expression of sFRP2 was detected in the folds and lateral layer of developing brains. The sFRP2 signals in the developing eye were marked as a circle along the orbit. In younger embryos on days 3-6, the sFRP2 signals were consistent with growth of the sclerotome, suggesting that sFRP2 may be associated with somite development. Furthermore, with the exception of bones, sFRP2 mRNA was detectable in the interdigital tissue of embryos older than eight days as the limbs matured. This revealed that sFRP2 might play a role in myogenesis. In situ hybridization was also used to analyze the expression of sFRP2 in day 3-10 chick embryos. Signals were expressed in the gray matter of the developing brain coelom, including the optic lobe, metencephalon, myelencephalon, mesencephalon and diencephalon. The developing eyes contained an intercellular distribution of sFRP2 in the pigmented layer of the retina and photoreceptors. Furthermore, sFRP2 was expressed in the mantle layer of the neural tube and notochord. Based on these findings, it seems reasonable to suggest that sFRP2 may play an active role in embryogenesis, especially in development of the neural system, eyes, muscles and limbs.
Collapse
Affiliation(s)
- Chung-Tien Lin
- Graduate Institute of Veterinary Medicine, College of Bio-resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
21
|
Bovolenta P, Rodriguez J, Esteve P. Frizzled/RYK mediated signalling in axon guidance. Development 2006; 133:4399-408. [PMID: 17035295 DOI: 10.1242/dev.02592] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Paola Bovolenta
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, CSIC, Dr Arce 37, Madrid 28002, Spain.
| | | | | |
Collapse
|
22
|
Tendeng C, Houart C. Cloning and embryonic expression of five distinct sfrp genes in the zebrafish Danio rerio. Gene Expr Patterns 2006; 6:761-71. [PMID: 16504595 DOI: 10.1016/j.modgep.2006.01.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/11/2006] [Accepted: 01/17/2006] [Indexed: 12/16/2022]
Abstract
Recently, a new member of the secreted frizzled-related protein (sFRP) family, named tlc, has been identified as expressed by the anterior neural border (ANB) cells in the zebrafish Danio rerio. Tlc plays an important role in telencephalic induction and patterning. In absence of Tlc, formation of the telencephalon is severely delayed, but not abolished. This prompted us to clone the other zebrafish sfrp family members and analyse their expression patterns, in search of a family member that may partly functionally overlap with Tlc. Except sizzled, expression profile of sfrp genes in zebrafish has not been reported so far. Here, we describe the cloning of full-length cDNA for sfrp1a, sfrp1b, sfrp2, sfrp3 and sfrp5 gene transcripts and we examine their expression at different embryonic stages. Only sfrp1a is expressed in the anterior neural plate including the ANB cells where and when tlc is expressed. Interestingly, compared to both tlc and sfrp1a, wnt genes are complementary expressed more posteriorly in the neural plate. Later, both sfrp1a and sfrp5 expression profiles are overlapping, in particular at pharyngula stage these genes are expressed in the ventral part of the forebrain, midbrain and hindbrain. sfrp1b, sfrp2 and sfrp3 are mainly expressed in mesodermal and endodermal embryonic tissues. Expression profiles of these different genes in zebrafish gave interesting clues on the possible function and evolution of sFRPs in zebrafish and other organisms.
Collapse
Affiliation(s)
- Christian Tendeng
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, London SE1 9RT, United Kingdom
| | | |
Collapse
|
23
|
Galli LM, Barnes T, Cheng T, Acosta L, Anglade A, Willert K, Nusse R, Burrus LW. Differential inhibition of Wnt-3a by Sfrp-1, Sfrp-2, and Sfrp-3. Dev Dyn 2006; 235:681-90. [PMID: 16425220 PMCID: PMC2566934 DOI: 10.1002/dvdy.20681] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Secreted frizzled related proteins (Sfrps) are extracellular attenuators of Wnt signaling that play important roles in both embryogenesis and oncogenesis. Although Sfrps are generally thought to bind and sequester Wnts away from active receptor complexes, very little is known about the specificity of Sfrp family members for various Wnts. In the developing chick neural tube, sfrp-1, 2, and 3 transcripts are expressed in and adjacent to the dorsal neural tube, where Wnt-1 and Wnt-3a are expressed. To better define the possible roles of Sfrp-1, 2, and 3 in the neural tube, we first tested the ability of purified Sfrps to inhibit Wnt-3a-induced accumulation of beta-catenin in L cells. We find that both Sfrp-1 and Sfrp-2 can inhibit Wnt-3a activity while Sfrp-3 cannot. To determine where Sfrp-1 and Sfrp-2 impinge on the Wnt signaling pathway, we tested the ability of these Sfrps to inhibit Wnt signaling induced by the addition of LiCl, an inhibitor of GSK-3. Sfrp-1 and Sfrp-2 are unable to inhibit the accumulation of beta-catenin in LiCl-treated cells, suggesting that the ability of Sfrps to inhibit the accumulation of beta-catenin is GSK-3 dependent. We have further shown that Sfrp-2 inhibits the ability of ectopic Wnt-3a to stimulate proliferation in the developing chick neural tube. These results provide the framework for understanding how Sfrps function to regulate Wnt-3a activity in developing embryos and in cancer.
Collapse
Affiliation(s)
- Lisa M Galli
- Department of Biology, San Francisco State University, San Francisco, California 94132, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Eisenberg LM, Eisenberg CA. Wnt signal transduction and the formation of the myocardium. Dev Biol 2006; 293:305-15. [PMID: 16563368 DOI: 10.1016/j.ydbio.2006.02.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/21/2005] [Accepted: 02/07/2006] [Indexed: 10/24/2022]
Abstract
Soon after fertilization, vertebrate embryos grow very rapidly. Thus, early in gestation, a sizeable yet underdeveloped organism requires circulating blood. This need dictates the early appearance of a contractile heart, which is the first functional organ in both the avian and mammalian embryo. The heart arises from paired mesodermal regions within the anterior half of the embryo. As development proceeds, these bilateral precardiac fields merge at the midline to give rise to the primary heart tube. How specific areas of nondifferentiated mesoderm organize into myocardial tissue has been a question that has long intrigued developmental biologists. In recent years, the regulation of Wnt signal transduction has been implicated as an important event that initiates cardiac development. While initial reports in Drosophila and the bird had implicated Wnt proteins as promoters of cardiac tissue formation, subsequent findings that the WNT inhibitors Dkk1 and crescent possess cardiac-inducing activities led to the contrary hypothesis that WNTs actively inhibit cardiogenesis. This seeming contradiction has been resolved, in part, by more recent information indicating that Wnts stimulate multiple signal transduction pathways. In this review, we will examine what is presently known about the importance of regulated Wnt activity for the formation of the heart and the development of the myocardium and discuss this information in context of the emerging complexity of Wnt signal transduction.
Collapse
Affiliation(s)
- Leonard M Eisenberg
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
25
|
Dinet V, Girard-Naud N, Voisin P, Bernard M. Melatoninergic differentiation of retinal photoreceptors: activation of the chicken hydroxyindole-O-methyltransferase promoter requires a homeodomain-binding element that interacts with Otx2. Exp Eye Res 2006; 83:276-90. [PMID: 16563383 DOI: 10.1016/j.exer.2005.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 12/06/2005] [Accepted: 12/13/2005] [Indexed: 11/28/2022]
Abstract
The gene encoding the last enzyme of the melatonin-synthesis pathway, hydroxyindole-O-methyltransferase (HIOMT), is selectively expressed in retinal photoreceptors and pineal cells. Here, we analysed the promoter of the chicken HIOMT gene and we found that a homeodomain-binding element located in the proximal region of this promoter was essential for its activation in primary cultures of embryonic chicken retinal cells. This homeodomain-regulatory element interacted with a protein expressed in the chicken retina and pineal gland, which was recognized by an anti-Otx2 antiserum. Recombinant Otx2 expressed in vitro was able to bind this DNA element and to directly transactivate the chicken HIOMT promoter. This promoter was also transactivated by another member of the Otx family, Otx5, but the amplitude of stimulation was lower than with Otx2. The spatio-temporal pattern of Otx2 expression was compatible with a possible role of this transcription factor in HIOMT gene activation. In adult chicken, Otx2 mRNA was found to be present in those two tissues that express HIOMT: the retina and the pineal gland. During development, a burst of Otx2 mRNA closely matched the timing of HIOMT gene activation in these two tissues. In the pineal, Otx2 immunolabelling was specifically localized in the nuclei of photoreceptor cells. In the neural retina, Otx2 immunoreactivity brightly decorated the photoreceptor nuclei and extended more faintly to the outer half of the inner nuclear layer. Together, the data support a role of Otx2 in the onset of HIOMT expression in developing chicken photoreceptors.
Collapse
Affiliation(s)
- Virginie Dinet
- Institut de Physiologie et Biologie Cellulaires, UMR CNRS 6187, Neurobiologie Cellulaire, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | | | | | | |
Collapse
|
26
|
Lunardi A, Vignali R. Xenopus Xotx2 and Drosophila otd share similar activities in anterior patterning of the frog embryo. Dev Genes Evol 2006; 216:511-21. [PMID: 16532339 DOI: 10.1007/s00427-006-0064-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 02/03/2006] [Indexed: 01/18/2023]
Abstract
Despite the obvious anatomical differences between the fly and the vertebrate body plans, several genes involved in their development are largely conserved. In this work we provide evidence that overexpression of the Drosophila orthodenticle (otd) gene in Xenopus laevis has a similar effect to that of its homolog Xotx2. Injections of otd mRNA in whole embryos lead to posterior truncations and to induction of ectopic cement glands, similar to Xotx2 injections. In animal cap assays, otd, like Xotx2, is able to activate the cement gland marker XAG and to suppress the expression of the epidermal marker XK81. Finally, as assayed by Einsteck transplantation assays, otd, like Xotx2, is able to respecify a tail/trunk organizer to a head organizer. In this work we also show that Xotx2 and otd share molecular functions that regulate early regional specification of the Xenopus anterior neural plate. Gain-of-function experiment targeting low doses of either otd or Xotx2 mRNAs in the neural plate promote reduction of Xrx1 and Xbf1 expression domain; no changes are observed for the anterior mesodermal marker Xgsc, the dorsal diencephalic marker Xbh1, and the midbrain/hindbrain marker Xen2. otd/Xotx2 inhibition activity of Xrx1 and Xbf1 expression is consistent with the strong inhibition of Xfgf8 expression in the anterior neural ridge observed upon otd/Xotx2 mRNA injection.
Collapse
Affiliation(s)
- Andrea Lunardi
- Dipartimento di Biologia, Laboratorio di Biologia Cellulare e dello Sviluppo, Università di Pisa, via G Carducci 13, 56100, Pisa, Italy
| | | |
Collapse
|
27
|
Pézeron G, Anselme I, Laplante M, Ellingsen S, Becker TS, Rosa FM, Charnay P, Schneider-Maunoury S, Mourrain P, Ghislain J. Duplicate sfrp1 genes in zebrafish: sfrp1a is dynamically expressed in the developing central nervous system, gut and lateral line. Gene Expr Patterns 2006; 6:835-42. [PMID: 16545988 DOI: 10.1016/j.modgep.2006.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/06/2006] [Accepted: 02/06/2006] [Indexed: 01/06/2023]
Abstract
The secreted frizzled-related proteins (Sfrp) are a family of soluble proteins with diverse biological functions having the capacity to bind Wnt ligands, to modulate Wnt signalling, and to signal directly via the Wnt receptor, Frizzled. In an enhancer trap screen for embryonic expression in zebrafish we identified an sfrp1 gene. Previous studies suggest an important role for sfrp1 in eye development, however, no data have been reported using the zebrafish model. In this paper, we describe duplicate sfrp1 genes in zebrafish and present a detailed analysis of the expression profile of both genes. Whole mount in situ hybridisation analyses of sfrp1a during embryonic and larval development revealed a dynamic expression profile, including: the central nervous system, where sfrp1a was regionally expressed throughout the brain and developing eye; the posterior gut, from the time of endodermal cell condensation; the lateral line, where sfrp1a was expressed in the migrating primordia and interneuromast cells that give rise to the sensory organs. Other sites included the blastoderm, segmenting mesoderm, olfactory placode, developing ear, pronephros and fin-bud. We have also analysed sfrp1b expression during embryonic development. Surprisingly this gene exhibited a divergent expression profile being limited to the yolk syncytium under the elongating tail-bud, which later covered the distal yolk extension, and transiently in the tail-bud mesenchyme. Overall, our studies provide a basis for future analyses of these developmentally important factors using the zebrafish model.
Collapse
Affiliation(s)
- Guillaume Pézeron
- INSERM, U784, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Takemoto T, Uchikawa M, Kamachi Y, Kondoh H. Convergence of Wnt and FGF signals in the genesis of posterior neural plate through activation of the Sox2 enhancer N-1. Development 2005; 133:297-306. [PMID: 16354715 DOI: 10.1242/dev.02196] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The expression of the transcription factor gene Sox2 precisely marks the neural plate in various vertebrate species. We previously showed that the Sox2 expression prevailing in the neural plate of chicken embryos is actually regulated by the coordination of five phylogenetically conserved enhancers having discrete regional coverage, among which the 420-bp long enhancer N-1, active in the node-proximal region, is probably involved directly in the genesis of the posterior neural plate. We investigated the signaling systems regulating this enhancer, first identifying the 56-bp N-1 core enhancer (N-1c), which in a trimeric form recapitulates the activity of the enhancer N-1. Mutational analysis identified five blocks, A to E, that regulate the enhancer N-1c. Functional analysis of these blocks indicated that Wnt and FGF signals synergistically activate the enhancer through Blocks A-B, bound by Lef1, and Block D, respectively. Fgf8b and Wnt8c expressed in the organizer-primitive streak region account for the activity in the embryo. Block E is essential for the repression of the enhancer N-1c activity in the mesendodermal precursors. The enhancer N-1c is not affected by BMP signals. Thus, Wnt and FGF signals converge to activate Sox2 expression through the enhancer N-1c, revealing the direct involvement of the Wnt signal in the initiation of neural plate development.
Collapse
Affiliation(s)
- Tatsuya Takemoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
29
|
Pedersen AH, Heller RS. A possible role for the canonical Wnt pathway in endocrine cell development in chicks. Biochem Biophys Res Commun 2005; 333:961-8. [PMID: 15970275 DOI: 10.1016/j.bbrc.2005.05.189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Accepted: 05/23/2005] [Indexed: 12/27/2022]
Abstract
Wnt signalling is involved in many developmental processes such as proliferation, differentiation, cell fate decisions, and morphogenesis. However, little is known about Wnt signalling during pancreas development. Multiple Wnt ligands and Frizzled receptors are expressed in the embryonic mouse pancreas, the surrounding mesenchyme, and have also been detected in the chicken endoderm during development. The aim of this study was to investigate the role of canonical Wnt signalling on endocrine cell development by use of the in ovo electroporation of the chicken endoderm. Overexpression with a constitutive active form of beta-catenin in combination with Ngn3 resulted in reduced numbers of glucagon cells. dnLEF-1 or naked-1 did not alter endocrine cell differentiation when co-expressed with Ngn3, but dnLEF-1 appeared to have some potential for inhibiting delamination of Ngn3 cells. In addition, neuronal beta-III-tubulin, which had previously been considered a specific marker for neuronal cells, was observed in the pancreas and was upregulated in the electroporated Ngn3 cells and thus may be a new endocrine marker in the chicken.
Collapse
Affiliation(s)
- Anna Hauntoft Pedersen
- Department of Developmental Biology, Hagedorn Research Institute, Niels Steensensvej 6, DK2820 Gentofte, Denmark
| | | |
Collapse
|
30
|
Rodriguez J, Esteve P, Weinl C, Ruiz JM, Fermin Y, Trousse F, Dwivedy A, Holt C, Bovolenta P. SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor. Nat Neurosci 2005; 8:1301-9. [PMID: 16172602 DOI: 10.1038/nn1547] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 08/23/2005] [Indexed: 12/31/2022]
Abstract
Axon growth is governed by the ability of growth cones to interpret attractive and repulsive guidance cues. Recent studies have shown that secreted signaling molecules known as morphogens can also act as axon guidance cues. Of the large family of Wnt signaling components, only Wnt4 and Wnt5 seem to participate directly in axon guidance. Here we show that secreted Frizzled-related protein 1 (SFRP1), a proposed Wnt signaling inhibitor, can directly modify and reorient the growth of chick and Xenopus laevis retinal ganglion cell axons. This activity does not require Wnt inhibition and is modulated by extracellular matrix molecules. Intracellularly, SFRP1 function requires G(alpha) protein activation, protein synthesis and degradation, and it is modulated by cyclic nucleotide levels. Because SFRP1 interacts with Frizzled-2 (Fz2) and interference with Fz2 expression abolishes growth cone responses to SFRP1, we propose a previously unknown function for this molecule: the ability to guide growth cone movement via the Fz2 receptor.
Collapse
Affiliation(s)
- Josana Rodriguez
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, CSIC, Dr. Arce 37, Madrid 28002, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lopez-Sanchez C, Puelles L, Garcia-Martinez V, Rodriguez-Gallardo L. Morphological and molecular analysis of the early developing chick requires an expanded series of primitive streak stages. J Morphol 2005; 264:105-16. [PMID: 15747384 DOI: 10.1002/jmor.10323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A detailed analysis of the gastrulating chick embryo was performed using three methods : time-lapse videotaping of embryos in culture, histological semithin sections, and in situ hybridization with 10 mRNA signals expressed during gastrulation. The results suggest that the gene expression pattern of Goosecoid, Hex, Crescent, and Bmp7 may be involved in the axial establishment of the temporal and spatial arrangement of cells forming the prechordal plate endoderm, and that Chordin, cNot1, Noggin, and Brachyury are precocious markers of cells coming from Hensen's node, which contribute to the rostralmost tip of the notochord, its arrowhead, the head process, and, later, the elongating notochord. These results explain several earlier descriptions based only on morphological analyses of the axial mesodermal structures characteristic of the gastrulation stages. The data, carefully observed and compared with the whole-mount observation in time-lapse video, show that the changes in cell populations, movements, and cell differentiation occur step-by-step over a precise temporal range, which requires the establishment of a subdivision of the stages usually employed. Knowledge of new aspects of avian gastrulation, including gene expression patterns, immunocytochemical analyses, and the great number of recent experiments based on microinjections or transplants of groups of cells to analyze processes of induction or regulation, need the support of a precisely defined scheme of primitive streak stages (PS-stages), and a correlation of these stages with other approaches to provide a finer resolution of the staging steps, and thus to facilitate a better understanding of the initial gastrulation period.
Collapse
Affiliation(s)
- Carmen Lopez-Sanchez
- Departamento de Ciencias Morfológicas y Biología Celular y Animal, Universidad de Extremadura, Badajoz 06071, Spain
| | | | | | | |
Collapse
|
32
|
Cornesse Y, Pieler T, Hollemann T. Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus. Dev Biol 2005; 277:296-315. [PMID: 15617676 DOI: 10.1016/j.ydbio.2004.09.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 09/08/2004] [Accepted: 09/09/2004] [Indexed: 11/16/2022]
Abstract
The integration of multiple signaling pathways is a key issue in several aspects of embryonic development. In this context, extracellular inhibitors of secreted growth factors play an important role, which is to antagonize specifically the activity of the corresponding signaling molecule. We provide evidence that the Hedgehog-interacting protein (Hip) from Xenopus, previously described as a Hedgehog-specific antagonist in the mouse, interferes with Wnt-8 and eFgf/Fgf-8 signaling pathways as well. To address the function of Hip during early embryonic development, we performed gain- and loss-of-function studies in the frog. Overexpression of Xhip or mHip1 resulted in a dramatic increase of retinal structures and larger olfactory placodes primarily at the expense of other brain tissues. Furthermore, loss of Xhip function resulted in a suppression of olfactory and lens placode formation. Therefore, the localized expression of Xhip may counteract certain overlapping signaling activities, which inhibit the induction of distinct sensory placodes.
Collapse
Affiliation(s)
- Yvonne Cornesse
- Department of Developmental Biochemistry, Institute of Biochemistry and Molecular Cell Biology, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
33
|
Burstyn-Cohen T, Stanleigh J, Sela-Donenfeld D, Kalcheim C. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development 2004; 131:5327-39. [PMID: 15456730 DOI: 10.1242/dev.01424] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Delamination of premigratory neural crest cells depends on a balance between BMP/noggin and on successful G1/S transition. Here, we report that BMP regulates G1/S transition and consequent crest delamination through canonical Wnt signaling. Noggin overexpression inhibits G1/S transition and blocking G1/S abrogates BMP-induced delamination; moreover, transcription of Wnt1 is stimulated by BMP and by the developing somites, which concomitantly inhibit noggin production. Interfering with β-catenin and LEF/TCF inhibits G1/S transition, neural crest delamination and transcription of various BMP-dependent genes, which include Cad6B, Pax3 and Msx1, but not that of Slug,Sox9 or FoxD3. Hence, we propose that developing somites inhibit noggin transcription in the dorsal tube, resulting in activation of BMP and consequent Wnt1 production. Canonical Wnt signaling in turn stimulates G1/S transition and generation of neural crest cell motility independently of its proposed role in earlier neural crest specification.
Collapse
Affiliation(s)
- Tal Burstyn-Cohen
- Department of Anatomy and Cell Biology, Hebrew University-Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
34
|
Glavic A, Maris Honoré S, Gloria Feijóo C, Bastidas F, Allende ML, Mayor R. Role of BMP signaling and the homeoprotein iroquois in the specification of the cranial placodal field. Dev Biol 2004; 272:89-103. [PMID: 15242793 DOI: 10.1016/j.ydbio.2004.04.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 03/30/2004] [Accepted: 04/19/2004] [Indexed: 01/24/2023]
Abstract
Different types of placodes originate at the anterior border of the neural plate but it is still an unresolved question whether individual placodes arise as distinct ectodermal specializations in situ or whether all or a subset of the placodes originate from a common preplacodal field. We have analyzed the expression and function of the homeoprotein Iro1 in Xenopus and zebrafish embryos, and we have compared its expression with several preplacodal and placodal markers. Our results indicate that the iro1 genes are expressed in the preplacodal region, being one of the earliest markers for this area. We show that an interaction between the neural plate and the epidermis is able to induce the expression of several preplacodal markers, including Xiro1, by a similar mechanism to that previously shown for neural crest induction. In addition, we analyzed the role of BMP in the specification of the preplacodal field by studying the expression of the preplacodal markers Six1, Xiro1, and several specific placodal markers. We experimentally modified the level of BMP activity by three different methods. First, we implanted beads soaked with noggin in early neurula stage Xenopus embryos; second, we injected the mRNA that encodes a dominant negative of the BMP receptor into Xenopus and zebrafish embryos; and third, we grafted cells expressing chordin into zebrafish embryos. The results obtained using all three methods show that a reduction in the level of BMP activity leads to an expansion of the preplacodal and placodal region similar to what has been described for neural crest regions. By using conditional constructs of Xiro1, we performed gain and loss of function experiments. We show that Xiro1 play an important role in the specification of both the preplacodal field as well as individual placodes. We have also used inducible dominant negative and activator constructs of Notch signaling components to analyze the role of these factors on placodal development. Our results indicate that the a precise level of BMP activity is required to induce the neural plate border, including placodes and neural crest cells, that in this border the iro1 gene is activated, and that this activation is required for the specification of the placodes.
Collapse
Affiliation(s)
- Alvaro Glavic
- Millennium Nucleus in Developmental Biology, Laboratory of Developmental Biology, Facultad de Ciencias, Universidad de Chile, Santiago
| | | | | | | | | | | |
Collapse
|
35
|
Esteve P, Lopez-Rios J, Bovolenta P. SFRP1 is required for the proper establishment of the eye field in the medaka fish. Mech Dev 2004; 121:687-701. [PMID: 15210177 DOI: 10.1016/j.mod.2004.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Revised: 03/09/2004] [Accepted: 03/10/2004] [Indexed: 11/29/2022]
Abstract
Secreted Frizzled Related Proteins (SFRPs) are a family of soluble molecules structurally related to the Wnt receptors. Functional analysis in different vertebrate species suggests that these molecules are multifunctional modulators of Wnt and possibly other signalling pathways. Sfrp1 a member of this family, is strongly expressed throughout embryonic development in different vertebrate species. Its function is, however, poorly understood. To address the role of this protein at early stages of embryonic development, we have used the medaka fish (Oryzias latipes) as a model system. Here, we describe the characterisation and the expression analysis of olSfrp1. We also show that morpholino-based interference with olSfrp1 expression results in embryos with a reduced eye field, a phenotype that, in the most affected embryos, is associated with a shortening and widening of the A-P axis. Because the expression of posterior diencephalic markers is unchanged but that of rostral telencephalic ones is expanded, we propose that olSfrp1 is needed for a proper establishment of the eye field within the forebrain. In addition, olSfrp1 may contribute to the control of mesodermal convergence extension movements that take place during gastrulation.
Collapse
Affiliation(s)
- Pilar Esteve
- Departamento de Neurobiologia del Desarrollo, Instituto Cajal, CSIC, Avenida Dr Arce 37, Madrid 28002, Spain
| | | | | |
Collapse
|
36
|
Phillips BT, Storch EM, Lekven AC, Riley BB. A direct role for Fgf but not Wnt in otic placode induction. Development 2004; 131:923-31. [PMID: 14757644 DOI: 10.1242/dev.00978] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Induction of the otic placode, which gives rise to all tissues comprising the inner ear, is a fundamental aspect of vertebrate development. A number of studies indicate that fibroblast growth factor (Fgf), especially Fgf3, is necessary and sufficient for otic induction. However, an alternative model proposes that Fgf must cooperate with Wnt8 to induce otic differentiation. Using a genetic approach in zebrafish, we tested the roles of Fgf3, Fgf8 and Wnt8. We demonstrate that localized misexpression of either Fgf3 or Fgf8 is sufficient to induce ectopic otic placodes and vesicles, even in embryos lacking Wnt8. Wnt8 is expressed in the hindbrain around the time of otic induction, but loss of Wnt8 merely delays expression of preotic markers and otic vesicles form eventually. The delay in otic induction correlates closely with delayed expression of fgf3 and fgf8 in the hindbrain. Localized misexpression of Wnt8 is insufficient to induce ectopic otic tissue. By contrast, global misexpression of Wnt8 causes development of supernumerary placodes/vesicles, but this reflects posteriorization of the neural plate and consequent expansion of the hindbrain expression domains of Fgf3 and Fgf8. Embryos that misexpress Wnt8 globally but are depleted for Fgf3 and Fgf8 produce no otic tissue. Finally, cells in the preotic ectoderm express Fgf (but not Wnt) reporter genes. Thus, preotic cells respond directly to Fgf but not Wnt8. We propose that Wnt8 serves to regulate timely expression of Fgf3 and Fgf8 in the hindbrain, and that Fgf from the hindbrain then acts directly on preplacodal cells to induce otic differentiation.
Collapse
Affiliation(s)
- Bryan T Phillips
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
37
|
Chapman SC, Brown R, Lees L, Schoenwolf GC, Lumsden A. Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev Dyn 2004; 229:668-76. [PMID: 14991722 DOI: 10.1002/dvdy.10491] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Wnt signaling is an important component in patterning the early embryo and specifically the neural plate. Studies in Xenopus, mouse, and zebrafish have shown that signaling by members of the Wnt family of secreted signaling factors, their Frizzled receptors and several inhibitors (sFRP1, sFRP2, sFRP3/Frzb1, Crescent/Frzb2, Dkk1, and Cerberus) are involved. However, very little is known about the expression of genes in the Wnt signaling pathway during early anterior neural patterning in chick. We have performed an expression analysis at neural plate stages of several Wnts, Frizzled genes, and Wnt signaling pathway inhibitors using in situ hybridization. The gene expression patterns of these markers are extremely dynamic. We have identified two candidate molecules for anterior patterning of the neural plate, Wnt1 and Wnt8b, which are expressed in the rostral ectoderm at these stages. Further functional studies on the roles of these markers are underway.
Collapse
Affiliation(s)
- Susan C Chapman
- MRC Centre for Developmental Neurobiology, Kings College London, New Hunts House, Guy's Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
38
|
Esteve P, Trousse F, Rodríguez J, Bovolenta P. SFRP1 modulates retina cell differentiation through a beta-catenin-independent mechanism. J Cell Sci 2003; 116:2471-81. [PMID: 12724355 DOI: 10.1242/jcs.00452] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Secreted frizzled related proteins (SFRPs) are soluble molecules capable of binding WNTS and preventing the activation of their canonical signalling cascade. Here we show that Sfrp1 contributes to chick retina differentiation with a mechanism that does not involve modifications in the transcriptional activity of beta-catenin. Thus, addition of SFRP1 to dissociated retinal cultures or retroviral mediated overexpression of the molecule consistently promoted retinal ganglion and cone photoreceptor cell generation, while decreasing the number of amacrine cells. Measure of the activity of the beta-catenin-responsive Tcf-binding site coupled to a luciferase reporter in transiently transfected retinal cells showed that Sfrp1 was unable to modify the basal beta-catenin transcriptional activity of the retina cells. Interestingly, a dominant-negative form of GSK3beta gave similar results to those of Sfrp1, and a phosphorylation-dependent inhibition of GSK3beta activity followed SFRP1 treatment of retina cells. Furthermore, retroviral mediated expression of a dominant-negative form of GSK3beta induced a retina phenotype similar to that observed after Sfrp1 overexpression, suggesting a possible involvement of this kinase in SFRP1 function.
Collapse
Affiliation(s)
- Pilar Esteve
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, CSIC, Dr Arce 37, Madrid 28002, Spain
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West Third Street, Los Angeles, California 90057, USA
| | | | | |
Collapse
|
40
|
Abstract
Inner ear induction, like induction of other tissues examined in recent years, is likely to be comprised of several stages. The process begins during gastrulation when the ectoderm is competent to respond to induction. It appears that a signal from the endomesoderm underlying the otic area during gastrulation initiates induction complemented by a signal from presumptive neural tissue. By the neural plate stage, a region of ectoderm outside the neural plate is "biased" toward ear formation; this process may be part of a more general "placodal" bias shared by several sensory tissues. Induction continues during neurulation when a signal from neural tissue (possibly augmented by mesoderm underlying the otic area) results in ectoderm committed to otic vesicle formation at the time of neural tube closure. Studies on several gene families implicate them in the ear determination process. Fibroblast Growth Factor (FGF) family members are clearly involved in induction: FGFs are appropriately expressed for such a role, and have been shown to be essential for inner ear development. FGFs also have inductive activity, although it is not clear if they are sufficient for ear induction. Activation of transcription factors in the otic ectoderm, for example, by Pax gene family members, provides evidence for important changes in the responding ectoderm beginning during gastrulation and continuing through specification at the end of neurulation, although few functional tests have defined the role of these genes in determination. The challenge remains to merge embryologic data with gene function studies to develop a clear model for the molecular basis of inner ear induction.
Collapse
Affiliation(s)
- Selina Noramly
- Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, Virginia 22904, USA
| | | |
Collapse
|
41
|
Jones SE, Jomary C. Secreted Frizzled-related proteins: searching for relationships and patterns. Bioessays 2002; 24:811-20. [PMID: 12210517 DOI: 10.1002/bies.10136] [Citation(s) in RCA: 317] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Secreted Frizzled-related proteins (SFRPs) are modulators of the intermeshing pathways in which signals are transduced by Wnt ligands through Frizzled (Fz) membrane receptors. The Wnt networks influence biological processes ranging from developmental cell fate, cell polarity and adhesion to tumorigenesis and apoptosis. In the five or six years since their discovery, the SFRPs have emerged as dynamically expressed proteins able to bind both Wnts and Fz, with distinctive structural properties in which cysteine-rich domains from Fz- and from netrin-like proteins are juxtaposed. The abundant expression of SFRP genes in the early embryo, altered expression patterns in disease states, and potential significance in the evolution of the vertebrate body plan, make these intriguing molecules relevant to investigations in diverse fields of biology and biomedical sciences.
Collapse
Affiliation(s)
- Steve E Jones
- Retinitis Pigmentosa Research Unit, Division of Pharmacology and Theraputics, GKT School of Biomedical Sciences, The Rayne Institute, St Thomas' Hospital, London UK.
| | | |
Collapse
|
42
|
Jin EJ, Burrus LW, Erickson CA. The expression patterns of Wnts and their antagonists during avian eye development. Mech Dev 2002; 116:173-6. [PMID: 12128219 DOI: 10.1016/s0925-4773(02)00128-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To determine the possible involvement of Wnt signaling in eye development, we analyzed the expression patterns of Wnts and Wnt inhibitors in the chicken eye at stage 25, when the first wave of neural crest migration into the cornea begins, and stage 27, just prior to the second wave of neural crest migration. Wnt expression is developmentally regulated in the chicken eye, and antagonists of Wnt signaling are generally expressed in patterns that are temporally distinct from the Wnts.
Collapse
Affiliation(s)
- Eun-Jung Jin
- The Section of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, 95616, USA.
| | | | | |
Collapse
|
43
|
Kee Y, Bronner-Fraser M. Temporally and spatially restricted expression of the helix-loop-helix transcriptional regulator Id1 during avian embryogenesis. Mech Dev 2001; 109:331-5. [PMID: 11731245 DOI: 10.1016/s0925-4773(01)00574-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We isolated the chick orthologue of the Id1 helix-loop-helix gene and analyzed its expression pattern during early chick embryo development by whole-mount in situ hybridization. The Id1 expression pattern is dynamic and confined to discrete locations including the neural plate border, prospective olfactory placode, hindbrain, mesenchyme of distal branchial arches and adjacent to placodes, and the distal mesoderm of the limb buds.
Collapse
Affiliation(s)
- Y Kee
- Division of Biology, 139-74 California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
44
|
Jin EJ, Erickson CA, Takada S, Burrus LW. Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo. Dev Biol 2001; 233:22-37. [PMID: 11319855 DOI: 10.1006/dbio.2001.0222] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recent studies show that specification of some neural crest lineages occurs prior to or at the time of migration from the neural tube. We investigated what signaling events establish the melanocyte lineage, which has been shown to migrate from the trunk neural tube after the neuronal and glial lineages. Using in situ hybridization, we find that, although Wnts are expressed in the dorsal neural tube throughout the time when neural crest cells are migrating, the Wnt inhibitor cfrzb-1 is expressed in the neuronal and glial precursors and not in melanoblasts. This expression pattern suggests that Wnt signaling may be involved in specifying the melanocyte lineage. We further report that Wnt-3a-conditioned medium dramatically increases the number of pigment cells in quail neural crest cultures while decreasing the number of neurons and glial cells, without affecting proliferation. Conversely, BMP-4 is expressed in the dorsal neural tube throughout the time when neural crest cells are migrating, but is decreased coincident with the timing of melanoblast migration. This expression pattern suggests that BMP signaling may be involved in neural and glial cell differentiation or repression of melanogenesis. Purified BMP-4 reduces the number of pigment cells in culture while increasing the number of neurons and glial cells, also without affecting proliferation. Our data suggest that Wnt signaling specifies melanocytes at the expense of the neuronal and glial lineages, and further, that Wnt and BMP signaling have antagonistic functions in the specification of the trunk neural crest.
Collapse
Affiliation(s)
- E J Jin
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
45
|
Kim AS, Lowenstein DH, Pleasure SJ. Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon. Mech Dev 2001; 103:167-72. [PMID: 11335128 DOI: 10.1016/s0925-4773(01)00342-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The caudomedial margin of the medial pallium, known as the cortical hem, expresses several Wnt genes that have been shown to be crucial for cortical development. We examined the expression of members of the Frizzled (mFz) family of Wnt receptors and the Secreted Frizzled Related Protein (SFRP) family of Wnt inhibitors during telencephalic development. We found that mFz-5 and mFz-8 are specifically expressed in the neocortical neuroepithelium and excluded from the hippocampal neuroepithelium in early telencephalic development, whereas mFz-9 and mFz-10 have expression domains confined to the medial pallium. In addition, SFRP-1 and SFRP-3 are expressed in opposing anterolateral to caudomedial gradients within the telencephalic ventricular zone throughout corticogenesis.
Collapse
Affiliation(s)
- A S Kim
- Neurodevelopmental Disorders Laboratory, Department of Neurology, University of California, San Francisco, CA 94143-0435, USA
| | | | | |
Collapse
|
46
|
Abstract
Cranial placodes are focal regions of thickened ectoderm in the head of vertebrate embryos that give rise to a wide variety of cell types, including elements of the paired sense organs and neurons in cranial sensory ganglia. They are essential for the formation of much of the cranial sensory nervous system. Although relatively neglected today, interest in placodes has recently been reawakened with the isolation of molecular markers for different stages in their development. This has enabled a more finely tuned approach to the understanding of placode induction and development and in some cases has resulted in the isolation of inducing molecules for particular placodes. Both morphological and molecular data support the existence of a preplacodal domain within the cranial neural plate border region. Nonetheless, multiple tissues and molecules (where known) are involved in placode induction, and each individual placode is induced at different times by a different combination of these tissues, consistent with their diverse fates. Spatiotemporal changes in competence are also important in placode induction. Here, we have tried to provide a comprehensive review that synthesises the highlights of a century of classical experimental research, together with more modern evidence for the tissues and molecules involved in the induction of each placode.
Collapse
Affiliation(s)
- C V Baker
- Division of Biology 139-74, California Institute of Technology, Pasadena, California, 91125, USA.
| | | |
Collapse
|
47
|
Kawakami Y, Capdevila J, Büscher D, Itoh T, Rodríguez Esteban C, Izpisúa Belmonte JC. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell 2001; 104:891-900. [PMID: 11290326 DOI: 10.1016/s0092-8674(01)00285-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A regulatory loop between the fibroblast growth factors FGF-8 and FGF-10 plays a key role in limb initiation and AER induction in vertebrate embryos. Here, we show that three WNT factors signaling through beta-catenin act as key regulators of the FGF-8/FGF-10 loop. The Wnt-2b gene is expressed in the intermediate mesoderm and the lateral plate mesoderm in the presumptive chick forelimb region. Cells expressing Wnt-2b are able to induce Fgf-10 and generate an extra limb when implanted into the flank. In the presumptive hindlimb region, another Wnt gene, Wnt-8c, controls Fgf-10 expression, and is also capable of inducing ectopic limb formation in the flank. Finally, we also show that the induction of Fgf-8 in the limb ectoderm by FGF-10 is mediated by the induction of Wnt-3a. Thus, three WNT signals mediated by beta-catenin control both limb initiation and AER induction in the vertebrate embryo.
Collapse
Affiliation(s)
- Y Kawakami
- The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|