1
|
Kartal B, Alimoğulları E, Çaylı S. The immunoexpression of valosin-containing protein and small VCP-interacting protein in rat ovaries. Anat Histol Embryol 2023. [PMID: 36843060 DOI: 10.1111/ahe.12914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/07/2022] [Accepted: 02/13/2023] [Indexed: 02/28/2023]
Abstract
Numerous cellular processes are controlled by the ubiquitin-proteasome-mediated degradation pathway, involve the 97-kDa valosin-containing protein (p97/VCP). Small p97/VCP-interacting protein (SVIP) was first discovered as one of the novel androgen-responsive genes as well as one of the many cofactors controlling p97/VCP. The aim of the study was to investigate localization and immunoexpression of p97/VCP and SVIP in rat ovarian tissue. The histomorphological examination of rat ovarian tissue was performed by using haematoxylin-eosin (HE) staining. Using the immunohistochemical technique, cellular location and expression of p97/VCP and SVIP in rat ovarian tissue were examined. The nuclear and cytoplasmic immunoexpression of p97/VCP and SVIP was observed in the different stages of ovarian follicles and corpus luteum in the rat ovaries. The immunolocalization of SVIP and VCP in the rat ovaries suggest that they may be involved in the oogenesis. Further studies should be performed about the function of the VCP and SVIP in the female reproductive tract.
Collapse
Affiliation(s)
- Bahar Kartal
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Medical Faculty, Ankara, Turkey
| | - Ebru Alimoğulları
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Medical Faculty, Ankara, Turkey
| | - Sevil Çaylı
- Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Medical Faculty, Ankara, Turkey
| |
Collapse
|
2
|
MAP4K4/JNK Signaling Pathway Stimulates Proliferation and Suppresses Apoptosis of Human Spermatogonial Stem Cells and Lower Level of MAP4K4 Is Associated with Male Infertility. Cells 2022; 11:cells11233807. [PMID: 36497065 PMCID: PMC9739186 DOI: 10.3390/cells11233807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Spermatogonial stem cells (SSCs) serve as a foundation for spermatogenesis and they are essential for male fertility. The fate of SSC is determined by genetic and epigenetic regulatory networks. Many molecules that regulate SSC fate determinations have been identified in mice. However, the molecules and signaling pathways underlying human SSCs remain largely unclear. In this study, we have demonstrated that MAP4K4 was predominantly expressed in human UCHL1-positive spermatogonia by double immunocytochemical staining. MAP4K4 knockdown inhibited proliferation of human SSCs and induced their apoptosis. Moreover, MAP4K4 silencing led to inhibition of JNK phosphorylation and MAP4K4 phosphorylation at Ser801. RNA sequencing indicated that MAP4K4 affected the transcription of SPARC, ADAM19, GPX7, GNG2, and COLA1. Interestingly, the phenotype of inhibiting JNK phosphorylation by SP600125 was similar to MAP4K4 knockdown. Notably, MAP4K4 protein was lower in the testes of patients with non-obstructive azoospermia than those with normal spermatogenesis as shown by Western blots and immunohistochemistry. Considered together, our data implicate that MAP4K4/JNK signaling pathway mediates proliferation and apoptosis of human SSCs, which provides a novel insight into molecular mechanisms governing human spermatogenesis and might offer new targets for gene therapy of male infertility.
Collapse
|
3
|
Peng H, Chen J, Gao Y, Huo J, Wang C, Zhang Y, Xiao T. Valosin-containing protein is associated with maintenance of meiotic arrest in mouse oocytes†. Biol Reprod 2020; 100:963-970. [PMID: 30476006 DOI: 10.1093/biolre/ioy244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/06/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Valosin-containing protein (VCP) is a member of the highly conserved AAA (ATPase associated with a variety of cellular activities) superfamily. A previous study has shown that targeted deletion of Vcp in mice results in early embryonic lethality. The aim of the present study was to analyze the expression and localization of VCP and its function in meiotic arrest of mouse oocytes. Vcp mRNA and protein were expressed in multiple mouse tissues. In the ovary, VCP protein was mainly expressed in oocytes and granulosa cells. After ovulation and fertilization, Vcp mRNA and protein were detected in oocytes and preimplantation embryos. Furthermore, VCP protein was localized in both the cytoplasm and nucleus of germinal vesicle (GV)-stage oocytes and preimplantation embryos. Moreover, knockdown of Vcp in GV-stage oocytes led to a significantly increased rate of germinal vesicle breakdown (GVBD). In addition, inhibition of VCP protein improved the GVBD rate in mouse GV-stage oocytes. When VCP inhibition was reversed, the final GVBD rate returned to normal. These results provide the first evidence for a novel function of VCP in meiotic arrest of mouse oocytes.
Collapse
Affiliation(s)
- Hui Peng
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
- University Key Lab for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Jing Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Yuyun Gao
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Jianchao Huo
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Chongchong Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Yanyan Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| | - Tianfang Xiao
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, P. R. China
| |
Collapse
|
4
|
McClelland KS, Yao HHC. Leveraging Online Resources to Prioritize Candidate Genes for Functional Analyses: Using the Fetal Testis as a Test Case. Sex Dev 2017; 11:1-20. [PMID: 28196369 PMCID: PMC6171109 DOI: 10.1159/000455113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 01/03/2023] Open
Abstract
With each new microarray or RNA-seq experiment, massive quantities of transcriptomic information are generated with the purpose to produce a list of candidate genes for functional analyses. Yet an effective strategy remains elusive to prioritize the genes on these candidate lists. In this review, we outline a prioritizing strategy by taking a step back from the bench and leveraging the rich range of public databases. This in silico approach provides an economical, less biased, and more effective solution. We discuss the publicly available online resources that can be used to answer a range of questions about a gene. Is the gene of interest expressed in the system of interest (using expression databases)? Where else is this gene expressed (using added-value transcriptomic resources)? What pathways and processes is the gene involved in (using enriched gene pathway analysis and mouse knockout databases)? Is this gene correlated with human diseases (using human disease variant databases)? Using mouse fetal testis as an example, our strategies identified 298 genes annotated as expressed in the fetal testis. We cross-referenced these genes to existing microarray data and narrowed the list down to cell-type-specific candidates (35 for Sertoli cells, 11 for Leydig cells, and 25 for germ cells). Our strategies can be customized so that they allow researchers to effectively and confidently prioritize genes for functional analysis.
Collapse
Affiliation(s)
- Kathryn S McClelland
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | |
Collapse
|
5
|
Li Y, Li J, Fang C, Shi L, Tan J, Xiong Y, Bin Fan, Li C. Genome-wide differential expression of genes and small RNAs in testis of two different porcine breeds and at two different ages. Sci Rep 2016; 6:26852. [PMID: 27229484 PMCID: PMC4882596 DOI: 10.1038/srep26852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
Some documented evidences proved small RNAs (sRNA) and targeted genes are involved in mammalian testicular development and spermatogenesis. However, the detailed molecular regulation mechanisms of them remain largely unknown so far. In this study, we obtained a total of 10,716 mRNAs, 67 miRNAs and 16,953 piRNAs which were differentially expressed between LC and LW pig breeds or between the two sexual maturity stages. Of which, we identified 16 miRNAs and 28 targeted genes possibly related to spermatogenesis; 14 miRNA and 18 targeted genes probably associated with cell adhesion related testis development. We also annotated 579 piRNAs which could potentially regulate cell death, nucleosome organization and other basic biology process, which implied that those piRNAs might be involved in sexual maturation difference. The integrated network analysis results suggested that some differentially expressed genes were involved in spermatogenesis through the ECM-receptor interaction, focal adhesion, Wnt and PI3K-Akt signaling pathways, some particular miRNAs have the negative regulation roles and some special piRNAs have the positive and negative regulation roles in testicular development. Our data provide novel insights into the molecular expression and regulation similarities and diversities of spermatogenesis and testicular development in different pig breeds at different stages of sexual maturity.
Collapse
Affiliation(s)
- Yao Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jialian Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Chengchi Fang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Liang Shi
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Jiajian Tan
- Guangxi Yangxiang Incorporated Company, Guigang, 537100, People's Republic of China
| | - Yuanzhu Xiong
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bin Fan
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Guangxi Yangxiang Pig Gene Technology limited Company, Guigang, 537120, People's Republic of China
| | - Changchun Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
6
|
Ayers KL, Lambeth LS, Davidson NM, Sinclair AH, Oshlack A, Smith CA. Identification of candidate gonadal sex differentiation genes in the chicken embryo using RNA-seq. BMC Genomics 2015; 16:704. [PMID: 26377738 PMCID: PMC4574023 DOI: 10.1186/s12864-015-1886-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite some advances in recent years, the genetic control of gonadal sex differentiation during embryogenesis is still not completely understood. To identify new candidate genes involved in ovary and testis development, RNA-seq was used to define the transcriptome of embryonic chicken gonads at the onset of sexual differentiation (day 6.0/stage 29). RESULTS RNA-seq revealed more than 1000 genes that were transcribed in a sex-biased manner at this early stage of gonadal differentiation. Comparison with undifferentiated gonads revealed that sex biased expression was derived primarily from autosomal rather than sex-linked genes. Gene ontology and pathway analysis indicated that many of these genes encoded proteins involved in extracellular matrix function and cytoskeletal remodelling, as well as tubulogenesis. Several of these genes are novel candidate regulators of gonadal sex differentiation, based on sex-biased expression profiles that are altered following experimental sex reversal. We further characterised three female-biased (ovarian) genes; calpain-5 (CAPN5), G-protein coupled receptor 56 (GPR56), and FGFR3 (fibroblast growth factor receptor 3). Protein expression of these candidates in the developing ovaries suggests that they play an important role in this tissue. CONCLUSIONS This study provides insight into the earliest steps of vertebrate gonad sex differentiation, and identifies novel candidate genes for ovarian and testicular development.
Collapse
Affiliation(s)
- Katie L Ayers
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Luke S Lambeth
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Nadia M Davidson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Andrew H Sinclair
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| | - Alicia Oshlack
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, 3052, Parkville, VIC, Australia.
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
7
|
Mata-Rocha M, Hernández-Sánchez J, Guarneros G, de la Chesnaye E, Sánchez-Tusié AA, Treviño CL, Felix R, Oviedo N. The transcription factors Sox5 and Sox9 regulateCatsper1gene expression. FEBS Lett 2014; 588:3352-60. [DOI: 10.1016/j.febslet.2014.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/04/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
|
8
|
Lossie AC, Muir WM, Lo CL, Timm F, Liu Y, Gray W, Zhou FC. Implications of genomic signatures in the differential vulnerability to fetal alcohol exposure in C57BL/6 and DBA/2 mice. Front Genet 2014; 5:173. [PMID: 24966868 PMCID: PMC4052096 DOI: 10.3389/fgene.2014.00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/22/2014] [Indexed: 12/12/2022] Open
Abstract
Maternal alcohol consumption inflicts a multitude of phenotypic consequences that range from undetectable changes to severe dysmorphology. Using tightly controlled murine studies that deliver precise amounts of alcohol at discrete developmental stages, our group and other labs demonstrated in prior studies that the C57BL/6 and DBA/2 inbred mouse strains display differential susceptibility to the teratogenic effects of alcohol. Since the phenotypic diversity extends beyond the amount, dosage and timing of alcohol exposure, it is likely that an individual's genetic background contributes to the phenotypic spectrum. To identify the genomic signatures associated with these observed differences in alcohol-induced dysmorphology, we conducted a microarray-based transcriptome study that also interrogated the genomic signatures between these two lines based on genetic background and alcohol exposure. This approach is called a gene x environment (GxE) analysis; one example of a GxE interaction would be a gene whose expression level increases in C57BL/6, but decreases in DBA/2 embryos, following alcohol exposure. We identified 35 candidate genes exhibiting GxE interactions. To identify cis-acting factors that mediated these interactions, we interrogated the proximal promoters of these 35 candidates and found 241 single nucleotide variants (SNVs) in 16 promoters. Further investigation indicated that 186 SNVs (15 promoters) are predicted to alter transcription factor binding. In addition, 62 SNVs created, removed or altered the placement of a CpG dinucleotide in 13 of the proximal promoters, 53 of which overlapped putative transcription factor binding sites. These 53 SNVs are also our top candidates for future studies aimed at examining the effects of alcohol on epigenetic gene regulation.
Collapse
Affiliation(s)
- Amy C Lossie
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | - William M Muir
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA ; Department of Medicine, Indiana University School of Medicine Indianapolis, IN, USA
| | - Chiao-Ling Lo
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Floyd Timm
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yunlong Liu
- Department of Molecular and Medical Genetics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Whitney Gray
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Indiana University School of Medicine Indianapolis, IN, USA ; Stark Neuroscience Research Institute, Indiana University School of Medicine Indianapolis, IN, USA
| |
Collapse
|
9
|
Chen CP, Lai TC, Chern SR, Li SH, Chou HC, Chen YW, Lin ST, Lu YC, Wu CL, Li JM, Chan HL. Proteome differences between male and female fetal cells in amniotic fluid. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 17:16-26. [PMID: 22404150 DOI: 10.1089/omi.2010.0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In mammals, sex development is genetically and hormonally regulated. The process starts with the establishment of chromosomal structures (XY or XX), followed by the expression of sex-dependent genes. In order to elucidate the differential protein profiles between male and female amniocytes, a proteomic approach has been performed in this study. Here, we utilized a proteomics-based approach including 2D-DIGE and MALDI-TOF MS analysis to obtain differentially expressed proteins between male and female amniocytes. After resolving protein samples with 2D-DIGE technique, 45 proteins corresponding to 28 unique proteins were differentially expressed between male and female amninocytes from three independent batches of amniotic fluid. Of all of these unique identified spots, five of them (annexin A1, cathepsin D, cytoskeletal 19, protein disulfide-isomerase, and vimentin) exhibited more than 1.5-fold upregulation or downregulation in at least two independent experiments. Importantly, the identified proteins involved in protein degradation and protein folding display upregulated in male amniocytes, implying the differential regulations of protein degradation and protein folding during sex development. In conclusion, the identified differentially expressed proteins may be employed as potential signatures for the sex development. Moreover, the established proteomic platform might further utilize to discover the potential biomarkers for the prenatal genetic disorders in fetus.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Botbol M, Roubertoux PL, Carlier M, Trabado S, Brailly-Tabard S, Perez-Diaz F, Bonnot O, Bronsard G, Tordjman S. Modulation of brain β-endorphin concentration by the specific part of the Y chromosome in mice. PLoS One 2011; 6:e16704. [PMID: 21408198 PMCID: PMC3050789 DOI: 10.1371/journal.pone.0016704] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 01/11/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Several studies in animal models suggest a possible effect of the specific part of the Y-chromosome (Y(NPAR)) on brain opioid, and more specifically on brain β-endorphin (BE). In humans, male prevalence is found in autistic disorder in which observation of abnormal peripheral or central BE levels are also reported. This suggests gender differences in BE associated with genetic factors and more precisely with Y(NPAR). METHODOLOGY/PRINCIPAL FINDINGS Brain BE levels and plasma testosterone concentrations were measured in two highly inbred strains of mice, NZB/BlNJ (N) and CBA/HGnc (H), and their consomic strains for the Y(NPAR). An indirect effect of the Y(NPAR) on brain BE level via plasma testosterone was also tested by studying the correlation between brain BE concentration and plasma testosterone concentration in eleven highly inbred strains. There was a significant and major effect (P<0.0001) of the Y(NPAR) in interaction with the genetic background on brain BE levels. Effect size calculated using Cohen's procedure was large (56% of the total variance). The variations of BE levels were not correlated with plasma testosterone which was also dependent of the Y(NPAR). CONCLUSIONS/SIGNIFICANCE The contribution of Y(NPAR) on brain BE concentration in interaction with the genetic background is the first demonstration of Y-chromosome mediated control of brain opioid. Given that none of the genes encompassed by the Y(NPAR) encodes for BE or its precursor, our results suggest a contribution of the sex-determining region (Sry, carried by Y(NPAR)) to brain BE concentration. Indeed, the transcription of the Melanocortin 2 receptor gene (Mc2R gene, identified as the proopiomelanocortin receptor gene) depends on the presence of Sry and BE is derived directly from proopiomelanocortin. The results shed light on the sex dependent differences in brain functioning and the role of Sry in the BE system might be related to the higher frequency of autistic disorder in males.
Collapse
Affiliation(s)
- Michel Botbol
- INSERM U 669, Troubles des Conduites Alimentaires à l'Adolescence, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Trowe MO, Shah S, Petry M, Airik R, Schuster-Gossler K, Kist R, Kispert A. Loss of Sox9 in the periotic mesenchyme affects mesenchymal expansion and differentiation, and epithelial morphogenesis during cochlea development in the mouse. Dev Biol 2010; 342:51-62. [DOI: 10.1016/j.ydbio.2010.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
|
12
|
Bouma GJ, Hudson QJ, Washburn LL, Eicher EM. New candidate genes identified for controlling mouse gonadal sex determination and the early stages of granulosa and Sertoli cell differentiation. Biol Reprod 2009; 82:380-9. [PMID: 19864314 DOI: 10.1095/biolreprod.109.079822] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Mammalian gonadal sex-determining (GSD) genes are expressed in a unique population of somatic cells that differentiate into granulosa cells in XX gonads or Sertoli cells in XY gonads. The ability to efficiently isolate these somatic support cells (SSCs) during the earliest stages of gonad development would facilitate identifying 1) new candidate GSD genes that may be involved in cases of unexplained abnormal gonad development and 2) genes involved in the earliest stages of granulosa and Sertoli cell differentiation. We report the development of a unique mouse carrying two transgenes that allow XX and XY mice to be distinguished as early as Embryonic Day 11.5 (E11.5) and allow SSCs to be isolated from undifferentiated (E11.5) and early differentiated (E12.5) fetal gonads. The Mouse Genome 430v2.0 GeneChip (Affymetrix) was used to identify transcripts exhibiting a sexual dimorphic expression pattern in XX and XY isolated SSCs. The analysis revealed previously unidentified sexually dimorphic transcripts, including low-level expressed genes such as Sry, a gene not identified in other microarray studies. Multigene real-time PCR analysis of 57 genes verified that 53 were expressed in fetal gonads in a sexually dimorphic pattern, and whole-mount in situ hybridization analysis verified 4930563E18Rik, Pld1, and Sprr2d are expressed in XX gonads, and Fbln2, Ppargc1a, and Scrn1 are expressed in XY gonads. Taken together, the data provide a comprehensive resource for the spatial-temporal expression pattern of genes that are part of the genetic network underlying the early stages of mammalian fetal gonadal development, including the development of granulosa and Sertoli cells.
Collapse
|
13
|
Ewen K, Baker M, Wilhelm D, Aitken RJ, Koopman P. Global survey of protein expression during gonadal sex determination in mice. Mol Cell Proteomics 2009; 8:2624-41. [PMID: 19617587 DOI: 10.1074/mcp.m900108-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development.
Collapse
Affiliation(s)
- Katherine Ewen
- Division of Molecular Genetics and Development, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
14
|
Lee TL, Li Y, Alba D, Vong QP, Wu SM, Baxendale V, Rennert OM, Lau YFC, Chan WY. Developmental staging of male murine embryonic gonad by SAGE analysis. J Genet Genomics 2009; 36:215-27. [PMID: 19376482 DOI: 10.1016/s1673-8527(08)60109-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 12/31/2022]
Abstract
Despite the identification of key genes such as Sry integral to embryonic gonadal development, the genomic classification and identification of chromosomal activation of this process is still poorly understood. To better understand the genetic regulation of gonadal development, we performed Serial Analysis of Gene Expression (SAGE) to profile the genes and novel transcripts, and an average of 152,000 tags from male embryonic gonads at E10.5 (embryonic day 10.5), E11.5, E12.5, E13.5, E15.5 and E17.5 were analyzed. A total of 275,583 non-singleton tags that do not map to any annotated sequence were identified in the six gonad libraries, and 47,255 tags were mapped to 24,975 annotated sequences, among which 987 sequences were uncharacterized. Utilizing an unsupervised pattern identification technique, we established molecular staging of male gonadal development. Rather than providing a static descriptive analysis, we developed algorithms to cluster the SAGE data and assign SAGE tags to a corresponding chromosomal position; these data are displayed in chromosome graphic format. A prominent increase in global genomic activity from E10.5 to E17.5 was observed. Important chromosomal regions related to the developmental processes were identified and validated based on established mouse models with developmental disorders. These regions may represent markers for early diagnosis for disorders of male gonad development as well as potential treatment targets.
Collapse
Affiliation(s)
- Tin-Lap Lee
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Svingen T, Wilhelm D, Combes AN, Hosking B, Harley VR, Sinclair AH, Koopman P. Ex vivo magnetofection: a novel strategy for the study of gene function in mouse organogenesis. Dev Dyn 2009; 238:956-64. [PMID: 19301396 DOI: 10.1002/dvdy.21919] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Gene function during mouse development is often studied through the production and analysis of transgenic and knockout models. However, these techniques are time- and resource-consuming, and require specialized equipment and expertise. We have established a new protocol for functional studies that combines organ culture of explanted fetal tissues with microinjection and magnetically induced transfection ("magnetofection") of gene expression constructs. As proof-of-principle, we magnetofected cDNA constructs into genital ridge tissue as a means of gain-of-function analysis, and shRNA constructs for loss-of-function analysis. Ectopic expression of Sry induced female-to-male sex-reversal, whereas knockdown of Sox9 expression caused male-to-female sex-reversal, consistent with the known functions of these genes. Furthermore, ectopic expression of Tmem184a, a gene of unknown function, in female genital ridges, resulted in failure of gonocytes to enter meiosis. This technique will likely be applicable to the study of gene function in a broader range of developing organs and tissues.
Collapse
Affiliation(s)
- Terje Svingen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Coveney D, Ross AJ, Slone JD, Capel B. A microarray analysis of the XX Wnt4 mutant gonad targeted at the identification of genes involved in testis vascular differentiation. Gene Expr Patterns 2008; 8:529-37. [PMID: 18953701 DOI: 10.1016/j.gep.2008.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4-/- and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.
Collapse
Affiliation(s)
- Douglas Coveney
- The Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
17
|
Piferrer F, Guiguen Y. Fish Gonadogenesis. Part II: Molecular Biology and Genomics of Sex Differentiation. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802324644] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Cory AT, Boyer A, Pilon N, Lussier JG, Silversides DW. Presumptive pre-Sertoli cells express genes involved in cell proliferation and cell signalling during a critical window in early testis differentiation. Mol Reprod Dev 2007; 74:1491-504. [PMID: 17410545 DOI: 10.1002/mrd.20722] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammals, the pre-Sertoli cell of the male genital ridge is the first cell type to display sex specific differentiation and differential gene expression. The genetic cascade driving the differentiation of pre-Sertoli cells and ultimately testis formation is beginning to be unravelled, but many questions remain. A better understanding of the transcriptome of pre-Sertoli cells immediately after sex determination is essential in order to further understand this differentiation process. A mouse model expressing Red Fluorescent Protein (RFP) under the control of a hybrid mouse/pig SRY promoter (HybSRYp-RFP) was used to purify cells from embryonic day 12.0 (e12.0) male genital ridges. To compare the transcriptomes of HybSRYp-RFP cell populations versus age matched whole female genital ridges, RNA was extracted and used to generate molecular probes that were hybridized onto Affymetrix Mouse Genome 430 2.0 micro-arrays. The expression of genes considered markers for pre-Sertoli cells, including Sox9, Mis, Dhh and Fgf9 were identified within the HybSRYp-RFP expressing cell population, while markers for germ cells (Oct4, SSEA-1) and endothelial cells (Ntrk3) were not identified. In contrast, markers for ovarian somatic cell expression, including Fst and Bmp2, were identified as overexpressed within the ovarian cell population. In a general fashion, genes identified as 2.5-fold over expressed in HybSRYp-RFP expressing cells coded notably for cell signalling and extra cellular proteins. The expression of Sox10, Stc2, Fgf18, Fgf13 and Wnt6 were further characterized via whole mount in situ hybridization (WISH) on male and female genital ridges between e11.5 and e14.5. Sox10, Fgf18, Fgf13 and Stc2 gene expression was detected within the male genital ridges while Wnt6 was found diffusely within both the male and female genital ridges. These data represent the earliest comprehensive microarray expression analysis of purified presumptive pre-Sertoli cells available to date.
Collapse
Affiliation(s)
- Aron T Cory
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | | | | | | | | |
Collapse
|
19
|
Chen F, Desai TJ, Qian J, Niederreither K, Lü J, Cardoso WV. Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development 2007; 134:2969-79. [PMID: 17634193 DOI: 10.1242/dev.006221] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Disruption of retinoic acid (RA) signaling during early development results in severe respiratory tract abnormalities, including lung agenesis. Previous studies suggest that this might result from failure to selectively induce fibroblast growth factor 10 (Fgf10) in the prospective lung region of the foregut. Little is known about the RA-dependent pathways present in the foregut that may be crucial for lung formation. By performing global gene expression analysis of RA-deficient foreguts from a genetic [retinaldehyde dehydrogenase 2 (Raldh2)-null] and a pharmacological (BMS493-treated) mouse model, we found upregulation of a large number of Tgfbeta targets. Increased Smad2 phosphorylation further suggested that Tgfbeta signaling was hyperactive in these foreguts when lung agenesis was observed. RA rescue of the lung phenotype was associated with low levels of Smad2 phosphorylation and downregulation of Tgfbeta targets in Raldh2-null foreguts. Interestingly, the lung defect that resulted from RA-deficiency could be reproduced in RA-sufficient foreguts by hyperactivating Tgfbeta signaling with exogenous TGF beta 1. Preventing activation of endogenous Tgfbeta signaling with a pan-specific TGFbeta-blocking antibody allowed bud formation and gene expression in the lung field of both Raldh2-null and BMS493-treated foreguts. Our data support a novel mechanism of RA-Tgfbeta-Fgf10 interactions in the developing foregut, in which endogenous RA controls Tgfbeta activity in the prospective lung field to allow local expression of Fgf10 and induction of lung buds.
Collapse
Affiliation(s)
- Felicia Chen
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
20
|
Cederroth CR, Pitetti JL, Papaioannou MD, Nef S. Genetic programs that regulate testicular and ovarian development. Mol Cell Endocrinol 2007; 265-266:3-9. [PMID: 17208359 DOI: 10.1016/j.mce.2006.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The gonadal primordium is the only tissue in mammals that has two divergent developmental fates leading ultimately to the formation of either a testis or an ovary. The goal of this review is to summarize the major characteristics of the male and female transcriptional programs triggered in the developing mouse gonads during the critical time window of sex determination. Expression profiling studies reveal that both male and female genetic programs are initiated as early as embryonic day (E) 11.5. By E13.5, more than 1000 genes are overexpressed either in developing ovaries or testes. A large fraction of these have so far no known roles during gonadal differentiation, yet interestingly some of their human orthologues map to chromosomal loci associated with sexual disorders. Identifying the functional roles for these candidate genes will improve our understanding of sex determination and provide new insights into the causes of gonadal dysgenesis and reproductive disorders.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Genetic Medicine and Development and National Research Centre Frontiers in Genetics, University of Geneva Medical School, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
21
|
Yu Z, Tang A, Gui Y, Guo X, Zhu H, Long Y, Li Z, Cai Z. Identification and characteristics of a novel testis-specific gene, Tsc21, in mice and human. Mol Biol Rep 2006; 34:127-34. [PMID: 17091336 DOI: 10.1007/s11033-006-9026-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 09/11/2006] [Indexed: 11/25/2022]
Abstract
Testis-specific genes are essential for spermatogenesis in mammalian male reproduction. We have identified a novel gene, Tsc21, exclusively expressed in mice and human testes from the results of the Affymetrix Genechip analysis in the six developmental stages of testis of postnatal Balb/C mice. The full cDNA length of Tsc21 was 810 bp, with a 543 bp open reading frame encoding a 180 amino acids protein with a predicted molecular weight of 21.040 kDa. A Blast search in the mouse genome database localized the Tsc21 gene to mice chromosome 6C3. Multiple amino acid sequence alignment of human, mouse, and rat homologous genes showed that mice Tsc21 protein was highly homologous with the human Tsc21 gene (70%) and rat Tsc21 gene (86%). The results of reverse transcriptase-polymerase chain reaction analysis showed that the mice Tsc21 is exclusively expressed in the testis and epididymis of mice, and its expression is only detected after the mice is 35 days old. Human Tsc21 is also exclusively expressed in testis of human. Considering the expression profile Tsc21 in mice and human, we propose that Tsc21 may play a role during mammalian male spermatogenesis. Our study should be a basis for function characterization of the Tsc21 gene, leading to the elucidation of the molecular events underlying mammalian male reproduction.
Collapse
Affiliation(s)
- Zhendong Yu
- Laboratory of Male Reproductive Medicine, Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Peking University, Shenzhen 518036, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Dudley BM, Runyan C, Takeuchi Y, Schaible K, Molyneaux K. BMP signaling regulates PGC numbers and motility in organ culture. Mech Dev 2006; 124:68-77. [PMID: 17112707 DOI: 10.1016/j.mod.2006.09.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/08/2006] [Accepted: 09/27/2006] [Indexed: 12/29/2022]
Abstract
Members of the bone morphogenetic protein (BMP) family play diverse roles in multiple developmental processes. However, in the mouse, mutations in many BMPs, BMP receptors and signaling components result in early embryonic lethality making it difficult to analyze the role of these factors during organogenesis or tissue homeostasis in the adult. To bypass this early lethality, we used an organ culture system to study the role of BMPs during primordial germ cell (PGC) migration. PGCs are the embryonic precursors of the sperm and eggs. BMPs induce formation of primordial germ cells within the proximal epiblast of embryonic day 7.5 (E7.5) mouse embryos. PGCs then migrate via the gut to arrive at the developing gonads by E10.5. Addition of BMP4 or the BMP-antagonist Noggin to transverse slices dissected from E9.5 embryos elevated PGC numbers or reduced PGC numbers, respectively. Noggin treatment also slowed and randomized PGC movements, resulting in a failure of PGCs to colonize the urogenital ridges (UGRs). Based on p-Smad1/5/8 staining, migratory PGCs do not respond to endogenous BMPs. Instead, the somatic cells of the urogenital ridges exhibit elevated p-Smad1/5/8 staining revealing active BMP signaling within the UGRs. Noggin treatment abrogated p-Smad staining within the UGRs and blocked localized expression of Kitl, a cytokine known to regulate the survival and motility of PGCs and Id1, a transcription factor expressed within the UGRs. We propose that BMP signaling regulates PGC migration by controlling gene expression within the somatic cells along the migration route and within the genital ridges.
Collapse
Affiliation(s)
- Brian M Dudley
- Department of Genetics, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
23
|
Wilson MJ, Bowles J, Koopman P. The matricellular protein SPARC is internalized in Sertoli, Leydig, and germ cells during testis differentiation. Mol Reprod Dev 2006; 73:531-9. [PMID: 16425238 DOI: 10.1002/mrd.20394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The gene encoding the matricellular protein secreted protein, acidic and rich in cysteine (SPARC) was identified in a screen for genes expressed sex-specifically during mouse gonad development, as being strongly upregulated in the male gonad from very early in testis development. We present here a detailed analysis of SPARC gene and protein expression during testis development, from 11.5 to 15.5 days post coitum (dpc). Section in situ hybridization analysis revealed that SPARC mRNA is expressed by the Sertoli cells in the testis cords and the fetal Leydig cells, found within the interstitial space between the testis cords. Immunodetection with anti-SPARC antibody showed that the protein was located inside the testis cords, within the cytoplasm of Sertoli and germ cells. In the interstitium, SPARC was present intracellularly within the Leydig cells. The internalization of SPARC in Sertoli, Leydig, and germ cells suggests that it plays an intracellular regulatory role in these cell types during fetal testis development.
Collapse
Affiliation(s)
- Megan J Wilson
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | | | | |
Collapse
|
24
|
Coveney D, Ross AJ, Slone JD, Capel B. A microarray analysis of the XX Wnt4 mutant gonad targeted at the identification of genes involved in testis vascular differentiation. Gene Expr Patterns 2006; 7:82-92. [PMID: 16844427 DOI: 10.1016/j.modgep.2006.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 05/26/2006] [Accepted: 05/29/2006] [Indexed: 01/09/2023]
Abstract
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4+/+ and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.
Collapse
Affiliation(s)
- Douglas Coveney
- The Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
25
|
Jeanes A, Wilhelm D, Wilson MJ, Bowles J, McClive PJ, Sinclair AH, Koopman P. Evaluation of candidate markers for the peritubular myoid cell lineage in the developing mouse testis. Reproduction 2006; 130:509-16. [PMID: 16183868 DOI: 10.1530/rep.1.00718] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite the importance of peritubular myoid (PM) cells in the histogenesis of the fetal testis, understanding the origin and function of these cells has been hampered by the lack of suitable markers. The current study was aimed at identifying molecular markers for PM cells during the early stages of testis development in the mouse embryo. Expression of candidate marker genes was tested by section in situ hybridisation, in some instances followed by immunofluorescent detection of protein products. Collagen type-I, inhibinbetaA, caldesmon 1 and tropomyosin 1 were found to be expressed by early-stage PM cells. These markers were also expressed in subsets of interstitial cells, most likely reflecting their common embryological provenance from migrating mesonephric cells. Although not strictly specific for PM cells, these markers are likely to be useful in studying the biology of early PM cells in the fetal testis.
Collapse
Affiliation(s)
- Angela Jeanes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Beverdam A, Koopman P. Expression profiling of purified mouse gonadal somatic cells during the critical time window of sex determination reveals novel candidate genes for human sexual dysgenesis syndromes. Hum Mol Genet 2006; 15:417-31. [PMID: 16399799 DOI: 10.1093/hmg/ddi463] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite the identification of SRY as the testis-determining gene in mammals, the genetic interactions controlling the earliest steps of male sex determination remain poorly understood. In particular, the molecular lesions underlying a high proportion of human XY gonadal dysgenesis, XX maleness and XX true hermaphroditism remain undiscovered. A number of screens have identified candidate genes whose expression is modulated during testis or ovary differentiation in mice, but these screens have used whole gonads, consisting of multiple cell types, or stages of gonadal development well beyond the time of sex determination. We describe here a novel reporter mouse line that expresses enhanced green fluorescent protein under the control of an Sf1 promoter fragment, marking Sertoli and granulosa cell precursors during the critical period of sex determination. These cells were purified from gonads of male and female transgenic embryos at 10.5 dpc (shortly after Sry transcription is activated) and 11.5 dpc (when Sox9 transcription begins), and their transcriptomes analysed using Affymetrix genome arrays. We identified 266 genes, including Dhh, Fgf9 and Ptgds, that were upregulated and 50 genes that were downregulated in 11.5 dpc male somatic gonad cells only, and 242 genes, including Fst, that were upregulated in 11.5 dpc female somatic gonad cells only. The majority of these genes are novel genes that lack identifiable homology, and several human orthologues were found to map to chromosomal loci implicated in disorders of sexual development. These genes represent an important resource with which to piece together the earliest steps of sex determination and gonad development, and provide new candidates for mutation searching in human sexual dysgenesis syndromes.
Collapse
Affiliation(s)
- Annemiek Beverdam
- Division of Genetics and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | |
Collapse
|
27
|
Wilhelm D, Huang E, Svingen T, Stanfield S, Dinnis D, Koopman P. Comparative proteomic analysis to study molecular events during gonad development in mice. Genesis 2006; 44:168-76. [PMID: 16604525 DOI: 10.1002/dvg.20200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sex determination represents a critical bifurcation in the road of embryonic development. It is based on a finely regulated network of gene activity, as well as protein-protein interactions and activation or silencing of signaling pathways. Despite the identification of a number of critical genes, many aspects of the molecular cascade that drives the differentiation of the embryonic gonad into either a testis or an ovary remain poorly understood. To identify new proteins involved in this cascade, we employed two-dimensional gel electrophoresis and mass spectrometry to compare the protein expression profiles of fetal mouse testes and ovaries. Three proteins, hnRPA1, TRA1, and HSC71, were found to be expressed in a male-specific manner and this expression was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization. Moreover, HSC71 was found to be hyperphosphorylated in male compared to female gonads, emphasizing the advantage of the proteomic approach in allowing the detection of posttranslational modifications.
Collapse
Affiliation(s)
- Dagmar Wilhelm
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
28
|
Lü J, Qian J, Chen F, Tang X, Li C, Cardoso WV. Differential expression of components of the microRNA machinery during mouse organogenesis. Biochem Biophys Res Commun 2005; 334:319-23. [PMID: 16036130 DOI: 10.1016/j.bbrc.2005.05.206] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 05/25/2005] [Indexed: 02/02/2023]
Abstract
MicroRNA (miRNA)-mediated gene silencing has recently emerged as a major mechanism of gene expression regulation during development in a variety of species. Little is known, however, about the presence of components of miRNA machinery in mammalian organogenesis. In this study, we report that members of the Argonaute (Ago) gene family are expressed in restricted of the day 11.5 and 14.5 embryo, including the brain, neural tube, limb, lungs, and hair follicles. In the developing lung, we found expression of Ago1 and Ago2 localized to branching regions, in distal epithelium and mesenchyme, respectively. These were sites undergoing the most dynamic changes in gene expression and rapid remodeling. We show that Ago1 transcripts are enriched in neural structures at these stages, consistent with the reported role of Drosophila Ago1 in the development of the central nervous system. Our results suggest a role for miRNAs in organogenesis.
Collapse
Affiliation(s)
- Jining Lü
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
29
|
Paz M, Torrado M, Korochkin LI, Mikhailov AT. Esterase-like and fibronectin-like polypeptides share similar sex-cell-biased patterns in the gonad of hermaphroditic and gonochoric species of bivalve mollusks. Cell Tissue Res 2005; 322:475-89. [PMID: 16079966 DOI: 10.1007/s00441-005-0032-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 06/03/2005] [Indexed: 10/25/2022]
Abstract
The mechanism of sexualization of the tubular gonad in seawater bivalves is unknown, and no information regarding the genes involved in this process is yet available, except for the identification of esterase (Est)-like "male-associated polypeptide" in the male gonad of Mytilus galloprovincialis. Our present work reveals distinct protein profiles specific for the testicular or ovarian portion of the ovotestis of Pecten maximus. Two proteins exhibiting testis- or ovary-dependent enrichment in the ovotestis have been identified and partially characterized as Est-like and fibronectin (Fn)-like polypeptides, respectively. Immunofluorescence has demonstrated a close association between the localization of these polypeptides and the gonad tubule network and interstitial stroma of the ovotestis of P. maximus. We also present evidence of Est-like and Fn-like protein enrichment, respectively, in testicular and ovarian tissue in hermaphroditic, sex-reversal, and gonochoric species of seawater bivalves. Together, the results (1) strongly suggest that sex-cell-biased expression of Est-like and Fn-like polypeptides in gonad tissue is a widespread phenomenon among bivalve mollusks, despite the high diversification of their sexual patterns, (2) confirm and expand our previous demonstration of sex-biased protein expression in M. galloprovincialis, and (3) indicate a direct link between germ cell differentiation and sexual specialization of the bivalve somatic gonad.
Collapse
Affiliation(s)
- María Paz
- Developmental Biology Unit, Institute of Health Sciences, University of La Coruña, Campus de Oza, Building El Fortín As Xubias s/n, 15006, La Coruña, Spain
| | | | | | | |
Collapse
|
30
|
Herrera L, Ottolenghi C, Garcia-Ortiz JE, Pellegrini M, Manini F, Ko MSH, Nagaraja R, Forabosco A, Schlessinger D. Mouse ovary developmental RNA and protein markers from gene expression profiling. Dev Biol 2005; 279:271-90. [PMID: 15733658 DOI: 10.1016/j.ydbio.2004.11.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/17/2004] [Indexed: 11/25/2022]
Abstract
To identify genes involved in morphogenetic events during mouse ovary development, we started with microarray analyses of whole organ RNA. Transcripts for 60% of the 15,000 gene NIA panel were detected, and about 2000 were differentially expressed in nascent newborn compared to adult ovary. Highly differentially expressed transcripts included noncoding RNAs and newly detected genes involved in transcription regulation and signal transduction. The phased pattern of newborn mouse ovary differentiation allowed us to (1) extend information on activity and stage specificity of cell type-specific genes; and (2) generate a list of candidate genes involved in primordial follicle formation, including podocalyxin (Podxl), PDGFR-beta, and a follistatin-domain-encoding gene Flst1. Oocyte-specific transcripts included many (e.g., Deltex2, Bicd2, and Zfp37) enriched in growing oocytes, as well as a novel family of untranslated RNA's (RLTR10) that is selectively expressed in early stage follicles. The results indicate that global expression profiling of whole organ RNA provides sensitive first-line information about ovarian histogenesis for which no in vitro cell models are currently available.
Collapse
Affiliation(s)
- Luisa Herrera
- Laboratory of Genetics, Gerentalogy Research Centre, National Institute on Aging, Suite 3000, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bouma GJ, Hart GT, Washburn LL, Recknagel AK, Eicher EM. Using real time RT-PCR analysis to determine multiple gene expression patterns during XX and XY mouse fetal gonad development. Gene Expr Patterns 2005; 5:141-9. [PMID: 15533830 DOI: 10.1016/j.modgep.2004.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 05/07/2004] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
Abstract
New techniques are being applied to identify all the genes involved in mammalian gonad development and differentiation. As this list of genes increases, understanding the potential interactions between these genes will become increasingly difficult. We used a real time reverse transcription PCR (real time RTPCR) protocol to examine and compare the relative expression levels of 55 genes in individual mouse fetal gonads. Real time PCR analysis demonstrated that except for Sry, no differences in relative gene expression were detectable between XX and XY gonad/mesonephroi complexes at embryonic day (E)11.5. Following Sry peak expression at E11.5, a number of genes were expressed at significantly higher relative levels in E12-14 XY than XX gonads. Of six genes expressed at higher levels in E12.5-14 XX than XY gonads, three, Bmp2, Emx2, and Fgfr2, had not been reported previously. Our results caution that differential localization patterns observed with whole mount in situ hybridization techniques may not accurately reflect changes in transcript levels. We conclude that real time PCR is an efficient and powerful tool for studying multiple gene expression patterns during gonad development and differentiation, and can provide insight into gene interactions.
Collapse
Affiliation(s)
- Gerrit J Bouma
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, USA
| | | | | | | | | |
Collapse
|
32
|
Lü J, Izvolsky KI, Qian J, Cardoso WV. Identification of FGF10 Targets in the Embryonic Lung Epithelium during Bud Morphogenesis. J Biol Chem 2005; 280:4834-41. [PMID: 15556938 DOI: 10.1074/jbc.m410714200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic studies implicate Fgf10-Fgfr2 signaling as a critical regulator of bud morphogenesis in the embryo. However, little is known about the transcriptional targets of Fgf10 during this process. Here we identified global changes in gene expression in lung epithelial explants undergoing FGF10-mediated budding in the absence of other growth factors and mesenchyme. Targets were confirmed by their localization at sites where endogenous Fgf10 signaling is active in embryonic lungs and by demonstrating their induction in intact lungs in response to local application of FGF10 protein. We show that the initial stages of budding are characterized by marked up-regulation of genes associated with cell rearrangement and cell migration, inflammatory process, and lipid metabolism but not cell proliferation. We also found that some genes implicated in tumor invasion and metastatic behavior are epithelial targets of Fgf10 in the lung and other developing organs that depend on Fgf10-Fgfr2 signaling to properly form. Our approach identifies Fgf10 targets that are common to multiple biological processes and provides insights into potential mechanisms by which Fgf signaling regulates epithelial cell behavior.
Collapse
Affiliation(s)
- Jining Lü
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Disorders in human sex determination cause defects in gonadal function and can result in a spectrum of abnormalities in the internal and external genitalia, ranging from relatively mild sexual ambiguities to complete sex reversal. Several genes involved in sex determination have been validated in humans, and activities of their gene products are being elucidated, particularly in mouse models. However, how these genes interact in an overall process remains far from clear, and it is probable that many additional genes are involved. Management of patients with pathologies in sex determination and subsequent differentiation is currently under debate, but will require not only an understanding of the multiple definitions of an individual's sex but also an increased knowledge of the molecular mechanisms involved in sex determination.
Collapse
Affiliation(s)
- A Fleming
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | |
Collapse
|
34
|
Small CL, Shima JE, Uzumcu M, Skinner MK, Griswold MD. Profiling gene expression during the differentiation and development of the murine embryonic gonad. Biol Reprod 2004; 72:492-501. [PMID: 15496517 PMCID: PMC3217241 DOI: 10.1095/biolreprod.104.033696] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The application of microarray technology to the study of mammalian organogenesis can provide greater insights into the steps necessary to elicit a functionally competent tissue. To this end, a temporal profile of gene expression was generated with the purpose of identifying changes in gene expression occurring within the developing male and female embryonic gonad. Gonad tissue was collected from mouse embryos at 11.5, 12.5, 14.5, 16.5, and 18.5 days postcoitum (dpc) and relative steady-state levels of mRNA were determined using the Affymetrix MGU74v2 microarray platform. Statistical analysis produced 3693 transcripts exhibiting differential expression during male and/or female gonad development. At 11.5 dpc, the gonad is morphologically indifferent, but at 12.5 dpc, transitions to a male or female phenotype are discernible by the appearance of testicular cords. A number of genes are expressed during this period and many share similar expression profiles in both sexes. As expected, the expression of two well-known sex determination genes, specifically Sry and Sox9, is unique to the testis. Beyond 12.5 dpc, differential gene expression becomes increasingly evident as the male and female tissue morphologically and physiologically diverges. This is evident by two unique waves of transcriptional activity occurring after 14.5 dpc in the male and female. With this study, a large number of transcripts comprising the murine transcriptome can be examined throughout male and female embryonic gonad development and allow for a more complete description of gonad differentiation and development.
Collapse
Affiliation(s)
| | | | | | | | - Michael D. Griswold
- Correspondence: Michael D. Griswold, 531 Fulmer Hall, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-4660. FAX: 509 335 9688;
| |
Collapse
|
35
|
Lü J, Qian J, Izvolsky KI, Cardoso WV. Global analysis of genes differentially expressed in branching and non-branching regions of the mouse embryonic lung. Dev Biol 2004; 273:418-35. [PMID: 15328023 DOI: 10.1016/j.ydbio.2004.05.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 05/18/2004] [Accepted: 05/25/2004] [Indexed: 11/24/2022]
Abstract
During development, the proximal and distal regions of respiratory tract undergo distinct processes that ultimately give rise to conducting airways and alveoli. To gain insights into the genetic pathways differentially activated in these regions when branching morphogenesis is initiating, we characterized their transcriptional profiles in murine rudiments isolated at embryonic (E) day 11.5. By using oligonucleotide microarrays, we identified 83 and 128 genes preferentially expressed in branching and non-branching regions, respectively. The majority of these genes (85%) had not been previously described in the lung, or in other organs. We report restricted expression patterns of 22 of these genes were by in situ hybridization. Among them in the lung potential components of the Wnt, TGF beta, FGF and retinoid pathways identified in other systems, and uncharacterized genes, such as translocases, small GTPases and splicing factors. In addition, we provide a more detailed analysis of the expression pattern and regulation of a representative gene from the distal (transforming growth factor, beta induced) and proximal (WW domain-containing protein 2) regions. Our data suggest that these genes may regulate focal developmental events specific of each of these regions during respiratory tract formation.
Collapse
Affiliation(s)
- Jining Lü
- Pulmonary Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
36
|
Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 2004; 5:509-21. [PMID: 15211353 DOI: 10.1038/nrg1381] [Citation(s) in RCA: 342] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jennifer Brennan
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
37
|
Boyer A, Lussier JG, Sinclair AH, McClive PJ, Silversides DW. Pre-sertoli specific gene expression profiling reveals differential expression of Ppt1 and Brd3 genes within the mouse genital ridge at the time of sex determination. Biol Reprod 2004; 71:820-7. [PMID: 15128596 DOI: 10.1095/biolreprod.104.029371] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In mammals, testis determination is initiated when the SRY gene is expressed in pre-Sertoli cells of the undifferentiated genital ridge. SRY directs the differentiation of these cells into Sertoli cells and initiates the testis differentiation pathway via currently ill-defined mechanisms. Because Sertoli cells are the first somatic cells to differentiate within the developing testis, it is likely that the signals for orchestrating testis determination are expressed within pre-Sertoli cells. We have previously generated a transgenic mouse line that expresses green fluorescent protein under the control of the pig SRY promoter, thus marking pre-Sertoli cells via fluorescence. We have now used suppression-subtractive hybridization (SSH) to construct a normalized cDNA library derived from fluorescence-activated cell sorting (FACS) purified pre-Sertoli cells taken from 12.0 to 12.5 days postcoitum (dpc) fetal transgenic mouse testes. A total of 35 candidate cDNAs for known genes were identified. Detection of Sf1, a gene known for its role in sex determination as well as Vanin-1, Vcp1, Sparc, and Aldh3a1, four genes previously identified in differential screens as gene overexpressed in developing testis compared with ovary, support the biological validity of our experimental model. Whole-mount in situ hybridization was performed on the 35 candidate genes for qualitative differential expression between male and female genital ridges; six were upregulated in the testis and one was upregulated in the ovary. The expression pattern of two genes, Ppt1 and Brd3, were examined in further detail. We conclude that combining transgenically marked fluorescent cell populations with differential expression screening is useful for cell expression profiling in developmental systems such as sex determination and differentiation.
Collapse
Affiliation(s)
- Alexandre Boyer
- Centre de recherche en reproduction animale, Faculté de médecin vétérinaire, Université de Montréal, St.-Hyacinthe, Québec J2S 7C6, Canada
| | | | | | | | | |
Collapse
|
38
|
Abstract
The molecular anatomy of the vertebrate embryo was systematically analysed through gene expression during early development of the Xenopus frog using whole-mount in situ hybridization. Expression patterns are documented and assembled into the database Axeldb (http://www.dkfz-heidelberg.de/abt0135/axeldb.htm). Synexpression groups representing genes with shared, complex expression pattern that predict molecular pathways involved in patterning and differentiation have been identified. These sets of co-regulated genes show a striking similarity with operons, and may be a key determinant facilitating evolutionary change leading to animal diversity.
Collapse
Affiliation(s)
- Nicolas Pollet
- Laboratoire de transgenèse et génétique des amphibiens, CNRS UMR 8080, IBAIC Bât. 447, université Paris-Sud, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
39
|
Miyamoto T, Sengoku K, Hayashi H, Sasaki Y, Takuma N, Yamashita T, Ishikawa M. Isolation and expression analysis of the testis-specific gene, human OPPO1. J Assist Reprod Genet 2004; 21:129-34. [PMID: 15270212 PMCID: PMC3455606 DOI: 10.1023/b:jarg.0000029497.30205.cf] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To investigate human spermatogenesis, we isolated human testis-specific genes. METHODS Using mouse amino acid sequences, we found the region including homology in amino acid level in the human genome sequences. The primers encompassing introns were made and RT-PCR and RACE were carried out. The resultant PCR products were sequenced. RESULTS The full-length cDNA of human OPPO1 was isolated. It encodes 257 amino acid residues. The expression of the human OPPO1 was predominantly in the testis. On the other hand, partial cDNAs of ZNF8, GR194, GR219, GR093, GR046, GR163, and GR200 were expressed in the various tissues. CONCLUSIONS Our data suggests that the human OPPO1 may play important roles in human spermatogenesis.
Collapse
Affiliation(s)
- Toshinobu Miyamoto
- Department of Obstetrics and Gynecology, Asahikawa Medical College, Asahikawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Mizuno S, Kunita R, Nakabayashi O, Kuroda Y, Arai N, Harata M, Ogawa A, Itoh Y, Teranishi M, Hori T. Z and W chromosomes of chickens: studies on their gene functions in sex determination and sex differentiation. Cytogenet Genome Res 2004; 99:236-44. [PMID: 12900570 DOI: 10.1159/000071599] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 11/04/2003] [Indexed: 11/19/2022] Open
Abstract
Since the discovery of SRY/SRY as a testis-determining gene on the mammalian Y chromosome in 1990, extensive studies have been carried out on the immediate target of SRY/SRY and genes functioning in the course of testis development. Comparative studies in non-mammalian vertebrates including birds have failed to find a gene equivalent to SRY/SRY, whereas they have suggested that most of the downstream factors found in mammals including SOX9 are also involved in the process of gonadal differentiation. Although a gene whose function is to trigger the cascade of gene expression toward gonadal differentiation has not been identified yet on either W or Z chromosomes of birds, a few interesting genes have been found recently on the sex chromosomes of chickens and their possible roles in sex determination or sex differentiation are being investigated. It is the purpose of this review to summarize the present knowledge of these sex chromosome-linked genes in chickens and to give perspectives and point out questions concerning the mechanisms of avian sex determination.
Collapse
Affiliation(s)
- S Mizuno
- Department of Agricultural and Biological Chemistry, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
McClive PJ, Hurley TM, Sarraj MA, van den Bergen JA, Sinclair AH. Subtractive hybridisation screen identifies sexually dimorphic gene expression in the embryonic mouse gonad. Genesis 2003; 37:84-90. [PMID: 14595844 DOI: 10.1002/gene.10231] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sex of most mammals is determined by the action of SRY. Its presence initiates testis formation resulting in male differentiation, its absence results in ovary formation and female differentiation. We have used suppression subtraction hybridisation between 12.0-12.5 days postcoitum (dpc) mouse testes and ovaries to identify genes that potentially lie within the Sry pathway. Normalised urogenital ridge libraries comprising 8,352 clones were differentially screened with subtracted probes. A total of 272 candidate cDNAs were tested for qualitative differential expression and localisation by whole mount in situ hybridisation; germ cell-dependent or -independent expression was further resolved using busulfan. Fifty-four genes were identified that showed higher expression in the testis than the ovary. One novel gene may be a candidate for interactions with WT1, based on its localisation to Sertoli cells and map position (16q24.3).
Collapse
|
42
|
He Z, Bateman A. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med (Berl) 2003; 81:600-12. [PMID: 12928786 DOI: 10.1007/s00109-003-0474-3] [Citation(s) in RCA: 381] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Accepted: 07/10/2003] [Indexed: 10/26/2022]
Abstract
Progranulin (Pgrn) is a pluripotent secreted growth factor that mediates cell cycle progression and cell motility. It activates the extracellular regulated kinases and phosphatidyl inositol-3 kinase signal cascades, among others, and increases expression of cyclins D and B. Structurally, it belongs to none of the well-established growth factor families. It regulates developmental events as diverse as the onset of cavitation in the preimplantation embryo and male-specific brain differentiation. During wound repair it promotes granulation and neovascularization. It regulates inflammation through a tripartite loop with secretory leukocyte protease inhibitor (SLPI) which protects pgrn from proteolysis, and elastase, which digests it to smaller peptides. Intact pgrn is anti-inflammatory through the inhibition of some of the actions of tumor necrosis factor, while the proteolytic peptides may stimulate the production of proinflammatory cytokines such as interleukin 8. Pgrn is highly expressed in aggressive cancer cell lines and clinical specimens including breast, ovarian, and renal cancers as well as gliomas. In experimental systems it confers an aggressive phenotype on poorly tumorigenic epithelial cancer cells. The malignancy of highly tumorigenic progranulin-expressing cell lines depends on the expression level of the pgrn gene since attenuating pgrn mRNA levels in pgrn-responsive cells greatly inhibits tumor progression. Given its actions in wound repair and tumorigenesis pgrn may prove a useful clinical target, both for prognosis and for therapy.
Collapse
Affiliation(s)
- Zhiheng He
- Vascular Cell Biology and Complications, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
43
|
Molyneaux KA, Zinszner H, Kunwar PS, Schaible K, Stebler J, Sunshine MJ, O'Brien W, Raz E, Littman D, Wylie C, Lehmann R. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 2003; 130:4279-86. [PMID: 12900445 DOI: 10.1242/dev.00640] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mouse embryos, germ cells arise during gastrulation and migrate to the early gonad. First, they emerge from the primitive streak into the region of the endoderm that forms the hindgut. Later in development, a second phase of migration takes place in which they migrate out of the gut to the genital ridges. There, they co-assemble with somatic cells to form the gonad. In vitro studies in the mouse, and genetic studies in other organisms, suggest that at least part of this process is in response to secreted signals from other tissues. Recent genetic evidence in zebrafish has shown that the interaction between stromal cell-derived factor 1 (SDF1) and its G-protein-coupled receptor CXCR4, already known to control many types of normal and pathological cell migrations, is also required for the normal migration of primordial germ cells. We show that in the mouse, germ cell migration and survival requires the SDF1/CXCR4 interaction. First, migrating germ cells express CXCR4, whilst the body wall mesenchyme and genital ridges express the ligand SDF1. Second, the addition of exogenous SDF1 to living embryo cultures causes aberrant germ cell migration from the gut. Third, germ cells in embryos carrying targeted mutations in CXCR4 do not colonize the gonad normally. However, at earlier stages in the hindgut, germ cells are unaffected in CXCR4(-/-) embryos. Germ cell counts at different stages suggest that SDF1/CXCR4 interaction also mediates germ cell survival. These results show that the SDF1/CXCR4 interaction is specifically required for the colonization of the gonads by primordial germ cells, but not for earlier stages in germ cell migration. This demonstrates a high degree of evolutionary conservation of part of the mechanism, but also an area of evolutionary divergence.
Collapse
Affiliation(s)
- Kathleen A Molyneaux
- Division of Developmental Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Daniel R, Daniels E, He Z, Bateman A. Progranulin (acrogranin/PC cell-derived growth factor/granulin-epithelin precursor) is expressed in the placenta, epidermis, microvasculature, and brain during murine development. Dev Dyn 2003; 227:593-9. [PMID: 12889069 DOI: 10.1002/dvdy.10341] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The growth factor progranulin (acrogranin/PC-derived growth factor/granulin-epithelin precursor) promotes onset of blastocyst cavitation and is required for neonatal hypothalamic sexual differentiation. Little is known, however, of the range of developmental processes in which it is involved. We used in situ hybridization to investigate progranulin expression in murine embryos. Progranulin mRNA is expressed in maternal and embryonic components during early establishment of pregnancy. Abundant expression is observed in the early decidualizing uterine stroma and glands. In the embryo, the trophoblast giant cells at the interface of placental exchange sites (both choriovitelline and chorioallantoic placenta) show strong expression. The gastrulating epiblast and mesenchyme (intraembryonic and extraembryonic mesenchyme) all revealed activity. The allantois and yolk sac mesenchyme (site of early hemopoiesis) were positive, as were later phases of active vessel formation (pia mater of brain, epicardium of the heart). In the urogenital system, it was expressed in Sertoli cells and in kidney tubules. It was highly expressed in proliferating epidermal cells. During epidermal appendage formation, the early epithelial bud was positive, but the forming duct and differentiating adjacent mesenchyme was negative. It is widely distributed during central nervous system development and the peripheral nervous system (dorsal root ganglia and sympathetic ganglia). Based on the pattern of progranulin gene expression, we propose proliferative and developmental roles for progranulin in establishing pregnancy, during gastrulation, and during embryonic development of the epidermis, nervous system, blood vessel, formation, and spermatogenesis.
Collapse
Affiliation(s)
- Rachael Daniel
- Endocrine Research Laboratory, Royal Victoria Hospital, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
45
|
Harley VR, Clarkson MJ, Argentaro A. The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9]. Endocr Rev 2003; 24:466-87. [PMID: 12920151 DOI: 10.1210/er.2002-0025] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite 12 yr since the discovery of SRY, little is known at the molecular level about how SRY and the SRY-related protein, SOX9 [SRY-related high-mobility group (HMG) box 9], initiate the program of gene expression required to commit the bipotential embryonic gonad to develop into a testis rather than an ovary. Analysis of SRY and SOX9 clinical mutant proteins and XX mice transgenic for testis-determining genes have provided some insight into their normal functions. SRY and SOX9 contain an HMG domain, a DNA-binding motif. The HMG domain plays a central role, being highly conserved between species and the site of nearly all missense mutations causing XY gonadal dysgenesis. SRY and SOX9 are architectural transcription factors; their HMG domain is capable of directing nuclear import and DNA bending. Whether SRY and SOX9 activate testis-forming genes, repress ovary-forming genes, or both remains speculative until downstream DNA target genes are identified. However, factors that control SRY and SOX9 gene expression have been identified, as have a dozen sex-determining genes, allowing some of the pieces in this molecular genetic puzzle to be connected. Many genes, however, remain unidentified, because in the majority of cases of XY females and in all cases of XX males lacking SRY, the mutated gene is unknown.
Collapse
Affiliation(s)
- Vincent R Harley
- Prince Henry's Institute of Medical Research, Clayton 3168, Victoria, Australia.
| | | | | |
Collapse
|
46
|
Abstract
Over the course of a few days, the bipotential embryonic mouse gonad differentiates into either a testis or an ovary. Though a few gene expression differences that underlie gonadal sex differentiation have been identified, additional components of the testicular and ovarian developmental pathways must be identified to understand this process. Here we report the use of a PCR-based cDNA subtraction to investigate expression differences that arise during gonadal sex differentiation. Subtraction of embryonic day 12.5 (E12.5) XY gonadal cDNA with E12.5 XX gonadal cDNA yielded 19 genes that are expressed at significantly higher levels in XY gonads. These genes display a variety of expression patterns within the embryonic testis and encode a broad range of proteins. A reciprocal subtraction (of E12.5 XX gonadal cDNA with E12.5 XY gonadal cDNA) yielded two genes, follistatin and Adamts19, that are expressed at higher levels in XX gonads. Follistatin is a well-known antagonist of TGFbeta family members while Adamts19 encodes a new member of the ADAMTS family of secreted metalloproteases.
Collapse
Affiliation(s)
- Douglas B Menke
- Howard Hughes Medical Institute, Whitehead Institute, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
47
|
Carson JP, Thaller C, Eichele G. A transcriptome atlas of the mouse brain at cellular resolution. Curr Opin Neurobiol 2002; 12:562-5. [PMID: 12367636 DOI: 10.1016/s0959-4388(02)00356-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A genome-wide expression atlas of the nervous system at cellular resolution would be a valuable resource for neurobiology, genetics, developmental biology and medicine. Progress in automation of in situ hybridization makes such an atlas possible. Standardized and computerized annotation of expression patterns will be critical for producing a searchable atlas database that can be accessed through the internet.
Collapse
Affiliation(s)
- James P Carson
- Program in Structural and Computational Biology and Molecular Biophysics and National Center for Macromolecular Imaging, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | |
Collapse
|
48
|
Zhou R, Bonneaud N, Yuan CX, de Santa Barbara P, Boizet B, Schomber T, Scherer G, Roeder RG, Poulat F, Berta P, Tibor S. SOX9 interacts with a component of the human thyroid hormone receptor-associated protein complex. Nucleic Acids Res 2002; 30:3245-52. [PMID: 12136106 PMCID: PMC135763 DOI: 10.1093/nar/gkf443] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SOX9 transcription factor is involved in chondrocyte differentiation and male sex determination. Heterozygous defects in the human SOX9 gene cause campomelic dysplasia. The mechanisms behind SOX9 function are not understood despite the description of different target genes. This study therefore sets out to identify SOX9-associated proteins to unravel how SOX9 interacts with the cellular transcription machinery. We report the ability of SOX9 to interact with TRAP230, a component of the thyroid hormone receptor-associated protein (TRAP) complex. Both in vitro and in vivo assays have confirmed that the detected interaction is specific and occurs endogenously in cells. Using co-transfection experiments, we have also shown that the TRAP230 interacting domain can act in a dominant-negative manner regarding SOX9 activity. Our results add SOX9 to the list of activators that communicate with the general transcription machinery through the TRAP complex and suggest a basis for the collaboration of SOX9 with different coactivators that could contact the same coactivator/integrator complex.
Collapse
Affiliation(s)
- Rongjia Zhou
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Although gonads are not required for development or survival, defects in gonadal development undoubtedly have a profound influence on affected individuals. Recent complementary studies in the fields of cytology, biochemistry and molecular genetics have revealed that normal gonad development involves an exquisitely regulated network of gene expression and protein-protein interactions. The initial event of gonadogenesis, in both males and females, involves the formation of a bipotential primordium. A Y chromosome then activates the male-specific pathway. The demonstration that mutations in the SOX proteins, SRY and SOX9, are responsible for disorders associated with male-to-female sex reversal showed dramatically that SRY and SOX9 have an essential role in male sex differentiation. This was emphasized when it was shown that female mice carrying transgenes that encode these proteins developed as males. SRY and SOX9 proteins have been characterized extensively and aspects of their function and regulation are now known.
Collapse
Affiliation(s)
- Michael J Clarkson
- Prince Henry's Institute of Medical Research, PO 5152, Clayton, Victoria 3168, Australia
| | | |
Collapse
|
50
|
Switoński M, Jackowiak H, Godynicki S, Klukowska J, Borsiak K, Urbaniak K. Familial occurrence of pig intersexes (38,XX; SRY-negative) on a commercial fattening farm. Anim Reprod Sci 2002; 69:117-24. [PMID: 11755722 DOI: 10.1016/s0378-4320(01)00168-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Occurrence of sex-reversal (38,XX; SRY-negative) cases in the progeny of a single boar was observed. Altogether 11 intersexes, originating from nine litters, given by nine sows were found. The breeder classified the sex-reversal individuals as females with enlarged clitoris. In addition, it was noticed that the anus was joined with the vulva. Moreover, in the scrotum-like structure one or two gonads were present. Cytogenetic evaluation was carried out for the sire, five dams and seven intersexes. The study revealed the normal male karyotype (38,XY) in the sire and the normal female karyotype (38,XX) in the dams and the intersexes. Molecular detection of the presence of the SRY gene was carried out for the sire, five dams, 10 intersexes and 28 phenotypically normal siblings. The SRY gene was present in the genotype of the sire and the male siblings. Three intersexes were subjected to detailed anatomical and histological examinations, after slaughter in a local slaughterhouse. Gonads were classified as testes with well-developed epididymis, however, without spermatogenetic activity. The presence of a properly developed uterus and ducti deferens was observed, but oviducts were not found. The collected data indicate that the sex-reversal status was caused by an unknown autosome, recessive mutation. Genetic background of this type of intersexuality is discussed in this study.
Collapse
Affiliation(s)
- M Switoński
- Department of Genetics and Animal Breeding, Agricultural University of Poznan, Wolynska 33, 60-637, Poznan, Poland.
| | | | | | | | | | | |
Collapse
|