1
|
Lepedda AJ, Nieddu G, Cannas C, Formato M. Molecular and pathobiological insights of bikunin/UTI in cancer. Mol Biol Rep 2023; 50:1701-1711. [PMID: 36414878 PMCID: PMC9889512 DOI: 10.1007/s11033-022-08117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022]
Abstract
Bikunin is a small chondroitin sulfate proteoglycan (PG) with Ser-protease inhibitory activity that plays pleiotropic roles in health and disease. It is involved in several physiological processes including stabilization of the extracellular matrix (ECM) of connective tissues and key reproductive events. Bikunin is also implicated in both acute and chronic inflammatory conditions and represents a non-invasive circulating and/or urinary (as Urinary Trypsin Inhibitor or UTI) biomarker. It exerts inhibitory effects on urokinase-type plasminogen activator (uPA) and its receptor (uPAR) mediating tumor invasiveness by a down-regulation of uPA mRNA expression, thus representing an anti-metastatic agent. However, only limited data on its potential as a diagnostic and/or prognostic marker of cancer have been reported so far. Recent technological advances in mass spectrometry-based proteomics have provided researchers with a huge amount of information allowing for large-scale surveys of the cancer proteome. To address such issues, we analyzed bikunin expression data across several types of tumors, by using UALCAN proteogenomic analysis portal. In this article we critically review the roles of bikunin in human pathobiology, with a special focus on its inhibitory effects and mechanisms in cancer aggressiveness as well as its significance as cancer circulating biomarker.
Collapse
Affiliation(s)
| | - Gabriele Nieddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Claudia Cannas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marilena Formato
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
2
|
177Lu-PSMA-617 Therapy in Mice, with or without the Antioxidant α 1-Microglobulin (A1M), Including Kidney Damage Assessment Using 99mTc-MAG3 Imaging. Biomolecules 2021; 11:biom11020263. [PMID: 33579037 PMCID: PMC7916794 DOI: 10.3390/biom11020263] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Anti-prostate specific membrane antigen (PSMA) radioligand therapy is promising but not curative in castration resistant prostate cancer. One way to broaden the therapeutic index could be to administer higher doses in combination with radioprotectors, since administered radioactivity is kept low today in order to avoid side-effects from a high absorbed dose to healthy tissue. Here, we investigated the human radical scavenger α1-microglobulin (A1M) together with 177-Lutetium (177Lu) labeled PSMA-617 in preclinical models with respect to therapeutic efficacy and kidney toxicity. Nude mice with subcutaneous LNCaP xenografts were injected with 50 or 100 MBq of [177Lu]Lu-PSMA-617, with or without injections of recombinant A1M (rA1M) (at T = 0 and T = 24 h). Kidney absorbed dose was calculated to 7.36 Gy at 4 days post a 100 MBq injection. Activity distribution was imaged with Single-Photon Emission Computed Tomography (SPECT) at 24 h. Tumor volumes were measured continuously, and kidneys and blood were collected at termination (3–4 days and 3–4 weeks after injections). In a parallel set of experiments, mice were given [177Lu]Lu-PSMA-617 and rA1M as above and dynamic technetium-99m mercaptoacetyltriglycine ([99mTc]Tc-MAG3) SPECT imaging was performed prior to injection, and 3- and 6-months post injection. Blood and urine were continuously sampled. At termination (6 months) the kidneys were resected. Biomarkers of kidney function, expression of stress genes and kidney histopathology were analyzed. [177Lu]Lu-PSMA-617 uptake, in tumors and kidneys, as well as treatment efficacy did not differ between rA1M and vehicle groups. In mice given rA1M, [99mTc]Tc-MAG3 imaging revealed a significantly higher slope of initial uptake at three months compared to mice co-injected with [177Lu]Lu-PSMA-617 and vehicle. Little or no change compared to control was seen in urine albumin, serum/plasma urea levels, RT-qPCR analysis of stress response genes and in the kidney histopathological evaluation. In conclusion, [99mTc]Tc-MAG3 imaging presented itself as a sensitive tool to detect changes in kidney function revealing that administration of rA1M has a potentially positive effect on kidney perfusion and tubular function when combined with [177Lu]Lu-PSMA-617 therapy. Furthermore, we could show that rA1M did not affect anti-PSMA radioligand therapy efficacy.
Collapse
|
3
|
Lord MS, Melrose J, Day AJ, Whitelock JM. The Inter-α-Trypsin Inhibitor Family: Versatile Molecules in Biology and Pathology. J Histochem Cytochem 2020; 68:907-927. [PMID: 32639183 DOI: 10.1369/0022155420940067] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inter-α-trypsin inhibitor (IαI) family members are ancient and unique molecules that have evolved over several hundred million years of vertebrate evolution. IαI is a complex containing the proteoglycan bikunin to which heavy chain proteins are covalently attached to the chondroitin sulfate chain. Besides its matrix protective activity through protease inhibitory action, IαI family members interact with extracellular matrix molecules and most notably hyaluronan, inhibit complement, and provide cell regulatory functions. Recent evidence for the diverse roles of the IαI family in both biology and pathology is reviewed and gives insight into their pivotal roles in tissue homeostasis. In addition, the clinical uses of these molecules are explored, such as in the treatment of inflammatory conditions including sepsis and Kawasaki disease, which has recently been associated with severe acute respiratory syndrome coronavirus 2 infection in children.
Collapse
Affiliation(s)
- Megan S Lord
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital and University of Sydney, St. Leonards, NSW, Australia.,Sydney Medical School, Northern, Sydney University, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research and Lydia Becker Institute of Immunology and Inflammation, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Stem Cell Extracellular Matrix & Glycobiology, Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Faculty of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Kim B, De La Monte S, Hovanesian V, Patra A, Chen X, Chen RH, Miller MC, Pinar MH, Lim YP, Stopa EG, Stonestreet BS. Ontogeny of inter-alpha inhibitor protein (IAIP) expression in human brain. J Neurosci Res 2019; 98:869-887. [PMID: 31797408 DOI: 10.1002/jnr.24565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Inter-alpha inhibitor proteins (IAIPs) are naturally occurring immunomodulatory molecules found in most tissues. We have reported ontogenic changes in the expression of IAIPs in brain during development in sheep and abundant expression of IAIPs in fetal and neonatal rodent brain in a variety of cellular types and brain regions. Although a few studies identified bikunin, light chain of IAIPs, in adult human brain, the presence of the complete endogenous IAIP protein complex has not been reported in human brain. In this study, we examined the immunohistochemical expression of endogenous IAIPs in human cerebral cortex from early in development through the neonatal period and in adults using well-preserved postmortem brains. We examined total, nuclear, and cytoplasmic staining of endogenous IAIPs and their expression in neurofilament light polypeptide-positive neurons and glial fibrillary acidic protein (GFAP)-positive astrocytes. IAIPs were ubiquitously detected for the first time in cerebral cortical cells at 24-26, 27-28, 29-36, and 37-40 weeks of gestation and in adults. Quantitative analyses revealed that IAIPs were predominately localized in the nucleus in all age groups, but cytoplasmic IAIP expression was more abundant in adult than in the younger ages. Immunoreactivity of IAIPs was expressed in neurons and astrocytes in all age groups. In addition, IAIP co-localization with GFAP-positive astrocytes was more abundant in adults than in the developing brain. We conclude that IAIPs exhibit ubiquitous expression, and co-localize with neurons and astrocytes in the developing and adult human brain suggesting a potential role for IAIPs in development and endogenous neuroprotection.
Collapse
Affiliation(s)
- Boram Kim
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Suzanne De La Monte
- Department of Neurology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Aparna Patra
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Xiaodi Chen
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Ray H Chen
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Miles C Miller
- Department of Pathology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Mehmet Halit Pinar
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| | - Yow-Pin Lim
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA.,ProThera Biologics, Inc., Providence, RI, USA
| | - Edward G Stopa
- Department of Pathology and Neurosurgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, USA
| |
Collapse
|
5
|
Panić‐Janković T, Mitulović G. Human chorionic gonadotrophin pharmaceutical formulations of urinary origin display high levels of contaminant proteins-A label-free quantitation proteomics study. Electrophoresis 2019; 40:1622-1629. [PMID: 30883802 PMCID: PMC6593423 DOI: 10.1002/elps.201900087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/17/2022]
Abstract
To determine whether there is a measurable protein background in different formulations of urinary and recombinant human chorionic gonadotropin (hCG). Primary outcome measures: identification of contaminant proteins in urinary-derived formulations of hCG; secondary outcome measures: quantitative values of contaminant proteins in different batches of urinary -derived hCG formulations. It was found that urinary-derived batches have high presence of contaminant proteins beside the active substance. The relative amount of contaminant proteins and hCG differs strongly between different batches.
Collapse
Affiliation(s)
- Tanja Panić‐Janković
- Clinical Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Goran Mitulović
- Clinical Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Proteomic Core FacilityMedical University of ViennaViennaAustria
| |
Collapse
|
6
|
Kristiansson A, Ahlstedt J, Holmqvist B, Brinte A, Tran TA, Forssell-Aronsson E, Strand SE, Gram M, Åkerström B. Protection of Kidney Function with Human Antioxidation Protein α 1-Microglobulin in a Mouse 177Lu-DOTATATE Radiation Therapy Model. Antioxid Redox Signal 2019; 30:1746-1759. [PMID: 29943622 PMCID: PMC6477591 DOI: 10.1089/ars.2018.7517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Peptide receptor radionuclide therapy (PRRT) is in clinical use today to treat metastatic neuroendocrine tumors. Infused, radiolabeled, somatostatin analog peptides target tumors that are killed by irradiation damage. The peptides, however, are also retained in kidneys due to glomerular filtration, and the administered doses must be limited to avoid kidney damage. The human radical scavenger and antioxidant, α1-microglobulin (A1M), has previously been shown to protect bystander tissue against irradiation damage and has pharmacokinetic and biodistribution properties similar to somatostatin analogs. In this study, we have investigated if A1M can be used as a renal protective agent in PRRT. RESULTS We describe nephroprotective effects of human recombinant A1M on the short- and long-term renal damage observed following lutetium 177 (177Lu)-DOTATATE (150 MBq) exposure in BALB/c mice. After 1, 4, and 8 days (short term), 177Lu-DOTATATE injections resulted in increased formation of DNA double-strand breaks in the renal cortex, upregulated expression of apoptosis and stress response-related genes, and proteinuria (albumin in urine), all of which were significantly suppressed by coadministration of A1M (7 mg/kg). After 6, 12, and 24 weeks (long term), 177Lu-DOTATATE injections resulted in increased animal death, kidney lesions, glomerular loss, upregulation of stress genes, proteinuria, and plasma markers of reduced kidney function, all of which were suppressed by coadministration of A1M. Innovation and Conclusion: This study demonstrates that A1M effectively inhibits radiation-induced renal damage. The findings suggest that A1M may be used as a radioprotector during clinical PRRT, potentially facilitating improved tumor control and enabling more patients to receive treatment.
Collapse
Affiliation(s)
- Amanda Kristiansson
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| | - Jonas Ahlstedt
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| | | | | | - Thuy A Tran
- 3 Lund University Bioimaging Center , Lund, Sweden .,4 Department of Clinical Neuroscience, Karolinska Institutet , Stockholm, Sweden
| | - Eva Forssell-Aronsson
- 5 Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, University of Gothenburg , Sweden
| | - Sven-Erik Strand
- 6 Medical Radiation Physics, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| | - Magnus Gram
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden .,7 Pediatrics, Department of Clinical Sciences in Lund, Skane University Hospital, Lund University , Lund, Sweden
| | - Bo Åkerström
- 1 Division of Infection Medicine, Department of Clinical Sciences in Lund, Lund University , Lund, Sweden
| |
Collapse
|
7
|
Dasgupta K, Jeong J. Developmental biology of the meninges. Genesis 2019; 57:e23288. [PMID: 30801905 DOI: 10.1002/dvg.23288] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/14/2023]
Abstract
The meninges are membranous layers surrounding the central nervous system. In the head, the meninges lie between the brain and the skull, and interact closely with both during development. The cranial meninges originate from a mesenchymal sheath on the surface of the developing brain, called primary meninx, and undergo differentiation into three layers with distinct histological characteristics: the dura mater, the arachnoid mater, and the pia mater. While genetic regulation of meningeal development is still poorly understood, mouse mutants and other models with meningeal defects have demonstrated the importance of the meninges to normal development of the calvaria and the brain. For the calvaria, the interactions with the meninges are necessary for the progression of calvarial osteogenesis during early development. In later stages, the meninges control the patterning of the skull and the fate of the sutures. For the brain, the meninges regulate diverse processes including cell survival, cell migration, generation of neurons from progenitors, and vascularization. Also, the meninges serve as a stem cell niche for the brain in the postnatal life. Given these important roles of the meninges, further investigation into the molecular mechanisms underlying meningeal development can provide novel insights into the coordinated development of the head.
Collapse
Affiliation(s)
- Krishnakali Dasgupta
- New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, New York
| | - Juhee Jeong
- New York University College of Dentistry, Department of Basic Science and Craniofacial Biology, New York, New York
| |
Collapse
|
8
|
Zager RA, Johnson ACM, Frostad K. An evaluation of the antioxidant protein α1-microglobulin as a renal tubular cytoprotectant. Am J Physiol Renal Physiol 2016; 311:F640-51. [DOI: 10.1152/ajprenal.00264.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
α1-Microglobulin (A1M) is a low-molecular-weight heme-binding antioxidant protein that is readily filtered by the glomerulus and reabsorbed by proximal tubules. Given these properties, recombinant A1M (rA1M) has been proposed as a renal antioxidant and therapeutic agent. However, little direct evidence to support this hypothesis exists. Hence, we have sought “proof of concept” in this regard. Cultured proximal tubule (HK-2) cells or isolated mouse proximal tubule segments were challenged with a variety of prooxidant insults: 1) hemin, 2) myoglobin; 3) “catalytic” iron, 4) H2O2/Fenton reagents, 5) a Ca2+ ionophore, 6) antimycin A, or 7) hypoxia (with or without rA1M treatment). HK-2 injury was gauged by the percent lactate dehydrogenase release and 4,5-(dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide uptake. In vivo protection was sought in rA1M-treated mice subjected to 1) graded myohemoglobinura (2, 4, 8, or 9 ml/kg glycerol injection), 2) purified myoglobinemia/uria, or 3) endotoxemia. In vivo injury was assessed by blood urea nitrogen, creatinine, and the expression of redox-sensitive genes (heme oxygenase-1, neutrophil gelatinase-associated lipocalin, and monocyte chemoattractant protein-1 mRNAs). Although rA1M totally blocked in vitro hemin toxicity, equimolar albumin (another heme binder) or 10% serum induced equal protection. rA1M failed to mitigate any nonhemin forms of either in vitro or in vivo injury. A1M appeared to be rapidly degraded within proximal tubules (by Western blot analysis). Surprisingly, rA1M exerted select injury-promoting effects (increased in vitro catalytic iron/antimycin toxicities and increased in vivo monocyte chemoattractant protein-1/neutrophil gelatinase-associated lipocalin mRNA expression after glycerol or endotoxin injection). We conclude that rA1M has questionable utility as a renal antioxidant/cytoprotective agent, particularly in the presence of larger amounts of competitive free heme (e.g., albumin) binders.
Collapse
Affiliation(s)
- Richard A. Zager
- Fred Hutchinson Cancer Center, Seattle, Washington; and
- University of Washington, Seattle Washington
| | | | | |
Collapse
|
9
|
Spasova MS, Sadowska GB, Threlkeld SW, Lim YP, Stonestreet BS. Ontogeny of inter-alpha inhibitor proteins in ovine brain and somatic tissues. Exp Biol Med (Maywood) 2015; 239:724-36. [PMID: 24728724 DOI: 10.1177/1535370213519195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Inter-alpha inhibitor proteins (IAIPs) found in relatively high concentrations in human plasma are important in inflammation. IAIPs attenuate brain damage in young and adult subjects, decrease during sepsis and necrotizing enterocolitis in premature infants, and attenuate sepsis-related inflammation in newborn rats. Although a few studies have reported adult organ-specific IAIP expression, information is not available on age-dependent IAIP expression. Given evidence suggesting IAIPs attenuate brain damage in young and adult subjects, and inflammation in newborns, we examined IAIP expression in plasma, cerebral cortex (CC), choroid plexus (CP), cerebral spinal fluid (CSF), and somatic organs in fetal, newborn, and adult sheep to determine the endogenous expression patterns of these proteins during development. IAIPs (enzyme-linked immunosorbent assay) were higher in newborn and adult than fetal plasma (P < 0.05). Western immunoblot detected 125 kDa PaI (Pre-alpha Inhibitor) and 250 kDa IaI (Inter-alpha Inhibitor) in plasma, CNS, and somatic organs. PaI expression in CC and CP was higher in fetuses than newborns and adults, but IaI expression was higher in adults than fetuses and newborns. Both PaI and IaI were higher in fetal than newborn CSF. IAIPs exhibited organ-specific ontogenic patterns in placenta, liver, heart, and kidney. These results provide evidence for the first time that plasma, brain, placenta, liver, heart, and kidney express IAIPs throughout ovine development and that expression patterns are unique to each organ. Although exact functions of IAIPs in CNS and somatic tissues are not known, their presence in relatively high amounts during development suggests their potential importance in brain and organ development.
Collapse
|
10
|
Threlkeld SW, Gaudet CM, La Rue ME, Dugas E, Hill CA, Lim YP, Stonestreet BS. Effects of inter-alpha inhibitor proteins on neonatal brain injury: Age, task and treatment dependent neurobehavioral outcomes. Exp Neurol 2014; 261:424-33. [PMID: 25084519 DOI: 10.1016/j.expneurol.2014.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/10/2014] [Accepted: 07/20/2014] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic (HI) brain injury is frequently associated with premature and/or full term birth related complications. HI injury often results in learning and processing deficits that reflect widespread damage to an extensive range of cortical and sub-cortical brain structures. Further, inflammation has been implicated in the long-term progression and severity of HI injury. Recently, inter-alpha inhibitor proteins (IAIPs) have been shown to attenuate inflammation in models of systemic infection. Importantly, preclinical studies of neonatal HI injury and neuroprotection often focus on single time windows of assessment or single behavioral domains. This approach limits translational validity, given evidence for a diverse spectrum of neurobehavioral deficits that may change across developmental windows following neonatal brain injury. Therefore, the aims of this research were to assess the effects of human IAIPs on early neocortical cell death (72h post-insult), adult regional brain volume measurements (cerebral cortex, hippocampus, striatum, corpus callosum) and long-term behavioral outcomes in juvenile (P38-50) and adult (P80+) periods across two independent learning domains (spatial and non-spatial learning), after postnatal day 7 HI injury in rats. Here, for the first time, we show that IAIPs reduce acute neocortical neuronal cell death and improve brain weight outcome 72h following HI injury in the neonatal rat. Further, these longitudinal studies are the first to show age, task and treatment dependent improvements in behavioral outcome for both spatial and non-spatial learning following systemic administration of IAIPs in neonatal HI injured rats. Finally, results also show sparing of brain regions critical for spatial and non-spatial learning in adult animals treated with IAIPs at the time of injury onset. These data support the proposal that inter-alpha inhibitor proteins may serve as novel therapeutics for brain injury associated with premature birth and/or neonatal brain injury and highlight the importance of assessing multiple ages, brain regions and behavioral domains when investigating experimental treatment efficacy.
Collapse
Affiliation(s)
- Steven W Threlkeld
- Department of Psychology, Rhode Island College, 600 Mount Pleasant Ave., Providence, RI 02904, USA.
| | - Cynthia M Gaudet
- Department of Psychology, Rhode Island College, 600 Mount Pleasant Ave., Providence, RI 02904, USA
| | - Molly E La Rue
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Ethan Dugas
- Department of Psychology, Rhode Island College, 600 Mount Pleasant Ave., Providence, RI 02904, USA
| | - Courtney A Hill
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc., East Providence, RI 02914, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, The Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, 101 Dudley Street, Providence, RI 02905, USA
| |
Collapse
|
11
|
Olsson MG, Rosenlöf LW, Kotarsky H, Olofsson T, Leanderson T, Mörgelin M, Fellman V, Åkerström B. The radical-binding lipocalin A1M binds to a Complex I subunit and protects mitochondrial structure and function. Antioxid Redox Signal 2013; 18:2017-28. [PMID: 23157686 DOI: 10.1089/ars.2012.4658] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS During cell death, energy-consuming cell degradation and recycling programs are performed. Maintenance of energy delivery during cell death is therefore crucial, but the mechanisms to keep the mitochondrial functions intact during these processes are poorly understood. We have investigated the hypothesis that the heme- and radical-binding ubiquitous protein α1-microglobulin (A1M) is involved in protection of the mitochondria against oxidative insult during cell death. RESULTS Using blood cells, keratinocytes, and liver cells, we show that A1M binds with high affinity to apoptosis-induced cells and is localized to mitochondria. The mitochondrial Complex I subunit NDUFAB1 was identified as a major molecular target of the A1M binding. Furthermore, A1M was shown to inhibit the swelling of mitochondria, and to reverse the severely abrogated ATP-production of mitochondria when exposed to heme and reactive oxygen species (ROS). INNOVATION Import of the radical- and heme-binding protein A1M from the extracellular compartment confers protection of the mitochondrial structure and function during cellular insult. CONCLUSION A1M binds to a subunit of Complex I and has a role in assisting the mitochondria to maintain its energy delivery during cell death. A1M may also, at the same time, counteract and eliminate the ROS generated by the mitochondrial respiration to prevent oxidative damage to surrounding healthy tissue.
Collapse
Affiliation(s)
- Magnus G Olsson
- Division of Infection Medicine, Lund University, Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Novel hematopoietic target genes in the NRF2-mediated transcriptional pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:120305. [PMID: 23766848 PMCID: PMC3677633 DOI: 10.1155/2013/120305] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/16/2013] [Accepted: 04/29/2013] [Indexed: 12/18/2022]
Abstract
Nuclear factor- (erythroid-derived 2) like 2 (NFE2L2, NRF2) is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN) to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq) identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE) in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1), and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.
Collapse
|
13
|
Lamoureux L, Simon SLR, Plews M, Ruddat V, Brunet S, Graham C, Czub S, Knox JD. Urine proteins identified by two-dimensional differential gel electrophoresis facilitate the differential diagnoses of scrapie. PLoS One 2013; 8:e64044. [PMID: 23704971 PMCID: PMC3660319 DOI: 10.1371/journal.pone.0064044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/11/2013] [Indexed: 01/23/2023] Open
Abstract
The difficulty in developing a diagnostic assay for Creutzfeldt - Jakob disease (CJD) and other transmissible spongiform encephalopathies (TSEs) stems in part from the fact that the infectious agent is an aberrantly folded form of an endogenous cellular protein. This precludes the use of the powerful gene based technologies currently applied to the direct detection of other infectious agents. To circumvent this problem our research objective has been to identify a set of proteins exhibiting characteristic differential abundance in response to TSE infection. The objective of the present study was to assess the disease specificity of differentially abundant urine proteins able to identify scrapie infected mice. Two-dimensional differential gel electrophoresis was used to analyze longitudinal collections of urine samples from both prion-infected mice and a transgenic mouse model of Alzheimer's disease. The introduction of fluorescent dyes, that allow multiple samples to be co-resolved and visualized on one two dimensional gel, have increased the accuracy of this methodology for the discovery of robust protein biomarkers for disease. The accuracy of a small panel of differentially abundant proteins to correctly classify an independent naïve sample set was determined. The results demonstrated that at the time of clinical presentation the differential abundance of urine proteins were capable of identifying the prion infected mice with 87% sensitivity and 93% specificity. The identity of the diagnostic differentially abundant proteins was investigated by mass spectrometry.
Collapse
Affiliation(s)
- Lise Lamoureux
- Prion Laboratory Services Section, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Sharon L. R. Simon
- Prion Laboratory Services Section, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Margot Plews
- Prion Laboratory Services Section, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Viola Ruddat
- GE Healthcare, San Francisco, California, United States of America
| | - Simone Brunet
- Prion Laboratory Services Section, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Catherine Graham
- National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Stefanie Czub
- National Centres for Animal Disease, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - J. David Knox
- Prion Laboratory Services Section, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
14
|
Igci M, Arslan A, Igci YZ, Gogebakan B, Erturhan MS, Cengiz B, Oztuzcu S, Cakmak EA, Demiryurek AT. Bikunin and α1-microglobulin/bikunin precursor (AMBP) gene mutational screening in patients with kidney stones: a case-control study. ACTA ACUST UNITED AC 2010; 44:413-9. [PMID: 20602574 DOI: 10.3109/00365599.2010.497768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Bikunin is an inhibitor of kidney stone formation synthesized in the liver together with α(1)-microglobulin from the α(1)-microglobulin/bikunin precursor (AMBP) gene. The aim of this study was to investigate the possible association between bikunin/AMBP gene polymorphisms and urinary stone formation. MATERIAL AND METHODS To analyse the DNA, blood samples were taken from 75 kidney stone formers who had a familial stone history, 35 sporadic stone formers and 101 healthy individuals. Four exons of bikunin gene and five parts of the promoter region of the AMBP gene were screened using single-strand conformation polymorphism and nucleotide sequence analysis. RESULTS The Init-2 region of the promoter of AMBP gene had polymorphisms at positions -218 and -189 nt giving three different genotypes having 1,3, 2,4 and 1,2,3,4 alleles with frequencies of 17.06%, 60.19% and 22.75%, respectively, in all groups. Therefore, the Init-2 region appears to be polymorphic. As a result, the 1,3 allele has -218G and -189T complying with the reference database sequence, the 2,4 allele has -218G and T-189C substitution and the allele 1,2,3,4 genotype has substitutions at positions G-218C and T-189C. CONCLUSIONS There were no significant differences in allele distribution between patients and controls. These common alleles exist in the Turkish population independent of stone formation. These results are the first to demonstrate the existence of bikunin and AMBP promoter polymorphism. Although the Init-2 region of the AMBP gene is the binding site for various transcription factors, the results showed no association between these observed genotypes and stone-forming phenotypes.
Collapse
Affiliation(s)
- Mehri Igci
- Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Britten RA, Mitchell S, Johnson AM, Singletary SJ, Keeney SK, Nyalwidhe JO, Karbassi ID, Lonart G, Sanford LD, Drake RR. The identification of serum biomarkers of high-let radiation exposure and biological sequelae. HEALTH PHYSICS 2010; 98:196-203. [PMID: 20065683 DOI: 10.1097/hp.0b013e3181acff7c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In the event of a nuclear detonation, thousands of people will be exposed to non-lethal radiation doses. There are multiple long-term health concerns for exposed individuals who receive non-lethal radiation exposures. Low doses of radiation, especially of high linear energy transfer (LET) radiation, can lead to the development of neurocognitive defects. The identification of serum biomarkers that can be used to monitor the emergence of the long-term biological sequelae of radiation exposure, such as neurocognitive defects, would greatly help the post-exposure health monitoring of the affected population. The authors have determined the impact that cranial irradiation with 2 Gy of high LET (150 keV um) has on the ability of rats to perform spatial memory tasks, and identified serum protein changes that are biomarkers of radiation exposure and of radiation-induced neurocognitive impairment. Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy (MALDI TOF-TOF) analysis of weak cation exchange (WCX) enriched serum protein preparations identified 23 proteins of interest: 10 were biomarkers of physical radiation dose, with six showing increased expression and four being undetectable in the irradiated rat serum. Four proteins were uniquely expressed in those rats that had good spatial memory and nine proteins were markers of bad spatial memory. This study provides proof of the concept that serum protein profiling can be used to identify biomarkers of radiation exposure and the emergence of radiation-sequelae in this rat model, and this approach could be easily applied to other systems to identify radiation biomarkers.
Collapse
Affiliation(s)
- Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Akerström B, Maghzal GJ, Winterbourn CC, Kettle AJ. The Lipocalin α1-Microglobulin Has Radical Scavenging Activity. J Biol Chem 2007; 282:31493-503. [PMID: 17766242 DOI: 10.1074/jbc.m702624200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipocalin alpha(1)-microglobulin (alpha(1)m) is a 26-kDa glycoprotein present in plasma and in interstitial fluids of all tissues. The protein was recently shown to have reductase properties, reducing heme-proteins and other substrates, and was also reported to be involved in binding and scavenging of heme and tryptophan metabolites. To investigate its possible role as a reductant of organic radicals, we have studied the interaction of alpha(1)m with the synthetic radical, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS radical). The lipocalin readily reacted with the ABTS radical forming reduced ABTS. The apparent rate constant for this reaction was 6.3 +/- 2.5 x 10(3) M(-1) s(-1). A second reaction product with an intense purple color and an absorbance maximum at 550 nm was formed at a similar rate. This was shown by liquid chromatography/mass spectrometry to be derived from covalent attachment of a portion of ABTS radical to tyrosine residues on alpha(1)m. The relative yields of reduced ABTS and the purple ABTS derivative bound to alpha(1)m were approximately 2:1. Both reactions were dependent on the thiolate group of the cysteine residue in position 34 of the alpha(1)m polypeptide. Our results indicate that alpha(1)m is involved in a sequential reduction of ABTS radicals followed by trapping of these radicals by covalent attachment. In combination with the reported physiological properties of the protein, our results suggest that alpha(1)m may be a radical reductant and scavenger in vivo.
Collapse
Affiliation(s)
- Bo Akerström
- Department of Clinical Sciences, Lund University, 22184 Lund, Sweden.
| | | | | | | |
Collapse
|
17
|
Kouadjo KE, Nishida Y, Cadrin-Girard JF, Yoshioka M, St-Amand J. Housekeeping and tissue-specific genes in mouse tissues. BMC Genomics 2007; 8:127. [PMID: 17519037 PMCID: PMC1888706 DOI: 10.1186/1471-2164-8-127] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 05/22/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to characterize the housekeeping and tissue-specific genes in 15 mouse tissues by using the serial analysis of gene expression (SAGE) strategy which indicates the relative level of expression for each transcript matched to the tag. RESULTS Here, we identified constantly expressed housekeeping genes, such as eukaryotic translation elongation factor 2, which is expressed in all tissues without significant difference in expression levels. Moreover, most of these genes were not regulated by experimental conditions such as steroid hormones, adrenalectomy and gonadectomy. In addition, we report previously postulated housekeeping genes such as peptidyl-prolyl cis-trans isomerase A, glyceraldehyde-3-phosphate dehydrogenase and beta-actin, which are expressed in all the tissues, but with significant difference in their expression levels. We have also identified genes uniquely detected in each of the 15 tissues and other tissues from public databases. CONCLUSION These identified housekeeping genes could represent appropriate controls for RT-PCR and northern blot when comparing the expression levels of genes in several tissues. The results reveal several tissue-specific genes highly expressed in testis and pituitary gland. Furthermore, the main function of tissue-specific genes expressed in liver, lung and bone is the cell defence, whereas several keratins involved in cell structure function are exclusively detected in skin and vagina. The results from this study can be used for example to target a tissue for agent delivering by using the promoter of tissue-specific genes. Moreover, this study could be used as basis for further researches on physiology and pathology of these tissues.
Collapse
Affiliation(s)
- Kouame E Kouadjo
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Department of Anatomy and Physiology, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Yuichiro Nishida
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Department of Anatomy and Physiology, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Jean F Cadrin-Girard
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Department of Anatomy and Physiology, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Department of Anatomy and Physiology, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| | - Jonny St-Amand
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Department of Anatomy and Physiology, Laval University, 2705 Boulevard Laurier, Québec, G1V 4G2, Canada
| |
Collapse
|
18
|
Larsson J, Allhorn M, Kerström B. The lipocalin α1-microglobulin binds heme in different species. Arch Biochem Biophys 2004; 432:196-204. [PMID: 15542058 DOI: 10.1016/j.abb.2004.09.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/21/2004] [Indexed: 11/20/2022]
Abstract
The lipocalin alpha(1)-microglobulin (alpha(1)m), found in plasma and tissues of various vertebrates, is brown, forms complexes with other proteins and has immunomodulatory effects in vitro, but the physiological function is not yet established. Human alpha(1)m was recently shown to bind heme and, after cleavage of a C-terminal tetrapeptide, initiate heme degradation, thus suggesting a heme-scavenger function. In this work the heme-binding of alpha(1)m was characterized using heme immobilized on agarose beads, spectrophotometry, and electrophoresis. alpha(1)m, both in plasma and in purified form, displayed a concentration-dependent binding to heme-agarose. The apparent dissociation-constant was estimated to be around 2 x 10(-6)M for both free alpha(1)m and the IgA-alpha(1)m complex. Incubation with free heme resulted in two forms of alpha(1)m with different electrophoretic mobility. alpha(1)m, identified on Western blotting, was found in eluates from heme-agarose after incubation with human biological fluids as well as sera from non-human species, indicating evolutionary conservation of the heme-binding property. Heme-binding could be instrumental for isolating new alpha(1)m-homologues.
Collapse
Affiliation(s)
- Jörgen Larsson
- Department of Cell and Molecular Biology, University of Lund, Lund, Sweden
| | | | | |
Collapse
|