1
|
Cholakova D, Tsvetkova K, Yordanova V, Rusanova K, Denkov N, Tcholakova S. Hydroxypropyl Cellulose Polymers as Efficient Emulsion Stabilizers: The Effect of Molecular Weight and Overlap Concentration. Gels 2025; 11:113. [PMID: 39996656 PMCID: PMC11854873 DOI: 10.3390/gels11020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Hydroxypropyl cellulose (HPC) is a non-digestible water-soluble polysaccharide used in various food, cosmetic, and pharmaceutical applications. In the current study, the aqueous solutions of six HPC grades, with molecular mass ranging from 40 to 870 kDa, were characterized with respect to their precipitation temperatures, interfacial tensions (IFTs), rheological properties and emulsifying and stabilization ability in palm (PO) and sunflower (SFO) oil emulsions. The main conclusions from the obtained results are as follows: (1) Emulsion drop size follows a master curve as a function of HPC concentration for all studied polymers, indicating that polymer molecular mass and solution viscosity have a secondary effect, while the primary effect is the fraction of surface-active molecules, estimated to be around 1-2% for all polymers. (2) Stable emulsions were obtained only with HPC polymers with Mw ≥ 400 kDa at concentrations approximately 3.5 times higher than the critical overlap concentration, c*. At PO concentrations beyond 40 wt. % or when the temperature was 25 °C, these emulsions appeared as highly viscous liquids or non-flowing gels. (3) HPC polymers with Mw < 90 kDa were unable to form stable emulsions, as the surface-active molecules cannot provide steric stabilization even at c ≳ 4-5 c*, resulting in drop creaming and coalescence during storage.
Collapse
Affiliation(s)
| | | | | | | | | | - Slavka Tcholakova
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Ave., 1164 Sofia, Bulgaria; (D.C.); (K.T.); (V.Y.); (K.R.); (N.D.)
| |
Collapse
|
2
|
Ueda K, Takemoto S, Higashi K, Moribe K. Impact of colloidal drug-rich droplet size and amorphous solubility on drug membrane permeability: A comprehensive analysis. J Pharm Sci 2025; 114:136-144. [PMID: 38942292 DOI: 10.1016/j.xphs.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
This study aimed to investigate the impact of amorphous solubility and colloidal drug-rich droplets on drug absorption. The amorphous solubility of cilnidipine (CND) in AS-HF grade of hypromellose acetate succinate (HPMC-AS) solution was significantly reduced compared to that in non-polymer solution due to AS-HF partitioning into the CND-rich phase. In contrast, AS-LF grade of HPMC-AS has minimal effect on the amorphous solubility. The size of colloidal CND-rich droplets formed in the CND-supersaturated solution was less than 100 nm in the presence of AS-HF, while 200-450 nm in the presence of AS-LF. When the CND concentrations were near the amorphous solubility, CND membrane flux was reduced in the presence of AS-HF due to the decrease in the amorphous solubility of CND. However, the CND flux increased with the increase in CND-rich droplets, especially in the AS-HF solution. The size reduction of the CND-rich droplets led to their effective diffusion into the unstirred water layer, enhancing CND flux. In higher CND concentration regions, the CND flux became higher in the AS-HF solution than in the AS-LF solution. Thus, it is essential to elucidate the drug concentration-dependent impact of the colloidal drug-rich droplets on the drug absorption performance to optimize supersaturating formulations.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Shiryu Takemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
3
|
Wu Z, Collins AM, Jayaraman A. Understanding Self-Assembly and Molecular Packing in Methylcellulose Aqueous Solutions Using Multiscale Modeling and Simulations. Biomacromolecules 2024; 25:1682-1695. [PMID: 38417021 PMCID: PMC11698225 DOI: 10.1021/acs.biomac.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
We present a multiscale molecular dynamics (MD) simulation study on self-assembly in methylcellulose (MC) aqueous solutions. First, using MD simulations with a new coarse-grained (CG) model of MC chains in implicit water, we establish how the MC chains self-assemble to form fibrils and fibrillar networks and elucidate the MC chains' packing within the assembled fibrils. The CG model for MC is extended from a previously developed model for unsubstituted cellulose and captures the directionality of H-bonding interactions between the -OH groups. The choice and placement of the CG beads within each monomer facilitates explicit modeling of the exact degree and position of methoxy substitutions in the monomers along the MC chain. CG MD simulations show that with increasing hydrophobic effect and/or increasing H-bonding strength, the commercial MC chains (with degree of methoxy substitution, DS, ∼1.8) assemble from a random dispersed configuration into fibrils. The assembled fibrils exhibit consistent fibril diameters regardless of the molecular weight and concentration of MC chains, in agreement with past experiments. Most MC chains' axes are aligned with the fibril axis, and some MC chains exhibit twisted conformations in the fibril. To understand the molecular driving force for the twist, we conduct atomistic simulations of MC chains preassembled in fibrils (without any chain twists) in explicit water at 300 and 348 K. These atomistic simulations also show that at DS = 1.8, MC chains adopt twisted conformations, with these twists being more prominent at higher temperatures, likely as a result of shielding of hydrophobic methyl groups from water. For MC chains with varying DS, at 348 K, atomistic simulations show a nonmonotonic effect of DS on water-monomer contacts. For 0.0 < DS < 0.6, the MC monomers have more water contacts than at DS = 0.0 or DS > 0.6, suggesting that with few methoxy substitutions, the MC chains are effectively hydrophilic, letting the water molecules diffuse into the fibril to participate in H-bonds with the MC chains' remaining -OH groups. At DS > 0.6, the MC monomers become increasingly hydrophobic, as seen by decreasing water contacts around each monomer. We conclude based on the atomistic observations that MC chains with lower degrees of substitutions (DS ≤ 0.6) should exhibit solubility in water over broader temperature ranges than DS ∼ 1.8 chains.
Collapse
Affiliation(s)
- Zijie Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, United States
| | - Audrey M. Collins
- Department of Chemistry and Biochemistry, University of Delaware, 102 Brown Laboratory, Newark, DE 19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, United States
| |
Collapse
|
4
|
Nyström L, Mira I, Benjamins JW, Gopaul S, Granfeldt A, Abrahamsson B, von Corswant C, Abrahmsén-Alami S. In Vitro and In Vivo Performance of Pickering Emulsion-Based Powders of Omega-3 Polyunsaturated Fatty Acids. Mol Pharm 2024; 21:677-687. [PMID: 38133148 DOI: 10.1021/acs.molpharmaceut.3c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Omega-3 polyunsaturated fatty acids (n-3 PUFA) are essential nutrients for human health and have been linked to a variety of health benefits, including reducing the risk of cardiovascular diseases. In this paper, a spray-dried powder formulation based on Pickering emulsions stabilized with cellulose nanocrystals (CNC) and hydroxypropyl methylcellulose (HPMC) has been developed. The formulation was compared in vitro and in vivo to reference emulsions (conventional Self-Emulsifying Drug Delivery System, SEDDS) to formulate n-3 PUFA pharmaceutical products, specifically in free fatty acid form. The results of in vivo studies performed in fasted dogs showed that Pickering emulsions reconstituted from powders are freely available (fast absorption) with a similar level of bioavailability as reference emulsions. In the studies performed with dogs in the fed state, the higher bioavailability combined with slower absorption observed for the Pickering emulsion, compared to the reference, was proposed to be the result of the protection of the n-3 PUFAs (in free fatty acid form) against oxidation in the stomach by the solid particles stabilizing the emulsion. This observation was supported by promising results from short-term studies of chemical stability of powders with n-3 PUFA loads as high as 0.8 g oil/g powder that easily regain the original emulsion drop sizes upon reconstitution. The present work has shown that Pickering emulsions may offer a promising strategy for improving the bioavailability and stability as well as providing an opportunity to produce environmentally friendly (surfactant free) and patient-acceptable solid oral dosage forms of n-3 PUFA in the free fatty acid form.
Collapse
Affiliation(s)
- Lina Nyström
- Chemical Processes and Pharmaceutical Development, RISE, 114 28 Stockholm, Sweden
| | - Isabel Mira
- Chemical Processes and Pharmaceutical Development, RISE, 114 28 Stockholm, Sweden
| | - Jan-Willem Benjamins
- Chemical Processes and Pharmaceutical Development, RISE, 114 28 Stockholm, Sweden
| | - Sashi Gopaul
- DMPK, Early Cardiovascular and Metabolic Diseases, Biopharmaceutical R&D, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| | - Andreas Granfeldt
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Christian von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, 431 83 Mölndal, Sweden
| | - Susanna Abrahmsén-Alami
- Sustainable Innovation & Transformational Excellence, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, 431 83 Mölndal, Sweden
| |
Collapse
|
5
|
Masrat R, Dar AA. Interaction of HPC with CTAB and Tween 40 at Water/Air and Water/Soya Oil Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1145-1158. [PMID: 36622144 DOI: 10.1021/acs.langmuir.2c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The bulk and interfacial shear rheological behavior of aqueous solutions of biocompatible polymer HPC has been investigated in the presence of cationic CTAB and nonionic Tween 40 having the same chain length but different head groups. Steady-state bulk experiments depict two distinct regions in the rheogram (Newtonian followed by pseudoplastic). Dynamic experiments suggest that the stability of HPC hydrogels decreases with the increase in surfactant concentration. Interfacial steady shear tests of 2D monolayers of 1 wt % HPC and 1 wt % HPC with varying concentrations of Tween 40/CTAB show a non-Newtonian dilatant behavior at the solution-air interface. However, two distinct dilatant regions separated by a Newtonian region were observed for the same films at the solution-soya oil interface. The strength of films formed at the two interfaces decreases with the increase of surfactant concentration as observed from oscillatory interfacial tests. HPC interacts more strongly with CTAB than Tween 40 both in bulk as well as at the interfaces studied.
Collapse
Affiliation(s)
- Rohi Masrat
- Department of Chemistry, National Institute of Technology, Srinagar, Kashmir, 190006JK, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Srinagar190006JK, India
| |
Collapse
|
6
|
Wu Z, Jayaraman A. Machine Learning-Enhanced Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) for Analyzing Fibrillar Structures in Polymer Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zijie Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware19716, United States
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, Delaware19716, United States
| |
Collapse
|
7
|
Biocompatible Polymeric Nanoparticles for Effective Codelivery of Tamoxifen with Ganoderic Acid A: Systematic Approach for Improved Breast Cancer Therapeutics. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Comparison of different indirect approaches to design edible oleogeles based on cellulose ethers. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Abstract
Oil–water emulsions are widely generated in industries, which may facilitate some processes (e.g., transportation of heavy oil, storage of milk, synthesis of chemicals or materials, etc.) or lead to serious upgrading or environmental issues (e.g., pipeline plugging, corrosions to equipment, water pollution, soil pollution, etc.). Herein, the sources, classification, formation, stabilization, and separation of oil–water emulsions are systematically summarized. The roles of different interfacially active materials–especially the fine particles–in stabilizing the emulsions have been discussed. The advanced development of micro force measurement technologies for oil–water emulsion investigation has also been presented. To provide insights for future industrial application, the separation of oil–water emulsions by different methods are summarized, as well as the introduction of some industrial equipment and advanced combined processes. The gaps between some demulsification processes and industrial applications are also touched upon. Finally, the development perspectives of oil–water treatment technology are discussed for the purpose of achieving high-efficiency, energy-saving, and multi-functional treatment. We hope this review could bring forward the challenges and opportunities for future research in the fields of petroleum production, coal production, iron making, and environmental protection, etc.
Collapse
|
10
|
Krombholz R, Fressle S, Lunter D. Ex vivo - in vivo correlation of Retinol stratum corneum penetration studies by confocal Raman microspectroscopy and tape stripping. Int J Cosmet Sci 2022; 44:299-308. [PMID: 35396727 DOI: 10.1111/ics.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/28/2022]
Abstract
Skin penetration studies of topically applied drugs are a challenging topic in the development of semisolid formulations. The most commonly used methods can be differentiated by their character into ex-vivo/in-vivo, invasive/non-invasive and off-line/in-line measurements. In this study we compare ex-vivo tape stripping, an invasive technique, which is often used, to confocal Raman microspectroscopy (CRM), ex- and in-vivo, to establish a correlation between those methods. Retinol was used as a model drug, applied in an oil in water emulsion, to compare the skin penetration profiles obtained by the different methods.
Collapse
Affiliation(s)
- Richard Krombholz
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, Tuebingen, Germany
| | - Stefanie Fressle
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, Tuebingen, Germany
| | - Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, Tuebingen, Germany
| |
Collapse
|
11
|
The Influence of Cellulose Ethers on the Physico-Chemical Properties, Structure and Lipid Digestibility of Animal Fat Emulsions Stabilized by Soy Protein. Foods 2022; 11:foods11050738. [PMID: 35267370 PMCID: PMC8909280 DOI: 10.3390/foods11050738] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
This study explores the influence of carboxymethylcelullose (CMC) and methylcelullose (MC), added by simultaneous (sim) and sequential (seq) emulsification methods, on the structure, rheological parameters and in vitro lipid digestibility of pork lard O/W emulsions stabilized by soy protein concentrate (SPC). Five emulsions (SPC, SPC/CMC-sim, SPC/CMC-seq SPC/MC-sim, SPC/MC-seq) were prepared in vitro. The presence of CMC and MC, and the stage of incorporation affected the emulsion microstructure. In the SPC emulsion, lipid droplets were entrapped by a protein layer that was thicker when MC was added, providing greater resistance against environmental stresses during gastrointestinal digestion. At 37 °C, CMC incorporation produced a structural reinforcement of the SPC emulsion, whereas MC addition did not affect the network rigidity, although a delaying effect on the crossover temperature was observed, which was more evident in SPC/MC–seq. The presence and stage of CMC and MC incorporation affected the rate and extent of lipolysis, with SPC/MC-seq presenting an inferior concentration of free fatty acids. The lower extent of lipolysis observed in SPC/MC-seq may be positive in the manufacture of animal fat products in which reduced fatty acid absorption is intended.
Collapse
|
12
|
Towards a better understanding of the role of stabilizers in QESD crystallizations. Pharm Res 2022; 39:3123-3136. [PMID: 35266086 PMCID: PMC9780136 DOI: 10.1007/s11095-022-03212-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/18/2022] [Indexed: 12/27/2022]
Abstract
Quasi-emulsion solvent-diffusion crystallization (QESD) is a type of spherical crystallization which can be used as a particle design method to improve the flowability and micromeritic properties of drugs or excipients. Spherical particles are generated by dispersing a solvent phase in an antisolvent so that a transient emulsion is formed. Within the droplets the material can crystallize and agglomerate into spherical, hollow particles. Surfactants, such as surface-active polymers like hypromellose, are often required to stabilize the quasi-emulsion. To gain further understanding for the role of the stabilizer, a new screening-method was developed which compared different surface active polymers in solution at similar dynamic viscosities rather than at a set concentration. The dynamic viscosities of a low-viscosity grade hypromellose solution used in the previous publications describing the QESD crystallization of metformin hydrochloride by the authors was used as a target value. QESD crystallizations of metformin hydrochloride (MF) and celecoxib showed that the type of stabilizer and whether it is dissolved in the solvent or antisolvent has an effect on the agglomerates. For MF, the type of hypromellose used can have a significant influence on the properties of the agglomerates. More polymers could be used to stabilize the transient emulsion of celecoxib than previously found in literature. Furthermore, QESD crystallizations seem to be more robust when the stabilizer is dissolved in the antisolvent, however this can lead to a reduced drug load of the agglomerates.
Collapse
|
13
|
Biglarian N, Rafe A, Shahidi SA. Effect of basil seed gum and κ-carrageenan on the rheological, textural, and structural properties of whipped cream. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5851-5860. [PMID: 33788968 DOI: 10.1002/jsfa.11237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Basil seed gum (BSG) is a novel polysaccharide that has been found wide application in the food industry. It can be used in whipped cream due to its thickening and emulsifying properties. The effect of BSG and κ-carrageenan on the structure-rheology relationships of whipped cream was evaluated. RESULTS The viscosity of cream containing BSG was higher than that of carrageenan. Basil seed gum resulted in a strong capacity to improve the viscosity of the cream. Rheological results showed the low-frequency dependence of the elastic modulus was improved by BSG, which had a strong effect on the rigidity of the emulsion. The fracture strain of the creams containing BSG or κ-carrageenan was between the normal cream and acidified caseinate stabilized emulsion foam. It was found that the protein segments of BSG could be adsorbed at the oil-water interface, resulting in the formation of a pseudo-gel network, which creates a stronger molecular protein network in the whipped cream. Microstructure study revealed that whipped cream containing κ-carrageenan exhibited some flocculation, which could be caused by non-adsorbed polysaccharides or proteins. In contrast, cream containing BSGshowed more voids, which have considerably decreased by fat content and enhance the foam structure. CONCLUSION As a result, synergistic interactions between proteins and polysaccharides (BSG and κ-carrageenan) could promote the development of a cross-linked network. Indeed, due to its high levels of hydrophilicity, BSG absorbs water, acts as a thickening agent, and competes against caseinate at the interfaces and is incorporated into whipped cream to provide a more desirable physical structure for the product. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Niloofar Biglarian
- Department of Food Science and Technology, Collage of Agriculture and Food Science, Ayattolah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Ali Rafe
- Department of Food Processing, Research Institute of Food Sciecne and Technology (RIFST), Mashhad, Iran
| | - Seyed-Ahmad Shahidi
- Department of Food Science and Technology, Collage of Agriculture and Food Science, Ayattolah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
14
|
Morikawa C, Ueda K, Omori M, Higashi K, Moribe K. Formation mechanism of amorphous drug nanoparticles using the antisolvent precipitation method elucidated by varying the preparation temperature. Int J Pharm 2021; 610:121210. [PMID: 34687818 DOI: 10.1016/j.ijpharm.2021.121210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 12/19/2022]
Abstract
The present study focuses on the effect of the preparation temperature on the physicochemical properties of amorphous drug nanoparticles to clarify their formation mechanism. Amorphous glibenclamide (GLB) nanoparticles were prepared at 4-40 °C using two antisolvent precipitation methods. In method A, N,N-dimethylformamide (DMF) solution of GLB was added to an aqueous solution containing hydroxypropyl methylcellulose (HPMC) to obtain nano-A suspensions. In method B, nano-B suspensions were obtained by adding DMF solution containing both GLB and HPMC into water. When the preparation temperature was above 25 °C, nano-A and nano-B showed similar HPMC compositions. However, nano-B contained a large amount of HPMC compared to nano-A at temperatures below 20 °C. The glassy nature of the nanoparticle cores restricts the diffusion of HPMC from amorphous GLB nanoparticles to the aqueous phase, indicating that the glass transition temperature (Tg) of neat amorphous GLB (73 °C) would be considerably decreased owing to the nanosizing and water sorption of amorphous GLB. The physical stability of amorphous GLB nanoparticles was improved with increased HPMC in the nanoparticles. Thus, setting the preparation temperature by considering the Tg of the antisolvent-saturated amorphous drug nanoparticles is essential to develop stable amorphous drug nanoparticles.
Collapse
Affiliation(s)
- Chikako Morikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Masaki Omori
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
15
|
Ueda K, Taylor LS. Partitioning of surfactant into drug-rich nanodroplets and its impact on drug thermodynamic activity and droplet size. J Control Release 2021; 330:229-243. [DOI: 10.1016/j.jconrel.2020.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/16/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
|
16
|
Nuorivaara T, Serna-Guerrero R. Amphiphilic cellulose and surfactant mixtures as green frothers in mineral flotation. 1. Characterization of interfacial and foam stabilization properties. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Bascuas S, Salvador A, Hernando I, Quiles A. Designing Hydrocolloid-Based Oleogels With High Physical, Chemical, and Structural Stability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Liu X, Ji Z, Peng W, Chen M, Yu L, Zhu F. Chemical mapping analysis of compatibility in gelatin and hydroxypropyl methylcellulose blend films. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Ueda K, Taylor LS. Polymer Type Impacts Amorphous Solubility and Drug-Rich Phase Colloidal Stability: A Mechanistic Study Using Nuclear Magnetic Resonance Spectroscopy. Mol Pharm 2020; 17:1352-1362. [PMID: 32097023 DOI: 10.1021/acs.molpharmaceut.0c00061] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polymer used in an amorphous solid dispersion (ASD) formulation plays a critical role in dosage form performance. Herein, drug-polymer interactions in aqueous solution were evaluated in order to better understand the dispersion stability of the colloidal drug-rich phase generated when the amorphous solubility is exceeded. The amorphous solubility (Sa,IBP) of ibuprofen (IBP) decreased when hypromellose (HPMC) or polyvinylpyrrolidone/vinyl acetate (PVP-VA) were present in solution. Solution nuclear magnetic resonance (NMR) spectroscopy revealed that a large amount of HPMC and PVP-VA distributed into the IBP-rich phase. The mixing of HPMC and PVP-VA with the IBP-rich phase led to the decreased Sa,IBP. In contrast, the charged amino methacrylate copolymer (Eudragit E PO, EUD-E) showed minimal mixing with the IBP-rich phase; however, this polymer did lead to solubilization of IBP in the bulk aqueous phase. Although the IBP-rich phase generated by dissolving IBP at concentrations above Sa,IBP rapidly coarsened followed by creaming in the absence of polymer, all of the polymers stabilized the IBP dispersion to some extent. The droplet size of the IBP-rich phase immediately after formation was around 300 nm in HPMC and PVP-VA solutions, and around 800 nm in the EUD-E solution. The mixing of the former two polymers with the drug-rich phase is thought to account for the smaller droplet size. Despite a smaller initial size, the dispersion stability of the IBP-rich droplets was relatively poor in the presence of PVP-VA. In contrast, the coalescence of the IBP-rich droplets was effectively suppressed by the steric repulsion and electrostatic repulsion derived from adsorbed HPMC and EUD-E, respectively. The present study highlights the complex effects of a polymer on the drug amorphous solubility and colloidal stability, which should be considered when optimizing ASD formulations with the goal of maximizing drug absorption.
Collapse
Affiliation(s)
- Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.,Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
20
|
Pabois O, Antoine-Michard A, Zhao X, Omar J, Ahmed F, Alexis F, Harvey RD, Grillo I, Gerelli Y, Grundy MML, Bajka B, Wilde PJ, Dreiss CA. Interactions of bile salts with a dietary fibre, methylcellulose, and impact on lipolysis. Carbohydr Polym 2020; 231:115741. [PMID: 31888817 DOI: 10.1016/j.carbpol.2019.115741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
Methylcellulose (MC) has a demonstrated capacity to reduce fat absorption, hypothetically through bile salt (BS) activity inhibition. We investigated MC cholesterol-lowering mechanism, and compared the influence of two BS, sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), which differ slightly by their architecture and exhibit contrasting functions during lipolysis. BS/MC bulk interactions were investigated by rheology, and BS behaviour at the MC/water interface studied with surface pressure and ellipsometry measurements. In vitro lipolysis studies were performed to evaluate the effect of BS on MC-stabilised emulsion droplets microstructure, with confocal microscopy, and free fatty acids release, with the pH-stat method. Our results demonstrate that BS structure dictates their interactions with MC, which, in turn, impact lipolysis. Compared to NaTC, NaTDC alters MC viscoelasticity more significantly, which may correlate with its weaker ability to promote lipolysis, and desorbs from the interface at lower concentrations, which may explain its higher propensity to destabilise emulsions.
Collapse
Affiliation(s)
- Olivia Pabois
- Institut Laue-Langevin, Grenoble, 38000, France; Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | | | - Xi Zhao
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | - Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | - Faizah Ahmed
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| | | | - Richard D Harvey
- Institut für Pharmazie, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), 06099, Germany.
| | | | - Yuri Gerelli
- Institut Laue-Langevin, Grenoble, 38000, France.
| | - Myriam M-L Grundy
- School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, United Kingdom.
| | - Balazs Bajka
- Department of Nutritional Sciences, King's College London, London, SE1 9NH, United Kingdom.
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UA, United Kingdom.
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, London, SE1 9NH, United Kingdom.
| |
Collapse
|
21
|
Polysaccharides at fluid interfaces of food systems. Adv Colloid Interface Sci 2019; 270:28-37. [PMID: 31158575 DOI: 10.1016/j.cis.2019.05.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023]
Abstract
Fabrication of next generation polysaccharides with interfacial properties is driven by the need to create high performance surfactants that operate at extreme environments, as for example in complex food formulations or in the gastrointestinal tract. The present review examines the behaviour of polysaccharides at fluid food interfaces focusing on their performance in the absence of any other intentionally added interfacially active components. Relevant theoretical principles of colloidal stabilisation using concepts that have been developed for synthetic polymers at interfaces are firstly introduced. The role of protein that in most cases is present in polysaccharide preparations either as contaminant or as integral part of the structure is also discussed. Critical assessment of the literature reveals that although protein may contribute to emulsion formation mostly as an anchor for polysaccharides to attach, it is not the determinant factor for the long-term emulsion stability, irrespectively of polysaccharide structure. Interfacial performance of key polysaccharides is also assessed revealing shared characteristics in their modes of adsorption. Conformation of polysaccharides, as affected by the composition of the aqueous solvent needs to be closely controlled, as it seems to be the underlying fundamental cause of stabilisation events and appears to be more important than the constituent polysaccharide sugar-monomers. Finally, polysaccharide adsorption is better understood by regarding them as copolymers, as this approach may assist to better control their properties with the aim to create the next generation biosurfactants.
Collapse
|
22
|
Schmidberger M, Nikolic I, Pantelic I, Lunter D. Optimization of Rheological Behaviour and Skin Penetration of Thermogelling Emulsions with Enhanced Substantivity for Potential Application in Treatment of Chronic Skin Diseases. Pharmaceutics 2019; 11:E361. [PMID: 31344864 PMCID: PMC6723268 DOI: 10.3390/pharmaceutics11080361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 01/06/2023] Open
Abstract
Topical formulations are an important pillar in the therapy of skin diseases. Nevertheless, after application the formulation will be exposed to environmental effects. Contact with other surfaces will reduce the available amount of formulation and drug substance. The resulting consequences for therapy range from reduced effects to therapeutic failure. The removed active ingredient also contaminates patients' environment. The aim of this work was to develop preparations that remain at the application site. These will enhance safety and efficiency and thus improve of skin disease therapies. Therefore, we developed polymer-stabilised emulsions that show thermogelling properties. Emulsions with different methyl cellulose concentrations and macrogols of different molecular weights were investigated. The dispersed phase consisted of nonivamide as the active pharmaceutical ingredient, dissolved in medium-chain triglycerides. Rheological properties, droplet size, substantivity and ex vivo penetration experiments were performed to characterise the developed formulations. Droplet size and rheological parameters were affected by the composition of the preparations. The tested formulations showed benefits in their substantivity compared to a conventional semi-solid cream. We found a residual amount of up to 100% at the application site. The drug levels in viable epidermis were in a therapeutic range. The developed emulsions are a promising vehicle to improve therapy for chronic skin diseases.
Collapse
Affiliation(s)
- Markus Schmidberger
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ines Nikolic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe Street, 11221 Belgrade, Serbia
| | - Ivana Pantelic
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe Street, 11221 Belgrade, Serbia
| | - Dominique Lunter
- Department of Pharmaceutical Technology, Eberhard Karls University, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
| |
Collapse
|
23
|
Li S, Zhou J, Wang Y, Teng A, Zhang K, Wu Z, Cheng S, Wang W. Physicochemical and Antimicrobial Properties of Hydroxypropyl Methylcellulose-Cinnamon Essential Oil Emulsion: Effects of Micro- and Nanodroplets. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2018-0416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractEmulsion is an efficient encapsulation tool for enhancing the functional properties of essential oils (EOs). Herein, two two-dimensional cinnamon essential oil emulsions (from micro- to nanoscales) were emulsified by hydroxypropyl methylcellulose, and their antimicrobial and physicochemical properties were investigated. For the models of Escherichia coli CGMCC 1.0907, Salmonella enterica subsp. Enterica serovar Typhi (CICC 10867), Staphylococcus aureus CGMCC 1.0089, and Listeria monocytogene CGMCC 1.9144, the minimum inhibitory concentration (MIC) of the nanoemulsion was 31.25 μL/mL compared to that of the microemulsion (62.5–125 μL/mL) and pure oil (125–250 μL/mL), indicating the superiority of nanoemulsion as an antibacterial agent. The results showed that the highest activity was seen in the gram-positive L. monocytogenes whereas the lowest was in the gram-negative S. enterica. The identified properties of HPMC (hydroxypropyl methylcellulose) provide the potential for emulsifying and enhancing essential oils in light industries, especially for food processing.
Collapse
Affiliation(s)
- Shuzhi Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin300457, China
| | - Jingyang Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin300457, China
| | - Yanan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin300457, China
| | - Anguo Teng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin300457, China
| | - Kai Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin300457, China
| | - Zinan Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin300457, China
| | - Shan Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin300457, China
| | - Wenhang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin300457, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin300457, China
| |
Collapse
|
24
|
Nguyen TTL, Duong VA, Maeng HJ, Chi SC. Development of an oil suspension containing granisetron hydrochloride as a sustained-release parenteral formulation for enhancement of pharmacokinetic properties. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Rattanaburi P, Charoenrat N, Pongtharangkul T, Suphantharika M, Wongkongkatep J. Hydroxypropyl methylcellulose enhances the stability of o/w Pickering emulsions stabilized with chitosan and the whole cells of Lactococcus lactis IO-1. Food Res Int 2019; 116:559-565. [DOI: 10.1016/j.foodres.2018.08.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/22/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
|
26
|
Peng F, He S, Yi H, Li Q, Xu W, Wang R, Ma Y. Physical, textural, and rheological properties of whipped cream affected by milk fat globule membrane protein. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1460755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Fangshuai Peng
- Department of Food Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Shenghua He
- Department of Food Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, People’s Republic of China
| | - Qi Li
- Department of Food Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Weili Xu
- Department of Food Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Rongchun Wang
- Department of Food Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Ying Ma
- Department of Food Science and Engineering, School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| |
Collapse
|
27
|
Zhang Z, Lunter DJ. Confocal Raman microspectroscopy as an alternative to differential scanning calorimetry to detect the impact of emulsifiers and formulations on stratum corneum lipid conformation. Eur J Pharm Sci 2018; 121:1-8. [PMID: 29775655 DOI: 10.1016/j.ejps.2018.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
The purpose of this study was to investigate the impact of emulsifiers and formulations on stratum corneum (SC) lipid conformation and evaluate confocal Raman microspectroscopy (CRM) as an alternative method to differential scanning calorimetry (DSC) in this research context. To this end, four different formulations were used: three conventional creams that contained ionic and/or non-ionic emulsifiers and one surfactants-free emulsion stabilized by a polymeric emulsifier. Additionally, all emulsifiers were tested in aqueous solutions/dispersions in the respective concentrations as present in the formulations. In this study, emulsifiers and formulations were applied onto excised porcine skin during incubation in Franz diffusion cells. Subsequently, SC was isolated, dried and subjected to CRM and DSC measurement to analyse lipid structural changes after treatment. In CRM measurement, 1080 cm-1/(1130 cm-1 + 1070 cm-1) peak ratio, which represents the C-C skeleton vibration and trans-gauche conformation order of lipids, was investigated. Various emulsifiers and formulations showed different impact on SC lipid conformation. Specifically, cetearyl alcohol and sodium cetearyl sulfate mixture dispersion showed the strongest ability among all studied emulsifiers, followed by glycerol monostearate, polyoxyethylene-20-glycerol monostearate as well as their mixture. Polysorbate 60, cetyl stearyl alcohol and their mixture did not affect SC lipid structure. The results of CRM and DSC correlated very well, indicating CRM, as an alternative to DSC, can be a reliable method to investigate SC lipid conformation.
Collapse
Affiliation(s)
- Ziwei Zhang
- University of Tuebingen, Pharmaceutical Technology, Tuebingen, Germany
| | | |
Collapse
|
28
|
Meng Z, Qi K, Guo Y, Wang Y, Liu Y. Physical Properties, Microstructure, Intermolecular Forces, and Oxidation Stability of Soybean Oil Oleogels Structured by Different Cellulose Ethers. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700287] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zong Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University; 1800 Lihu Road Wuxi 214122 Jiangsu P.R. China
| | - Keyu Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University; 1800 Lihu Road Wuxi 214122 Jiangsu P.R. China
| | - Ying Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University; 1800 Lihu Road Wuxi 214122 Jiangsu P.R. China
| | - Yong Wang
- Department of Food Science and Engineering, Guangdong Saskatchewan Oilseed Joint Laboratory, Jinan University; Huangpu Rd. West 601 Guangzhou 510632 Guangdong P.R. China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University; 1800 Lihu Road Wuxi 214122 Jiangsu P.R. China
| |
Collapse
|
29
|
Macro-micro structure characterization and molecular properties of emulsion-templated polysaccharide oleogels. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Zhang Z, Lunter DJ. Confocal Raman microspectroscopy as an alternative method to investigate the extraction of lipids from stratum corneum by emulsifiers and formulations. Eur J Pharm Biopharm 2018; 127:61-71. [PMID: 29428793 DOI: 10.1016/j.ejpb.2018.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the impact of emulsifiers and formulations on intercellular lipids of porcine stratum corneum (SC) and evaluate confocal Raman microscopy (CRM) as an alternative method in this research context. To this end, four different formulations were used: three conventional creams that contained ionic and/or non-ionic emulsifiers and one surfactants-free emulsion stabilized by a polymeric emulsifier. Additionally, all emulsifiers were tested in aqueous solution/dispersion in the respective concentrations as present in the formulations. CRM and HPTLC were used to analyse changes in SC lipid content after treatment. Furthermore, lipid extraction was visualized by fluorescence staining and SC thickness was measured by CRM and light microscopy. Various emulsifiers and emulsifier mixtures showed different impact on SC lipid content and SC thickness, while none of the tested formulations had any effect on SC lipids. Emulsifiers and their mixtures that reduced the lipids content also reduced SC thickness, indicating lipid extraction is the reason for SC thinning. Results from CRM and conventional methods showed a strong positive correlation for both lipid content and SC thickness measurements. With easy sample preparation and fast analytical readout, CRM has the potential to be a standardized analytical method for skin lipids investigation.
Collapse
Affiliation(s)
- Ziwei Zhang
- University of Tuebingen, Pharmaceutical Technology, Tuebingen, Germany
| | | |
Collapse
|
31
|
Multiscale evaluation from one bubble to the foam of surface active properties of cellulose derivatives used for a starchy model sponge cake. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Modulating fat digestion through food structure design. Prog Lipid Res 2017; 68:109-118. [DOI: 10.1016/j.plipres.2017.10.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023]
|
33
|
The role of hydroxypropyl methylcellulose structural parameters on the stability of emulsions containing Spirulina biomass. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Microgels of silylated HPMC as a multimodal system for drug co-encapsulation. Int J Pharm 2017; 532:790-801. [PMID: 28755992 DOI: 10.1016/j.ijpharm.2017.07.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 01/22/2023]
Abstract
Combined therapy is a global strategy developed to prevent drug resistance in cancer and infectious diseases. In this field, there is a need of multifunctional drug delivery systems able to co-encapsulate small drug molecules, peptides, proteins, associated to targeting functions, nanoparticles. Silylated hydrogels are alkoxysilane hybrid polymers that can be engaged in a sol-gel process, providing chemical cross linking in physiological conditions, and functionalized biocompatible hybrid materials. In the present work, microgels were prepared with silylated (hydroxypropyl)methyl cellulose (Si-HPMC) that was chemically cross linked in soft conditions of pH and temperature. They were prepared by an emulsion templating process, water in oil (W/O), as microreactors where the condensation reaction took place. The ability to functionalize the microgels, so-called FMGs, in a one-pot process, was evaluated by grafting a silylated hydrophilic model drug, fluorescein (Si-Fluor), using the same reaction of condensation. Biphasic microgels (BPMGs) were prepared to evaluate their potential to encapsulate lipophilic model drug (Nile red). They were composed of two separate compartments, one oily phase (sesame oil) trapped in the cross linked Si-HPMC hydrophilic phase. The FMGs and BPMGs were characterized by different microscopic techniques (optic, epi-fluorescence, Confocal Laser Scanning Microscopy and scanning electronic microscopy), the mechanical properties were monitored using nano indentation by Atomic Force Microscopy (AFM), and different preliminary tests were performed to evaluate their chemical and physical stability. Finally, it was demonstrated that it is possible to co-encapsulate both hydrophilic and hydrophobic drugs, in silylated microgels, that were physically and chemically stable. They were obtained by chemical cross linking in soft conditions, and without surfactant addition during the emulsification process. The amount of drug loaded was in favor of further biological activity. Mechanical stimulations should be necessary to trigger drug release.
Collapse
|
35
|
Farahmandfar R, Asnaashari M, Salahi MR, Khosravi Rad T. Effects of basil seed gum, Cress seed gum and Quince seed gum on the physical, textural and rheological properties of whipped cream. Int J Biol Macromol 2017; 98:820-828. [DOI: 10.1016/j.ijbiomac.2017.02.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/27/2022]
|
36
|
Gong X, Wang Y, Chen L. Enhanced emulsifying properties of wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Carbohydr Polym 2017; 169:295-303. [PMID: 28504148 DOI: 10.1016/j.carbpol.2017.04.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/17/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
Abstract
Cellulose nanocrystals are hydrophilic nanomaterials, which limits their applications as interfacial compounds. Herein, we propose using modified wood-based cellulose nanocrystals as Pickering emulsion stabilizer. Wood cellulose was consecutively oxidized and modified with phenyltrimethylammonium chloride to create hydrophobic domains comprised of phenyl groups. These modified oxidized cellulose nanocrystals (m-O-CNCs) were homogeneous/electrostatically stable in water and they can stabilize O/W Pickering emulsions. The dispersed phase volume fraction (DPVF) of the Pickering emulsion was 0.7 at around 1.5g/L, whereas the tween-20 control needed a 13-fold greater concentration to have a similar DPVR. In addition, these m-O-CNC stabilized Pickering emulsions also showed good mechanical and thermal stability against centrifugation and heat, as well as size controllability. In terms of stability, size controllability, surfactant-free status, these m-O-CNCs possess superior and enhanced emulsifying properties. Future research for these new interfacial materials have potential in applications, for personal care, cosmetic and pharmaceutic industries.
Collapse
Affiliation(s)
- Xiaoyu Gong
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Yixiang Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
37
|
Pizones Ruiz-Henestrosa VM, Bellesi FA, Camino NA, Pilosof AM. The impact of HPMC structure in the modulation of in vitro lipolysis: The role of bile salts. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Salama A. Polysaccharides/silica hybrid materials: New perspectives for sustainable raw materials. J Carbohydr Chem 2016. [DOI: 10.1080/07328303.2016.1154152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ahmed Salama
- Cellulose and Paper Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
39
|
Effect of bacterial cellulose addition on physical properties of WPI emulsions. Comparison with common thickeners. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.10.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Paximada P, Tsouko E, Kopsahelis N, Koutinas AA, Mandala I. Bacterial cellulose as stabilizer of o/w emulsions. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2014.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Bago Rodriguez AM, Binks BP, Sekine T. Novel stabilisation of emulsions by soft particles: polyelectrolyte complexes. Faraday Discuss 2016; 191:255-285. [DOI: 10.1039/c6fd00011h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We put forward the concept of a novel particle stabiliser of oil–water emulsions, being the polyelectrolyte complex (PEC) formed between oppositely charged water-soluble polymers in cases where either polymer alone is incapable of stabilising an emulsion. Using poly(4-styrene sulfonate) sodium salt, PSSNa and poly(diallyldimethylammonium chloride), PDADMAC, of low polydispersity and similar molecular mass, we correlate the behaviour of their mixtures in water with that of emulsions after addition of oil. In aqueous mixtures, spherical particles of diameters between 100 and 150 nm are formed through electrostatic interactions between charged polymer chains. Around equal mole fractions of the two polymers, the zeta potential of the particles reverses in sign and emulsions of oil-in-water (o/w) for a range of oils can be prepared which are the most stable to coalescence and creaming. The effects of PEC concentration and the oil : water ratio have been examined. All emulsions are o/w and stability is achieved by close-packed particle layers at drop interfaces and particle aggregation in the continuous phase. Increasing the salt concentration initially causes destabilisation of the aqueous particle dispersion due to particle aggregation followed by dissolution of particles at high concentrations; the corresponding emulsions change from being stable to completely unstable and are then re-stabilised due to adsorption of uncharged individual polymer molecules.
Collapse
Affiliation(s)
| | | | - Tomoko Sekine
- Shiseido Global Innovation Center
- Yokohama 224-8558
- Japan
| |
Collapse
|
42
|
Stability of β-carotene loaded emulsions vary by viscosity of hydroxypropyl methylcellulose dispersions. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Interactions between cellulose ethers and a bile salt in the control of lipid digestion of lipid-based systems. Carbohydr Polym 2014; 113:53-61. [PMID: 25256458 DOI: 10.1016/j.carbpol.2014.06.070] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 11/22/2022]
Abstract
In order to gain new insights into the potential of specific dietary fibres to control lipid digestion, the goal of this work is to study the main interactions between commercial cellulose ethers, as dietary fibre, and a bile salt, as an important duodenal component present during the digestibility of lipids. These interactions have been evaluated in two different scenarios found for an oil-in-water emulsion on its transit through the duodenum. Namely, interactions in the continuous phase and competitive adsorption at the oil-water interface have been looked at by means of micro-differential scanning calorimetry (micro-DSC) and interfacial tension (IT). Micro-DSC revealed that the presence of the bile salt affects the thermogelation process of cellulose derivatives, suggesting binding to cellulose ethers. The effect on thermogelation seems to be cellulose type-dependent. IT measurements proved the ability of cellulose ethers to compete for the oil-water interface in the presence of the bile salt. Interactions in the bulk might have an impact on this interfacial scenario. These findings may have implications in the digestion of emulsified lipids, hence providing a springboard to develop new cellulose-based food products with improved functional properties.
Collapse
|
44
|
Jara FL, Carrera Sánchez C, Rodríguez Patino JM, Pilosof AM. Competitive adsorption behavior of β-lactoglobulin, α-lactalbumin, bovin serum albumin in presence of hydroxypropylmethylcellulose. Influence of pH. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Alaimo D, Beigbeder A, Dubois P, Broze G, Jérôme C, Grignard B. Block, random and palm-tree amphiphilic fluorinated copolymers: controlled synthesis, surface activity and use as dispersion polymerization stabilizers. Polym Chem 2014. [DOI: 10.1039/c4py00366g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The architecture of novel fluorinated copolymers drastically influences their stabilizing properties and their ability to template particle formation.
Collapse
Affiliation(s)
- David Alaimo
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- B-4000 Liège, Belgium
| | - Alexandre Beigbeder
- Laboratory of Polymeric and Composite Materials
- Université de Mons-Hainaut
- B-7000 Mons, Belgium
| | - Philippe Dubois
- Laboratory of Polymeric and Composite Materials
- Université de Mons-Hainaut
- B-7000 Mons, Belgium
| | - Guy Broze
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- B-4000 Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- B-4000 Liège, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- B-4000 Liège, Belgium
| |
Collapse
|
46
|
Extensional viscosity of o/w emulsion stabilized by polysaccharides measured on the opposed-nozzle device. Food Hydrocoll 2013. [DOI: 10.1016/j.foodhyd.2012.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Beck C, Sievens-Figueroa L, Gärtner K, Jerez-Rozo JI, Romañach RJ, Bilgili E, Davé RN. Effects of stabilizers on particle redispersion and dissolution from polymer strip films containing liquid antisolvent precipitated griseofulvin particles. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.05.047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Karadag A, Özçelik B, Sramek M, Gibis M, Kohlus R, Weiss J. Presence of Electrostatically Adsorbed Polysaccharides Improves Spray Drying of Liposomes. J Food Sci 2013; 78:E206-21. [DOI: 10.1111/1750-3841.12023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/14/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Ayse Karadag
- Dept. of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Istanbul Technical Univ.; 34469; Maslak; Istanbul; Turkey
| | - Beraat Özçelik
- Dept. of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Istanbul Technical Univ.; 34469; Maslak; Istanbul; Turkey
| | - Martin Sramek
- Dept. of Food Processing, Inst. of Food Science and Biotechnology; Univ. of Hohenheim; Garbenstrasse 25; 70599; Stuttgart; Germany
| | - Monika Gibis
- Dept. of Food Physics and Meat Science, Inst. of Food Science and Biotechnology; Univ. of Hohenheim; Garbenstrasse 25; 70599; Stuttgart; Germany
| | - Reinhard Kohlus
- Dept. of Food Processing, Inst. of Food Science and Biotechnology; Univ. of Hohenheim; Garbenstrasse 25; 70599; Stuttgart; Germany
| | | |
Collapse
|
49
|
Li X, Al-Assaf S, Fang Y, Phillips GO. Competitive adsorption between sugar beet pectin (SBP) and hydroxypropyl methylcellulose (HPMC) at the oil/water interface. Carbohydr Polym 2013; 91:573-80. [DOI: 10.1016/j.carbpol.2012.08.075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 12/01/2022]
|
50
|
Xiao L, Yi T, Liu Y. A new self-microemulsifying mouth dissolving film to improve the oral bioavailability of poorly water soluble drugs. Drug Dev Ind Pharm 2012; 39:1284-90. [DOI: 10.3109/03639045.2012.723716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|