1
|
Alves AMB, Costa SM, Pinto PBA. Dengue Virus and Vaccines: How Can DNA Immunization Contribute to This Challenge? FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:640964. [PMID: 35047911 PMCID: PMC8757892 DOI: 10.3389/fmedt.2021.640964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/17/2021] [Indexed: 01/02/2023] Open
Abstract
Dengue infections still have a tremendous impact on public health systems in most countries in tropical and subtropical regions. The disease is systemic and dynamic with broad range of manifestations, varying from mild symptoms to severe dengue (Dengue Hemorrhagic Fever and Dengue Shock Syndrome). The only licensed tetravalent dengue vaccine, Dengvaxia, is a chimeric yellow fever virus with prM and E genes from the different dengue serotypes. However, recent results indicated that seronegative individuals became more susceptible to develop severe dengue when infected after vaccination, and now WHO recommends vaccination only to dengue seropositive people. One possibility to explain these data is the lack of robust T-cell responses and antibody-dependent enhancement of virus replication in vaccinated people. On the other hand, DNA vaccines are excellent inducers of T-cell responses in experimental animals and it can also elicit antibody production. Clinical trials with DNA vaccines have improved and shown promising results regarding the use of this approach for human vaccination. Therefore, in this paper we review preclinical and clinical tests with DNA vaccines against the dengue virus. Most of the studies are based on the E protein since this antigen is the main target for neutralizing antibody production. Yet, there are other reports with DNA vaccines based on non-structural dengue proteins with protective results, as well. Combining structural and non-structural genes may be a solution for inducing immune responses aging in different infection moments. Furthermore, DNA immunizations are also a very good approach in combining strategies for vaccines against dengue, in heterologous prime/boost regimen or even administering different vaccines at the same time, in order to induce efficient humoral and cellular immune responses.
Collapse
Affiliation(s)
- Ada Maria Barcelos Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | |
Collapse
|
2
|
Computational prediction and analysis of potential antigenic CTL epitopes in Zika virus: A first step towards vaccine development. INFECTION GENETICS AND EVOLUTION 2016; 45:187-197. [DOI: 10.1016/j.meegid.2016.08.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 02/03/2023]
|
3
|
Omatsu T, Moi ML, Takasaki T, Nakamura S, Katakai Y, Tajima S, Ito M, Yoshida T, Saito A, Akari H, Kurane I. Changes in hematological and serum biochemical parameters in common marmosets (Callithrix jacchus) after inoculation with dengue virus. J Med Primatol 2012; 41:289-96. [PMID: 22775469 DOI: 10.1111/j.1600-0684.2012.00552.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Marmosets are susceptible to dengue virus (DENV) infection. However, blood parameter data and clinical signs of DENV-infected marmosets are limited. METHODS Blood hematological and serum biochemical values were obtained from twelve DENV-inoculated and four mock-infected marmosets. Additionally, body temperature and activity level were determined. RESULTS Five DENV-inoculated marmosets demonstrated thrombocytopenia, nine demonstrated leucopenia, and five demonstrated an increase in the levels of AST, ALT, LDH, and BUN. Additionally, seven DENV-inoculated marmosets demonstrated clinical signs including fever and decreases in activity. None of the four mock-inoculated marmosets demonstrated changes in either hematological or biochemical parameters. CONCLUSIONS Marmosets inoculated with DENV exhibited clinical signs and changes in hematological and biochemical parameters. The results suggest that blood parameter data and clinical signs could potentially be useful markers for understanding the progress of DENV infection in studies using marmosets.
Collapse
Affiliation(s)
- Tsutomu Omatsu
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hobson-Peters J. Approaches for the development of rapid serological assays for surveillance and diagnosis of infections caused by zoonotic flaviviruses of the Japanese encephalitis virus serocomplex. J Biomed Biotechnol 2012; 2012:379738. [PMID: 22570528 PMCID: PMC3337611 DOI: 10.1155/2012/379738] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/24/2012] [Accepted: 01/29/2012] [Indexed: 11/17/2022] Open
Abstract
Flaviviruses are responsible for a number of important mosquito-borne diseases of man and animals globally. The short vireamic period in infected hosts means that serological assays are often the diagnostic method of choice. This paper will focus on the traditional methods to diagnose flaviviral infections as well as describing the modern rapid platforms and approaches for diagnostic antigen preparation.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
5
|
Gangwar RS, Shil P, Sapkal GN, Khan SA, Gore MM. Induction of virus-specific neutralizing immune response against West Nile and Japanese encephalitis viruses by chimeric peptides representing T-helper and B-cell epitopes. Virus Res 2012; 163:40-50. [DOI: 10.1016/j.virusres.2011.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/08/2011] [Accepted: 08/15/2011] [Indexed: 02/03/2023]
|
6
|
Costa SM, Yorio AP, Gonçalves AJS, Vidale MM, Costa ECB, Mohana-Borges R, Motta MA, Freire MS, Alves AMB. Induction of a protective response in mice by the dengue virus NS3 protein using DNA vaccines. PLoS One 2011; 6:e25685. [PMID: 22031819 PMCID: PMC3198735 DOI: 10.1371/journal.pone.0025685] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/08/2011] [Indexed: 12/22/2022] Open
Abstract
The dengue non-structural 3 (NS3) is a multifunctional protein, containing a serino-protease domain, located at the N-terminal portion, and helicase, NTPase and RTPase domains present in the C-terminal region. This protein is considered the main target for CD4+ and CD8+ T cell responses during dengue infection, which may be involved in protection. However, few studies have been undertaken evaluating the use of this protein as a protective antigen against dengue, as well as other flavivirus. In the present work, we investigate the protective efficacy of DNA vaccines based on the NS3 protein from DENV2. Different recombinant plasmids were constructed, encoding either the full-length NS3 protein or only its functional domains (protease and helicase), fused or not to a signal peptide (t-PA). The recombinant proteins were successfully expressed in transfected BHK-21 cells, and only plasmids encoding the t-PA signal sequence mediated protein secretion. Balb/c mice were immunized with the different DNA vaccines and challenged with a lethal dose of DENV2. Most animals immunized with plasmids encoding the full-length NS3 or the helicase domain survived challenge, regardless of the presence of the t-PA. However, some mice presented clinical signs of infection with high morbidity (hind leg paralysis and hunched posture), mainly in animal groups immunized with the DNA vaccines based on the helicase domain. On the other hand, inoculation with plasmids encoding the protease domain did not induce any protection, since mortality and morbidity rates in these mouse groups were similar to those detected in the control animals. The cellular immune response was analyzed by ELISPOT with a specific-CD8+ T cell NS3 peptide. Results revealed that the DNA vaccines based on the full-length protein induced the production of INF-γ, thus suggesting the involvement of this branch of the immune system in the protection.
Collapse
Affiliation(s)
- Simone M. Costa
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Anna Paula Yorio
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Antônio J. S. Gonçalves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Mariana M. Vidale
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Emmerson C. B. Costa
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ronaldo Mohana-Borges
- Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcia A. Motta
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Marcos S. Freire
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz Foundation, Rio de Janeiro, Brasil
| | - Ada M. B. Alves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
7
|
A molecular evaluation of dengue virus pathogenesis and its latest vaccine strategies. Mol Biol Rep 2010; 38:3731-40. [PMID: 21107723 DOI: 10.1007/s11033-010-0488-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 11/09/2010] [Indexed: 10/18/2022]
Abstract
More than one third of the world's population living in tropical and subtropical areas of the world is at risk of dengue infections and as many as 100 million people are yearly infected. This disease has reemerged during the past 20 years in the form of an epidemic. Dengue is caused by one of four related serotypes of dengue virus and often leads to severe forms of the disease, resulting commonly from secondary infections. Dengue virus is a mosquito borne virus, belongs to the family Flaviviridae and consists of a single stranded positive sense RNA genome. Like other RNA viruses it escapes defense mechanisms and neutralization attempts by mutations, which make it more resistant and adaptable to its environment. Antiviral strategies and vaccine development is thus impaired and hence to date there is no licensed vaccine available for dengue virus. Here we discuss various efforts made towards the identification of potential vaccine targets for dengue as well as various strategies employed by research groups/pharmaceutical companies towards the development of a successful dengue vaccine.
Collapse
|
8
|
Vaughan K, Greenbaum J, Blythe M, Peters B, Sette A. Meta-analysis of all immune epitope data in the Flavivirus genus: inventory of current immune epitope data status in the context of virus immunity and immunopathology. Viral Immunol 2010; 23:259-84. [PMID: 20565291 DOI: 10.1089/vim.2010.0006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A meta-analysis was performed in order to inventory the immune epitope data related to viruses in the genus Flavivirus. Nearly 2000 epitopes were captured from over 130 individual Flavivirus-related references identified from PubMed and reported as of September 2009. This report includes all epitope structures and associated immune reactivity from the past and current literature, including: the epitope distribution among pathogens and related strains, the epitope distribution among different pathogen antigens, the number of epitopes defined in human and animal models of disease, the relationship between epitopes identified in different disease states following natural (or experimental) infection, and data from studies focused on candidate vaccines. We found that the majority of epitopes were defined for dengue virus (DENV) and West Nile virus (WNV). The prominence of DENV and WNV data in the epitope literature is likely a reflection of their overall worldwide impact on human disease, and the lack of vaccines. Conversely, the relatively smaller number of epitopes defined for the other viruses within the genus (yellow fever and Japanese encephalitis virus) most likely reflects the presence of established prophylaxis and/or their more modest impact on morbidity and mortality globally. Through this work we hope to provide useful data to those working in the area of Flavivirus research.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute of Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Schepp-Berglind J, Luo M, Wang D, Wicker JA, Raja NU, Hoel BD, Holman DH, Barrett ADT, Dong JY. Complex adenovirus-mediated expression of West Nile virus C, PreM, E, and NS1 proteins induces both humoral and cellular immune responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1117-26. [PMID: 17634508 PMCID: PMC2043313 DOI: 10.1128/cvi.00070-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
West Nile Virus (WNV), a member of the family Flaviviridae, was first identified in Africa in 1937. In recent years, it has spread into Europe and North America. The clinical manifestations of WNV infection range from mild febrile symptoms to fatal encephalitis. Two genetic lineages (lineages I and II) are recognized; lineage II is associated with mild disease, while lineage I has been associated with severe disease, including encephalitis. WNV has now spread across North America, significantly affecting both public and veterinary health. In the efforts to develop an effective vaccine against all genetic variants of WNV, we have studied the feasibility of inducing both neutralizing and cellular immune responses by de novo synthesis of WNV antigens using a complex adenoviral vaccine (CAdVax) vector. By expressing multiple WNV proteins from a single vaccine vector, we were able to induce both humoral and cellular immune responses in vaccinated mice. Neutralization assays demonstrated that the antibodies were broadly neutralizing against both lineages of WNV, with a significant preference for the homologous lineage II virus. The results from this study show that multiple antigens synthesized de novo from a CAdVax vector are capable of inducing both humoral and cellular immune responses against WNV and that a multiantigen approach may provide broad protection against multiple genetic variants of WNV.
Collapse
Affiliation(s)
- Jennifer Schepp-Berglind
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29403, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Costa SM, Azevedo AS, Paes MV, Sarges FS, Freire MS, Alves AMB. DNA vaccines against dengue virus based on the ns1 gene: The influence of different signal sequences on the protein expression and its correlation to the immune response elicited in mice. Virology 2007; 358:413-23. [PMID: 17020777 DOI: 10.1016/j.virol.2006.08.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/21/2006] [Accepted: 08/30/2006] [Indexed: 11/23/2022]
Abstract
We analyzed four DNA vaccines based on DENV-2 NS1: pcENS1, encoding the C-terminal from E protein plus the NS1 region; pcENS1ANC, similar to pcENS1 plus the N-terminal sequence from NS2a (ANC); pcTPANS1, coding the t-PA signal sequence fused to NS1; and pcTPANS1ANC, similar to pcTPANS1 plus the ANC sequence. The NS1 was detected in lysates and culture supernatants from pcTPANS1-, pcENS1- and pcENS1ANC-transfected cells and not in cells with pcTPANS1ANC. Only the pcENS1ANC leads the expression of NS1 in plasma membrane, confirming the importance of ANC sequence for targeting NS1 to cell surface. High levels of antibodies recognizing conformational epitopes of NS1 were induced in mice immunized with pcTPANS1 and pcENS1, while only few pcENS1ANC-inoculated animals presented detectable anti-NS1 IgG. Protection against DENV-2 was verified in pcTPANS1- and pcENS1-immunized mice, although the plasmid pcTPANS1 induced slight higher protective immunity. These plasmids seem to activate distinct patterns of the immune system.
Collapse
Affiliation(s)
- S M Costa
- Laboratory of Immunopathology, Department of Bichemistry and Molecular Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil 4365, Pav. Leonidas Deane, s. 204, Rio de Janeiro, RJ, CEP 21040-900, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Khan AM, Heiny AT, Lee KX, Srinivasan KN, Tan TW, August JT, Brusic V. Large-scale analysis of antigenic diversity of T-cell epitopes in dengue virus. BMC Bioinformatics 2006; 7 Suppl 5:S4. [PMID: 17254309 PMCID: PMC1764481 DOI: 10.1186/1471-2105-7-s5-s4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Antigenic diversity in dengue virus strains has been studied, but large-scale and detailed systematic analyses have not been reported. In this study, we report a bioinformatics method for analyzing viral antigenic diversity in the context of T-cell mediated immune responses. We applied this method to study the relationship between short-peptide antigenic diversity and protein sequence diversity of dengue virus. We also studied the effects of sequence determinants on viral antigenic diversity. Short peptides, principally 9-mers were studied because they represent the predominant length of binding cores of T-cell epitopes, which are important for formulation of vaccines. Results Our analysis showed that the number of unique protein sequences required to represent complete antigenic diversity of short peptides in dengue virus is significantly smaller than that required to represent complete protein sequence diversity. Short-peptide antigenic diversity shows an asymptotic relationship to the number of unique protein sequences, indicating that for large sequence sets (~200) the addition of new protein sequences has marginal effect to increasing antigenic diversity. A near-linear relationship was observed between the extent of antigenic diversity and the length of protein sequences, suggesting that, for the practical purpose of vaccine development, antigenic diversity of short peptides from dengue virus can be represented by short regions of sequences (~<100 aa) within viral antigens that are specific targets of immune responses (such as T-cell epitopes specific to particular human leukocyte antigen alleles). Conclusion This study provides evidence that there are limited numbers of antigenic combinations in protein sequence variants of a viral species and that short regions of the viral protein are sufficient to capture antigenic diversity of T-cell epitopes. The approach described herein has direct application to the analysis of other viruses, in particular those that show high diversity and/or rapid evolution, such as influenza A virus and human immunodeficiency virus (HIV).
Collapse
Affiliation(s)
- Asif M Khan
- The Division of Biomedical Sciences, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
- Department of Microbiology, The Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - AT Heiny
- The Division of Biomedical Sciences, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
- Department of Biochemistry, The Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Kenneth X Lee
- The Division of Biomedical Sciences, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
- Department of Microbiology, The Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - KN Srinivasan
- The Division of Biomedical Sciences, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Tin Wee Tan
- Department of Biochemistry, The Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - J Thomas August
- The Division of Biomedical Sciences, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, Singapore 138669, Singapore
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Vladimir Brusic
- Department of Microbiology, The Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
- School of Land and Food Sciences, and Institute for Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
13
|
Wang T, Gao Y, Scully E, Davis CT, Anderson JF, Welte T, Ledizet M, Koski R, Madri JA, Barrett A, Yin Z, Craft J, Fikrig E. Gamma delta T cells facilitate adaptive immunity against West Nile virus infection in mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:1825-32. [PMID: 16849493 DOI: 10.4049/jimmunol.177.3.1825] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, and gammadelta T cells are involved in the protective immune response against viral challenge. We have now examined whether gammadelta T cells contribute to the development of adaptive immune responses that help control WN virus infection. Approximately 15% of TCRdelta(-/-) mice survived primary infection with WN virus compared with 80-85% of the wild-type mice. These mice were more susceptible to secondary challenge with WN virus than the wild-type mice that survived primary challenge with the virus. Depletion of gammadelta T cells in wild-type mice that survived the primary infection, however, does not affect host susceptibility during secondary challenge with WN virus. Furthermore, gammadelta T cells do not influence the development of Ab responses during primary and at the early stages of secondary infection with WN virus. Adoptive transfer of CD8(+) T cells from wild-type mice that survived primary infection with WN virus to naive mice afforded partial protection from lethal infection. In contrast, transfer of CD8(+) T cells from TCRdelta(-/-) mice that survived primary challenge with WN virus failed to alter infection in naive mice. This difference in survival correlated with the numeric and functional reduction of CD8 memory T cells in these mice. These data demonstrate that gammadelta T cells directly link innate and adaptive immunity during WN virus infection.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- CD8-Positive T-Lymphocytes/virology
- Genetic Predisposition to Disease/genetics
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Immunization, Secondary
- Immunoglobulin G/biosynthesis
- Immunoglobulin M/biosynthesis
- Immunologic Memory/genetics
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Recurrence
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- West Nile Fever/genetics
- West Nile Fever/immunology
- West Nile virus/immunology
Collapse
Affiliation(s)
- Tian Wang
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fink J, Gu F, Vasudevan SG. Role of T cells, cytokines and antibody in dengue fever and dengue haemorrhagic fever. Rev Med Virol 2006; 16:263-75. [PMID: 16791836 DOI: 10.1002/rmv.507] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Dengue infections are a major cause of morbidity and mortality in the tropical and sub-tropical regions of the world. There is no vaccine for dengue and also there are no anti-viral drugs to treat the infection. Some patients, typically those experiencing a secondary infection with a different dengue serotype, may progress from an acute febrile disease to the more severe forms of disease, dengue haemorrhagic fever and dengue shock syndrome. Here we discuss the significant immunopathological component to severe disease and how T cells, cytokines and cross-reactive antibody combine to contribute to the progression to dengue haemorrhagic fever. These events are thought to lead to vascular leakage, the signature event in dengue haemorrhagic fever, and are addressed in this review by incorporating the concept of heterologous T cell immunity. The need for effective measures against dengue and dengue-related illness is clear. We propose that drugs against dengue virus, or the symptoms of severe dengue disease, are a viable goal.
Collapse
Affiliation(s)
- Joshua Fink
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore
| | | | | |
Collapse
|
15
|
Lim CS, Chua JJE, Wilkerson J, Chow VTK. Differential dengue cross-reactive and neutralizing antibody responses in BALB/c and Swiss albino mice induced by immunization with flaviviral vaccines and by infection with homotypic dengue-2 virus strains. Viral Immunol 2006; 19:33-41. [PMID: 16553548 DOI: 10.1089/vim.2006.19.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated whether cross-reactive and/or cross-protective antibodies against dengue virus could be generated in 6-week-old BALB/c mice by immunization with currently approved flaviviral vaccines, i.e., Japanese encephalitis (JE) BIKEN and yellow fever (YF) 17D. Cross-reactivity with dengue antigens was apparent in at least one-third each of JE-vaccinated mouse sera and of JE/YF-vaccinated mouse sera by dengue enzyme immunoassay, but was not detected in sera of mice immunized with YF vaccine alone. All the immunized BALB/c mice failed to generate neutralizing antibodies against the New Guinea C laboratory (NGC-lab) strain of dengue virus type 2. In addition, we determined the specificity of neutralizing antibodies elicited in 3-week-old Swiss albino mice against two homotypic dengue-2 strains, i.e., NGC-lab and Singapore 1999 (SING/99). Although sera from virus-inoculated mice displayed better neutralization against the corresponding strain, antibodies elicited by NGC-lab exhibited a significantly poorer neutralizing response against the SING/99 strain compared to antibodies elicited by SING/99 against NGC-lab. The differences may be related to sequence variations of approximately 3% between the envelope proteins of both strains. Amino acid disparities at positions 71 (Glu --> Ala), 112 (Ser --> Gly) and 124 (Ile --> Asn), which are found in dengue-2 neutralization escape mutants, were also found in the SING/99 strain. The envelope sequence differences may explain diminished binding of NGC-lab-induced neutralizing antibodies to neutralizing epitopes within the envelope of the SING/99 strain, resulting in a lower titer of neutralizing antibodies against another strain of the same serotype.
Collapse
Affiliation(s)
- C S Lim
- Programme in Infectious Diseases, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
16
|
Venter M, Myers TG, Wilson MA, Kindt TJ, Paweska JT, Burt FJ, Leman PA, Swanepoel R. Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology 2005; 342:119-40. [PMID: 16125213 DOI: 10.1016/j.virol.2005.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/01/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
West Nile virus causes febrile illness in humans with a proportion of cases progressing to meningoencephalitis, encephalitis, hepatitis, and death. Isolates of the virus fall into two genetic lineages, with differences in neuroinvasiveness for mice occurring between strains within both lineages. We used DNA microarrays to compare gene expression in mice infected peripherally with seven lineage 1 and 2 strains confirmed to be of either high or low neuroinvasiveness in mice and associated with severe or benign infection in humans and birds. The 4 strains with highest neuroinvasiveness induced increased expression of 47 genes in the brain, 111 genes in the liver, and 70 genes in the spleen, relative to the 3 least neuroinvasive strains. Genes involved in interferon signaling pathways, protein degradation, T-cell recruitment, MHC class I and II antigen presentation, and apoptosis were identified that may have both pathogenic and protective effects, but increased expression of certain acute proteins, central nervous system specific proteins and proteins associated with T-cell hepatitis, implicate mechanisms related to exalted virulence.
Collapse
Affiliation(s)
- Marietjie Venter
- Special Pathogens Unit, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Simmons CP, Dong T, Chau NV, Dung NTP, Chau TNB, Thao LTT, Dung NT, Hien TT, Rowland-Jones S, Farrar J. Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections. J Virol 2005; 79:5665-75. [PMID: 15827181 PMCID: PMC1082776 DOI: 10.1128/jvi.79.9.5665-5675.2005] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell responses to dengue viruses may be important in both protective immunity and pathogenesis. This study of 48 Vietnamese adults with secondary dengue virus infections defined the breadth and magnitude of peripheral T-cell responses to 260 overlapping peptide antigens derived from a dengue virus serotype 2 (DV2) isolate. Forty-seven different peptides evoked significant gamma interferon enzyme-linked immunospot (ELISPOT) assay responses in 39 patients; of these, 34 peptides contained potentially novel T-cell epitopes. NS3 and particularly NS3200-324 were important T-cell targets. The breadth and magnitude of ELISPOT responses to DV2 peptides were independent of the infecting dengue virus serotype, suggesting that cross-reactive T cells dominate the acute response during secondary infection. Acute ELISPOT responses were weakly correlated with the extent of hemoconcentration in individual patients but not with the nadir of thrombocytopenia or overall clinical disease grade. NS3556-564 and Env414-422 were identified as novel HLA-A*24 and B*07-restricted CD8+ T-cell epitopes, respectively. Acute T-cell responses to natural variants of Env414-422 and NS3556-564 were largely cross-reactive and peaked during disease convalescence. The results highlight the importance of NS3 and cross-reactive T cells during acute secondary infection but suggest that the overall breadth and magnitude of the T-cell response is not significantly related to clinical disease grade.
Collapse
Affiliation(s)
- Cameron P Simmons
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chacko B, John GT, Jacob CK, Vijayakumar TS. Dengue shock syndrome in a renal transplant recipient. Transplantation 2004; 77:634-5. [PMID: 15084954 DOI: 10.1097/01.tp.0000114608.44000.d7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Wong SJ, Demarest VL, Boyle RH, Wang T, Ledizet M, Kar K, Kramer LD, Fikrig E, Koski RA. Detection of human anti-flavivirus antibodies with a west nile virus recombinant antigen microsphere immunoassay. J Clin Microbiol 2004; 42:65-72. [PMID: 14715733 PMCID: PMC321652 DOI: 10.1128/jcm.42.1.65-72.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2003] [Revised: 06/21/2003] [Accepted: 10/04/2003] [Indexed: 11/20/2022] Open
Abstract
We report a new, suspended-microsphere diagnostic test to detect antibodies to West Nile (WN) virus in human serum and cerebrospinal fluid (CSF). The microsphere immunofluorescence assay can be performed in less than 3 h on specimens of
Collapse
Affiliation(s)
- Susan J Wong
- Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that primarily infects birds but occasionally also infects humans and horses. In recent years, the frequency of WNV outbreaks in humans has increased, and these outbreaks have been associated with a higher incidence of severe disease. In 1999, the geographical distribution of WNV expanded to the Western hemisphere. WNV has a positive strand RNA genome of about 11 kb that encodes a single polyprotein. WNV replicates in the cytoplasm of infected cells. Although there are still many questions to be answered, a large body of data on the molecular biology of WNV and other flaviviruses has already been obtained. Aspects of virion structure, the viral replication cycle, viral protein function, genome structure, conserved viral elements, host factors, virus-host interactions, and vaccines are discussed in this review.
Collapse
Affiliation(s)
- Margo A Brinton
- Department of Biology, Georgia State University, Atlanta 30303, USA.
| |
Collapse
|
21
|
Abstract
Severe dengue virus infections usually occur in individuals who have preexisting anti-dengue virus antibodies. Mast cells are known to play an important role in host defense against several pathogens, but their role in viral infection has not yet been elucidated. The effects of dengue virus infection on the production of chemokines by human mast cells were examined. Elevated levels of secreted RANTES, MIP-1alpha, and MIP-1beta, but not IL-8 or ENA-78, were observed following infection of KU812 or HMC-1 human mast cell-basophil lines. In some cases a >200-fold increase in RANTES production was observed. Cord blood-derived cultured human mast cells treated with dengue virus in the presence of subneutralizing concentrations of dengue virus-specific antibody also demonstrated significantly (P < 0.05) increased RANTES production, under conditions which did not induce significant degranulation. Chemokine responses were not observed when mast cells were treated with UV-inactivated dengue virus in the presence or absence of human dengue virus-specific antibody. Neither antibody-enhanced dengue virus infection of the highly permissive U937 monocytic cell line nor adenovirus infection of mast cells induced a RANTES, MIP-1alpha, or MIP-1beta response, demonstrating a selective mast cell response to dengue virus. These results suggest a role for mast cells in the initiation of chemokine-dependent host responses to dengue virus infection.
Collapse
Affiliation(s)
- Christine A King
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
22
|
van der Most RG, Harrington LE, Giuggio V, Mahar PL, Ahmed R. Yellow fever virus 17D envelope and NS3 proteins are major targets of the antiviral T cell response in mice. Virology 2002; 296:117-24. [PMID: 12036323 DOI: 10.1006/viro.2002.1432] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The yellow fever virus 17D vaccine strain is one of the most effective and safe vaccines available. The immune response after immunization is characterized by long-lasting high titers of neutralizing antibodies. Here, we have initiated a characterization of YFV-17D-specific cellular immune responses. This study makes three points. First, we have identified two CD8 T cell epitopes and one CD4 T cell epitope. An H-2Kb-restricted dominant epitope was mapped in the NS3 protein, whereas the viral envelope protein harbored an H-2Db-restricted subdominant epitope and the I-Ab-restricted CD4 T cell epitope. Second, illustrating the concept of immunodomination, we found that after abrogation of the dominant response in H-2Kb knockout mice, the frequencies of T cells recognizing the subdominant Db-restricted epitope increased dramatically. Finally, the H-2Db-restricted epitope lacks the canonical Asn anchor residue at position 5, indicating that epitopes may be missed by strict application of the H-2Db-binding motif. Identification of these T cell epitopes will facilitate studies on the cellular immunity against YFV-based expression or immunization vectors.
Collapse
|
23
|
Abstract
Viruses use cell proteins during many stages of their replication cycles, including attachment, entry, translation, transcription/replication, and assembly. Mutations in the cell proteins involved can cause disruptions of these critical host-virus interactions, which in turn can affect the efficiency of virus replication. These host-virus interactions also represent novel targets for the development of new antiviral agents. The different alleles of the murine Flv gene confer resistance or susceptibility to flavivirus-induced disease and provide a natural mutant system for the study of a host protein that can alter the outcome of a flavivirus infection. Since flaviviruses, such as West Nile virus, replicate in mosquitoes, mammals, and birds during their natural transmission cycles, it is expected that the critical cell proteins used by these viruses will be ones that are highly conserved between divergent host species. Our laboratory has focused on the identification and characterization of the flavivirus resistance gene product and of cell proteins that interact with the 3' terminal regions of the West Nile virus genomic and antigenomic RNAs. The 3' terminal regions of the viral RNAs function as promotors for viral RNA replication. Cell proteins that bind to the viral 3' RNAs were detected by gel shift and UV-induced cross-linking assays. Individual proteins were then purified and partially sequenced. Mutation of a mapped, protein-binding site within the 3' terminal region of the viral RNA in an infectious West Nile virus clone was used to demonstrate the functional importance of one of the cell proteins for efficient West Nile virus replication. Data from additional studies suggested possible roles for this viral RNA-cell protein interaction during the flavivirus replication cycle.
Collapse
Affiliation(s)
- M A Brinton
- Biology Department, Georgia State University, Atlanta 30303, USA.
| |
Collapse
|
24
|
Pang X, Zhang M, Dayton AI. Development of dengue virus replicons expressing HIV-1 gp120 and other heterologous genes: a potential future tool for dual vaccination against dengue virus and HIV. BMC Microbiol 2001; 1:28. [PMID: 11747468 PMCID: PMC61042 DOI: 10.1186/1471-2180-1-28] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Accepted: 11/13/2001] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Toward the goals of providing an additional vector to add to the armamentarium available to HIV vaccinologists and of creating a bivalent vaccine effective against dengue virus and HIV, we have attempted to create vectors which express dengue virus non-structural proteins and HIV immunogens. Previously we reported the successful construction of dengue virus replicons which lack structural genes necessary for virion release and spreading infection in culture but which can replicate intracellularly and abundantly produce dengue non-structural proteins. Here we attempted to express heterologous genetic material from these replicons. RESULTS We cloned into a Deltapre-M/E dengue virus replicon genes for either green fluorescent protein (GFP), HIV gp160 or HIV gp120 and tested the ability of these constructs to express dengue virus proteins as well as the heterologous proteins in tissue culture after transfection of replicon RNA. CONCLUSIONS Heterologous proteins were readily expressed from these constructs. GFP and gp120 demonstrated minimal or no toxicity. Gp160 expressing replicons were found to express proteins abundantly at 36 hours post transfection, but after 50 hrs of transfection, few replicon positive cells could be found despite the presence of cellular debris positive for replicon proteins. This suggested that gp160 expressed from dengue virus replicons is considerably more toxic than either GFP or gp120. The successful expression of heterologous proteins, including HIV gp120 for long periods in culture suggests this vector system may be useful as a vaccine vector, given appropriate delivery methods.
Collapse
Affiliation(s)
- Xiaowu Pang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, FDA, Bethesda, MD, USA
| | - Mingjie Zhang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, FDA, Bethesda, MD, USA
| | - Andrew I Dayton
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, FDA, Bethesda, MD, USA
| |
Collapse
|
25
|
Pang X, Zhang M, Dayton AI. Development of Dengue virus type 2 replicons capable of prolonged expression in host cells. BMC Microbiol 2001; 1:18. [PMID: 11580862 PMCID: PMC56997 DOI: 10.1186/1471-2180-1-18] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2001] [Accepted: 08/22/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As part of a program to develop a Dengue virus vaccine which avoids the deleterious effects of antibody dependent enhancement (ADE) of infection mediated by antibodies to Dengue virus structural proteins, we have begun to investigate the possibility of designing Dengue vaccines based on non-structural proteins. RESULTS Dengue constructs which lack major structural proteins replicate intracellularly in tissue culture. These replicons are capable of prolonged expression of Dengue virus non-structural proteins for at least seven days in culture. CONCLUSIONS Dengue virus genomes lacking major structural proteins can, like other flaviviruses, replicate intracellularly and express virus non-structural proteins with minimal toxicity to host cells. These findings pave the way for the development of dengue virus replicons as a form of live, attenuated virus vaccine.
Collapse
Affiliation(s)
- Xiaowu Pang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, FDA, Bethesda, MD, USA
| | - Mingjie Zhang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, FDA, Bethesda, MD, USA
| | - Andrew I Dayton
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, FDA, Bethesda, MD, USA
- HFM 315 CBER/FDA, 1401 Rockville Pite, Rockville, MD 20852-1448, USA
| |
Collapse
|