1
|
Lu Z, Wang H, Gu J, Gao F. Association between abnormal brain oscillations and cognitive performance in patients with bipolar disorder; Molecular mechanisms and clinical evidence. Synapse 2022; 76:e22247. [PMID: 35849784 DOI: 10.1002/syn.22247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Brain oscillations have gained great attention in neuroscience during recent decades as functional building blocks of cognitive-sensory processes. Research has shown that oscillations in "alpha," "beta," "gamma," "delta," and "theta" frequency windows are highly modified in brain pathology, including in patients with cognitive impairment like bipolar disorder (BD). The study of changes in brain oscillations can provide fundamental knowledge for exploring neurophysiological biomarkers in cognitive impairment. The present article reviews findings from the role and molecular basis of abnormal neural oscillation and synchronization in the symptoms of patients with BD. An overview of the results clearly demonstrates that, in cognitive-sensory processes, resting and evoked/event-related electroencephalogram (EEG) spectra in the delta, theta, alpha, beta, and gamma bands are abnormally changed in patients with BD showing psychotic features. Abnormal oscillations have been found to be associated with several neural dysfunctions and abnormalities contributing to BD, including abnormal GABAergic neurotransmission signaling, hippocampal cell discharge, abnormal hippocampal neurogenesis, impaired cadherin and synaptic contact-based cell adhesion processes, extended lateral ventricles, decreased prefrontal cortical gray matter, and decreased hippocampal volume. Mechanistically, impairment in calcium voltage-gated channel subunit alpha1 I, neurotrophic tyrosine receptor kinase proteins, genes involved in brain neurogenesis and synaptogenesis like WNT3 and ACTG2, genes involved in the cell adhesion process like CDH12 and DISC1, and gamma-aminobutyric acid (GABA) signaling have been reported as the main molecular contributors to the abnormalities in resting-state low-frequency oscillations in BD patients. Findings also showed the association of impaired synaptic connections and disrupted membrane potential with abnormal beta/gamma oscillatory activity in patients with BD. Of note, the synaptic GABA neurotransmitter has been found to be a fundamental requirement for the occurrence of long-distance synchronous gamma oscillations necessary for coordinating the activity of neural networks between various brain regions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Huixiao Wang
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Feng Gao
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| |
Collapse
|
2
|
Armbruster M, Naskar S, Garcia JP, Sommer M, Kim E, Adam Y, Haydon PG, Boyden ES, Cohen AE, Dulla CG. Neuronal activity drives pathway-specific depolarization of peripheral astrocyte processes. Nat Neurosci 2022; 25:607-616. [PMID: 35484406 PMCID: PMC9988390 DOI: 10.1038/s41593-022-01049-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Astrocytes are glial cells that interact with neuronal synapses via their distal processes, where they remove glutamate and potassium (K+) from the extracellular space following neuronal activity. Astrocyte clearance of both glutamate and K+ is voltage dependent, but astrocyte membrane potential (Vm) is thought to be largely invariant. As a result, these voltage dependencies have not been considered relevant to astrocyte function. Using genetically encoded voltage indicators to enable the measurement of Vm at peripheral astrocyte processes (PAPs) in mice, we report large, rapid, focal and pathway-specific depolarizations in PAPs during neuronal activity. These activity-dependent astrocyte depolarizations are driven by action potential-mediated presynaptic K+ efflux and electrogenic glutamate transporters. We find that PAP depolarization inhibits astrocyte glutamate clearance during neuronal activity, enhancing neuronal activation by glutamate. This represents a novel class of subcellular astrocyte membrane dynamics and a new form of astrocyte-neuron interaction.
Collapse
Affiliation(s)
- Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Saptarnab Naskar
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Jacqueline P Garcia
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.,Cell, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Elliot Kim
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Yoav Adam
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Forsberg M, Olsson M, Seth H, Wasling P, Zetterberg H, Hedner J, Hanse E. Ion concentrations in cerebrospinal fluid in wakefulness, sleep and sleep deprivation in healthy humans. J Sleep Res 2021; 31:e13522. [PMID: 34787340 DOI: 10.1111/jsr.13522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/04/2021] [Accepted: 11/05/2021] [Indexed: 12/01/2022]
Abstract
Sleep is controlled by a circadian rhythmicity, via a reduction of arousal-promoting neuromodulatory activity, and by accumulation of somnogenic factors in the interstitial fluid of the brain. Recent experiments in mice suggest that a reduced neuronal excitability caused by a reduced concentration of potassium in the brain, concomitant with an increased concentration of calcium and magnesium, constitutes an important mediator of sleep. In the present study, we examined whether such changes in ion concentrations could be detected in the cerebrospinal fluid of healthy humans. Each subject underwent cerebrospinal fluid collection at three occasions in a randomized order: at 15:00 hours-17:00 hours during waking, at 06:00 hours-07:00 hours immediately following 1 night of sleep, and at 06:00 hours-07:00 hours following 1 night of sleep deprivation. When compared with wakefulness, both sleep and sleep deprivation produced the same effect of a small (0.1 mm, about 3%), but robust and highly significant, reduction in potassium concentration. Calcium and magnesium concentrations were unchanged. Our results support a circadian modulation of neuronal excitability in the brain mediated via changes of the interstitial potassium concentration.
Collapse
Affiliation(s)
- My Forsberg
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Olsson
- Department of Internal Medicine, Center for Sleep and Vigilance Disorders, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Seth
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UCL Institute of Neurology, Queen Square, London, UK.,The Dementia Research Institute at UCL, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jan Hedner
- Department of Internal Medicine, Center for Sleep and Vigilance Disorders, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Sleep Laboratory, Pulmonary Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eric Hanse
- Department of Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Parker PD, Suryavanshi P, Melone M, Sawant-Pokam PA, Reinhart KM, Kaufmann D, Theriot JJ, Pugliese A, Conti F, Shuttleworth CW, Pietrobon D, Brennan KC. Non-canonical glutamate signaling in a genetic model of migraine with aura. Neuron 2021; 109:611-628.e8. [PMID: 33321071 PMCID: PMC7889497 DOI: 10.1016/j.neuron.2020.11.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022]
Abstract
Migraine with aura is a common but poorly understood sensory circuit disorder. Monogenic models allow an opportunity to investigate its mechanisms, including spreading depolarization (SD), the phenomenon underlying migraine aura. Using fluorescent glutamate imaging, we show that awake mice carrying a familial hemiplegic migraine type 2 (FHM2) mutation have slower clearance during sensory processing, as well as previously undescribed spontaneous "plumes" of glutamate. Glutamatergic plumes overlapped anatomically with a reduced density of GLT-1a-positive astrocyte processes and were mimicked in wild-type animals by inhibiting glutamate clearance. Plume pharmacology and plume-like neural Ca2+ events were consistent with action-potential-independent spontaneous glutamate release, suggesting plumes are a consequence of inefficient clearance following synaptic release. Importantly, a rise in basal glutamate and plume frequency predicted the onset of SD in both FHM2 and wild-type mice, providing a novel mechanism in migraine with aura and, by extension, the other neurological disorders where SD occurs.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Pratyush Suryavanshi
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60020, Italy
| | - Punam A Sawant-Pokam
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Katelyn M Reinhart
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Dan Kaufmann
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Jeremy J Theriot
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Arianna Pugliese
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60020, Italy; Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona 60020, Italy
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy; CNR Institute of Neuroscience, 35131 Padova, Italy.
| | - K C Brennan
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| |
Collapse
|
5
|
Beckner ME. A roadmap for potassium buffering/dispersion via the glial network of the CNS. Neurochem Int 2020; 136:104727. [PMID: 32194142 DOI: 10.1016/j.neuint.2020.104727] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
Glia use multiple mechanisms to mediate potassium fluxes that support neuronal function. In addition to changes in potassium levels within synapses, these ions are dynamically dispersed through the interstitial parenchyma, perivascular spaces, leptomeninges, cerebrospinal fluid, choroid plexus, blood, vitreous, and endolymph. Neural circuits drive diversity in the glia that buffer potassium and this is reciprocal. Glia mediate buffering of potassium locally at glial-neuronal interfaces and via widespread networked connections. Control of potassium levels in the central nervous system is mediated by mechanisms operating at various loci with complexity that is difficult to model. However, major components of networked glial buffering are known. The role that potassium buffering plays in homeostasis of the CNS underlies some pathologic phenomena. An overview of potassium fluxes in the CNS is relevant for understanding consequences of pathogenic sequence variants in genes that encode potassium buffering proteins. Potassium flows in the CNS are described as follows: K1, the coordinated potassium fluxes within the astrocytic cradle around the synapse; K2, temporary storage of potassium within astrocytic processes in proposed microdomains; K3, potassium fluxes between oligodendrocytes and astrocytes; K4, potassium fluxes between astrocytes; K5, astrocytic potassium flux mediation of neurovasular coupling; K6, CSF delivery of potassium to perivascular spaces with dispersion to interstitial fluid between astrocytic endfeet; K7, astrocytic delivery of potassium to CSF and K8, choroid plexus (modified glia) regulation of potassium at the blood-CSF barrier. Components, mainly potassium channels, transporters, connexins and modulators, and the pathogenic sequence variants of their genes with the associated diseases are described.
Collapse
Affiliation(s)
- Marie E Beckner
- School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
6
|
Abstract
The cellular mechanisms governing the expression, regulation, and function of sleep are not entirely understood. The traditional view is that these mechanisms are neuronal. An alternative view is that glial brain cells may play important roles in these processes. Their ubiquity in the central nervous system makes them well positioned to modulate neuronal circuits that gate sleep and wake. Their ability to respond to chemical neuronal signals suggests that they form feedback loops with neurons that may globally regulate neuronal activity. Their potential role in detoxifying the brain, regulating neuronal metabolism, and promoting synaptic plasticity raises the intriguing possibility that glia mediate important functions ascribed to sleep.
Collapse
Affiliation(s)
- Marcos G Frank
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University Spokane, Spokane, WA, USA.
| |
Collapse
|
7
|
Bar El Y, Kanner S, Barzilai A, Hanein Y. Activity changes in neuron-astrocyte networks in culture under the effect of norepinephrine. PLoS One 2018; 13:e0203761. [PMID: 30332429 PMCID: PMC6192555 DOI: 10.1371/journal.pone.0203761] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/27/2018] [Indexed: 11/26/2022] Open
Abstract
The concerted activity of neuron-glia networks is responsible for the fascinating dynamics of brain functions. Although these networks have been extensively investigated using a variety of experimental (in vivo and in vitro) and theoretical models, the manner by which neuron-glia networks interact is not fully understood. In particular, how neuromodulators influence network-level signaling between neurons and astrocytes was poorly addressed. In this work, we investigated global effects of the neuromodulator norepinephrine (NE) on neuron-astrocyte network communication in co-cultures of neurons and astrocytes and in isolated astrocyte networks. Electrical stimulation was used to activate the neuron-astrocyte glutamate-mediated pathway. Our results showed dramatic changes in network activity under applied global perturbations. Under neuromodulation, there was a marked rise in calcium signaling in astrocytes, neuronal spontaneous activity was reduced, and the communication between neuron-astrocyte networks was perturbed. Moreover, in the presence of NE, we observed two astrocyte behaviors based on their coupling to neurons. There were also morphological changes in astrocytes upon application of NE, suggesting a physical cause underlies the change in signaling. Our results shed light on the role of NE in controlling sleep-wake cycles.
Collapse
Affiliation(s)
- Yasmin Bar El
- School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel
| | - Sivan Kanner
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Hanein
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
- School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel
- * E-mail:
| |
Collapse
|
8
|
Rimmele TS, de Castro Abrantes H, Wellbourne-Wood J, Lengacher S, Chatton JY. Extracellular Potassium and Glutamate Interact To Modulate Mitochondria in Astrocytes. ACS Chem Neurosci 2018; 9:2009-2015. [PMID: 29741354 DOI: 10.1021/acschemneuro.8b00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Astrocytes clear glutamate and potassium, both of which are released into the extracellular space during neuronal activity. These processes are intimately linked with energy metabolism. Whereas astrocyte glutamate uptake causes cytosolic and mitochondrial acidification, extracellular potassium induces bicarbonate-dependent cellular alkalinization. This study aimed at quantifying the combined impact of glutamate and extracellular potassium on mitochondrial parameters of primary cultured astrocytes. Glutamate in 3 mM potassium caused a stronger acidification of mitochondria compared to cytosol. 15 mM potassium caused alkalinization that was stronger in the cytosol than in mitochondria. While the combined application of 15 mM potassium and glutamate led to a marked cytosolic alkalinization, pH only marginally increased in mitochondria. Thus, potassium and glutamate effects cannot be arithmetically summed, which also applies to their effects on mitochondrial potential and respiration. The data implies that, because of the nonlinear interaction between the effects of potassium and glutamate, astrocytic energy metabolism will be differentially regulated.
Collapse
Affiliation(s)
- Theresa S. Rimmele
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Joel Wellbourne-Wood
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
9
|
Kjaerby C, Rasmussen R, Andersen M, Nedergaard M. Does Global Astrocytic Calcium Signaling Participate in Awake Brain State Transitions and Neuronal Circuit Function? Neurochem Res 2017; 42:1810-1822. [PMID: 28210958 DOI: 10.1007/s11064-017-2195-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
Abstract
We continuously need to adapt to changing conditions within our surrounding environment, and our brain needs to quickly shift between resting and working activity states in order to allow appropriate behaviors. These global state shifts are intimately linked to the brain-wide release of the neuromodulators, noradrenaline and acetylcholine. Astrocytes have emerged as a new player participating in the regulation of brain activity, and have recently been implicated in brain state shifts. Astrocytes display global Ca2+ signaling in response to activation of the noradrenergic system, but whether astrocytic Ca2+ signaling is causative or correlative for shifts in brain state and neural activity patterns is not known. Here we review the current available literature on astrocytic Ca2+ signaling in awake animals in order to explore the role of astrocytic signaling in brain state shifts. Furthermore, we look at the development and availability of innovative new methodological tools that are opening up for new ways of visualizing and perturbing astrocyte activity in awake behaving animals. With these new tools at hand, the field of astrocyte research will likely be able to elucidate the causal and mechanistic roles of astrocytes in complex behaviors within a very near future.
Collapse
Affiliation(s)
- Celia Kjaerby
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Rune Rasmussen
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark.,Department of Biomedicine, The Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Mie Andersen
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Maiken Nedergaard
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Building 24.2, Blegdamsvej 3B, 2200, Copenhagen N, Denmark. .,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
10
|
Abstract
Sleep is a complex physiological process that is regulated globally, regionally, and locally by both cellular and molecular mechanisms. It occurs to some extent in all animals, although sleep expression in lower animals may be co-extensive with rest. Sleep regulation plays an intrinsic part in many behavioral and physiological functions. Currently, all researchers agree there is no single physiological role sleep serves. Nevertheless, it is quite evident that sleep is essential for many vital functions including development, energy conservation, brain waste clearance, modulation of immune responses, cognition, performance, vigilance, disease, and psychological state. This review details the physiological processes involved in sleep regulation and the possible functions that sleep may serve. This description of the brain circuitry, cell types, and molecules involved in sleep regulation is intended to further the reader's understanding of the functions of sleep.
Collapse
Affiliation(s)
- Mark R. Zielinski
- Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA and Harvard Medical School, Department of Psychiatry
| | - James T. McKenna
- Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA and Harvard Medical School, Department of Psychiatry
| | - Robert W. McCarley
- Veterans Affairs Boston Healthcare System, Brockton, MA 02301, USA and Harvard Medical School, Department of Psychiatry
| |
Collapse
|
11
|
Abstract
In the last decade, the brain's oscillatory responses have invaded the literature. The studies on delta (0.5-3.5Hz) oscillatory responses in humans upon application of cognitive paradigms showed that delta oscillations are related to cognitive processes, mainly in decision making and attentional processes. The present manuscript comprehensively reviews the studies on delta oscillatory responses upon cognitive stimulation in healthy subjects and in different pathologies, namely Alzheimer's disease, Mild Cognitive Impairment (MCI), bipolar disorder, schizophrenia and alcoholism. Further delta oscillatory response upon presentation of faces, facial expressions, and affective pictures are reviewed. The relationship between pre-stimulus delta activity and post-stimulus evoked and event-related responses and/or oscillations is discussed. Cross-frequency couplings of delta oscillations with higher frequency windows are also included in the review. The conclusion of this review includes several important remarks, including that delta oscillatory responses are involved in cognitive and emotional processes. A decrease of delta oscillatory responses could be a general electrophysiological marker for cognitive dysfunction (Alzheimer's disease, MCI, bipolar disorder, schizophrenia and alcoholism). The pre-stimulus activity (phase or amplitude changes in delta activity) has an effect on post-stimulus EEG responses.
Collapse
Affiliation(s)
- Bahar Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey.
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey
| |
Collapse
|
12
|
A novel optical intracellular imaging approach for potassium dynamics in astrocytes. PLoS One 2014; 9:e109243. [PMID: 25275375 PMCID: PMC4183569 DOI: 10.1371/journal.pone.0109243] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022] Open
Abstract
Astrocytes fulfill a central role in regulating K+ and glutamate, both released by neurons into the extracellular space during activity. Glial glutamate uptake is a secondary active process that involves the influx of three Na+ ions and one proton and the efflux of one K+ ion. Thus, intracellular K+ concentration ([K+]i) is potentially influenced both by extracellular K+ concentration ([K+]o) fluctuations and glutamate transport in astrocytes. We evaluated the impact of these K+ ion movements on [K+]i in primary mouse astrocytes by microspectrofluorimetry. We established a new noninvasive and reliable approach to monitor and quantify [K+]i using the recently developed K+ sensitive fluorescent indicator Asante Potassium Green-1 (APG-1). An in situ calibration procedure enabled us to estimate the resting [K+]i at 133±1 mM. We first investigated the dependency of [K+]i levels on [K+]o. We found that [K+]i followed [K+]o changes nearly proportionally in the range 3–10 mM, which is consistent with previously reported microelectrode measurements of intracellular K+ concentration changes in astrocytes. We then found that glutamate superfusion caused a reversible drop of [K+]i that depended on the glutamate concentration with an apparent EC50 of 11.1±1.4 µM, corresponding to the affinity of astrocyte glutamate transporters. The amplitude of the [K+]i drop was found to be 2.3±0.1 mM for 200 µM glutamate applications. Overall, this study shows that the fluorescent K+ indicator APG-1 is a powerful new tool for addressing important questions regarding fine [K+]i regulation with excellent spatial resolution.
Collapse
|
13
|
Güntekin B, Başar E. A review of brain oscillations in perception of faces and emotional pictures. Neuropsychologia 2014; 58:33-51. [PMID: 24709570 DOI: 10.1016/j.neuropsychologia.2014.03.014] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/07/2014] [Accepted: 03/26/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Bahar Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey.
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey
| |
Collapse
|
14
|
Dallérac G, Chever O, Rouach N. How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci 2013; 7:159. [PMID: 24101894 PMCID: PMC3787198 DOI: 10.3389/fncel.2013.00159] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/02/2013] [Indexed: 02/01/2023] Open
Abstract
A major breakthrough in neuroscience has been the realization in the last decades that the dogmatic view of astroglial cells as being merely fostering and buffering elements of the nervous system is simplistic. A wealth of investigations now shows that astrocytes actually participate in the control of synaptic transmission in an active manner. This was first hinted by the intimate contacts glial processes make with neurons, particularly at the synaptic level, and evidenced using electrophysiological and calcium imaging techniques. Calcium imaging has provided critical evidence demonstrating that astrocytic regulation of synaptic efficacy is not a passive phenomenon. However, given that cellular activation is not only represented by calcium signaling, it is also crucial to assess concomitant mechanisms. We and others have used electrophysiological techniques to simultaneously record neuronal and astrocytic activity, thus enabling the study of multiple ionic currents and in depth investigation of neuro-glial dialogues. In the current review, we focus on the input such approach has provided in the understanding of astrocyte-neuron interactions underlying control of synaptic efficacy.
Collapse
Affiliation(s)
- Glenn Dallérac
- Neuroglial Interactions in Cerebral Physiopathology, Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France Paris, France
| | | | | |
Collapse
|
15
|
Sibille J, Pannasch U, Rouach N. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse. J Physiol 2013; 592:87-102. [PMID: 24081156 DOI: 10.1113/jphysiol.2013.261735] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Astroglial processes enclose ∼60% of CA1 hippocampal synapses to form the tripartite synapse. Although astrocytes express ionic channels, neurotransmitter receptors and transporters to detect neuronal activity, the nature, plasticity and impact of the currents induced by neuronal activity on short-term synaptic plasticity remain elusive in hippocampal astrocytes. Using simultaneous electrophysiological recordings of astrocytes and neurons, we found that single stimulation of Schaffer collaterals in hippocampal slices evokes in stratum radiatum astrocytes a complex prolonged inward current synchronized to synaptic and spiking activity in CA1 pyramidal cells. The astroglial current is composed of three components sensitive to neuronal activity, i.e. a long-lasting potassium current mediated by Kir4.1 channels, a transient glutamate transporter current and a slow residual current, partially mediated by GABA transporters and Kir4.1-independent potassium channels. We show that all astroglial membrane currents exhibit activity-dependent short-term plasticity. However, only the astroglial glutamate transporter current displays neuronal-like dynamics and plasticity. As Kir4.1 channel-mediated potassium uptake contributes to 80% of the synaptically evoked astroglial current, we investigated in turn its impact on short-term synaptic plasticity. Using glial conditional Kir4.1 knockout mice, we found that astroglial potassium uptake reduces synaptic responses to repetitive stimulation and post-tetanic potentiation. These results show that astrocytes integrate synaptic activity via multiple ionic channels and transporters and contribute to short-term plasticity in part via potassium clearance mediated by Kir4.1 channels.
Collapse
Affiliation(s)
- Jérémie Sibille
- N. Rouach: Neuroglial Interactions in Cerebral Physiopathology, Collège de France, CIRB, CNRS UMR 7241, INSERM U1050, 11, place Marcelin Berthelot, 75005 Paris, France.
| | | | | |
Collapse
|
16
|
Frank MG. Astroglial regulation of sleep homeostasis. Curr Opin Neurobiol 2013; 23:812-8. [PMID: 23518138 DOI: 10.1016/j.conb.2013.02.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022]
Abstract
Mammalian sleep is regulated by two distinct mechanisms. A circadian oscillator provides timing signals that organize sleep and wake across the 24 hour day. A homeostatic mechanism increases sleep drive and sleep amounts (or intensity) as a function of prior time awake. The cellular mechanisms of sleep homeostasis are poorly defined, but are thought to be primarily neuronal. According to one view, sleep homeostasis arises from interactions between subcortical neurons that register sleep pressure and other neurons that promote either sleep or wakefulness. Alternatively, sleep drive may arise independently among neurons throughout the brain in a use-dependent fashion. Implicit in both views is the idea that sleep homeostasis is solely the product of neurons. In this article, I discuss an emerging view that glial astrocytes may play an essential role in sleep homeostasis.
Collapse
Affiliation(s)
- Marcos G Frank
- University of Pennsylvania, Perelman School of Medicine, Department of Neuroscience, 215 Stemmler Hall, 35th & Hamilton Walk, Philadelphia, PA 19104-6074, United States.
| |
Collapse
|
17
|
|
18
|
Ramachandraiah CT, Sinha S, Taly AB, Rao S, Satishchandra P. Interrelationship of sleep and juvenile myoclonic epilepsy (JME): a sleep questionnaire-, EEG-, and polysomnography (PSG)-based prospective case-control study. Epilepsy Behav 2012; 25:391-6. [PMID: 23103316 DOI: 10.1016/j.yebeh.2012.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/06/2012] [Accepted: 08/08/2012] [Indexed: 11/16/2022]
Abstract
We studied the effects of 'epilepsy on sleep and its architecture' and 'sleep on the occurrence and distribution of interictal epileptiform discharges (ED)' using 'sleep questionnaires', 'EEG', and 'PSG' in patients with JME. Forty patients with JME [20 on valproate (Group I - 20.8±4.0 years; M: F=9:11) and 20 drug-naïve (Group II - 24.4±6.7 years; M: F=9:11)] and 20 controls (M: F=9:11; age: 23.5±4.7 years) underwent assessment with Epworth Sleepiness Scale (ESS), Pittsburgh Sleep Quality Index (PSQI), overnight PSG, and scalp-EEG. Epileptiform discharges (EDs) were quantified in different sleep stages. The 'ED Index' was derived as number of EDs/min per stage. Statistical Package for the Social Sciences (SPSS) vs. 11 was used for statistical analysis. A 'p' <0.05 was considered as statistically significant. There was poor sleep quality in patients compared to controls (p=0.02), while there was no significant difference in ESS scores between the groups. The PSG parameters were comparable in both groups. Routine EEG revealed EDs in 22/40 (Group I: 7 and Group II: 15) patients. Thirty-five patients had EDs in various sleep stages during PSG (Group I: 17 and Group II: 18): N1 - Group I: 9 and Group II: 14, N2 - Group I: 14 and Group II: 14, N3 - Group I: 14 and Group II: 10, and REM - Group I: 9 and Group II: 11. The ED Index was higher during N2/N3 in Group I and N1/REM in Group II. The epileptiform discharges were frequently associated with arousals in N1/REM and K-complexes in N2. There was no other significant difference between Groups I and II. In conclusion, there was poor sleep quality in patients with JME compared to controls, especially those on valproate who had altered sleep architecture. Epileptiform activity was observed more often in sleep than wakefulness. Sleep stages had variable effect on epileptiform discharges with light sleep having a facilitatory effect in the drug-naïve group and slow wave sleep having a facilitatory effect in the valproate group.
Collapse
Affiliation(s)
- C T Ramachandraiah
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Hosur Road, Bangalore 560029, Karnataka, India
| | | | | | | | | |
Collapse
|
19
|
Abstract
Before the roles of normal, mature astrocytes in the mammalian CNS can be discussed, we first need to define these cells. A definition proposed here is that such a class is best defined as consisting of the protoplasmic and fibrous astrocytes of the gray and white matter, respectively, the Bergmann glia of the molecular layer of the cerebellum, and the Muller cells of the retina. It is concluded that the established properties and functions of these mature astrocytes are essential support for neuronal activity, in the sense of Claude Bernard's principle of maintaining "la fixité du milieu intérieur." This milieu would be the extracellular space common to astrocytes and neurons. More specialized roles, such as the recently described "light guides" for retinal Muller cells can also be viewed as support and facilitation. The ECS is also, of course, common to all other neural cells, but here, I limit the discussion to perturbations of the ECS caused only by neuronal activities and the resolution of these perturbations by astrocytes, such as control of increases in extracellular K(+), uptake of excitatory amino acids, and alterations in blood vessel diameter and therefore blood flow. It is also proposed how this fits into the current morphological picture for the protoplasmic astrocytes as having small cell bodies with up to 100,000 process endings that occupy separate territories on which the processes of neighboring astrocytes scarcely intrude.
Collapse
|
20
|
Menicucci D, Piarulli A, Debarnot U, d'Ascanio P, Landi A, Gemignani A. Functional structure of spontaneous sleep slow oscillation activity in humans. PLoS One 2009; 4:e7601. [PMID: 19855839 PMCID: PMC2762602 DOI: 10.1371/journal.pone.0007601] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 10/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background During non-rapid eye movement (NREM) sleep synchronous neural oscillations between neural silence (down state) and neural activity (up state) occur. Sleep Slow Oscillations (SSOs) events are their EEG correlates. Each event has an origin site and propagates sweeping the scalp. While recent findings suggest a SSO key role in memory consolidation processes, the structure and the propagation of individual SSO events, as well as their modulation by sleep stages and cortical areas have not been well characterized so far. Methodology/Principal Findings We detected SSO events in EEG recordings and we defined and measured a set of features corresponding to both wave shapes and event propagations. We found that a typical SSO shape has a transition to down state, which is steeper than the following transition from down to up state. We show that during SWS SSOs are larger and more locally synchronized, but less likely to propagate across the cortex, compared to NREM stage 2. Also, the detection number of SSOs as well as their amplitudes and slopes, are greatest in the frontal regions. Although derived from a small sample, this characterization provides a preliminary reference about SSO activity in healthy subjects for 32-channel sleep recordings. Conclusions/Significance This work gives a quantitative picture of spontaneous SSO activity during NREM sleep: we unveil how SSO features are modulated by sleep stage, site of origin and detection location of the waves. Our measures on SSOs shape indicate that, as in animal models, onsets of silent states are more synchronized than those of neural firing. The differences between sleep stages could be related to the reduction of arousal system activity and to the breakdown of functional connectivity. The frontal SSO prevalence could be related to a greater homeostatic need of the heteromodal association cortices.
Collapse
Affiliation(s)
- Danilo Menicucci
- Institute of Clinical Physiology, CNR, Pisa, Italy
- EXTREME Centre, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Ursula Debarnot
- Centre de Recherche et d'Innovation sur le Sport, Université Claude Bernard Lyon I, Lyon, France
| | - Paola d'Ascanio
- EXTREME Centre, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Alberto Landi
- EXTREME Centre, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Electrical Systems and Automation, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- EXTREME Centre, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Physiological Sciences, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
21
|
Abstract
The functions of sleep have been an enduring mystery. Tononi and Cirelli (2003) hypothesized that one of the functions of slow-wave sleep is to scale down synapses in the cortex that have strengthened during awake learning. We create a computational model to test the functionality of this idea and examine some of its implications. We show that synaptic scaling during slow-wave sleep is capable of keeping Hebbian learning in check and that it enables stable development. We also show theoretically how it implements classical weight normalization, which has been in common use in neural models for decades. Finally, a significant computational limitation of this form of synaptic scaling is revealed through computer simulations.
Collapse
Affiliation(s)
- Thomas J Sullivan
- Department of Biology, University of California-San Diego, La Jolla, CA 92093, U.S.A.
| | | |
Collapse
|
22
|
Juszczak GR, Swiergiel AH. Properties of gap junction blockers and their behavioural, cognitive and electrophysiological effects: animal and human studies. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:181-98. [PMID: 19162118 DOI: 10.1016/j.pnpbp.2008.12.014] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Gap junctions play an important role in brain physiology. They synchronize neuronal activity and connect glial cells participating in the regulation of brain metabolism and homeostasis. Gap junction blockers (GJBs) include various chemicals that impair gap junction communication, disrupt oscillatory neuronal activity over a wide range of frequencies, and decrease epileptic discharges. The behavioural and clinical effects of GJBs suggest that gap junctions can be involved in the regulation of locomotor activity, arousal, memory, and breathing. Severe neuropsychiatric side effects suggest the involvement of gap junctions in mechanisms of consciousness. Unfortunately, the available GJBs are not selective and can bind to targets other than gap junctions. Other problems in behavioural studies include the possible adverse effects of GJBs, for example, retinal toxicity and hearing disturbances, changes in blood-brain transport, and the metabolism of other drugs. Therefore, it is necessary to design experiments properly to avoid false, misleading or uninterpretable results. We review the pharmacological properties and electrophysiological, behavioural and cognitive effects of the available gap junction blockers, such as carbenoxolone, glycyrrhetinic acid, quinine, quinidine, mefloquine, heptanol, octanol, anandamide, fenamates, 2-APB, several anaesthetics, retinoic acid, oleamide, spermine, aminosulfonates, and sodium propionate. It is concluded that despite a number of different problems, the currently used gap junction blockers could be useful tools in pharmacology and neuroscience.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behaviour, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 1, 05-552 Wolka Kosowska, Poland.
| | | |
Collapse
|
23
|
Abstract
There is growing evidence in favor of the temporal-coding hypothesis that temporal correlation of neuronal discharges may serve to bind distributed neuronal activity into unique representations and, in particular, that theta (3.5-7.5 Hz) and delta (0.5 < 3.5 Hz) oscillations facilitate information coding. The theta- and delta-rhythms are shown to be involved in various sleep stages, and during anesthesia, they undergo changes with the depth of anesthesia. We introduce a thalamocortical model of interacting neuronal ensembles to describe phase relationships between theta- and delta-oscillations, especially during deep and light anesthesia. Asymmetric and long-range interactions among the thalamocortical neuronal oscillators are taken into account. The model results are compared with experimental observations. The delta- and theta-activities are found to be separately generated and are governed by the thalamus and cortex, respectively. Changes in the degree of intraensemble and interensemble synchrony imply that the neuronal ensembles inhibit information coding during deep anesthesia and facilitate it during light anesthesia.
Collapse
|
24
|
Banaclocha MAM. Neuromagnetic dialogue between neuronal minicolumns and astroglial network: A new approach for memory and cerebral computation. Brain Res Bull 2007; 73:21-7. [PMID: 17499632 DOI: 10.1016/j.brainresbull.2007.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/27/2006] [Accepted: 01/23/2007] [Indexed: 01/30/2023]
Abstract
Rapidly accumulating experimental data over the past two decades discloses extremely complex neuro-glial interactions and provides new insights regarding novel roles of glial cells, particularly astrocytes, in complex functions. Widespread astrocytic processes, interconnected by gap junctions, form an extremely large physiological syncytium. This structure in conjunction with neuronal activity, very likely contributes to cognitive functions. Based on electrophysiological and neuroanatomical data, the present hypothesis proposes a self-organised, iterative and reciprocal magnetic interaction between neurones and astrocytes to explain neurocomputation, including memory processing, in the human neocortex.
Collapse
|
25
|
Musizza B, Stefanovska A, McClintock PVE, Palus M, Petrovcic J, Ribaric S, Bajrovic FF. Interactions between cardiac, respiratory and EEG-delta oscillations in rats during anaesthesia. J Physiol 2007; 580:315-26. [PMID: 17234691 PMCID: PMC2075429 DOI: 10.1113/jphysiol.2006.126748] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We hypothesized that, associated with the state of anaesthesia, characteristic changes exist in both cardio-respiratory and cerebral oscillator parameters and couplings, perhaps varying with depth of anaesthesia. Electrocardiograms (ECGs), respiration and electroencephalograms (EEGs) were recorded from two groups of 10 rats during the entire course of anaesthesia following the administration of a single bolus of ketamine-xylazine (KX group) or pentobarbital (PB group). The phase dynamics approach was then used to extract the instantaneous frequencies of heart beat, respiration and slow delta-waves (within 0.5-3.5 Hz). The amplitudes of delta- and theta-waves were analysed by use of a time-frequency representation of the EEG signal within 0.5-7.5 Hz obtained by wavelet transformation, using the Morlet mother wavelet. For the KX group, where slow delta-waves constituted the dominant spectral component, the Hilbert transform was applied to obtain the instantaneous delta-frequency. The theta-activity was spread over too wide a spectral range for its phase to be meaningfully defined. For both agents, we observed two distinct phases of anaesthesia, with a marked increase in theta-wave activity occurring on passage from a deeper phase of anaesthesia to a shallower one. In other respects, the effects of the two anaesthetics were very different. For KX anaesthesia, the two phases were separated by a marked change in all three instantaneous frequencies: stable, deep, anaesthesia with small frequency variability was followed by a sharp transition to shallow anaesthesia with large frequency variability, lasting until the animal awoke. The transition occurred 16-76 min after injection of the anaesthetic, with simultaneous reduction in the delta-wave amplitude. For PB anaesthesia, the two epochs were separated by the return of a positive response to the pinch test at 53-94 min, following which it took a further period of 45-70 min for the animal to awaken. delta-Waves were not apparent at any stage of PB anaesthesia. We applied non-linear dynamics and information theory to seek evidence of causal relationships between the cardiac, respiratory and slow delta-oscillations. We demonstrate that, for both groups, respiration drives the cardiac oscillator during deep anaesthesia. During shallow KX anaesthesia the direction either reverses, or the cardio-respiratory interaction becomes insignificant; in the deep phase, there is a unidirectional deterministic interaction of respiration with slow delta-oscillations. For PB anaesthesia, the cardio-respiratory interaction weakens during the second phase but, otherwise, there is no observable change in the interactions. We conclude that non-linear dynamics and information theory can be used to identify different stages of anaesthesia and the effects of different anaesthetics.
Collapse
Affiliation(s)
- Bojan Musizza
- Department of Systems and Control, Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
26
|
Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A. Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 2006; 453:385-96. [PMID: 17047983 DOI: 10.1007/s00424-006-0150-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 08/02/2006] [Indexed: 01/20/2023]
Abstract
The precise understanding of the cellular and molecular basis of brain function requires the direct assessment of the activity of defined cells in vivo. A promising approach for such analyses is two-photon microscopy in combination with appropriate cell labeling techniques. Here, we review the multi-cell bolus loading (MCBL) method that involves the use of membrane-permeant fluorescent indicator dyes. We show that this approach is useful for the functional analysis of clusters of neurons and glial cells in vivo. Work from our and other laboratories shows that the techniques that were previously feasible only in brain slices, like targeted patch clamp recordings from identified cells or pharmacological manipulations in confined brain regions, can now be used also in vivo. We also show that MCBL and two-photon imaging can be easily combined with other labeling techniques, particularly with those involving the use of genetically encoded, green-fluorescent-protein-based indicators. Finally, we examine recent applications of MCBL/two-photon imaging for the analysis of various brain regions, including the somatosensory and the visual cortex.
Collapse
Affiliation(s)
- Olga Garaschuk
- Institut für Neurowissenschaften, Technische Universität München, Biedersteinerstr. 29, 80802, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Huang TY, Hanani M, Ledda M, De Palo S, Pannese E. Aging is associated with an increase in dye coupling and in gap junction number in satellite glial cells of murine dorsal root ganglia. Neuroscience 2006; 137:1185-92. [PMID: 16326013 DOI: 10.1016/j.neuroscience.2005.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/25/2005] [Accepted: 10/17/2005] [Indexed: 12/20/2022]
Abstract
Glial cells in both central and peripheral nervous systems are connected by gap junctions, which allow electrical and metabolic coupling between them. In spite of the great current interest in aging of the nervous system, the effect of aging on glial cell coupling received little attention. We examined coupling between satellite glial cells in murine dorsal root ganglia using the dye coupling technique and electron microscopy. We studied mice at ages of postnatal 90-730 days. Dye coupling incidence between satellite glial cells associated with a single neuron increased from 24.2% at postnatal day 90 to 50.5% at postnatal day 730. Dye coupling between satellite glial cells that are in contact with two or more neurons increased from 2.7% at postnatal day 90 to 18.6% at postnatal day 730 (P<0.05). Examination of the ganglia with the electron microscope showed that the number of gap junctions per 100 microm2 of surface area of satellite glial cells increased from 0.22 at postnatal day 90 to 1.56 at postnatal day 730 (P<0.01). The mean length of individual gap junctions did not change with age. These results provide strong evidence for an increase of functional coupling between satellite glial cells during life. This increase is apparently due to an increase in the total area of the system of gap junctions connecting these cells.
Collapse
Affiliation(s)
- T Y Huang
- Laboratory of Experimental Surgery, Hebrew University-Hadassah Medical School, Mount Scopus, Jerusalem 91240, Israel
| | | | | | | | | |
Collapse
|
28
|
Martínez Banaclocha MA. Magnetic storage of information in the human cerebral cortex: a hypothesis for memory. Int J Neurosci 2005; 115:329-37. [PMID: 15804719 DOI: 10.1080/00207450590520939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The diversity of memory phenomena argues against a single place or anatomical structure for memory in the nervous system. Moreover, molecular mechanisms of information storage and synaptic transmission seem insufficient to support contextual recall and other very complex human memory processes. Here, we propose a new physical model for memory based on the magnetic fields associated with neuronal activity and its possible interaction with the adjacent astroglial network. The hypothesis emphasizes the architectural organization of the human cerebral cortex because the close geometrical relationships between neuronal minicolums and astroglial network acquire transcendental importance.
Collapse
|
29
|
Vanhatalo S, Voipio J, Kaila K. Full-band EEG (FbEEG): an emerging standard in electroencephalography. Clin Neurophysiol 2005; 116:1-8. [PMID: 15589176 DOI: 10.1016/j.clinph.2004.09.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2004] [Indexed: 11/22/2022]
Abstract
While enormous resources have been recently invested into the development of a variety of neuroimaging techniques, the bandwidth of the clinical EEG, originally set by trivial technical limitations, has remained practically unaltered for over 50 years. An increasing amount of evidence shows that salient EEG signals are observed beyond the bandwidth of the routine clinical EEG, which is typically around 0.5-50 Hz. Physiological and pathological EEG activity ranges at least from 0.01 Hz to several hundred Hz, as demonstrated in recordings of spontaneous activity in the immature human brain, as well as during epileptic seizures, or various kinds of cognitive tasks and states in the adult brain. In the present paper, we will review several arguments leading to the conclusion that elimination of the lower (infraslow) or higher (ultrafast) bands of the EEG frequency spectrum in routine EEG leads to situations where salient and physiologically meaningful features of brain activity are ignored. Recording the full, physiologically relevant range of frequencies is readily attained with commercially available direct-current (DC) coupled amplifiers, which have a wide dynamic range and a high sampling rate. Such amplifiers, combined with appropriate DC-stable electrode-skin interface, provide a genuine full-band EEG (FbEEG). FbEEG is mandatory for a faithful, non-distorted and non-attenuated recording, and it does not have trade-offs that would favor any frequency band at the expense of another. With the currently available electrode, amplifier and data acquisition technology, FbEEG is likely to become the standard approach for a wide range of applications in both basic science and in the clinic.
Collapse
Affiliation(s)
- Sampsa Vanhatalo
- Department of Clinical Neurophysiology, University Hospital of Helsinki, P.O. Box 340, 00029 HUS, Finland.
| | | | | |
Collapse
|
30
|
Abstract
When the brain goes from wakefulness to sleep, cortical neurons begin to undergo slow oscillations in their membrane potential that are synchronized by thalamocortical circuits and reflected in EEG slow waves. To provide a self-consistent account of the transition from wakefulness to sleep and of the generation of sleep slow waves, we have constructed a large-scale computer model that encompasses portions of two visual areas and associated thalamic and reticular thalamic nuclei. Thousands of model neurons, incorporating several intrinsic currents, are interconnected with millions of thalamocortical, corticothalamic, and both intra- and interareal corticocortical connections. In the waking mode, the model exhibits irregular spontaneous firing and selective responses to visual stimuli. In the sleep mode, neuromodulatory changes lead to slow oscillations that closely resemble those observed in vivo and in vitro. A systematic exploration of the effects of intrinsic currents and network parameters on the initiation, maintenance, and termination of slow oscillations shows the following. 1) An increase in potassium leak conductances is sufficient to trigger the transition from wakefulness to sleep. 2) The activation of persistent sodium currents is sufficient to initiate the up-state of the slow oscillation. 3) A combination of intrinsic and synaptic currents is sufficient to maintain the up-state. 4) Depolarization-activated potassium currents and synaptic depression terminate the up-state. 5) Corticocortical connections synchronize the slow oscillation. The model is the first to integrate intrinsic neuronal properties with detailed thalamocortical anatomy and reproduce neural activity patterns in both wakefulness and sleep, thereby providing a powerful tool to investigate the role of sleep in information transmission and plasticity.
Collapse
Affiliation(s)
- Sean Hill
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Boulevard, Madison, WI 53719-1176, USA.
| | | |
Collapse
|
31
|
Bédard C, Kröger H, Destexhe A. Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J 2004; 86:1829-42. [PMID: 14990509 PMCID: PMC1304017 DOI: 10.1016/s0006-3495(04)74250-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Extracellular local field potentials are usually modeled as arising from a set of current sources embedded in a homogeneous extracellular medium. Although this formalism can successfully model several properties of extracellular local field potentials, it does not account for their frequency-dependent attenuation with distance, a property essential to correctly model extracellular spikes. Here we derive expressions for the extracellular potential that include this frequency-dependent attenuation. We first show that, if the extracellular conductivity is nonhomogeneous, there is induction of nonhomogeneous charge densities that may result in a low-pass filter. We next derive a simplified model consisting of a punctual (or spherical) current source with spherically symmetric conductivity/permittivity gradients around the source. We analyze the effect of different radial profiles of conductivity and permittivity on the frequency-filtering behavior of this model. We show that this simple model generally displays low-pass filtering behavior, in which fast electrical events (such as Na(+)-mediated action potentials) attenuate very steeply with distance, whereas slower (K(+)-mediated) events propagate over larger distances in extracellular space, in qualitative agreement with experimental observations. This simple model can be used to obtain frequency-dependent extracellular field potentials without taking into account explicitly the complex folding of extracellular space.
Collapse
Affiliation(s)
- Claude Bédard
- Département de Physique, Université Laval, Québec, Québec G1K 7P4, Canada
| | | | | |
Collapse
|
32
|
Schaller B, Rüegg SJ. Brain tumor and seizures: pathophysiology and its implications for treatment revisited. Epilepsia 2003; 44:1223-32. [PMID: 12919395 DOI: 10.1046/j.1528-1157.2003.05203.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seizures affect approximately 50% of patients with primary and metastatic brain tumors. Partial seizures have the highest incidence, followed by secondarily generalized, depending on histologic subtype, location, and tumor extent. The underlying pathophysiologic mechanisms of tumor-associated seizures are poorly understood and include theories of altered peritumoral amino acids, regional metabolism, pH, neuronal or glial enzyme and protein expression, as well as immunologic activity. An involvement of changed distribution and function of N-methyl-d-aspartate subclass of glutamate receptors also has been suggested. The often unpredictable responses to seizures after surgical tumor removal add substantial evidence that multiple factors are involved. The therapy of tumor-related seizures is far from perfect. Several factors contribute to these treatment difficulties, such as tumor growth and drug interactions; however, one of the main reasons for poor seizure control may result from the insufficient or even absent influence of the currently available antiepileptic drugs (AEDs) on most of the pathophysiologic mechanisms of tumor-related seizures. Studies are needed to elucidate more clearly the pathophysiologic mechanisms of tumor-related seizures and to identify and develop the optimal AEDs.
Collapse
|