1
|
Fard MB, Atashi A, Amiri S, Kaviani S, Gholampour MA, Ajami M. Parvovirus B19 affects thrombopoietin and IL-11 gene expression in human bone marrow mesenchymal stem cells. Future Virol 2021. [DOI: 10.2217/fvl-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Human bone marrow mesenchymal stem cells (hBMSCs) may be infected by parvovirus B19 (B19V). hBMSCs support bone marrow hematopoiesis by producing stromal cells, secretion of cytokines and growth factors, etc. Because of the lifetime persistent infection of the virus in healthy individual’s bone marrow, this study aims to evaluate B19V effects on hBMSCs gene expression of some crucial hematopoietic cytokines. Materials & methods: hBMSCs were transfected with pHI0 plasmid containing the B19V genome. The quantitative mRNA expression of target genes was evaluated 24 h after transfection. Results: Our findings demonstrated a significant increase in expression levels of IL-11 and TPO (p < 0.05). Conclusion: We concluded that alteration in the gene expressions in B19V-infected hBMSCs might have significant effects on the bone marrow microenvironment as well as hematopoiesis.
Collapse
Affiliation(s)
- Mahin Behzadi Fard
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Amir Atashi
- Stem Cell & Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Kaviani
- Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mansoureh Ajami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Uslu M, Albayrak E, Kocabaş F. Temporal modulation of calcium sensing in hematopoietic stem cells is crucial for proper stem cell expansion and engraftment. J Cell Physiol 2020; 235:9644-9666. [PMID: 32394484 DOI: 10.1002/jcp.29777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Hematopoietic stem cells (HSCs) are known to reside in a bone marrow (BM) niche, which is associated with relatively higher calcium content. HSCs sense and respond to calcium changes. However, how calcium-sensing components modulate HSC function and expansion is largely unknown. We investigated temporal modulation of calcium sensing and Ca2+ homeostasis during ex vivo HSC culture and in vivo. Murine BM-HSCs, human BM, and umbilical cord blood (UCB) mononuclear cells (MNCs) were treated with store-operated calcium entry (SOCE) inhibitors SKF 96365 hydrochloride (abbreviated as SKF) and 2-aminoethoxydiphenyl borate (2-APB). Besides, K+ channel inhibitor TEA chloride (abbreviated as TEA) was used to compare the relationship between calcium-activated potassium channel activities. Seven days of SKF treatment induced mouse and human ex vivo BM-HSC expansion as well as UCB-derived primitive HSC expansion. SKF treatment induced the surface expression of CaSR, CXCR4, and adhesion molecules on human hematopoietic stem and progenitor cells. HSCs expanded with SKF successfully differentiated into blood lineages in recipient animals and demonstrated a higher repopulation capability. Furthermore, modulation of SOCE in the BM-induced HSC content and differentially altered niche-related gene expression profile in vivo. Intriguingly, treatments with SOCE inhibitors SKF and 2-APB boosted the mouse BM mesenchymal stem cell (MSC) and human adipose-derived MSCs proliferation, whereas they did not affect the endothelial cell proliferation. These findings suggest that temporal modulation of calcium sensing is crucial in expansion and maintenance of murine HSCs, human HSCs, and mouse BM-MSCs function.
Collapse
Affiliation(s)
- Merve Uslu
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey
| | - Esra Albayrak
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabaş
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
3
|
Gruszka AM, Valli D, Restelli C, Alcalay M. Adhesion Deregulation in Acute Myeloid Leukaemia. Cells 2019; 8:E66. [PMID: 30658474 PMCID: PMC6356639 DOI: 10.3390/cells8010066] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Cell adhesion is a process through which cells interact with and attach to neighboring cells or matrix using specialized surface cell adhesion molecules (AMs). Adhesion plays an important role in normal haematopoiesis and in acute myeloid leukaemia (AML). AML blasts express many of the AMs identified on normal haematopoietic precursors. Differential expression of AMs between normal haematopoietic cells and leukaemic blasts has been documented to a variable extent, likely reflecting the heterogeneity of the disease. AMs govern a variety of processes within the bone marrow (BM), such as migration, homing, and quiescence. AML blasts home to the BM, as the AM-mediated interaction with the niche protects them from chemotherapeutic agents. On the contrary, they detach from the niches and move from the BM into the peripheral blood to colonize other sites, i.e., the spleen and liver, possibly in a process that is reminiscent of epithelial-to-mesenchymal-transition in metastatic solid cancers. The expression of AMs has a prognostic impact and there are ongoing efforts to therapeutically target adhesion in the fight against leukaemia.
Collapse
Affiliation(s)
- Alicja M Gruszka
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
| | - Debora Valli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
| | - Cecilia Restelli
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
| | - Myriam Alcalay
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Via Adamello 16, 20 139 Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20 122 Milan, Italy.
| |
Collapse
|
4
|
Liu YF, Zhang SY, Chen YY, Shi K, Zou B, Liu J, Yang Q, Jiang H, Wei L, Li CZ, Zhao M, Gabrilovich DI, Zhang H, Zhou J. ICAM-1 Deficiency in the Bone Marrow Niche Impairs Quiescence and Repopulation of Hematopoietic Stem Cells. Stem Cell Reports 2018; 11:258-273. [PMID: 29937143 PMCID: PMC6117479 DOI: 10.1016/j.stemcr.2018.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022] Open
Abstract
The bone marrow niche plays a critical role in controlling the fate of hematopoietic stem cells (HSCs) by integrating intrinsic and extrinsic signals. However, the molecular events in the HSC niche remain to be investigated. Here, we report that intercellular adhesion molecule-1 (ICAM-1) maintains HSC quiescence and repopulation capacity in the niche. ICAM-1-deficient mice (ICAM-1−/−) displayed significant expansion of phenotypic long-term HSCs with impaired quiescence, as well as favoring myeloid cell expansion. ICAM-1-deficient HSCs presented normal reconstitution capacity during serial transplantation; however, reciprocal transplantation experiments showed that ICAM-1 deficiency in the niche impaired HSC quiescence and repopulation capacity. In addition, ICAM-1 deletion caused failure to retain HSCs in the bone marrow and changed the expression profile of stroma cell-derived factors, possibly representing the mechanism for defective HSCs in ICAM-1−/− mice. Collectively, these observations identify ICAM-1 as a regulator in the bone marrow niche. ICAM-1 deficiency expands HSC−LT with impaired quiescence and repopulation The defects characterizing HSC−LT in ICAM-1−/− mice are niche cell dependent ICAM-1−/− niche brings about impaired bone marrow retention and homing of HSC−LT ICAM-1 in human stroma cells might affect the progression of myelocytic leukemia
Collapse
Affiliation(s)
- Yu-Feng Liu
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shao-Ying Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xian 710000, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Ying Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Kun Shi
- Guangzhou Women and Children's Medical Center, Guangzhou 510000, China
| | - Bin Zou
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jun Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hua Jiang
- Guangzhou Women and Children's Medical Center, Guangzhou 510000, China
| | - Lai Wei
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chang-Zheng Li
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng Zhao
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-sen University, Guangzhou 510080, China
| | - Dmitry I Gabrilovich
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China; The Wistar Institute, Philadelphia, PA 19104, USA
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| | - Jie Zhou
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control, Chinese Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Mousavi SH, Abroun S, Soleimani M, Mowla SJ. 3-Dimensional nano-fibre scaffold for ex vivo expansion of cord blood haematopoietic stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:740-748. [DOI: 10.1080/21691401.2017.1337026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Seyed Hadi Mousavi
- Department of Hematology, Faculty of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Lee S, Van NT, Vachhani NB, Uthman M, Keating MJ, Juneja HS. Adhesion of B-Cell Chronic Lymphocytic Leukemia Cells to Marrow Stromal Cells is Mediated by α4β1but not β2αLIntegrin: MSC also Prevent Apoptosis of B-CLL Cells. Hematology 2016; 5:463-73. [DOI: 10.1080/10245332.2001.11746544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- S. Lee
- Hematology Division, Department of Internal Medicine, University Texas Med School at Houston
| | - N. T. Van
- Leukemia Department, Hematology Division, University Texas M.D. Anderson Cancer Center, Houston, TX
| | - N. B. Vachhani
- Hematology Division, Department of Internal Medicine, University Texas Med School at Houston
| | - Margaret Uthman
- Hematology Division, Department of Internal Medicine, University Texas Med School at Houston
| | - Michael J. Keating
- Leukemia Department, Hematology Division, University Texas M.D. Anderson Cancer Center, Houston, TX
| | - Harinder S. Juneja
- Hematology Division, Department of Internal Medicine, University Texas Med School at Houston
| |
Collapse
|
7
|
Wang W, Yu S, Zimmerman G, Wang Y, Myers J, Yu VWC, Huang D, Huang X, Shim J, Huang Y, Xin W, Qiao P, Yan M, Xin W, Scadden DT, Stanley P, Lowe JB, Huang AY, Siebel CW, Zhou L. Notch Receptor-Ligand Engagement Maintains Hematopoietic Stem Cell Quiescence and Niche Retention. Stem Cells 2015; 33:2280-93. [PMID: 25851125 DOI: 10.1002/stem.2031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/21/2015] [Indexed: 01/05/2023]
Abstract
Notch is long recognized as a signaling molecule important for stem cell self-renewal and fate determination. Here, we reveal a novel adhesive role of Notch-ligand engagement in hematopoietic stem and progenitor cells (HSPCs). Using mice with conditional loss of O-fucosylglycans on Notch EGF-like repeats important for the binding of Notch ligands, we report that HSPCs with faulty ligand binding ability display enhanced cycling accompanied by increased egress from the marrow, a phenotype mainly attributed to their reduced adhesion to Notch ligand-expressing stromal cells and osteoblastic cells and their altered occupation in osteoblastic niches. Adhesion to Notch ligand-bearing osteoblastic or stromal cells inhibits wild type but not O-fucosylglycan-deficient HSPC cycling, independent of RBP-JK -mediated canonical Notch signaling. Furthermore, Notch-ligand neutralizing antibodies induce RBP-JK -independent HSPC egress and enhanced HSPC mobilization. We, therefore, conclude that Notch receptor-ligand engagement controls HSPC quiescence and retention in the marrow niche that is dependent on O-fucosylglycans on Notch.
Collapse
Affiliation(s)
- Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Grant Zimmerman
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jay Myers
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vionnie W C Yu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoran Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jeongsup Shim
- Department of Pathology, Genentech, Inc., South San Francisco, California, USA
| | - Yuanshuai Huang
- Department of Blood Transfusion, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan Province, People's Republic of China
| | - William Xin
- University School, Hunting Valley, Ohio, USA
| | - Peter Qiao
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Minhong Yan
- Department of Molecular Biology Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - John B Lowe
- Department of Pathology, Genentech, Inc., South San Francisco, California, USA
| | - Alex Y Huang
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christian W Siebel
- Department of Molecular Biology Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Onoda M, Nakaseko C, Yokota A, Saito Y. Ligation of CD44 with low-molecular-weight hyaluronan and a monoclonal antibody leads to inhibition of drug-induced apoptosis in a human myeloid cell line. Hematology 2013; 14:213-9. [DOI: 10.1179/102453309x426236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Masahiro Onoda
- Department of Internal MedicineChiba Aoba Municipal Hospital, Chiba, Japan
| | - Chiaki Nakaseko
- Department of Clinical Cell BiologyChiba University Graduate School of Medicine, Chiba, Japan
| | - Akira Yokota
- Department of Internal MedicineChiba Aoba Municipal Hospital, Chiba, Japan
| | - Yasushi Saito
- Department of Clinical Cell BiologyChiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
9
|
Tada T, Fukuta K. Expression of cell adhesion molecules at the collapse and recovery of haematopoiesis in bone marrow of mouse. Anat Histol Embryol 2012; 39:403-10. [PMID: 20545639 DOI: 10.1111/j.1439-0264.2010.01009.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
After bone marrow transplantation (BMT) and lethal irradiation, vascular endothelial cells play an important role in the homing of haematopoietic cells and recovery of haematopoiesis. We investigated the expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1), vascular cell adhesion molecule-1 (VCAM-1) and fibronectin in the endothelial cells of bone marrow in a collapsed state after lethal irradiation and in a recovery state after BMT in mice. After lethal irradiation, the expression of MAdCAM-1, VCAM-1 and fibronectin increased on the luminal surface of endothelial cells. In the recovery state, the expression of MAdCAM-1 and VCAM-1 was increased from 2 to 4 days after BMT, but fibronectin levels remained constant, except for a temporary increase at 4 days after BMT. The number of homing cells, however, was markedly decreased in parallel with the reduction in the haematopoietic compartment at 2 and 4 days after lethal irradiation. Next, to analyse the influence of fibronectin expression after BMT on homing activity, we performed double BMT experiment. The number of homing cells in double BMT experiment maintained high level from 2 h to 2 days after secondary BMT. Our data suggest that homing of bone marrow cells is activated until fibronectin-mediated endothelial cell repair and that transplanted haematopoietic stem/progenitor cells inhibit fibronectin expression for endothelial cell repair until the homing is completed. Therefore, the homing of haematopoietic cells in bone marrow depends on the condition of the bone marrow endothelial cells, as well as the cell adhesion molecules.
Collapse
Affiliation(s)
- T Tada
- Laboratory of Animal Morphology and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan.
| | | |
Collapse
|
10
|
Lam BS, Adams GB. Hematopoietic stem cell lodgment in the adult bone marrow stem cell niche. Int J Lab Hematol 2011; 32:551-8. [PMID: 20682000 DOI: 10.1111/j.1751-553x.2010.01250.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Treatment of malignant blood disorders, such as leukemia, that can provide a better chance of long-term remission involves myeloablation followed by transplantation of matched donor hematopoietic stem cells (HSCs). For successful engraftment and re-establishment of hematopoiesis to occur in the recipient, the transplanted HSCs must first migrate from the blood circulation to the bone marrow (BM), a process known as homing, then localize and anchor in suitable microenvironments within the BM, a process known as lodgment. After lodgment, the specific fate of the transplanted HSCs is determined through complex, bidirectional interactions with various stromal cell components in the niche. Ultimately, these interactions dictate the clinical outcome of the transplantation. Through the use of transgenic mouse models, considerable evidence has been accumulated in an attempt to unveil the possible underlying mechanisms that govern these processes. Here, we will emphasize the major factors that are involved in the regulation of lodgment of transplanted HSCs. Specifically, we will first introduce early observations on the spatial distribution of hematopoietic progenitors within the BM, then we will discuss the soluble factors, chemokines, cell-cell interactions, and cell-matrix interactions that have been studied and known to influence the site of HSC lodgment within the BM following transplantation.
Collapse
Affiliation(s)
- B S Lam
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | |
Collapse
|
11
|
ter Huurne M, Figdor CG, Torensma R. Hematopoietic stem cells are coordinated by the molecular cues of the endosteal niche. Stem Cells Dev 2011; 19:1131-41. [PMID: 20148648 DOI: 10.1089/scd.2010.0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) accomplish a complex task. On a daily base billions of the 8 different mature cells are delivered in the right proportions. HSCs are located in niches located at several locations in the body. Communication between these spatially separated niches is accomplished by stem cells that leave their niche and migrate to other niches guided by soluble factors. The niche itself comprises all major signaling pathways (Hedgehog, Notch, Wnt, and BMP) and an array of adhesion molecules. The interplay between these components keep HSC in a quiescent state but also speed up production in case of urgent need during infection or excessive blood loss. In this review, we focus on the molecular cues of the niche, functional adhesion molecules and describe recent data obtained with multiphoton microscopy. A vast array of molecules is described that display similar functions as HSC controllers. This points to redundancy in the system that enables HSC to respond to different cues essentially with the same functional response. Apparently, the hematopoietic system is so crucial that it is not dependent on a single cue. When one cue fails to initiate a response, another cue will take over leading to an almost similar response. Another explanation is that every cue adds to an integrated signal that results in reaching the threshold. This integrated signal might be reached from huge signaling by a single cue or the low but additive signals by several cues.
Collapse
Affiliation(s)
- Menno ter Huurne
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
12
|
Pharmacologic modulation of the calcium-sensing receptor enhances hematopoietic stem cell lodgment in the adult bone marrow. Blood 2010; 117:1167-75. [PMID: 21076044 DOI: 10.1182/blood-2010-05-286294] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The ability of hematopoietic stem cells (HSCs) to undergo self-renewal is partly regulated by external signals originating from the stem cell niche. Our previous studies with HSCs obtained from fetal liver of mice deficient for the calcium-sensing receptor (CaR) have shown the crucial role of this receptor in HSC lodgment and engraftment in the bone marrow (BM) endosteal niche. Using a CaR agonist, Cinacalcet, we assessed the effects of stimulating the CaR on the function of murine HSCs. Our results show that CaR stimulation increases primitive hematopoietic cell activity in vitro, including growth in stromal cell cocultures, adhesion to extracellular matrix molecules such as collagen I and fibronectin, and migration toward the chemotactic stimulus, stromal cell-derived factor 1α. Receptor stimulation also led to augmented in vivo homing, CXCR4-mediated lodgment at the endosteal niche, and engraftment capabilities. These mechanisms by which stimulating the CaR dictates preferential localization of HSCs in the BM endosteal niche provide additional insights into the fundamental interrelationship between the stem cell and its niche. These studies also have implications in the area of clinical stem cell transplantation, where ex vivo modulation of the CaR may be envisioned as a strategy to enhance HSC engraftment in the BM.
Collapse
|
13
|
The effect of mild agitation on in vitro erythroid development. J Immunol Methods 2010; 360:20-9. [DOI: 10.1016/j.jim.2010.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 11/21/2022]
|
14
|
Klassert TE, Patel SA, Rameshwar P. Tachykinins and Neurokinin Receptors in Bone Marrow Functions: Neural-Hematopoietic Link. ACTA ACUST UNITED AC 2010; 2010:51-61. [PMID: 20593004 DOI: 10.2147/jrlcr.s6509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
After many decades of neuropeptide research, advances in the field of tachykinins have considerably increased and shown their implications in several physiological processes. In this review we focus on the role of the tachykinins in the regulation of hematopoietic functions. Evidence has shown that neural control of this process is emerging as a significant category in hematopoietic modulation. In the context of this regulation, we discuss the existence of a complex network involving the neurokinin receptors, tachykinins and cytokines. This network is tightly regulated by each of its components.
Collapse
Affiliation(s)
- Tilman E Klassert
- Department of Medicine - Division of Hematology/Oncology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | |
Collapse
|
15
|
Lutolf MP, Blau HM. Artificial stem cell niches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3255-68. [PMID: 20882496 PMCID: PMC3099745 DOI: 10.1002/adma.200802582] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-intrinsic regulatory networks, control their function and balance their numbers in response to physiologic demands. This progress report provides a perspective on how advanced materials technologies could be used (i) to engineer and systematically analyze specific aspects of functional stem cells niches in a controlled fashion in vitro and (ii) to target stem cell niches in vivo. Such "artificial niches" constitute potent tools for elucidating stem cell regulatory mechanisms with the capacity to directly impact the development of novel therapeutic strategies for tissue regeneration.
Collapse
Affiliation(s)
- Matthias P. Lutolf
- Prof. M. P. Lutolf, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland), , Prof. H. M. Blau, Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA (USA),
| | - Helen M. Blau
- Prof. M. P. Lutolf, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland), , Prof. H. M. Blau, Baxter Laboratory in Genetic Pharmacology, Stanford University School of Medicine, Stanford, CA (USA),
| |
Collapse
|
16
|
Hall BM, Gibson LF. Regulation of Lymphoid and Myeloid Leukemic Cell Survival: Role of Stromal Cell Adhesion Molecules. Leuk Lymphoma 2009; 45:35-48. [PMID: 15061195 DOI: 10.1080/1042819031000139620] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Several laboratories have documented the necessity for direct contact of lymphoid and myeloid leukemic cells with bone marrow stromal cells for optimal survival. Subsequent studies have identified various stromal cell adhesion molecules and soluble factors that facilitate survival through leukemic cell anti-apoptotic signal transduction pathways. This report provides an overview of enhanced leukemic cell survival through adhesive interactions with bone marrow expressed molecules. In addition, we describe the establishment of cloned murine stromal cell lines engineered to constitutively express human VCAM-1 protein on their surface. These stromal cell lines will be useful in studies aimed at better understanding the specific contribution of VCAM-1: VLA-4 signaling in maintenance of residual leukemic disease.
Collapse
Affiliation(s)
- Brett M Hall
- Department of Microbiology, Immunology, and Cell Biology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
17
|
Harima A, Nakaseko C, Yokota A, Kitagawa M, Morimoto C, Harigaya K, Saito Y. Fibronectin promotes cell proliferation of human pre-B cell line via its interactions with VLA-4 and VLA-5. ACTA ACUST UNITED AC 2009; 13:236-43. [PMID: 18796250 DOI: 10.1179/102453308x348315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Fibronectin (FN) is thought to play an important role in various aspects of hematopoiesis through binding to very late antigen (VLA)-4 and VLA-5. Little is known, however, about the effects of FN on the proliferation of B cell progenitors. In this study, we investigated the effects of immobilized FN on the proliferation of the pre-B cell line, Nalm-6, which expresses both VLA-4 and VLA-5. Immobilized FN significantly promoted the proliferation of Nalm-6 cells through the synergistic effects of VLA-4 and VLA-5. Furthermore, FN induced the phosphorylation of mitogen-activated protein kinases (MAPKs) of Nalm-6 cells. The MAPK kinase 1 (MEK1) inhibitor, PD98059, and Src family tyrosine kinase inhibitor, herbimycin A, inhibited the FN-promoted proliferation of Nalm-6 cells. These results demonstrate that the interactions of FN and VLA-4/VLA-5 transmit the growth signals that are mediated through Src family tyrosine kinases and the MAPK cascade in Nalm-6 cells. The precise mechanism of synergistic effect of VLA-4 and VLA-5 on FN-promoted proliferation of Nalm-6 cells should be further investigated.
Collapse
Affiliation(s)
- Akane Harima
- Department of Clinical Cell Biology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 2, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 2009; 3:484-92. [PMID: 18983964 DOI: 10.1016/j.stem.2008.10.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Physiological interactions between the nervous and immune systems with components of the local microenvironment are needed to maintain homeostasis throughout the body. Dynamic regulation of bone remodeling, hematopoietic stem cells, and their evolving niches via neurotransmitter signaling are part of the host defense and repair mechanisms. This crosstalk links activated leukocytes, neuronal, and stromal cells, which combine to directly and indirectly regulate hematopoietic stem cells. Together, interactions between diverse systems create a regulatory "brain-bone-blood triad," contributing an additional dimension to the concept of the hematopoietic stem cell niche.
Collapse
|
19
|
Flt3-Ligand-Mobilized Peripheral Blood, but Not Flt3-Ligand-Expanded Bone Marrow, Facilitating Cells Promote Establishment of Chimerism and Tolerance. Stem Cells 2009. [DOI: 10.1634/stemcells.sc-05-0395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Bendall SC, Stewart MH, Bhatia M. Human embryonic stem cells: lessons from stem cell niches in vivo. Regen Med 2008; 3:365-76. [DOI: 10.2217/17460751.3.3.365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In vivo the stem cell niche is an essential component in controlling and maintaining the stem cells’ ability to survive and respond to injury. Human embryonic stem cells (hESCs) appear to be an exception to this rule as they can be removed from their blastocytic microenvironment and maintained indefinitely in vitro. However, recent observations reveal the existence of an autonomously derived in vitro hESC niche. This provides a previously unappreciated mechanism to control hESC expansion and differentiation. Recognizing this, it may now be possible to take aspects of in vivo stem cell niches, namely extracellular matrices, paracrine signals and accessory cell types, and exploit them in order to gain fidelity in directed hESC differentiation. In doing so, routine customization of hESC lines and their application in regenerative therapies may be further enhanced using unique hESC niche-based approaches.
Collapse
Affiliation(s)
- Sean C Bendall
- McMaster Stem Cell and Cancer Research Institute, Michael G DeGroote School of Medicine, and Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
- Don Rix Protein Identification Facility, Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Morag H Stewart
- McMaster Stem Cell and Cancer Research Institute, Michael G DeGroote School of Medicine, and Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute, Michael G DeGroote School of Medicine, and Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
21
|
Ex vivo expansions of megakaryocytopoiesis from placental and umbilical cord blood CD34(+) cells in serum-free culture supplemented with proteoglycans extracted from the nasal cartilage of salmon heads and the nasal septum cartilage of whale. Life Sci 2008; 82:1023-31. [PMID: 18407295 DOI: 10.1016/j.lfs.2008.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 01/22/2008] [Accepted: 03/03/2008] [Indexed: 11/23/2022]
Abstract
As a possible approach to the treatment of thrombopocytopenia, the ex vivo expansion of megakaryocytic progenitor cells may be a useful tool to accelerate platelet recovery in vivo. Our objective was to assess the promoting effect of proteoglycans in a serum-free culture condition using human cord blood CD34(+) cells. Highly purified proteoglycan (PG) extracted from the nasal cartilage of salmon heads and the nasal septum cartilage of a whale were applied to the ex vivo expansion of megakaryocytopoiesis and thrombopoiesis from placental and umbilical cord blood CD34(+) cells in serum-free cultures stimulated with a combination of thrombopoietin (TPO) and interleukin-3 (IL-3). Each PG (0.5 and 5 mug) was applied to the culture with three different concentrations of TPO (50, 5 and 0.5 ng/ml) and IL-3 (100, 10 and 1 ng/ml). Both of the PGs showed no promoting effects on the mononuclear cell proliferation rate in any of the cultures. However, the whale-PG promoted the generation of megakaryocytic progenitor cells and megakaryocytes in the culture with a lower dose of cytokines, respectively. In addition, whale-PG led to a significant increase in CD42a(+) particles which seemed to be platelets. While the salmon-PG failed to promote such production in almost all of the cultures. Although whale-PG is an attractive molecule for the ex vivo expansion of human megakaryocytopoiesis, its action may depend on the glycosaminoglycans sulfation pattern and the ability of the binding affinity and the kinetics to interact with the cytokines and hematopoietic stem/progenitor cells.
Collapse
|
22
|
Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 2007; 25:2896-902. [PMID: 17901396 DOI: 10.1634/stemcells.2007-0637] [Citation(s) in RCA: 1364] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells or multipotent stromal cells (MSCs) isolated from the bone marrow of adult organisms were initially characterized as plastic adherent, fibroblastoid cells with the capacity to generate heterotopic osseous tissue when transplanted in vivo. In recent years, MSCs or MSC-like cells have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well described. A large number of reports have also indicated that the cells possess the capacity to transdifferentiate into epithelial cells and lineages derived from the neuroectoderm. The broad developmental plasticity of MSCs was originally thought to contribute to their demonstrated efficacy in a wide variety of experimental animal models of disease as well as in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for transdifferentiation in tissue repair. Herein, we critically evaluate the literature describing the plasticity of MSCs and offer insight into how the molecular and functional heterogeneity of this cell population, which reflects the complexity of marrow stroma as an organ system, may confound interpretation of their transdifferentiation potential. Additionally, we argue that this heterogeneity also provides a basis for the broad therapeutic efficacy of MSCs.
Collapse
Affiliation(s)
- Donald G Phinney
- Center for Gene Therapy, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
23
|
Park KH, Na K, Lee YS, Chang WK, Park JK, Akaike T, Kim DK. Effects of mannosylated glycopolymers on specific interaction to bone marrow hematopoietic and progenitor cells derived from murine species. J Biomed Mater Res A 2007; 82:281-7. [PMID: 17274028 DOI: 10.1002/jbm.a.31137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Poly[N-pvinylbenzyl-O-D-galactopyranosyl-(1-4)-D-glucoamide], poly[N-pvinylbenzyl-O-D-glucopyranosyl-(1-4)-D-glucoamide], and poly[N-p-vinylbenzyl-O-mannopyranosyl-(1-4)-D-gluconamide] (referred to as PVLA, PVMA, and PV-Man) are polystyrene derivatives that contain galactose, glucose, and mannose moieties, which interact with hematopoietic cells (HCs). To clarify the specific interaction between the glucopolymers and hematopoietic cells, glycopolymers labeled with fluorescent isothiocyanate (FITC) were used to follow the specific interaction, which was visualized by confocal laser microscopy. We found that PV-Man binds strongly to HCs, probably because of a specific interaction mediated by specific receptors present on the cell membrane, while some cytotoxicity when was observed when PV-Man interacted with the cell membrane. The fluorescence intensity between PV-Man and HCs was up to four-fold (0.14 +/- 0.04) that of PVMA and PVLA with hematopoietic HCs (0.033 +/- 0.01). Moreover, cellular fluorescence increased significantly with increasing incubation time and increasing polymer concentration. Using hematopoietic lineage-specific antibodies, cells were stained and analyzed by flow cytometry to confirm which HCs showed specific binding with glycopolymers, especially hematopoietic stem cells and progenitor cells (c-kit+), B-lymphocyte progenitor cells (B220+), monocyte cells (CD11b+), and erythrocytes (Ter119+).
Collapse
Affiliation(s)
- Keun-Hong Park
- College of Medicine, CHA Stem Cell Institute 606-16, Pochon CHA University, Yeoksam 1-dong, Kangnam-gu, Seoul 135-081, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Ogata T, Ueyama T, Nomura T, Asada S, Tagawa M, Nakamura T, Takahashi T, Matsubara H, Oh H. Osteopontin is a myosphere-derived secretory molecule that promotes angiogenic progenitor cell proliferation through the phosphoinositide 3-kinase/Akt pathway. Biochem Biophys Res Commun 2007; 359:341-7. [PMID: 17537408 DOI: 10.1016/j.bbrc.2007.05.104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
We have reported that skeletal myosphere-derived progenitor cells (MDPCs) can differentiate into vascular cells, and that MDPC transplantation into cardiomyopathic hearts improves cardiac function. However, the autocrine/paracrine molecules and underlying mechanisms responsible for MDPC growth have not yet been determined. To explore the molecules enhancing the proliferation of MDPCs, we performed serial analysis of gene expression and signal sequence trap methods using RNA isolated from MDPCs. We identified osteopontin (OPN), a secretory molecule, as one of most abundant molecules expressed in MDPCs. OPN provided a proliferative effect for MDPCs. MDPCs treated with OPN showed Akt activation, and inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway repressed the proliferative effect of OPN. Furthermore, OPN-pretreated MDPCs maintained their differentiation potential into endothelial and vascular smooth muscle cells. These findings indicate an important role of OPN as an autocrine/paracrine molecule in regulating the proliferative growth of muscle-derived angiogenic progenitor cells via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Takehiro Ogata
- Department of Experimental Therapeutics, Translational Research Center, Kyoto University Hospital, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kashiwakura I, Takahashi K, Takagaki K. Application of proteoglycan extracted from the nasal cartilage of salmon heads for ex vivo expansion of hematopoietic progenitor cells derived from human umbilical cord blood. Glycoconj J 2007; 24:251-8. [PMID: 17393303 DOI: 10.1007/s10719-007-9033-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 03/08/2007] [Accepted: 03/08/2007] [Indexed: 11/24/2022]
Abstract
Highly purified proteoglycan (PG) extracted from the nasal cartilage of salmon heads was applied to the ex vivo expansion of hematopoietic progenitor cells prepared from human umbilical cord blood in serum-free cultures supplemented with the combination of early-acting cytokines, thrombopoietin (TPO), interleukin-3 (IL-3) and stem cell factor (SCF). PG showed no promoting effects on the cell proliferation rate; however, they promoted the generation of progenitor cells for granulocyte-macrophages, erythrocytes and/or megakaryocytes in culture with TPO alone or SCF plus TPO. However, no promoting effect was observed in a combination of IL-3 plus SCF, which showed the highest cell proliferation rate. PG failed to promote the generation of mixed colony-forming units (i.e. the relatively immature cells in hematopoiesis). These results suggest that PG acts on the relatively mature stem/progenitor cells, and may function as a regulatory factor in the differentiation pathway of hematopoiesis.
Collapse
Affiliation(s)
- Ikuo Kashiwakura
- Department of Bio-information Radiation Sciences, Graduate School of Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | | | | |
Collapse
|
26
|
Abstract
The production of mature blood cells within the bone marrow (BM) is attributed to a pool of haemopoietic stem cells (HSC). It is now evident that HSC reside preferentially at the endosteal region within the BM where bone-lining osteoblasts are a key cellular component of the HSC niche that directly regulates HSC fate. Osteoblasts synthesise proteins that stimulate and inhibit HSC proliferation. In addition to angiopoietin 1 (Ang-1), osteoblasts synthesise and express the highly acidic glycoprotein, osteopontin (Opn), which, like Ang-1, acts as a potent constraining factor on HSC proliferation. Overexpression of Opn is a feature of haemopoietic malignancies, such as multiple myeloma and chronic myeloid leukaemia, although its exact role in the aetiology and progression of these diseases remains unclear. Through osteoblasts and their cell surface and expressed proteins including Opn, bone is able to regulate the tissue that resides within it. In doing so, Opn can be considered a bridge between bone and blood.
Collapse
Affiliation(s)
- David N Haylock
- Niche Laboratory, Australian Stem Cell Centre, Monash University, Clayton, Vic., Australia
| | | |
Collapse
|
27
|
Visconti RP, Markwald RR. Recruitment of New Cells into the Postnatal Heart: Potential Modification of Phenotype by Periostin. Ann N Y Acad Sci 2006; 1080:19-33. [PMID: 17132772 DOI: 10.1196/annals.1380.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Establishment of the circulatory system occurs very early in development to support the rapid growth of the embryo. Therefore, the heart is the first functional organ to be formed during both avian and mammalian development. Historically, cardiac development has been considered to occur only during embryogenesis from cell sources located within the primordial structures that generate the myocardium and associated coronary vascular endothelium and smooth muscle and cardiac fibroblasts. Recently, however, contribution to the cardiac structures has been demonstrated to occur during embryonic development from extracardiac sources, like the anterior heart field, raising questions as to whether cardiogenesis may be an ongoing process that extends into adult life. In this brief article, we describe the contribution of circulating adult bone marrow hematopoietic stem cells to the cardiac cell populations and the potential regulation of their differentiation by the extracellular matrix protein, periostin.
Collapse
Affiliation(s)
- Richard P Visconti
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, CRI605 Charleston, SC 29425, USA
| | | |
Collapse
|
28
|
Feng Q, Chai C, Jiang XS, Leong KW, Mao HQ. Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface-immobilized fibronectin. J Biomed Mater Res A 2006; 78:781-91. [PMID: 16739181 PMCID: PMC2396227 DOI: 10.1002/jbm.a.30829] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An efficient and practical ex vivo expansion methodology for human hematopoietic stem/progenitor cells (HSPCs) is critical in realizing the potential of HSPC transplantation in treating a variety of hematologic disorders and as a supportive therapy for malignant diseases. We report here an expansion strategy using a three-dimensional (3D) scaffold conjugated with an extracellular matrix molecule, fibronectin (FN), to partially mimic the hematopoietic stem cell niche. FN-immobilized 3D polyethylene terephthalate (PET) scaffold was synthesized and evaluated for HSPC expansion efficiency, in comparison with a FN-immobilized 2D PET substrate and a 3D scaffold with FN supplemented in the medium. Covalent conjugation of FN produced substrate and scaffold with higher cell expansion efficiency than that on their unmodified counterparts. After 10 days of culture in serum-free medium, human umbilical cord blood CD34+ cells cultured in FN-conjugated scaffold yielded the highest expansion of CD34+ cells (approximately 100 fold) and long-term culture initiating cells (approximately 47-fold). The expanded human CD34+ cells successfully reconstituted hematopoiesis in NOD/SCID mice. This study demonstrated the synergistic effect between the three-dimensionality of the scaffold and surface-conjugated FN, and the potential of this FN-conjugated 3D scaffold for ex vivo expansion of HSPCs.
Collapse
Affiliation(s)
- Qi Feng
- Division of Biomedical Sciences, Johns Hopkins in Singapore, #02-01, The Nanos, 31 Biopolis Way, Singapore 138669
| | | | | | | | | |
Collapse
|
29
|
Winkler IG, Lévesque JP. Mechanisms of hematopoietic stem cell mobilization: When innate immunity assails the cells that make blood and bone. Exp Hematol 2006; 34:996-1009. [PMID: 16863906 DOI: 10.1016/j.exphem.2006.04.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Indexed: 01/13/2023]
Abstract
Mobilization is now used worldwide to collect large numbers of hematopoietic stem and progenitor cells (HSPCs) for transplantation. Although the first mobilizing agents were discovered largely by accident, discovery of more efficient mobilizing agents will require a better understanding of the molecular mechanisms responsible. During the past 5 years, a number of mechanisms have been identified, shedding new light on the dynamics of the hematopoietic system in vivo and on the intricate relationship between hematopoiesis, innate immunity, and bone. After briefly reviewing the mechanisms by which circulating HSPCs home into the bone marrow and what keeps them there, the current knowledge of mechanisms responsible for HSPC mobilization in response to hematopoietic growth factors such as granulocyte colony-stimulating factor, chemotherapy, chemokines, and polyanions will be discussed together with current strategies developed to further increase HSPC mobilization.
Collapse
Affiliation(s)
- Ingrid G Winkler
- Haematopoietic Stem Cell Laboratory, Cancer Biotherapies Program, Mater Medical Research Institute, University of Queensland, South Brisbane, Queensland, Australia
| | | |
Collapse
|
30
|
Nilsson SK, Simmons PJ, Bertoncello I. Hemopoietic stem cell engraftment. Exp Hematol 2006; 34:123-9. [PMID: 16459179 DOI: 10.1016/j.exphem.2005.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 11/20/2022]
Affiliation(s)
- Susan K Nilsson
- Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
31
|
Abstract
Adult tissue-specific stem cells have the capacity to self-renew and generate functional differentiated cells that replenish lost cells throughout an organism's lifetime. Studies on stem cells from diverse systems have shown that stem cell function is controlled by extracellular cues from the niche and by intrinsic genetic programs within the stem cell. Here, we review the remarkable progress recently made in research regarding the stem cell niche. We compare the differences and commonalities of different stem cell niches in Drosophila ovary/testis and Caenorhabditis elegans distal tip, as well as in mammalian bone marrow, skin/hair follicle, intestine, brain, and testis. On the basis of this comparison, we summarize the common features, structure, and functions of the stem cell niche and highlight important niche signals that are conserved from Drosophila to mammals. We hope this comparative summary defines the basic elements of the stem cell niche, providing guiding principles for identification of the niche in other systems and pointing to areas for future studies.
Collapse
Affiliation(s)
- Linheng Li
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
32
|
Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005; 11:886-91. [PMID: 16025125 DOI: 10.1038/nm1274] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Accepted: 06/20/2005] [Indexed: 11/08/2022]
Abstract
The molecular events that regulate engraftment and mobilization of hematopoietic stem cells and progenitors (HSC/Ps) are still incompletely defined. We have examined the role of the Rho GTPases Rac1 and Rac2 in HSC engraftment and mobilization. Rac1, but not the hematopoietic-specific Rac2, is required for the engraftment phase of hematopoietic reconstitution, because Rac1(-/-) HSCs did not rescue in vivo hematopoiesis after transplantation, but deletion of Rac1 after engraftment did not impair steady-state hematopoiesis. Rac1(-/-) HSC/Ps showed impaired spatial localization to the endosteum but near-normal homing to the medullary cavity in vivo. Interaction with the bone marrow microenvironment in vitro was markedly altered. Whereas post-engraftment deletion of Rac1 alone did not impair hematopoiesis, deficiency of both Rac1 and Rac2 led to massive mobilization of HSCs from the marrow associated with ineffective hematopoiesis and intense selection for Rac-expressing HSCs. This mobilization was reversible by re-expression of Rac1. In addition, a rationally designed, reversible small-molecule inhibitor of Rac activation led to transient mobilization of engraftable HSC/Ps. Rac proteins thus differentially regulate engraftment and mobilization phenotypes, suggesting that these biological processes and steady-state hematopoiesis are biochemically separable and that Rac proteins may be important molecular targets for stem cell modification.
Collapse
Affiliation(s)
- Jose A Cancelas
- Hoxworth Blood Center, University of Cincinnati Medical Center, 3130 Highland Avenue, Cincinnati, Ohio, 45267, USA
| | | | | | | | | | | |
Collapse
|
33
|
Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106:1232-9. [PMID: 15845900 DOI: 10.1182/blood-2004-11-4422] [Citation(s) in RCA: 539] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although recent data suggests that osteoblasts play a key role within the hematopoietic stem cell (HSC) niche, the mechanisms underpinning this remain to be fully defined. The studies described herein examine the role in hematopoiesis of Osteopontin (Opn), a multidomain, phosphorylated glycoprotein, synthesized by osteoblasts, with well-described roles in cell adhesion, inflammatory responses, angiogenesis, and tumor metastasis. We demonstrate a previously unrecognized critical role for Opn in regulation of the physical location and proliferation of HSCs. Within marrow, Opn expression is restricted to the endosteal bone surface and contributes to HSC transmarrow migration toward the endosteal region, as demonstrated by the markedly aberrant distribution of HSCs in Opn-/- mice after transplantation. Primitive hematopoietic cells demonstrate specific adhesion to Opn in vitro via beta1 integrin. Furthermore, exogenous Opn potently suppresses the proliferation of primitive HPCs in vitro, the physiologic relevance of which is demonstrated by the markedly enhanced cycling of HSC in Opn-/- mice. These data therefore provide strong evidence that Opn is an important component of the HSC niche which participates in HSC location and as a physiologic-negative regulator of HSC proliferation.
Collapse
Affiliation(s)
- Susan K Nilsson
- Stem Cell Laboratory, Peter MacCallum Cancer Centre, Locked Bag 1, A'Beckett St, Melbourne, Victoria, Australia, 3000.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Eto T, Winkler I, Purton LE, Lévesque JP. Contrasting effects of P-selectin and E-selectin on the differentiation of murine hematopoietic progenitor cells. Exp Hematol 2005; 33:232-42. [PMID: 15676218 DOI: 10.1016/j.exphem.2004.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 10/27/2004] [Accepted: 10/28/2004] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The two endothelial selectins, P- and E-selectin, are critically important for adhesion and homing of hematopoietic progenitor cells (HPC) into the bone marrow. Little is known, however, about the roles of these two selectins in hematopoiesis. Here, we demonstrate that the most primitive HPC capable of long-term in vivo repopulation express P-selectin glycoprotein ligand-1/CD162 (PSGL-1), a receptor common to both P- and E-selectin. In addition, we demonstrate that P-selectin delays the differentiation of HPC whereas E-selectin enhances their differentiation along the monocyte/granulocyte pathway, describing different roles for these selectins in the regulation of hematopoiesis. MATERIALS AND METHODS Murine bone marrow HPC were isolated according to their expression of c-kit and PSGL-1, transplanted into lethally irradiated congenic recipients, and chimerism analyzed 6 months posttransplant. Bone marrow lineage-negative (Lin(-)) Sca-1(+)c-kit(+) cells were then cultured on immobilized P- or E-selectin for 4 weeks in the presence of cytokines. Hematopoietic potential was assessed using in vitro phenotyping and colony-forming assays and in vivo spleen colony-forming unit (CFU-S) and long-term competitive repopulation assays. RESULTS Long-term competitive repopulating HSCs were Lin(-)c-kit(bright) and expressed intermediate levels of PSGL-1. Both P- and E-selectin slowed the proliferation of Lin(-)Sca-1(+)c-kit(+) cells during the first two weeks of liquid culture. After two weeks, however, cells cultured on immobilized P-selectin showed increased proliferation with increased production of both colony-forming cells (CFC) and CFU-S(12) compared to the other cultures. In contrast, E-selectin enhanced the differentiation of Lin(-)Sca-1(+)c-kit(+) cells into cells that expressed the granulocyte maturation marker, Gr-1, accompanied by loss of CFC potential from these cultured cells. Finally, the long-term repopulation potential of these cells was not maintained following culture on either selectin. CONCLUSION These results suggest that the two endothelial selectins, E-selectin and P-selectin, have very different effects on HPC. E-selectin accelerates the differentiation of maturing HPC towards granulocyte and monocyte lineages while maintaining the production of more immature CFU-S(12) in ex vivo liquid suspension culture. In marked contrast, P-selectin delays the differentiation of Lin(-)Sca-1(+)c-kit(+) cells, allowing enhanced ex vivo expansion of CFC and CFU-S(12) but not HSCs.
Collapse
Affiliation(s)
- Tetsuya Eto
- Cell Adhesion and Trafficking Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
35
|
Fuste B, Escolar G, Marin P, Mazzara R, Ordinas A, Diaz-Ricart M. G-CSF increases the expression of VCAM-1 on stromal cells promoting the adhesion of CD34+ hematopoietic cells: studies under flow conditions. Exp Hematol 2004; 32:765-72. [PMID: 15308328 DOI: 10.1016/j.exphem.2004.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 04/30/2004] [Accepted: 05/18/2004] [Indexed: 11/22/2022]
Abstract
OBJECTIVE AND METHODS The knowledge of the mechanisms underlying the adhesive processes that lead to homing and/or mobilization of hematopoietic progenitor cells, and the influence of blood rheology, is still limited. We analyzed the impact of flow conditions on the adhesion of CD34+ peripheral blood progenitor cell (PBPC) to the adhesive proteins fibronectin, laminin, and collagen, and to stromal cells. RESULTS Under static conditions, all the adhesive substrata assayed promoted adhesion of CD34+ PBPC, being higher on the stromal cells. Under flow conditions, adhesion of CD34+ PBPC was remarkable on stromal cells while insignificant onto the purified proteins. Exposure of stromal cell monolayers to granulocyte colony-stimulating factor (G-CSF) further enhanced PBPC adhesion. This effect correlated with the activation of p38 MAPK and with an increase in the expression of VCAM-1 on stromal cells exposed to G-CSF. In inhibitory assays, both an antibody to the G-CSFR and a specific inhibitor of the p38 MAPK blocked the effects induced by the cytokine. CONCLUSION Our results provide direct evidence that in stromal cells G-CSF activates the signaling protein p38 MAPK, inducing expression of the adhesion receptor VCAM-1. This mechanism seems to promote adhesion of CD34+ cells on stromal cells and could play a potential role in homing events.
Collapse
Affiliation(s)
- Berta Fuste
- Servicio de Hemoterapia-Hemostasia, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Forraz N, Pettengell R, McGuckin CP. Characterization of a lineage-negative stem-progenitor cell population optimized for ex vivo expansion and enriched for LTC-IC. ACTA ACUST UNITED AC 2004; 22:100-8. [PMID: 14688396 DOI: 10.1634/stemcells.22-1-100] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current hematopoietic stem cell transplantation protocols rely heavily upon CD34+ cells to estimate hematopoietic stem and progenitor cell (HSPC) yield. We and others previously reported CD133+ cells to represent a more primitive cell population than their CD34+ counterparts. However, both CD34+ and CD133+ cells still encompass cells at various stages of maturation, possibly impairing long-term marrow engraftment. Recent studies demonstrated that cells lacking CD34 and hematopoietic lineage markers have the potential of reconstituting long-term in vivo hematopoiesis. We report here an optimized, rapid negative-isolation method that depletes umbilical cord blood (UCB) mononucleated cells (MNC) from cells expressing hematopoietic markers (CD45, glycophorin-A, CD38, CD7, CD33, CD56, CD16, CD3, and CD2) and isolates a discrete lineage-negative (Lin-) cell population (0.10% +/- 0.02% MNC, n=12). This primitive Lin- cell population encompassed CD34+/- and CD133+/- HSPC and was also enriched for surface markers involved in HSPC migration, adhesion, and homing to the bone marrow (CD164, CD162, and CXCR4). Moreover, our depletion method resulted in Lin- cells being highly enriched for long-term culture-initiating cells when compared with both CD133+ cells and MNC. Furthermore, over 8 weeks in liquid culture stimulated by a cytokine cocktail optimized for HSPC expansion, TPOFLK (thrombopoietin 10 ng/ml, Flt3 ligand 50 ng/ml, c-Kit ligand 20 ng/ml) Lin- cells underwent slow proliferation but maintained/expanded more primitive HSPC than CD133+ cells. Therefore, our Lin- stem cell offers a promising alternative to current HSPC selection methods. Additionally, this work provides an optimized and well-characterized cell population for expansion of UCB for a wider therapeutic potential, including adult stem cell transplantation.
Collapse
Affiliation(s)
- Nicolas Forraz
- King-George Laboratory, St. George's Hospital Medical School and Kingston University, London, UK
| | | | | |
Collapse
|
37
|
Sasnoor LM, Kale VP, Limaye LS. Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells. ACTA ACUST UNITED AC 2004; 12:553-64. [PMID: 14594512 DOI: 10.1089/152581603322448268] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our previous studies had shown that a combination of the bio-antioxidant catalase and the membrane stabilizer trehalose in the conventional freezing mixture affords better cryoprotection to hematopoietic cells as judged by clonogenic assays. In the present investigation, we extended these studies using several parameters like responsiveness to growth factors, expression of growth factor receptors, adhesion assays, adhesion molecule expression, and long-term culture-forming ability. Cells were frozen with (test cells) or without additives (control cells) in the conventional medium containing 10% dimethylsulfoxide (DMSO). Experiments were done on mononuclear cells (MNC) from cord blood/fetal liver hematopoietic cells (CB/FL) and CD34(+) cells isolated from frozen MNC. Our results showed that the responsiveness of test cells to the two early-acting cytokines, viz. interleukin-3 (IL-3) and stem cell factor (SCF) in CFU assays was better than control cells as seen by higher colony formation at limiting concentrations of these cytokines. We, therefore, analyzed the expression of these two growth factor receptors by flow cytometry. We found that in cryopreserved test MNC, as well as CD34(+) cells isolated from them, the expression of both cytokine receptors was two- to three-fold higher than control MNC and CD34(+) cells isolated from them. Adhesion assays carried out with CB/FL-derived CD34(+) cells and KG1a cells showed significantly higher adherence of test cells to M210B4 than respective control cells. Cryopreserved test MNC as well as CD34(+) cells isolated from them showed increased expression of adhesion molecules like CD43, CD44, CD49d, and CD49e. On isolated CD34(+) cells and KG1a cells, there was a two- to three-fold increase in a double-positive population expressing CD34/L-selectin in test cells as compared to control cells. Long-term cultures (LTC) were set up with frozen MNC as well as with CD34(+) cells. Clonogenic cells from LTC were enumerated at the end of the fifth week. There was a significantly increased formation of CFU from test cells than from control cells, indicating better preservation of early progenitors in test cells. Our results suggest that use of a combination of catalase and trehalose as a supplement in the conventional freezing medium results in better protection of growth factor receptors, adhesion molecules, and functionality of hematopoietic cells, yielding a better graft quality.
Collapse
Affiliation(s)
- Lalita M Sasnoor
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | | | | |
Collapse
|
38
|
Zhang J, Lu SH, Liu YJ, Feng Y, Han ZC. Platelet factor 4 enhances the adhesion of normal and leukemic hematopoietic stem/progenitor cells to endothelial cells. Leuk Res 2004; 28:631-8. [PMID: 15120941 DOI: 10.1016/j.leukres.2003.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Accepted: 10/22/2003] [Indexed: 11/30/2022]
Abstract
Platelet factor 4 (PF4) is a growth regulator of hematopoietic stem/progenitor cells (HSPCs), but its role in modulating the adhesive property of normal and leukemic cells remains unclear. We used CD34(+) cord blood cells, KG1a cell line, human umbilical vein endothelial cells (HUVECs) and a transformed HUVECs ECV-304 cells to study the effect of PF4 on cell adhesion. When CD34(+) cord blood cells were cultured either in fibronectin-coated (FN) culture plate or over the layer of HUVECs for 2h, a concentration-dependent increase of the number of adhered cells was observed in the culture containing PF4. FACS analysis revealed that the treatment of PF4 resulted in an increased expression of CD49d and CXCR-4 on CD34(+) cells. Moreover, when CD34(+) cells were expanded in the presence of PF4, the adhesive ability to culture plate of CD34(+) cells was significantly increased. To elucidate the mechanism of action of PF4, KG1a cells were incubated with or without PF4 for 2h on pre-established layer of ECV-304 cells. The percentage of CD49d(+) KG1a cells increased about 1.56 +/- 0.4 fold, and that of CD54(+) ECV-304 increased about 1.7 +/- 0.6 fold. Furthermore, the mRNA expression of CD49d and CD54 was upregulated when KG1a or ECV-304 cells were incubated with PF4. The adhesion capacity of KG1a cells was reduced after incubation with the blocking monoclonal antibodies against CD49d and CD54, respectively. Our data demonstrate that PF4 is able to enhance the adhesive ability of normal and leukemia HSPCs.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Experimental Hematology, National Research Center of Stem Cell Engineering & Technology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical University, Tianjin 300020, China
| | | | | | | | | |
Collapse
|
39
|
Gazitt Y. Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 2004; 18:1-10. [PMID: 14574330 DOI: 10.1038/sj.leu.2403173] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adhesion molecules and stromal cell-derived factor-1 (SDF-1)/CXCR4 signaling play key role in homing and mobilization of hematopoietic progenitor (HPC) and hematopoietic cancer clonogenic cells (HCC). High expression of VLA-4 is required for homing of HPC and HCC, whereas downregulation of these molecules is required for successful mobilization of HPC and HCC. Upregulation and activation of the SDF-1/CXCR4 signaling is required for homing of HPC and HCC, whereas disruption of the SDF-1 signaling is required for mobilization of HPC and HCC. Hence, mobilizations of HPC and HCC occur concurrently. It is proposed that drug resistance evolves as a result of repeated cycles of chemotherapy. Following each cycle of chemotherapy, HCC lose adhesion molecules and SDF-1 signaling. Surviving cells, released from tumor sites, circulate until re-expression of adhesion molecules and CXCR4 occurs, then homing to stroma of distal tissues occurs. Cytokines secreted by cells in the new microenvironment induce proliferation and drug resistance of HCC. This process is amplified in each cycle of chemotherapy resulting in disease progression. A novel model for treatment is proposed in which circulating HCC are the target for clinical intervention, and concurrent treatment with chemotherapy and antilineage-specific antibodies will result in abrogation of the 'vicious cycle' of conventional anticancer therapy.
Collapse
Affiliation(s)
- Y Gazitt
- University of Texas Health Science Center, San Antonio, TX 78284, USA
| |
Collapse
|
40
|
Cheng L, Wang X, Tan M, Zhou X, Wang Q. Expression of polypeptide GalNAc-transferases in hematopoietic stem/progenitor cells. Cell Biol Int 2004; 28:635-40. [PMID: 15350598 DOI: 10.1016/j.cellbi.2004.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 05/13/2004] [Accepted: 06/07/2004] [Indexed: 11/24/2022]
Abstract
The members of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (pp-GalNAc-T) family, which transfer GalNAc to polypeptide serine and threonine residues, initiate mucin-type O-linked glycosylation. There are at least 13 functionally characterized members of this family in humans, but no studies have been reported of pp-GalNAc-T isoforms in hematopoietic cells. We isolated and purified CD34+ hematopoietic cells from adult bone marrow by magnetic cell sorting and induced them to differentiate into megakaryocytic lineage cells using an optimal combination of hematopoietic growth factors in serum-free liquid medium. RT-PCR revealed that CD34+ cells expressed pp-GalNAc-T1, T2, T3, T4, T6, T7, T10, T11 and T14, but not pp-GalNAc-T8, T9, T12 and T13. The megakaryocytic lineage cells showed significant increases in the expression of pp-GalNAc-T3, T8, T9, T10 and T13, but pp-GalNAc-T11 and T14 became undetectable. In summary, many pp-GalNAc-T isoforms were expressed in CD34+ cells but the expression pattern changed during differentiation into megakaryocytes. The expression patterns of pp-GalNAc-Ts may be necessary to ensure proper O-glycosylation of mucin-type proteins expressed in CD34+ and megakaryocytic cells.
Collapse
Affiliation(s)
- Lamei Cheng
- Experimental Hematology Laboratory, Xiang Ya Medical College, Central South University, Xiangya Road #86, Box 24, Changsha 410078, China
| | | | | | | | | |
Collapse
|
41
|
Whetton AD, Lu Y, Pierce A, Carney L, Spooncer E. Lysophospholipids synergistically promote primitive hematopoietic cell chemotaxis via a mechanism involving Vav 1. Blood 2003; 102:2798-802. [PMID: 12829605 DOI: 10.1182/blood-2002-12-3635] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hematopoiesis is sustained by the proliferation and development of an extremely low number of hematopoietic stem cells resident in the bone marrow. These stem cells can migrate from their bone marrow microenvironment and can be found at low levels in the peripheral blood. The factors that regulate egress or ingress of the stem cells from the marrow include cytokines and chemokines. This process of stem cell trafficking is fundamental to both stem cell biology and stem cell transplantation. We show that primitive hematopoietic cells with cobblestone area-forming cell activity express receptors for and display enhanced motility in response to a new class of stem cell agonists, namely lysophospholipids. These agents synergistically promote chemokine-stimulated cell chemotaxis, a process that is crucial in stem cell homing. The response to lysophospholipids is mediated by Rac, Rho, and Cdc42 G proteins and the hematopoietic-specific guanyl nucleotide exchange factor Vav 1. Inhibitor studies also show a critical role for phosphatidylinositol 3 kinase (PI3K). Lipid mediators, therefore, regulate the critical process of primitive hematopoietic cell motility via a PI3K- and Vav-dependent mechanism and may govern stem cell movement in vivo. These results are of relevance to understanding stem cell trafficking during bone marrow transplantation.
Collapse
Affiliation(s)
- Anthony D Whetton
- Leukaemia Research Fund Cellular Development Unit, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester, M60 1QD, United Kingdom
| | | | | | | | | |
Collapse
|
42
|
McGuckin CP, Forraz N, Baradez MO, Lojo-Rial C, Wertheim D, Whiting K, Watt SM, Pettengell R. Colocalization analysis of sialomucins CD34 and CD164. Stem Cells 2003; 21:162-70. [PMID: 12634412 DOI: 10.1634/stemcells.21-2-162] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Flow cytometric protocols are employed to identify and characterize hemopoietic stem/progenitor populations before transplantation. Cell surface antigens, including CD34, are employed in this process and widely used in harvest protocols, which largely ignores the potential functional role of such antigens. Transmembrane glycoprotein sialomucins, including CD34 and CD164, have been implicated in cell-to-cell interactions and activation. CD164, also expressed on early hemopoietic populations, was reported to have a possible function facilitating CD34(+) cells to adhere to bone marrow stroma. In this study, we employed high-definition laser-scanning confocal microscopy to investigate CD34 and CD164 surface co-localization patterns on bone marrow and cord blood cells and to compare the expression patterns using a three-dimensional computer-generated method developed in house. Differential interference microscopy analysis revealed bone marrow membrane activity was higher than the corresponding cord blood counterpart, perhaps indicating the marrow microenvironmental nature. Fluorescence analysis of CD34 and CD164 antigens showed both were expressed first in a halo-like pattern and second in antigen-dense pockets. Three-dimensional computer analyses further revealed that this pocketing corresponded to dense crest-like surface structures appearing to rise from the point of adherence on the slide. Further, it was found that CD34 and CD164 display strong colocalization patterns on cells expressing both antigens. The dual nature of the CD34 and CD164 antigens discovered here lends further evidence to the previous literature implicating a strong functional link between these two sialomucins, which should be considered in the transplantation arena and in the function of such sialomucins as negative regulators of cell proliferation.
Collapse
Affiliation(s)
- Colin P McGuckin
- King-George Laboratory, St. George's Hospital Medical School and Kingston University, London, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Whiting KA, McGuckin CP, Wertheim D, Pearce D, Pettengell R. Three-dimensional analysis of CD34 sialomucin distribution on cord blood and bone marrow. Br J Haematol 2003; 122:771-7. [PMID: 12930388 DOI: 10.1046/j.1365-2141.2003.04488.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Determining the cellular distribution of key adhesion molecules may aid in understanding haematopoietic progenitor/stem cell (HPSC) homing to bone marrow (BM). CD34, a well-characterized marker for blast-like HPSC, is widely used for the isolation and enumeration of HPSC. Functional studies have yet to identify a ligand for CD34. However, growing evidence suggests that CD34 may aid the regulation of HPSC differentiation and modulate the expression of other HPSC adhesion molecules necessary for homing. This study aimed to determine CD34 distribution on umbilical cord blood (CB) and BM. CD34-selected cells were adhered to positively charged gold slides at room temperature, before indirect fluorescent antibody labelling with fluorescein isothiocyanate. Fluorescent distribution was determined by 1-microm interval, confocal laser scanning microscope Z-sections. Initial analysis showed CD34 distributed within peripheral halos and dense pocket regions. The development of three-dimensional imaging software enabled spatial visualization of CD34 distribution on CB and BM in association with differential interference contrast cell image. This showed that CD34 was distributed within peripheral halos, with magnupodia-associated 'meridian-shaped crescents', extending from points of cell-slide adhesion towards the top of the cell. True CD34 distribution, not previously discernible by confocal laser scanning microscopy alone, suggests a possible role in cell adhesion/homing revealed by three-dimensional imaging.
Collapse
Affiliation(s)
- Karen A Whiting
- King-George Laboratory, St George's Hospital Medical School and Kingston University, London, UK
| | | | | | | | | |
Collapse
|
44
|
Giles FJ, Keating A, Goldstone AH, Avivi I, Willman CL, Kantarjian HM. Acute myeloid leukemia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2003:73-110. [PMID: 12446420 DOI: 10.1182/asheducation-2002.1.73] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this chapter, Drs. Keating and Willman review recent advances in our understanding of the pathophysiology of acute myeloid leukemia (AML) and allied conditions, including the advanced myelodysplastic syndromes (MDS), while Drs. Goldstone, Avivi, Giles, and Kantarjian focus on therapeutic data with an emphasis on current patient care and future research studies. In Section I, Dr. Armand Keating reviews the role of the hematopoietic microenvironment in the initiation and progression of leukemia. He also discusses recent data on the stromal, or nonhematopoietic, marrow mesenchymal cell population and its possible role in AML. In Section II, Drs. Anthony Goldstone and Irit Avivi review the current role of stem cell transplantation as therapy for AML and MDS. They focus on data generated on recent Medical Research Council studies and promising investigation approaches. In Section III, Dr. Cheryl Willman reviews the current role of molecular genetics and gene expression analysis as tools to assist in AML disease classification systems, modeling of gene expression profiles associated with response or resistance to various interventions, and identifying novel therapeutic targets. In Section IV, Drs. Hagop Kantarjian and Francis Giles review some promising agents and strategies under investigation in the therapy of AML and MDS with an emphasis on novel delivery systems for cytotoxic therapy and on targeted biologic agents.
Collapse
Affiliation(s)
- Francis J Giles
- M.D. Anderson Cancer Center, Department of Leukemia, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
45
|
Solanilla A, Grosset C, Duchez P, Legembre P, Pitard V, Dupouy M, Belloc F, Viallard JF, Reiffers J, Boiron JM, Coulombel L, Ripoche J. Flt3-ligand induces adhesion of haematopoietic progenitor cells via a very late antigen (VLA)-4- and VLA-5-dependent mechanism. Br J Haematol 2003; 120:782-6. [PMID: 12614209 DOI: 10.1046/j.1365-2141.2003.04155.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adhesion of haematopoietic progenitor cells (HPC) to the bone marrow microenvironment is a process regulated by cytokines. In this study, we have shown that flt3-ligand (FL), a growth factor that controls early haematopoiesis, regulated the function and expression of the beta-1 integrins, very late antigen (VLA)-4 and VLA-5 on HPC. The modulation of the adhesiveness of HPC by FL was studied by adhesion assays on umbilical vein endothelial cells (HUVEC). Stimulation by FL induced two peaks of increased adhesiveness of HPC. The first peak was at around 30 min and was mechanistically related to an activation of the beta-1 integrins, mainly VLA-4 and VLA-5. The second peak was at around 12 h and was related to increased expression of VLA-4 and VLA-5. The control of HPC adhesiveness by FL is a previously unreported property of FL that may be important for the homing and the retention of flt3-expressing HPC within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Anne Solanilla
- UMR 5540, Université Victor Ségalen Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nilsson SK, Haylock DN, Johnston HM, Occhiodoro T, Brown TJ, Simmons PJ. Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood 2003; 101:856-62. [PMID: 12393456 DOI: 10.1182/blood-2002-05-1344] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The localization of adult hemopoiesis to the marrow involves developmentally regulated interactions between hemopoietic stem cells and the stromal cell-mediated hemopoietic microenvironment. Although primitive hemopoietic cells exhibit a broad repertoire of adhesion molecules, little is known about the molecules influencing the site of cell lodgment within the marrow following transplantation. However, our recent studies indicate that hierarchically dependent patterns of migration of transplanted hemopoietic cells result in the retention of primitive cells within the endosteal and lineage-committed cells in the central marrow regions. Herein, we now demonstrate that these 2 subpopulations exhibit a striking difference in the expression of a cell surface adhesion molecule, with populations enriched for murine and human hemopoietic stem cells expressing the carbohydrate hyaluronic acid (HA). Furthermore, the presence of this glycosaminoglycan appears critical for the spatial distribution of transplanted stem cells in vivo. In addition, we also demonstrate that the binding of HA by a surrogate ligand results in marked inhibition of primitive hemopoietic cell proliferation and granulocyte differentiation. Collectively, these data describe an important yet previously unrecognized role for HA in the biology of primitive hemopoietic progenitor cells.
Collapse
Affiliation(s)
- Susan K Nilsson
- Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Koenig JM, Ballantyne CM, Kumar AG, Smith CW, Yoder MC. Vascular cell adhesion molecule-1 expression and hematopoietic supportive capacity of immortalized murine stromal cell lines derived from fetal liver and adult bone marrow. In Vitro Cell Dev Biol Anim 2002; 38:538-43. [PMID: 12703982 DOI: 10.1290/1071-2690(2002)038<0538:vcamea>2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ontogeny-specific differences in hematopoietic behavior may be influenced by unique adhesive interactions between hematopoietic cells and the microenvironment, such as that mediated by vascular cell adhesion molecule-1 (VCAM-1, CD 106). Although VCAM-1 is variably expressed during vertebrate development, we hypothesized that VCAM-1 expression might be linked to the enhanced capacity of the fetal liver microenvironment to support hematopoiesis. To test this we used immortalized murine stromal cell lines derived from midgestation fetal liver and adult bone marrow to compare the functional expression of VCAM-1. Molecular analysis of VCAM-1 expression was performed on stromal cell lines using Northern blot analysis, immunoprecipitation studies, and solid-phase enzyme-linked immunosorbent assay. Hematopoietic studies were performed by coculturing fetal liver cells with stromal cell lines, and the functional readout was determined by high-proliferative potential colony-forming cell (HPP-CFC) adherence assays. In contrast to our initial hypothesis, we observed greater expression of VCAM-1 messenger ribonucleic acid and protein on an adult marrow stromal cell line. In functional studies, anti-VCAM-1 antibody inhibited the binding of nearly half of the HPP-CFCs to adult marrow stroma but had a minimal effect on their binding to fetal liver stroma, despite the greater adherence of HPP-CFCs to fetal stroma. We conclude that VCAM-1 influences the hematopoietic supportive capacity of immortalized murine stroma derived from adult bone marrow. Our studies suggest that cellular interactions other than those mediated by VCAM-1 are involved in the increased adhesive capacity of immortalized murine stroma derived from fetal liver.
Collapse
Affiliation(s)
- Joyce M Koenig
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
48
|
Young JC, Lin K, Travis M, Hansteen G, Abitorabi A, Sirenko O, Murray L, Hill B. Investigation into an engraftment defect induced by culturing primitive hematopoietic cells with cytokines. Cytotherapy 2002; 3:307-20. [PMID: 12171719 DOI: 10.1080/146532401317070943] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Strategies for transplanting primitive hematopoietic progenitor (PHP) cells are under development that require in vitro manipulation of cells for several hours to several days prior to transplantation. This applies to gene-therapy protocols involving transduction with adenoviral or lentiviral vectors (typically 1 day of ex vivo culture) or retroviral vectors (up to 3 days of culture). METHODS Human mobilized peripheral blood (MPB) CD34(+) cells were cultured with the cytokines thrombopoietin mimetic peptide (mTPO), flt3 ligand (FL), and c-kit ligand (KL). Equal numbers of CD34(+) cells, either uncultured or cultured for various time periods up to 5 days, were tested for engraftment in sublethally irradiated 8-10 week-old NOD/SCID mice. Cells were also compared for expression and function of several key surface molecules. RESULTS At a limiting dose of 1 million cells, mice receiving uncultured cells had a mean of 20% CD45(+) (human) cells in their BM 6 weeks post-transplantation, versus 3% for mice receiving 3-5 day cultured cells. Analysis of 10 surface molecules, CD11a, CD18, CD29, CD49d, CD49e, CXCR-4, CD62L, CD31, CD43, and CD44 over a 5-day culture period showed that their expression levels were either maintained or up-regulated on CD34(+) cells and the primitive Thy-1(+) subset. Similar percentages of uncultured and 3-day cultured MPB CD34(+) cells bound to plates coated with vascular cell adhesion molecule-1 (VCAM-1) under both static and physiological flow conditions, and chemotaxis of cultured cells towards stromal-derived factor-1 (SDF-1) was not impaired, suggesting that VLA-4 and CXCR-4 were functional on cultured cells. CD34(+) Thy-1(+) MPB cells cultured with cytokines expressed increasing levels of Fas receptor beginning at 20 h in culture, with peak expression levels after 3 days (mean Day 0 expression, 39%; mean Day 3 expression, 86%), without increased apoptosis. Including inhibitors of caspases in the media of cells cultured for 24-48 h significantly improved their engraftment in a SCID-hu bone-engraftment model. DISCUSSION Increased susceptibility to apoptosis upon in vivo injection may contribute to impaired engraftment of in vitro manipulated cells. Inhibitors of apoptosis may increase their engrafting capacity in clinical settings.
Collapse
Affiliation(s)
- J C Young
- SyStemix Inc., Palo Alto, CA 94070 (a subsidiary of Novartis Pharmaceuticals), USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lévesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002; 30:440-9. [PMID: 12031650 DOI: 10.1016/s0301-472x(02)00788-9] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Hematopoietic stem and progenitor cells normally reside in the bone marrow but can be mobilized into the peripheral blood following treatment with granulocyte colony-stimulating factor (G-CSF) or myelosuppressive chemotherapy. Although the number of transplants performed with mobilized blood currently exceeds those performed with bone marrow, little is known of the molecular mechanisms responsible for this phenomenon. We sought to determine whether mobilization induced by G-CSF or chemotherapy was triggered by common or distinct mechanisms. METHODS Balb/c mice were mobilized with either G-CSF alone, cyclophosphamide alone, or the combination of both agents. Spleens, peripheral blood, bone marrow extracellular fluids, and cells were taken at different time points and analyzed for the expression of VCAM-1, the number of peripheral blood progenitor cells, concentration of neutrophil proteases, and number of granulocytes. RESULTS Administration of either G-CSF or the myelosuppressive agent cyclophosphamide results in a sharp reduction of VCAM-1/CD106 expression in the bone marrow that coincides with the accumulation of granulocytic precursors and release of active neutrophil proteases neutrophil elastase and cathepsin G that directly cleave VCAM-1/CD106 in vitro. These events follow precisely the kinetics of hematopoietic progenitor cell mobilization into the peripheral blood. CONCLUSION We have identified a commonality of events during mobilization induced by either G-CSF or chemotherapy, which include the accumulation in the bone marrow of active neutrophil proteases that directly cleave VCAM-1 and lead to the sharp reduction of VCAM-1 expression in this tissue.
Collapse
Affiliation(s)
- Jean Pierre Lévesque
- Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Stromal cells are an essential component of the bone marrow microenvironment that regulate development of immature hematopoietic progenitor cells. Through production of soluble cytokines, and signaling through adhesion molecule interactions, stromal cells impact survival, proliferation, and differentiation of hematopoietic progenitor cells. Similarities between normal pro-B and pre-B cells and B lineage acute lymphoblastic leukemic (ALL) progenitors have been well characterized which provide a model for investigation of the mechanisms by which ALL cells respond to bone marrow microenvironment signals. In addition to providing survival signals to B lineage ALL during initiation of disease, the bone marrow has long been recognized as a "sanctuary site" for leukemic cells during traditional chemotherapy. In the current review, mechanisms by which stromal cells contribute to leukemic cell survival, and the potential impact on treatment efficacy, are discussed. A growing appreciation of the significance of the bone marrow microenvironment in the progression of ALL, and further investigation of the signaling between leukemic progenitors and stromal cells, may contribute to novel treatment strategies aimed at enhancing sensitivity of ALL cells to currently available chemotherapeutic agents.
Collapse
Affiliation(s)
- Laura F Gibson
- Department of Pediatrics, West Virginia University, Morgantown 26506, USA.
| |
Collapse
|