1
|
Yang X, Wu C, Liu W, Fu K, Tian Y, Wei X, Zhang W, Sun P, Luo H, Huang J. A clinical-information-free method for early diagnosis of lung cancer from the patients with pulmonary nodules based on backpropagation neural network model. Comput Struct Biotechnol J 2024; 24:404-411. [PMID: 38813092 PMCID: PMC11134880 DOI: 10.1016/j.csbj.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Lung cancer is the main cause of cancer-related deaths worldwide. Due to lack of obvious clinical symptoms in the early stage of the lung cancer, it is hard to distinguish between malignancy and pulmonary nodules. Understanding the immune responses in the early stage of malignant lung cancer patients may provide new insights for diagnosis. Here, using high-through-put sequencing, we obtained the TCRβ repertoires in the peripheral blood of 100 patients with Stage I lung cancer and 99 patients with benign pulmonary nodules. Our analysis revealed that the usage frequencies of TRBV, TRBJ genes, and V-J pairs and TCR diversities indicated by D50s, Shannon indexes, Simpson indexes, and the frequencies of the largest TCR clone in the malignant samples were significantly different from those in the benign samples. Furthermore, reduced TCR diversities were correlated with the size of pulmonary nodules. Moreover, we built a backpropagation neural network model with no clinical information to identify lung cancer cases from patients with pulmonary nodules using 15 characteristic TCR clones. Based on the model, we have created a web server named "Lung Cancer Prediction" (LCP), which can be accessed at http://i.uestc.edu.cn/LCP/index.html.
Collapse
Affiliation(s)
- Xin Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Changchun Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenwen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Yuke Tian
- Department of medical oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xing Wei
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Zhang
- Department of medical oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Ping Sun
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, China
| |
Collapse
|
2
|
Dong H, Zeng X, Xu J, He C, Sun Z, Liu L, Huang Y, Sun Z, Cao Y, Peng Z, Qiu YA, Yu T. Advances in immune regulation of the G protein-coupled estrogen receptor. Int Immunopharmacol 2024; 136:112369. [PMID: 38824903 DOI: 10.1016/j.intimp.2024.112369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Estrogen and related receptors have been shown to have a significant impact on human development, reproduction, metabolism and immune regulation and to play a critical role in tumor development and treatment. Traditionally, the nuclear estrogen receptors (nERs) ERα and ERβ have been thought to be involved in mediating the estrogenic effects. However, our group and others have previously demonstrated that the G protein-coupled estrogen receptor (GPER) is the third independent ER, and estrogen signaling mediated by GPER is known to play an important role in normal physiology and a variety of abnormal diseases. Interestingly, recent studies have progressively revealed GPER involvement in the maintenance of the normal immune system, abnormal immune diseases, and inflammatory lesions, which may be of significant clinical value primarily in the immunotherapy of tumors. In this article, we review current advances in GPER-related immunomodulators and provide a theoretical basis and potential clinical targets to ameliorate immune-related diseases and immunotherapy for tumors.
Collapse
Affiliation(s)
- Hanzhi Dong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Xiaoqiang Zeng
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Jiawei Xu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Zhengkui Sun
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Liyan Liu
- Department of Pharmacy, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China
| | - Yanxiao Huang
- Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhe Sun
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Yuan Cao
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330000, China
| | - Zhiqiang Peng
- Department of Lymphohematology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Yu-An Qiu
- Department of Critical Care Medicine, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang 330029, China.
| |
Collapse
|
3
|
Jia L, Wang Y, Shen Y, Zhong B, Luo Z, Yang J, Chen G, Jiang X, Chen J, Lyu Z. IgNAR characterization and gene loci identification in whitespotted bamboo shark (Chiloscyllium plagiosum) genome. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108535. [PMID: 36649810 DOI: 10.1016/j.fsi.2023.108535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Single domain antibodies (sdAb) are promising candidates in cancer and anti-virus biotherapies for their unique structure characters. Though VHH and IgNAR have been discovered in camelidae and nurse shark (Ginlymostoma cirratum) respectively serval decades ago, expense of these large animals still limits the studies and applications of sdAb. Recently, IgNAR has been found in whitespotted bamboo shark (Chiloscyllium plagiosum), a small-sized sharks, while how to characterize and achieved the IgNAR of whitespotted bamboo shark is still unclear. In our research, we identified four IgNAR coding gene loci in whitespotted bamboo shark chromosome 44 (NC_057753.1), and primers were designed for single domain variable regions of IgNAR (VNAR) libraries preparation. Following sequencing results revealed that all plasmids constructed with our predicted VNAR libraries contained VNAR coding sequences, which confirmed the specificities of our primers in VNAR amplification. To our surprise, ≥90% VNAR sequences were encoded by IgNAR1, which suggests IgNAR1 is the most active IgNAR transcription locus in whitespotted bamboo shark. Interestingly, we found IgNAR(ΔC2-C3) were encoded by IgNAR3. Our findings gave a new sight of whitespotted bamboo shark IgNAR, which would broad the way of IgNAR studies and applications in biotherapies.
Collapse
Affiliation(s)
- Lei Jia
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Yu Wang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China.
| | - Yajun Shen
- Economic Development Bureau of Shaoxing Binhai New Area Management Committee, 312090, Shaoxing, China.
| | - Bo Zhong
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Zhan Luo
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Junjie Yang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Guodong Chen
- Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China.
| | - Xiaofeng Jiang
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China.
| | - Jianqing Chen
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China; Zhejiang Q-peptide Biotechnology Co., Ltd, 312366, Shaoxing, China.
| | - Zhengbing Lyu
- College of Life Sciences and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, 310018, Hangzhou, China; Shaoxing Academy of Biomedicine Co.,Ltd, 312369, Shaoxing, China.
| |
Collapse
|
4
|
Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang CY, McDonnell DP. Estrogen Receptor Signaling in the Immune System. Endocr Rev 2023; 44:117-141. [PMID: 35709009 DOI: 10.1210/endrev/bnac017] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The immune system functions in a sexually dimorphic manner, with females exhibiting more robust immune responses than males. However, how female sex hormones affect immune function in normal homeostasis and in autoimmunity is poorly understood. In this review, we discuss how estrogens affect innate and adaptive immune cell activity and how dysregulation of estrogen signaling underlies the pathobiology of some autoimmune diseases and cancers. The potential roles of the major circulating estrogens, and each of the 3 estrogen receptors (ERα, ERβ, and G-protein coupled receptor) in the regulation of the activity of different immune cells are considered. This provides the framework for a discussion of the impact of ER modulators (aromatase inhibitors, selective estrogen receptor modulators, and selective estrogen receptor downregulators) on immunity. Synthesis of this information is timely given the considerable interest of late in defining the mechanistic basis of sex-biased responses/outcomes in patients with different cancers treated with immune checkpoint blockade. It will also be instructive with respect to the further development of ER modulators that modulate immunity in a therapeutically useful manner.
Collapse
Affiliation(s)
- Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jovita Byemerwa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor Krebs
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.,Known Medicine, Salt Lake City, UT 84108, USA
| | - Felicia Lim
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Arwansyah A, Arif AR, Kade A, Taiyeb M, Ramli I, Santoso T, Ningsih P, Natsir H, Tahril T, Uday Kumar K. Molecular modelling on multiepitope-based vaccine against SARS-CoV-2 using immunoinformatics, molecular docking, and molecular dynamics simulation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:649-675. [PMID: 36083166 DOI: 10.1080/1062936x.2022.2117846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The pandemic of COVID-19 caused by SARS-CoV-2 has made a worldwide health emergency. Despite the fact that current vaccines are readily available, several SARSCoV-2 variants affecting the existing vaccine are to be less effective due to the mutations in the structural proteins. Furthermore, the appearance of the new variants cannot be easily predicted in the future. Therefore, the attempts to construct new vaccines or to modify the current vaccines are still pivotal works for preventing the spread of the virus. In the present investigation, the computational analysis through immunoinformatics, molecular docking, and molecular dynamics (MD) simulation is employed to construct an effective vaccine against SARS-CoV2. The structural proteins of SARS-CoV2 are utilized to create a multiepitope-based vaccine (MEV). According to our findings presented by systematic procedures in the current investigation, the MEV construct may be able to trigger a strong immunological response against the virus. Therefore, the designed MEV could be a potential vaccine candidate against SARS-CoV-2, and also it is expected to be effective for other variants.
Collapse
Affiliation(s)
- A Arwansyah
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - A R Arif
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - A Kade
- Department of Physics Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - M Taiyeb
- Department of Biology, Faculty of Mathematics and Natural Sciences, Makassar State University, Makassar, Indonesia
| | - I Ramli
- Department of Physics, Faculty of Science, Universitas Cokroaminoto Palopo, Palopo, Indonesia
| | - T Santoso
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - P Ningsih
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - H Natsir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia
| | - T Tahril
- Department of Chemistry Education, Faculty of Teacher Training and Education, Tadulako University, Palu, Indonesia
| | - K Uday Kumar
- Department of Radiology, Toxicology and Population Protection, Faculty of Health and Social Studies, University of South Bohemia Cesk´e Budˇejovice, Czech Republic
| |
Collapse
|
6
|
Hussain N, Das D, Pramanik A, Pandey MK, Joshi V, Pramanik KC. Targeting the complement system in pancreatic cancer drug resistance: a novel therapeutic approach. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:317-327. [PMID: 35800364 PMCID: PMC9255240 DOI: 10.20517/cdr.2021.150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic cancer is ranked as the fourth leading cause of cancer-related mortality and is predicted to become the second leading cause of cancer-related death by 2030. The cause of this high mortality rate is due to pancreatic ductal adenocarcinoma's rapid progression and metastasis, and development of drug resistance. Today, cancer immunotherapy is becoming a strong candidate to not only treat various cancers but also to combat against chemoresistance. Studies have suggested that complement system pathways play an important role in cancer progression and chemoresistance, especially in pancreatic cancer. A recent report also suggested that several signaling pathways play an important role in causing chemoresistance in pancreatic cancer, major ones including nuclear factor kappa B, signal transducer and activator of transcription 3, c-mesenchymal-epithelial transition factor, and phosphoinositide-3-kinase/protein kinase B. In addition, it has also been proven that the complement system has a very active role in establishing the tumor microenvironment, which would aid in promoting tumorigenesis, progression, metastasis, and recurrence. Interestingly, it has been shown that the downstream products of the complement system directly upregulate inflammatory mediators, which in turn activate these chemo-resistant pathways. Therefore, targeting complement pathways could be an innovative approach to combat against pancreatic cancer drugs resistance. In this review, we have discussed the role of complement system pathways in pancreatic cancer drug resistance and a special focus on the complement as a therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Naushair Hussain
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| | - Deea Das
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| | - Atreyi Pramanik
- Department of Education, South College, Knoxville, TN 37902, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Vivek Joshi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Wyomissing, PA 19610, USA
| | - Kartick C. Pramanik
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA
| |
Collapse
|
7
|
Wang H, Yuan Y, Lu C, Zhou S, Zhang Y, Zhao J, Xu C, Yang J, Su H, Li B, Li X, Wang P, Xu G, Wang L, Zou X, Bao S, Zhang S, Lv Y. Analysis of T-cell receptor repertoire in peripheral blood of patients with pancreatic cancer and other pancreatic diseases. J Cell Mol Med 2021; 25:3991-4000. [PMID: 33682267 PMCID: PMC8051704 DOI: 10.1111/jcmm.16358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) has been the fourth cancer‐related death worldwide, diagnosed at an unresectable stage due to its rapid progression and few symptoms of this disease at early stages. The aim of this study was to determine the association between the diversity of T‐cell receptor (TCR) repertoire and clinicopathological characteristics of patients with PC and other benign pancreatic diseases. In order to make a comprehensive analysis the TCR repertoire, high‐throughput sequencing was used to differentiate complementarity determining region 3 (CDR3) of the TCR β chain in peripheral blood samples from 3 PC, 3 chronic pancreatitis, 3 pancreatic cystic lesions and 3 pancreatic neuroendocrine tumour patients. We found that there were significant differences related to TCR repertoire between PC and other pancreatic diseases, and PC is a relatively immunosuppressive tumour. Changes of peripheral TCR repertoire may be used to predict the progression of PC and the response to immunotherapy. And there may exist novel‐specific antigens in PC patients which could be used to design targeting immunotherapy in the nearly future.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Yue Yuan
- Department of Gastroenterology, Nanjing Medical University Affiliated Drum Tower Clinical Medical College, Nanjing, China
| | - Chenglin Lu
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Siqi Zhou
- Department of Gastroenterology, Jiangsu University Affiliated Drum Tower Hospital, Nanjing, China
| | - Yixuan Zhang
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Jing Zhao
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Chenghu Xu
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Jie Yang
- Department of Gastroenterology, Nanjing Medical University Affiliated Drum Tower Clinical Medical College, Nanjing, China
| | - Haochen Su
- Department of Gastroenterology, Nanjing Medical University Affiliated Drum Tower Clinical Medical College, Nanjing, China
| | - Borui Li
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Xihan Li
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Shanhua Bao
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Shu Zhang
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China
| | - Ying Lv
- Department of Gastroenterology, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing, China.,Department of Gastroenterology, Nanjing Medical University Affiliated Drum Tower Clinical Medical College, Nanjing, China
| |
Collapse
|
8
|
Lee S, Song S, Yoon SS, Koh Y, Yun H. Proper Read Filtering Method to Adequately Analyze Whole-Transcriptome Sequencing and RNA Based Immune Repertoire Sequencing Data for Tumor Milieu Research. Cancers (Basel) 2020; 12:cancers12123693. [PMID: 33317041 PMCID: PMC7763492 DOI: 10.3390/cancers12123693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The recent advancement in high-throughput sequencing has become indispensable for immune-genomics and profiling the T- and B-cell receptor repertoires. Immune repertoire sequencing (IR-seq) and whole transcriptome sequencing (WTS) can be implemented to investigate and quantitatively characterize the complex pattern of the CDR3 region. We conducted T-cell diversity analysis result comparisons of these sequencing methods and suggest an intuitive approach to discriminate reliable TCR sequences and clonotype patterns from capturing errors. Although bulk-RNA sequencing is commonly used for cancer analysis, we confirmed capturing highly enriched TCR transcripts with IR-seq is more reliable for accurate immune repertoire discovery, and singleton read filtering criteria should be applied to capture true clonotypes from error-prone sequencing data. The use of such well-established data and analytical methodologies can broaden understanding of antigen specificity in immunity and enabling efficient therapeutic antibody finding. Abstract Analysis of the T-cell receptor (TCR) repertoire is essential to characterize the extensive collections of T-cell populations with recognizing antigens in cancer research, and whole transcriptome sequencing (WTS) and immune repertoire sequencing (IR-seq) are commonly used for this measure. To date, no standard read filtering method for IR measurement has been presented. We assessed the diversity of the TCR repertoire results from the paired WTS and IR-seq data of 31 multiple myeloma (MM) patients. To invent an adequate read filtering strategy for IR analysis, we conducted comparisons with WTS results. First, our analyses for determining an optimal threshold for selecting clonotypes showed that the clonotypes supported by a single read largely affected the shared clonotypes and manifested distinct patterns of mapping qualities, unlike clonotypes with multiple reads. Second, although IR-seq could reflect a wider TCR region with a higher capture rate than WTS, an adequate comparison with the removal of unwanted bias from potential sequencing errors was possible only after applying our read filtering strategy. As a result, we suggest that TCR repertoire analysis be carried out through IR-seq to produce reliable and accurate results, along with the removal of single-read clonotypes, to conduct immune research in cancer using high-throughput sequencing.
Collapse
Affiliation(s)
- Sungyoung Lee
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03082, Korea;
| | - Seulki Song
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (S.S.); (S.-S.Y.)
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (S.S.); (S.-S.Y.)
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea; (S.S.); (S.-S.Y.)
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
- Correspondence: (Y.K.); (H.Y.)
| | - Hongseok Yun
- Center for Precision Medicine, Seoul National University Hospital, Seoul 03082, Korea;
- Correspondence: (Y.K.); (H.Y.)
| |
Collapse
|
9
|
van Eeden ME, Vientós-Plotts AI, Cohn LA, Reinero CR. Serum allergen-specific IgE reactivity: is there an association with clinical severity and airway eosinophilia in asthmatic cats? J Feline Med Surg 2020; 22:1129-1136. [PMID: 32167403 PMCID: PMC10814376 DOI: 10.1177/1098612x20907178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate the results of serum allergen-specific IgE testing in cats with a clinical diagnosis of asthma and to determine if the number of allergens with positive IgE reactivity and magnitude of positive IgE responses would be associated with the severity of clinical signs or airway eosinophilia. METHODS Medical records from 2008 to 2018 were retrospectively reviewed. Inclusion required a diagnosis of feline asthma based on consistent clinicopathologic features and bronchoalveolar lavage (BAL) cytology with >10% eosinophils; additionally, cats needed to have the results of serum allergen-specific IgE tests. RESULTS Eighteen cases satisfied the inclusion criteria. Median age was 5 years and the most common presenting clinical sign was cough (n = 10/18). Most cats lived exclusively indoors (n = 13/18). The median percentage of BAL eosinophils was 47%. Serum allergen-specific IgE testing supported an underlying allergic etiology in 14/18 (78%) cats, with all but one having polysensitization. The severity of clinical signs and magnitude of airway eosinophilia did not correlate with the degree of positive IgE reactivity. CONCLUSIONS AND RELEVANCE This study identified a strong association between the identification of allergen-specific IgE and cats with asthma, and the majority of these cats were polysensitized. However, larger numbers of allergens with positive IgE reactivity or magnitude of IgE reactivity were not significantly associated with clinical severity or airway eosinophilia. Knowledge of positive allergen-specific IgE results could guide allergen avoidance, regardless of the magnitude of IgE reactivity.
Collapse
Affiliation(s)
- Megan E van Eeden
- Department of Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Aida I Vientós-Plotts
- Department of Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Leah A Cohn
- Department of Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| | - Carol R Reinero
- Department of Veterinary Medicine and Surgery, University of Missouri College of Veterinary Medicine, Columbia, MO, USA
| |
Collapse
|
10
|
Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, Bohn T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020; 12:E1562. [PMID: 32471251 PMCID: PMC7352291 DOI: 10.3390/nu12061562] [Citation(s) in RCA: 406] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
The coronavirus-disease 2019 (COVID-19) was announced as a global pandemic by the World Health Organization. Challenges arise concerning how to optimally support the immune system in the general population, especially under self-confinement. An optimal immune response depends on an adequate diet and nutrition in order to keep infection at bay. For example, sufficient protein intake is crucial for optimal antibody production. Low micronutrient status, such as of vitamin A or zinc, has been associated with increased infection risk. Frequently, poor nutrient status is associated with inflammation and oxidative stress, which in turn can impact the immune system. Dietary constituents with especially high anti-inflammatory and antioxidant capacity include vitamin C, vitamin E, and phytochemicals such as carotenoids and polyphenols. Several of these can interact with transcription factors such as NF-kB and Nrf-2, related to anti-inflammatory and antioxidant effects, respectively. Vitamin D in particular may perturb viral cellular infection via interacting with cell entry receptors (angiotensin converting enzyme 2), ACE2. Dietary fiber, fermented by the gut microbiota into short-chain fatty acids, has also been shown to produce anti-inflammatory effects. In this review, we highlight the importance of an optimal status of relevant nutrients to effectively reduce inflammation and oxidative stress, thereby strengthening the immune system during the COVID-19 crisis.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Alex Brito
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First Moscow Medical University, Trubetskay Str. 8, 119991 Moscow, Russia
| | - Giulia Dingeo
- Independent Researcher, Val de Marne, 94999 Paris, France;
| | - Sofia Sosa Fernandez Del Campo
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Hanen Samouda
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| | - Michael R. La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA;
- Center for Health Research, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA
| | - Torsten Bohn
- Nutrition and Health Research Group, Population Health Department, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg; (M.I.); or (A.B.); (S.S.F.D.C.); (H.S.)
| |
Collapse
|
11
|
Park HJ, Piao L, Seo EH, Lee SH, Kim SH. The effect of repetitive exposure to intravenous anesthetic agents on the immunity in mice. Int J Med Sci 2020; 17:428-436. [PMID: 32174773 PMCID: PMC7053311 DOI: 10.7150/ijms.41899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction: This study was designed to assess the effect of repetitive exposure to intravenous anesthetic agents on the immunity in mice. Materials and Methods: The mice were divided into six groups: three intravenous anesthetic agents groups (dexmedetomidine, midazolam and propofol groups), and three corresponding control groups (CD, CM, and CP groups). The intravenous injections were administered once per day for 5 days. The immunity of mice was checked after the last intravenous injection. Histopathology and immunochemistry of liver and kidneys were evaluated. Cytokine levels in the blood was also checked. vs. evaluated with cytokine levels in the blood. Results: Cluster of differentiation (CD)4+ T cells were significantly less expressed in dexmedetomidine and propofol groups, compared with the corresponding control groups [34.08 ± 5.63% in the dexmedetomidine group vs. 59.74 ± 8.64% in the CD group, p < 0.05; 25.28 ± 7.28% in the propofol group vs. 61.12 ± 2.70% in the Cp group, p < 0.05]. Apoptosis of CD4+ T cells was increased significantly in dexmedetomidine and propofol groups, compared with the corresponding control groups. Histopathological findings of liver and kidneys did not show any specific differences of any of three intravenous anesthetic agents groups with their corresponding control groups, although immunohistochemical examination indicated significantly lower expression of Toll-like receptor-4 from liver and kidneys in dexmedetomidine and propofol groups. The cytokine levels were not different between the groups. Conclusion: Repetitive exposure to dexmedetomidine and propofol reduced the expression of CD4+ T cells but did not induce any significant liver or kidney injuries.
Collapse
Affiliation(s)
- Hyun Jun Park
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
| | - Liyun Piao
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea
| | - Eun-Hye Seo
- BK21 plus, Department of Cellular and Molecular Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Seoul, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea
| | - Seong-Hyop Kim
- Department of Infection and Immunology, Konkuk University School of Medicine, Seoul, Korea.,Department of Medicine, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Korea.,Department of Anesthesiology and Pain medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Zhang J, Luo W, Huang P, Peng L, Huang Q. Maternal C-reactive protein and cytokine levels during pregnancy and the risk of selected neuropsychiatric disorders in offspring: A systematic review and meta-analysis. J Psychiatr Res 2018; 105:86-94. [PMID: 30212728 DOI: 10.1016/j.jpsychires.2018.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022]
Abstract
The pathophysiology of neuropsychiatric disorders is unclear. Increasing evidence has suggested maternal immune system dysregulation may be implicated in offspring's early brain development and related to an increased risk of neuropsychiatric disorders in offspring. The primary objective of this meta-analysis was to investigate the association of maternal CRP and cytokine levels with offspring's neuropsychiatric disorders. We identified relevant studies following a search of PubMed, Web of Science, EMbase database between January 1971 and February 2018. A meta-analysis was performed on studies which reported the association of prenatal maternal peripheral blood concentrations of CRP and cytokines with offspring's neuropsychiatric disorders. Results were reported according to PRISMA statement. Fifteen studies (six for maternal CRP, nine for maternal cytokines) were included in the meta-analysis, of which 80% were of high methodological quality. Random-effect meta-analysis showed that increasing maternal CRP (OR = 1.31, 95% CI 1.11-1.55, SMD = 0.15, 95% CI 0.06-0.24, P < 0.01), pro-inflammatory cytokine interleukin (IL)-8 (OR = 1.64, 95% CI 1.06-2.55, SMD = 0.27, 95% CI 0.03-0.52, P = 0.03) and anti-inflammatory cytokine IL-10 (OR = 2.16, 95% CI 1.30-3.59, SMD = 0.43, 95% CI 0.14-0.71, P < 0.01) were significantly associated with schizophrenia in offspring. The finding of our meta-analysis has identified significantly altered maternal CRP and cytokine concentrations in schizophrenia, strengthening evidence of maternal immune system dysregulation in neuropsychiatric disorders where inflammatory signals dominate.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China; Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Wanjun Luo
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Pengcheng Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Linrui Peng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Qitao Huang
- Division of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
13
|
Liu Q, Chen F, Hou L, Shen L, Zhang X, Wang D, Huang L. Nanocarrier-Mediated Chemo-Immunotherapy Arrested Cancer Progression and Induced Tumor Dormancy in Desmoplastic Melanoma. ACS NANO 2018; 12:7812-7825. [PMID: 30016071 PMCID: PMC6115293 DOI: 10.1021/acsnano.8b01890] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In desmoplastic melanoma, tumor cells and tumor-associated fibroblasts are the major dominators playing a critical role in the fibrosis morphology as well as the immunosuppressive tumor microenvironment (TME), compromising the efficacy of therapeutic options. To overcome this therapeutic hurdle, we developed an innovative chemo-immunostrategy based on targeted delivery of mitoxantrone (MIT) and celastrol (CEL), two potent medicines screened and selected with the best anticancer and antifibrosis potentials. Importantly, CEL worked in synergy with MIT to induce immunogenic tumor cell death. Here, we show that when effectively co-delivered to the tumor site at their optimal ratio by a TME-responsive nanocarrier, the 5:1 combination of MIT and CEL significantly triggered immunogenic tumor apoptosis and recovered tumor antigen recognition, thus eliciting overall antitumor immunity. Furthermore, the strong synergy benefitted the host in reduced drug exposure and side effects. Collectively, the nanocarrier-mediated chemo-immunotherapy successfully remodeled fibrotic and immunosuppressive TME, arrested cancer progression, and further inhibited tumor metastasis to major organs. The affected tumors remained dormant long after dosing stopped, resulting in a prolonged progression-free survival and sustained immune surveillance of the host bearing desmoplastic melanoma.
Collapse
Affiliation(s)
- Qi Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Fengqian Chen
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) and the Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX 79416, USA
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Limei Shen
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xueqiong Zhang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Degeng Wang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) and the Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX 79416, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
14
|
Dileep KV, Remya C, Tintu I, Mandal PK, Karthe P, Haridas M, Sadasivan C. Crystal structure of phospholipase A 2 in complex with 1-naphthaleneacetic acid. IUBMB Life 2018; 70:995-1001. [PMID: 30120882 DOI: 10.1002/iub.1924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/12/2018] [Accepted: 06/04/2018] [Indexed: 11/06/2022]
Abstract
Phospholipase A2 (PLA2 ) is one of the rate limiting enzymes involved in the production of arachidonic acid, a potent inflammatory mediator. PLA2 is widely distributed all over the animal kingdom. It is also seen in inflammatory exudation and venoms of different organisms. The studies demonstrated that PLA2 inhibitors have broad spectrum activities that they can either be used against inflammation or envenomation. In this study, the inhibitory activity of 1-napthaleneacetic acid (NAA) against porcine pancreatic PLA2 has been explained through isothermal titration calorimetry and enzyme kinetics studies. The atomic level of interactions of NAA with PLA2 was also studied using X-ray crystallography. Apart from these findings, the theoretical binding affinities and mode of interactions of two naphthalene-based NSAIDs such as naproxen (NAP) and nabumetone (NAB) were studied through molecular modeling. The studies proved that the selected ligands are binding at the doorway of the active site cleft and hindering the substrate entry to the active site. The study brings out a potential scaffold for the designing of broad spectrum PLA2 inhibitors which can be used for inflammation or envenomation. © 2018 IUBMB Life, 70(10):995-1001, 2018.
Collapse
Affiliation(s)
- Kalarickal V Dileep
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Chandran Remya
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Ignatius Tintu
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India
| | - Pradeep K Mandal
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Ponnuraj Karthe
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Madathilkovilakathu Haridas
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India.,Inter University Centre for Bioscience, Kannur University, Kannur, Kerala, India
| | - Chittalakkottu Sadasivan
- Department of Biotechnology and Microbiology, Kannur University, Kannur, Kerala, India.,Inter University Centre for Bioscience, Kannur University, Kannur, Kerala, India
| |
Collapse
|
15
|
Liu S, Pan W, Cheng Z, Sun G, Zhu P, Chan F, Hu Y, Zhang X, Dai Y. Characterization of the T-cell receptor repertoire by deep T cell receptor sequencing in tissues from patients with prostate cancer. Oncol Lett 2017; 15:1744-1752. [PMID: 29399194 PMCID: PMC5774533 DOI: 10.3892/ol.2017.7479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PC) is the most prevalent urological cancer in men. T cells serve a central role in the cancer's immunological microenvironment. In the present study, we applied multiplex PCR and Illumina next-generation sequencing to study the clonal diversity of the T-cell receptor (TCR) repertoire in cancer tissues and paracancer tissues from patients with PC. It was found that the TCR repertoire in the PC samples had a notably more skewed clonotype composition, with a greater number of highly expanded clones (HECs) compared with the prostate paracancer samples. The amino acid sequences ATSRVAGETQY (1.008 vs. 0.002%), ATSRTGRWETQY (3.985 vs. 0.007%), ATSDSSDYEQY (12.464 vs. 0.027%), ATSDFRGQPQETQY (2.205 vs. 0.06%), ASSQQDEAF (1.109 vs. 0.002%) and ARPTRTEETQY (1.263 vs. 0.002%) were found to vary markedly between cancer and paracancer tissues, respectively. In conclusion, the present study identified PC-specific HECs, which are critical to improving understanding of the TCR repertoire in PC. This may accelerate the screening process for potential new autoantigens and provide information for generating more effective T cell-targeted diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Song Liu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Weibing Pan
- Urology Division of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Zhiqiang Cheng
- Department of Pathology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Guoping Sun
- Central Lab of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Peng Zhu
- Central Lab of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Franky Chan
- Cancer Biology and Experimental Therapeutics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Yunlong Hu
- Cancer Research Center, Shenzhen University School of Medicine, Shenzhen, Guangdong 518000, P.R. China
| | - Xinzhou Zhang
- Department of Nephrology, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
16
|
Narayanan S, Redfern RL, Miller WL, Nichols KK, McDermott AM. Dry eye disease and microbial keratitis: is there a connection? Ocul Surf 2013; 11:75-92. [PMID: 23583043 DOI: 10.1016/j.jtos.2012.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/14/2012] [Accepted: 12/16/2012] [Indexed: 02/07/2023]
Abstract
Dry eye is a common ocular surface disease of multifactorial etiology characterized by elevated tear osmolality and inflammation leading to a disrupted ocular surface. The latter is a risk factor for ocular surface infection, yet overt infection is not commonly seen clinically in the typical dry eye patient. This suggests that important innate mechanisms operate to protect the dry eye from invading pathogens. This article reviews the current literature on epidemiology of ocular surface infection in dry eye patients and laboratory-based studies on innate immune mechanisms operating at the ocular surface and their alterations in human dry eye and animal models. The review highlights current understanding of innate immunity in dry eye and identifies gaps in our knowledge to help direct future studies to further unravel the complexities of dry eye disease and its sequelae.
Collapse
Affiliation(s)
- Srihari Narayanan
- University of the Incarnate Word, Rosenberg School of Optometry, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
17
|
Bustos D, Moret A, Tambutti M, Gogorza S, Testa R, Ascione A, Prigoshin N. Autoantibodies in Argentine women with recurrent pregnancy loss. ACTA ACUST UNITED AC 2006; 55:201-7. [PMID: 16451354 DOI: 10.1111/j.1600-0897.2005.00349.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PROBLEM To determine the presence or absence of subclinical autoimmunity in Caucasian Argentine healthy women with first trimester recurrent pregnancy loss (RPL), the sera of 118 healthy women with a history of three or more consecutive abortions and 125 fertile control women without abortions and two children were analyzed for the presence of autoantibodies: immunoglobulin (Ig)G and IgM anticardiolipin, antinuclear (ANA), antismooth muscle (ASMA), antimitocondrial (AMA), antiliver-kidney-microsomal fraction (LKM), antigastric parietal cells (GPC), antineutrophil cytoplasmatic (ANCA) and antibodies antigliadin type IgA and IgG and IgA antitransglutaminase related with celiac disease (CD). METHOD OF STUDY ANA, ASMA, AMA, anti-LKM, antibodies to GPC and ANCA were determined by indirect immunofluorescence (IFI) and anticardiolipin, antigliadina and antitransglutaminase antibodies were measured by enzyme-linked immunosorbent assays (ELISA). RESULTS There was no significant difference between controls and patients with ANA, ASMA, AMA, LKM, ANCA and GPC. The prevalence of anticardiolipin antibodies in RPL was significantly higher than controls (P < 0,01) and the prevalence of positive antibodies for antigliadina type IgA and IgG and IgA antitransglutaminase in RPL was significantly higher than controls (P < 0.04). CONCLUSION We show that Caucasian Argentine women with RPL showed significantly higher incidence of anticardiolipin antibodies than normal controls and finally we recommended the screening of IgA and IgG antigliadina and IgA antitransglutaminase antibodies in pregnancy, because of the high prevalence of subclinical CD in RPL and the chance of reversibility through consumption of a gluten free diet.
Collapse
Affiliation(s)
- Daniel Bustos
- Central Laboratory, Diagnostic Department, Hospital Italiano de Buenos Aires, Gascón 450, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
18
|
Gennaro S, Hennessy MD. Psychological and physiological stress: impact on preterm birth. J Obstet Gynecol Neonatal Nurs 2003; 32:668-75. [PMID: 14565747 DOI: 10.1177/0884217503257484] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Stress increases corticotropin-releasing hormone and may ultimately result in increased uterine contractility. Stress also increases cytokine production, which independently may lead to preterm birth or increase susceptibility to infection, thereby increasing the risk of preterm birth. Finally, stress may change health behaviors that lead to preterm birth. Research findings on the relationship between stress and preterm birth have been contradictory. In this article, the authors propose a model of the relationship between stress and preterm birth, evaluate the research on stress and pregnancy outcomes, and discuss the implications for nursing practice and research.
Collapse
Affiliation(s)
- Susan Gennaro
- School of Nursing, University of Pennsylvania, Philadelphia 19104-6096, USA.
| | | |
Collapse
|