1
|
Pezzella-Ferreira GN, Pão CRR, Bellas I, Luna-Gomes T, Muniz VS, Paiva LA, Amorim NRT, Canetti C, Bozza PT, Diaz BL, Bandeira-Melo C. Endogenous PGD2 acting on DP2 receptor counter regulates Schistosoma mansoni infection-driven hepatic granulomatous fibrosis. PLoS Pathog 2024; 20:e1011812. [PMID: 39173086 PMCID: PMC11386465 DOI: 10.1371/journal.ppat.1011812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/10/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
Identifying new molecular therapies targeted at the severe hepatic fibrosis associated with the granulomatous immune response to Schistosoma mansoni infection is essential to reduce fibrosis-related morbidity/mortality in schistosomiasis. In vitro cell activation studies suggested the lipid molecule prostaglandin D2 (PGD2) as a potential pro-fibrotic candidate in schistosomal context, although corroboratory in vivo evidence is still lacking. Here, to investigate the role of PGD2 and its cognate receptor DP2 in vivo, impairment of PGD2 synthesis by HQL-79 (an inhibitor of the H-PGD synthase) or DP2 receptor inhibition by CAY10471 (a selective DP2 antagonist) were used against the fibrotic response of hepatic eosinophilic granulomas of S. mansoni infection in mice. Although studies have postulated PGD2 as a fibrogenic molecule, HQL-79 and CAY10471 amplified, rather than attenuated, the fibrotic response within schistosome hepatic granulomas. Both pharmacological strategies increased hepatic deposition of collagen fibers - an unexpected outcome accompanied by further elevation of hepatic levels of the pro-fibrotic cytokines TGF-β and IL-13 in infected animals. In contrast, infection-induced enhanced LTC4 synthesis in the schistosomal liver was reduced after HQL-79 and CAY10471 treatments, and therefore, inversely correlated with collagen production in granulomatous livers. Like PGD2-directed maneuvers, antagonism of cysteinyl leukotriene receptors CysLT1 by MK571 also promoted enhancement of TGF-β and IL-13, indicating a key down-regulatory role for endogenous LTC4 in schistosomiasis-induced liver fibrosis. An ample body of data supports the role of S. mansoni-driven DP2-mediated activation of eosinophils as the source of LTC4 during infection, including: (i) HQL-79 and CAY10471 impaired systemic eosinophilia, drastically decreasing eosinophils within peritoneum and hepatic granulomas of infected animals in parallel to a reduction in cysteinyl leukotrienes levels; (ii) peritoneal eosinophils were identified as the only cells producing LTC4 in PGD2-mediated S. mansoni-induced infection; (iii) the magnitude of hepatic granulomatous eosinophilia positively correlates with S. mansoni-elicited hepatic content of cysteinyl leukotrienes, and (iv) isolated eosinophils from S. mansoni-induced hepatic granuloma synthesize LTC4 in vitro in a PGD2/DP2 dependent manner. So, our findings uncover that granulomatous stellate cells-derived PGD2 by activating DP2 receptors on eosinophils does stimulate production of anti-fibrogenic cysLTs, which endogenously down-regulates the hepatic fibrogenic process of S. mansoni granulomatous reaction - an in vivo protective function which demands caution in the future therapeutic attempts in targeting PGD2/DP2 in schistosomiasis.
Collapse
Affiliation(s)
- Giovanna N. Pezzella-Ferreira
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camila R. R. Pão
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isaac Bellas
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Luna-Gomes
- Departamento de Ciências da Natureza, Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdirene S. Muniz
- Laboratório de Imunofarmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ligia A. Paiva
- Laboratório de Imunofarmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia R. T. Amorim
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio Canetti
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Bruno L. Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, Lacy P, Vijverberg S, Slisz T, Sediva A, Simon HU, Striz I, Plevkova J, Schwarze J, Kosturiak R, Alexis NE, Untersmayr E, Vasakova MK, Knol E, Koenderman L. Eosinophils-from cradle to grave: An EAACI task force paper on new molecular insights and clinical functions of eosinophils and the clinical effects of targeted eosinophil depletion. Allergy 2023; 78:3077-3102. [PMID: 37702095 DOI: 10.1111/all.15884] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
- Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Vijverberg
- Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
| | - Tomas Slisz
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jurgen Schwarze
- Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Radovan Kosturiak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Edward Knol
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Reina-Couto M, Roboredo-Madeira M, Pereira-Terra P, Silva-Pereira C, Martins S, Teixeira-Santos L, Pinho D, Dias A, Cordeiro G, Dias CC, Sarmento A, Tavares M, Guimarães JT, Roncon-Albuquerque R, Paiva JA, Albino-Teixeira A, Sousa T. Evaluation of urinary cysteinyl leukotrienes as biomarkers of severity and putative therapeutic targets in COVID-19 patients. Inflamm Res 2023; 72:475-491. [PMID: 36617343 PMCID: PMC9826622 DOI: 10.1007/s00011-022-01682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cysteinyl leukotrienes (CysLT) are potent inflammation-promoting mediators, but remain scarcely explored in COVID-19. We evaluated urinary CysLT (U-CysLT) relationship with disease severity and their usefulness for prognostication in hospitalized COVID-19 patients. The impact on U-CysLT of veno-venous extracorporeal membrane oxygenation (VV-ECMO) and of comorbidities such as hypertension and obesity was also assessed. METHODS Blood and spot urine were collected in "severe" (n = 26), "critically ill" (n = 17) and "critically ill on VV-ECMO" (n = 17) patients with COVID-19 at days 1-2 (admission), 3-4, 5-8 and weekly thereafter, and in controls (n = 23) at a single time point. U-CysLT were measured by ELISA. Routine markers, prognostic scores and outcomes were also evaluated. RESULTS U-CysLT did not differ between groups at admission, but significantly increased along hospitalization only in critical groups, being markedly higher in VV-ECMO patients, especially in hypertensives. U-CysLT values during the first week were positively associated with ICU and total hospital length of stay in critical groups and showed acceptable area under curve (AUC) for prediction of 30-day mortality (AUC: 0.734, p = 0.001) among all patients. CONCLUSIONS U-CysLT increase during hospitalization in critical COVID-19 patients, especially in hypertensives on VV-ECMO. U-CysLT association with severe outcomes suggests their usefulness for prognostication and as therapeutic targets.
Collapse
Affiliation(s)
- Marta Reina-Couto
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal.
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal.
- Serviço de Farmacologia Clínica, CHUSJ, Porto, Portugal.
| | - Mariana Roboredo-Madeira
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Patrícia Pereira-Terra
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Carolina Silva-Pereira
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | | | - Luísa Teixeira-Santos
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Dora Pinho
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Andreia Dias
- Serviço de Farmacologia Clínica, CHUSJ, Porto, Portugal
| | | | - Cláudia Camila Dias
- Departamento de Medicina da Comunidade, Informação e Decisão em Saúde, FMUP, Porto, Portugal
- CINTESIS-Centro de Investigação em Tecnologias e Serviços de Saúde, Porto, Portugal
| | - António Sarmento
- Serviço de Doenças Infecciosas, CHUSJ, Porto, Portugal
- Departamento de Medicina, FMUP, Porto, Portugal
| | - Margarida Tavares
- Serviço de Doenças Infecciosas, CHUSJ, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | - João T Guimarães
- Serviço de Patologia Clínica, CHUSJ, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
- Departamento de Biomedicina-Unidade de Bioquímica, FMUP, Porto, Portugal
| | - Roberto Roncon-Albuquerque
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- Departamento de Cirurgia e Fisiologia, FMUP, Porto, Portugal
| | - José-Artur Paiva
- Serviço de Medicina Intensiva, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
- Departamento de Medicina, FMUP, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina-Unidade de Farmacologia e Terapêutica, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal.
- Centro de Investigação Farmacológica e Inovação Medicamentosa da Universidade do Porto (MEDInUP), Porto, Portugal.
| |
Collapse
|
4
|
Ualiyeva S, Lemire E, Aviles EC, Wong C, Boyd AA, Lai J, Liu T, Matsumoto I, Barrett NA, Boyce JA, Haber AL, Bankova LG. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Sci Immunol 2021; 6:eabj0474. [PMID: 34932383 DOI: 10.1126/sciimmunol.abj0474] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saltanat Ualiyeva
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Evan Lemire
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Evelyn C Aviles
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Caitlin Wong
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Amelia A Boyd
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Juying Lai
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Nora A Barrett
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Joshua A Boyce
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Adam L Haber
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Lora G Bankova
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Innate immune cell dysregulation drives inflammation and disease in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2021; 148:309-318. [PMID: 34364539 DOI: 10.1016/j.jaci.2021.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 01/06/2023]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a complex inflammatory disorder that is not generally viewed as a disease involving the adaptive immune system but instead one largely driven by the innate immune system. This article focuses on the cellular dysregulation involving 4 central cell types: eosinophils, basophils, mast cells, and innate lymphoid type 2 cells. AERD can be envisioned as involving a self-perpetuating vicious circle in which mediators produced by a differentiated activated epithelial layer, such as IL-25, IL-33, and thymic stromal lymphopoietin, engage and activate each of these innate immune cells. The activation of these innate immune cells with their production of additional cytokine/chemokine and lipid mediators leads to further recruitment and activation of these innate immune cells. More importantly, numerous mediators produced by these innate immune cells provoke the epithelium to induce further inflammation. This self-perpetuating cycle of inflammation partially explains both current interventions suggested to ameliorate AERD (eg, aspirin desensitization, leukotriene modifiers, anti-IL-5/IL-5 receptor, anti-IL-4 receptor, and anti-IgE) and invites exploration of novel targets as specific therapies for this condition (prostaglandin D2 antagonists or cytokine antagonists [IL-25, IL-33, thymic stromal lymphopoietin]). Several of these interventions currently show promise in small retrospective analyses but now require definite clinical trials.
Collapse
|
6
|
Knuplez E, Sturm EM, Marsche G. Emerging Role of Phospholipase-Derived Cleavage Products in Regulating Eosinophil Activity: Focus on Lysophospholipids, Polyunsaturated Fatty Acids and Eicosanoids. Int J Mol Sci 2021; 22:4356. [PMID: 33919453 PMCID: PMC8122506 DOI: 10.3390/ijms22094356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.
Collapse
Affiliation(s)
| | | | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (E.K.); (E.M.S.)
| |
Collapse
|
7
|
McGovern T, Ano S, Farahnak S, McCuaig S, Martin JG. Cellular Source of Cysteinyl Leukotrienes Following Chlorine Exposure. Am J Respir Cell Mol Biol 2020; 63:681-689. [PMID: 32697598 DOI: 10.1165/rcmb.2019-0385oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exposure of mice to high concentrations of chlorine leads to the synthesis of cysteinyl leukotrienes (cysLTs). CysLTs contribute to chlorine-induced airway hyperresponsiveness. The aim of the current study was to determine the cellular source of the cysLTs. To achieve this aim, we exposed mice to 100 ppm of chlorine for 5 minutes. Intranasal instillation of clodronate in liposomes and of diphtheria toxin in CD11c-DTR mice was used to deplete macrophages. CCR2-/- mice were used to assess the contribution of recruited macrophages. Eosinophils and neutrophils were depleted with specific antibodies. Platelet-neutrophil aggregation was prevented with an antibody against P-selectin. The potential roles of phagocytosis of neutrophils by macrophages and of transcellular metabolism between epithelial cells and neutrophils were explored in coculture systems. We found that depletion of neutrophils was the only intervention that inhibited the synthesis of cysLTs at 24 hours after chlorine exposure. Although macrophages did synthesize cysLTs in response to phagocytosis of neutrophils, depletion of macrophages did not reduce the increment in cysLTs triggered by chlorine exposure. However, coculture of airway epithelial cells with neutrophils resulted in a significant increase in the synthesis of cysLTs, dependent on the expression of 5-lipoxygenase by neutrophils. We conclude that cysLT synthesis following chlorine exposure may be dependent on transcellular metabolism by neutrophil-epithelial interactions.
Collapse
Affiliation(s)
- Toby McGovern
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Satoshi Ano
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Soroor Farahnak
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - Sarah McCuaig
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre and McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Reyes-Caballero H, Park B, Loube J, Sanchez I, Vinayachandran V, Choi Y, Woo J, Edwards J, Brinkman MC, Sussan T, Mitzner W, Biswal S. Immune modulation by chronic exposure to waterpipe smoke and immediate-early gene regulation in murine lungs. Tob Control 2019; 29:s80-s89. [PMID: 31852817 DOI: 10.1136/tobaccocontrol-2019-054965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVE We investigated the effects of chronic waterpipe (WP) smoke on pulmonary function and immune response in a murine model using a research-grade WP and the effects of acute exposure on the regulation of immediate-early genes (IEGs). METHODS WP smoke was generated using three WP smoke puffing regimens based on the Beirut regimen. WP smoke samples generated under these puffing regimens were quantified for nicotine concentration. Mice were chronically exposed for 6 months followed by assessment of pulmonary function and airway inflammation. Transcriptomic analysis using RNAseq was conducted after acute exposure to characterise the IEG response. These biomarkers were then compared with those generated after exposure to dry smoke (without water added to the WP bowl). RESULTS We determined that nicotine composition in WP smoke ranged from 0.4 to 2.5 mg per puffing session. The lung immune response was sensitive to the incremental severity of chronic exposure, with modest decreases in airway inflammatory cells and chemokine levels compared with air-exposed controls. Pulmonary function was unmodified by chronic WP exposure. Acute WP exposure was found to activate the immune response and identified known and novel IEG as potential biomarkers of WP exposure. CONCLUSION Chronic exposure to WP smoke leads to immune suppression without significant changes to pulmonary function. Transcriptomic analysis of the lung after acute exposure to WP smoke showed activation of the immune response and revealed IEGs that are common to WP and dry smoke, as well as pools of IEGs unique to each exposure, identifying potential biomarkers specific to WP exposure.
Collapse
Affiliation(s)
- Hermes Reyes-Caballero
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bongsoo Park
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeffrey Loube
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ian Sanchez
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vinesh Vinayachandran
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Youngshim Choi
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Juhyung Woo
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin Edwards
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Thomas Sussan
- Toxicology Directorate, US Army Public Health Command, Aberdeen Proving Ground, Maryland, USA
| | - Wayne Mitzner
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shyam Biswal
- Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Thompson-Souza GA, Gropillo I, Neves JS. Cysteinyl Leukotrienes in Eosinophil Biology: Functional Roles and Therapeutic Perspectives in Eosinophilic Disorders. Front Med (Lausanne) 2017; 4:106. [PMID: 28770202 PMCID: PMC5515036 DOI: 10.3389/fmed.2017.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
Cysteinyl leukotrienes (cysLTs), LTC4, and its extracellular metabolites, LTD4 and LTE4, have varied and multiple roles in mediating eosinophilic disorders including host defense against parasitic helminthes and allergic inflammation, especially in the lung and in asthma. CysLTs are known to act through at least 2 receptors termed cysLT1 receptor (CysLT1R) and cysLT2 receptor (CysLT2R). Eosinophils contain a dominant population of cytoplasmic crystalloid granules that store various preformed proteins. Human eosinophils are sources of cysLTs and are known to express the two known cysLTs receptors (CysLTRs). CysLTs can have varied functions on eosinophils, ranging from intracrine regulators of secretion of granule-derived proteins to paracrine/autocrine roles in eosinophil chemotaxis, differentiation, and survival. Lately, it has been recognized the expression of CysLTRs in the membranes of eosinophil granules. Moreover, cysLTs have been shown to evoke secretion from isolated cell-free eosinophil granules operating through their receptors expressed on granule membranes. In this work, we review the functional roles of cysLTs in eosinophil biology. We review cysLTs biosynthesis, their receptors, and argue the intracrine and paracrine/autocrine responses induced by cysLTs in eosinophils and in isolated free extracellular eosinophil granules. We also examine and speculate on the therapeutic relevance of targeting CysLTRs in the treatment of eosinophilic disorders.
Collapse
Affiliation(s)
| | - Isabella Gropillo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Bandeira-Melo C, Paiva LA, Amorim NRT, Weller PF, Bozza PT. EicosaCell: An Imaging-Based Assay to Identify Spatiotemporal Eicosanoid Synthesis. Methods Mol Biol 2017; 1554:127-141. [PMID: 28185186 PMCID: PMC5774667 DOI: 10.1007/978-1-4939-6759-9_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eicosanoids are bioactive lipids derived from enzymatic metabolism of arachidonic acid via the cyclooxygenase (COX) and lipoxygenase (LOX) pathways. These lipids are newly formed and nonstorable molecules that have important roles in physiological and pathological processes. The particular interest to determine intracellular compartmentalization of eicosanoid-synthetic machinery has emerged as a key component in the regulation of eicosanoid synthesis and in delineating functional intracellular and extracellular actions of eicosanoids. In this chapter, we discuss the EicosaCell protocol, an assay that enables the intracellular detection and localization of eicosanoid lipid mediator-synthesizing compartments by means of a strategy to covalently cross-link and immobilize eicosanoids at their sites of synthesis followed by immunofluorescent-based localization of the targeted eicosanoid. EicosaCell assays have been successfully used to identify different intracellular compartments of synthesis of prostaglandins and leukotrienes upon cellular activation. This chapter covers basics of EicosaCell assay including its selection of reagents, immunodetection design as well as some troubleshooting recommendations.
Collapse
Affiliation(s)
- Christianne Bandeira-Melo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Ligia Almeida Paiva
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Natália R T Amorim
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Lukic A, Ji J, Idborg H, Samuelsson B, Palmberg L, Gabrielsson S, Rådmark O. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4. J Lipid Res 2016; 57:1659-69. [PMID: 27436590 DOI: 10.1194/jlr.m066910] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 01/03/2023] Open
Abstract
Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4 In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4 Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung.
Collapse
Affiliation(s)
- Ana Lukic
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jie Ji
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Idborg
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lena Palmberg
- Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Susanne Gabrielsson
- Department of Medicine Solna, Unit for Immunology and Allergy, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
12
|
Gangwar RS, Friedman S, Seaf M, Levi-Schaffer F. Mast cells and eosinophils in allergy: Close friends or just neighbors. Eur J Pharmacol 2016; 778:77-83. [DOI: 10.1016/j.ejphar.2015.10.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/21/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022]
|
13
|
Bachert C, Holtappels G. Pathophysiology of chronic rhinosinusitis, pharmaceutical therapy options. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2015; 14:Doc09. [PMID: 26770283 PMCID: PMC4702058 DOI: 10.3205/cto000124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research in immunology has brought great progress in knowledge of inflammatory processes in the last 2 decades, which also has an impact on the upper airways. Our understanding of the pathophysiology of chronic rhinosinusitis developed from a rather mechanistic point of view with a focus on narrow clefts and mucociliary clearance to the appreciation of a complex network of immunological pathways forming the basis of disease. We today differentiate various forms of inflammation, we start to understand complex immune-regulatory networks and the reasons for their failure, and have already developed innovative approaches for therapy for the most severely ill subjects. Due to this new knowledge in inflammation and remodeling processes within mucosal tissue, specifically on the key driving factors, new diagnostic tools and therapeutic approaches for chronic rhinosinusitis have developed; the differentiation of endotypes based on pathophysiological principles will be crucial for the use of innovative therapies, mostly humanized monoclonal antibodies. Several hundred of those antibodies are currently developed for various indications and will impact our specialty as well as pneumology to a great extent.
Collapse
Affiliation(s)
- Claus Bachert
- Department of Otolaryngology and Upper Airways Research Laboratory, University of Ghent, Belgium; Division of ENT Diseases, CLINTEC, Karolinska Institute, University of Stockholm, Sweden
| | - Gabriële Holtappels
- Department of Otolaryngology and Upper Airways Research Laboratory, University of Ghent, Belgium
| |
Collapse
|
14
|
Multifaceted roles of cysteinyl leukotrienes in eliciting eosinophil granule protein secretion. BIOMED RESEARCH INTERNATIONAL 2015; 2015:848762. [PMID: 25866815 PMCID: PMC4383494 DOI: 10.1155/2015/848762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/09/2014] [Indexed: 12/19/2022]
Abstract
Cysteinyl leukotrienes (cysLTs) are cell membrane-impermeant lipid mediators that play major roles in the pathogenesis of eosinophilic inflammation and are recognized to act via at least 2 receptors, namely, cysLT1 receptor (cysLT1R) and cysLT2 receptor (cysLT2R). Eosinophils, which are granulocytes classically associated with host defense against parasitic helminthes and allergic conditions, are distinguished from leukocytes by their dominant population of cytoplasmic crystalloid (also termed secretory, specific, or secondary) granules that contain robust stores of diverse preformed proteins. Human eosinophils are the main source of cysLTs and are recognized to express both cysLTs receptors (cysLTRs) on their surface, at the plasma membrane. More recently, we identified the expression of cysLTRs in eosinophil granule membranes and demonstrated that cysLTs, acting via their granule membrane-expressed receptors, elicit secretion from cell-free human eosinophil granules. Herein, we review the multifaceted roles of cysLTs in eliciting eosinophil granule protein secretion. We discuss the intracrine and autocrine/paracrine secretory responses evoked by cysLTs in eosinophils and in cell-free extracellular eosinophil crystalloid granules. We also discuss the importance of this finding in eosinophil immunobiology and speculate on its potential role(s) in eosinophilic diseases.
Collapse
|
15
|
Landolina N, Gangwar RS, Levi-Schaffer F. Mast cells' integrated actions with eosinophils and fibroblasts in allergic inflammation: implications for therapy. Adv Immunol 2015; 125:41-85. [PMID: 25591464 DOI: 10.1016/bs.ai.2014.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs) and eosinophils (Eos) are the key players in the development of allergic inflammation (AI). Their cross-talk, named the Allergic Effector Unit (AEU), takes place through an array of soluble mediators and ligands/receptors interactions that enhance the functions of both the cells. One of the salient features of the AEU is the CD48/2B4 receptor/ligand binding complex. Furthermore, MCs and Eos have been demonstrated to play a role not only in AI but also in the modulation of its consequence, i.e., fibrosis/tissue remodeling, by directly influencing fibroblasts (FBs), the main target cells of these processes. In turn, FBs can regulate the survival, activity, and phenotype of both MCs and Eos. Therefore, a complex three players, MCs/Eos/FBs interaction, can take place in various stages of AI. The characterization of the soluble and physical mediated cross talk among these three cells might lead to the identification of both better and novel targets for the treatment of allergy and its tissue remodeling consequences.
Collapse
Affiliation(s)
- Nadine Landolina
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roopesh Singh Gangwar
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
16
|
Nasal Immunity, Rhinitis, and Rhinosinusitis. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Choi GS, Kim JH, Shin YS, Ye YM, Kim SH, Park HS. Eosinophil activation and novel mediators in the aspirin-induced nasal response in AERD. Clin Exp Allergy 2014; 43:730-40. [PMID: 23786280 DOI: 10.1111/cea.12096] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Eosinophil activation is the key feature of upper and lower airway inflammation in aspirin-exacerbated respiratory disease (AERD). OBJECTIVE To investigate the mechanism of eosinophil activation and identify novel inflammatory mediators using proteomics. METHODS Thirty-two asthmatic subjects were enrolled: 18 AERD patients who showed positive responses to the lysine-aspirin nasal provocation test (L-ASA NPT) and 14 aspirin-tolerant asthma (ATA) patients who showed negative responses to the L-ASA NPT (control group). Nasal lavage fluid (NLF) was collected before (baseline), at 10, 30 and 60 min (early response), and at 3 h (late response) after the L-ASA NPT. Eosinophil cationic protein (ECP) and cysteinyl leucotriene (CysLT) levels were measured using an ImmunoCAP system and ELISA respectively. To identify proteins involved in AERD, comparative proteomics was applied using NLFs collected before and after L-ASA NPTs in AERD patients. The clinical relevance of identified novel proteins was evaluated by ELISA using NLFs from the AERD and ATA groups. RESULTS Eosinophil cationic protein and CysLT levels both increased significantly during the early response in AERD. ECP levels increased until the late response in AERD, while CysLT levels were not significantly increased during the late response. Proteomic analysis showed up-regulation of apolipoprotein A1 (ApoA1), α2-macroglobulin (α2M) and ceruloplasmin (CP), with significant increases in NLF of AERD patients, which was significantly higher in AERD patients with chronic rhinosinusitis. Significant correlations were noted between ECP and CysLT, ApoA1, α2M and CP levels during the early response in AERD patients. CONCLUSION Eosinophil activation occurred in early and late responses after L-ASA NPT in upper airway mucosa of AERD patients, where ApoA1, α2M and CP as well as CysLT may be involved in eosinophilic inflammation.
Collapse
Affiliation(s)
- G-S Choi
- Department of Internal Medicine, Kosin University College of Medicine, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
18
|
Kawakami Y, Hirano S, Kinoshita M, Otsuki A, Suzuki-Yamamoto T, Suzuki M, Kimoto M, Sasabe S, Fukushima M, Kishimoto K, Izumi T, Oga T, Narumiya S, Sugahara M, Miyano M, Yamamoto S, Takahashi Y. Neutralization of leukotriene C4 and D4 activity by monoclonal and single-chain antibodies. Biochim Biophys Acta Gen Subj 2013; 1840:1625-33. [PMID: 24361619 DOI: 10.1016/j.bbagen.2013.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/19/2013] [Accepted: 12/11/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (LTs) are key mediators in inflammation. To explore the structure of the antigen-recognition site of a monoclonal antibody against LTC4 (mAbLTC), we previously isolated full-length cDNAs for heavy and light chains of the antibody and prepared a single-chain antibody comprising variable regions of these two chains (scFvLTC). METHODS We examined whether mAbLTC and scFvLTC neutralized the biological activities of LTC4 and LTD4 by competing their binding to their receptors. RESULTS mAbLTC and scFvLTC inhibited their binding of LTC4 or LTD4 to CysLT1 receptor (CysLT1R) and CysLT2 receptor (CysLT2R) overexpressed in Chinese hamster ovary cells. The induction by LTD4 of monocyte chemoattractant protein-1 and interleukin-8 mRNAs in human monocytic leukemia THP-1 cells expressing CysLT1R was dose-dependently suppressed not only by mAbLTC but also by scFvLTC. LTC4- and LTD4-induced aggregation of mouse platelets expressing CysLT2R was dose-dependently suppressed by either mAbLTC or scFvLTC. Administration of mAbLTC reduced pulmonary eosinophil infiltration and goblet cell hyperplasia observed in a murine model of asthma. Furthermore, mAbLTC bound to CysLT2R antagonists but not to CysLT1R antagonists. CONCLUSIONS These results indicate that mAbLTC and scFvLTC neutralize the biological activities of LTs by competing their binding to CysLT1R and CysLT2R. Furthermore, the binding of cysteinyl LT receptor antagonists to mAbLTC suggests the structural resemblance of the LT-recognition site of the antibody to that of these receptors. GENERAL SIGNIFICANCE mAbLTC can be used in the treatment of inflammatory diseases such as asthma.
Collapse
Affiliation(s)
- Yuki Kawakami
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Shiori Hirano
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Mai Kinoshita
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Akemi Otsuki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Toshiko Suzuki-Yamamoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Makiko Suzuki
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Masumi Kimoto
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Sae Sasabe
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Mitsuo Fukushima
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan
| | - Koji Kishimoto
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Takashi Izumi
- Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Toru Oga
- Department of Respiratory Care & Sleep Control Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Mitsuaki Sugahara
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Masashi Miyano
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan; Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Kanagawa 252-5258, Japan
| | - Shozo Yamamoto
- Department of Food and Nutrition, Kyoto Women's University, Kyoto 605-8501, Japan
| | - Yoshitaka Takahashi
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama 719-1197, Japan.
| |
Collapse
|
19
|
Demin O, Karelina T, Svetlichniy D, Metelkin E, Speshilov G, Demin O, Fairman D, van der Graaf PH, Agoram BM. Systems pharmacology models can be used to understand complex pharmacokinetic-pharmacodynamic behavior: an example using 5-lipoxygenase inhibitors. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e74. [PMID: 24026253 PMCID: PMC4026633 DOI: 10.1038/psp.2013.49] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 07/18/2013] [Indexed: 01/27/2023]
Abstract
Zileuton, a 5-lipoxygenase (5LO) inhibitor, displays complex pharmaokinetic (PK)-pharmacodynamic (PD) behavior. Available clinical data indicate a lack of dose–bronchodilatory response during initial treatment, with a dose response developing after ~1–2 weeks. We developed a quantitative systems pharmacology (QSP) model to understand the mechanism behind this phenomenon. The model described the release, maturation, and trafficking of eosinophils into the airways, leukotriene synthesis by the 5LO enzyme, leukotriene signaling and bronchodilation, and the PK of zileuton. The model provided a plausible explanation for the two-phase bronchodilatory effect of zileuton–the short-term bronchodilation was due to leukotriene inhibition and the long-term bronchodilation was due to inflammatory cell infiltration blockade. The model also indicated that the theoretical maximum bronchodilation of both 5LO inhibition and leukotriene receptor blockade is likely similar. QSP modeling provided interesting insights into the effects of leukotriene modulation.
Collapse
Affiliation(s)
- O Demin
- Institute for Systems Biology SPb, Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Luna-Gomes T, Bozza PT, Bandeira-Melo C. Eosinophil recruitment and activation: the role of lipid mediators. Front Pharmacol 2013; 4:27. [PMID: 23525348 PMCID: PMC3605515 DOI: 10.3389/fphar.2013.00027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/23/2013] [Indexed: 01/05/2023] Open
Abstract
Eosinophils are effector cells that migrate toward several mediators released at inflammatory sites to perform their multiple functions. The mechanisms driving eosinophil selective accumulation in sites of allergic inflammation are well-established and involve several steps controlled by adhesion molecules, priming agents, chemotactic, and surviving factors. Even though the majority of studies focused on role of protein mediators like IL-5 and eotaxins, lipid mediators also participate in eosinophil recruitment and activation. Among the lipid mediators with distinguish eosinophil recruitment and activation capabilities are platelet activating factor and the eicosanoids, including leukotriene B4, cysteinyl leukotrienes, and prostaglandin D2. In this review, we focused on the role of these four lipid mediators in eosinophil recruitment and activation, since they are recognized as key mediators of eosinophilic inflammatory responses.
Collapse
Affiliation(s)
- Tatiana Luna-Gomes
- Instituto de Biofïsica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | |
Collapse
|
21
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Eosinophils in fungus-associated allergic pulmonary disease. Front Pharmacol 2013; 4:8. [PMID: 23378838 PMCID: PMC3561640 DOI: 10.3389/fphar.2013.00008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/10/2013] [Indexed: 12/30/2022] Open
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal sensitization is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen that is worsened by environmental exposure to airborne fungi and which leads to a disease course that is often very difficult to treat with standard asthma therapies. As a result of complex interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to fungal allergens may experience a greater degree of airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. From their development in the bone marrow to their recruitment to the lung via chemokine and cytokine networks, eosinophils form an important component of the inflammatory milieu that is associated with this syndrome. Eosinophils are recognized as complex multi-factorial leukocytes with diverse functions in the context of allergic fungal asthma. In this review, we will consider recent advances in our understanding of the molecular mechanisms that are associated with eosinophil development and migration to the allergic lung in response to fungal inhalation, along with the eosinophil’s function in the immune response to and the immunopathology attributed to fungus-associated allergic pulmonary disease.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University Fargo, ND, USA
| | | | | | | |
Collapse
|
22
|
Wan D, Liu X, Li G. The effects of montelukast on eosinophilic gastroenteritis in a mouse model. Immunopharmacol Immunotoxicol 2012; 35:292-5. [PMID: 23240855 DOI: 10.3109/08923973.2012.745871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gastrointestinal eosinophilic (EG) is a rare and heterogeneous condition characterized by patchy or diffuse eosinophilic infiltration of gastrointestinal tissue. Pharmacological study so far has demonstrated that montelukast, an oral leukotriene receptor antagonist, might be considered in patients with this disease. The aim of this study was to evaluate the effect of montelukast on oral ovalbumin (OVA) allergen induced EG inflammation in mice and to suggest some mechanisms underlying this effect. Twenty-four mice were divided into three experimental groups: PBS control, OVA group, and montelukast treated group. The mice were sensitized intraperitoneally and challenged intragastrically with OVA, and were treated with montelukast. Gastrointestinal symptoms were observed after challenged intragastrically with OVA. Eosinophils count in blood, serum OVA specific IgE and gastrointestinal histology were evaluated. Montelukast could significantly reduce the severity of oral allergen-induced eosinophilic inflammation, villous atrophy, and associated symptoms of weight loss associated with diarrhea. Montelukast also could ameliorate OVA-induced gastrointestinal pathological lesions, which was associated with the decrease of IgE and LTD4 levels, and this might be one of the important mechanisms of montelukast that protected gastrointestinal injury from EG. These findings indicated that montelukast therapy may be a novel therapeutic approach for EG and other eosinophil-mediated diseases.
Collapse
Affiliation(s)
- Daihong Wan
- Provincial Hospital Affiliated to Shandong University, Jinan, 250014, PR China
| | | | | |
Collapse
|
23
|
Pezato R, Świerczyńska-Krępa M, Niżankowska-Mogilnicka E, Derycke L, Bachert C, Pérez-Novo CA. Role of imbalance of eicosanoid pathways and staphylococcal superantigens in chronic rhinosinusitis. Allergy 2012; 67:1347-56. [PMID: 22978320 DOI: 10.1111/all.12010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2012] [Indexed: 12/30/2022]
Abstract
Chronic rhinosinusitis (CRS) is a multifactorial disease of the upper airways with a high prevalence (approximately 11%) in the general population. Different immune and inflammatory mechanisms are involved in its pathogenesis. Alterations in the arachidonic acid pathway (leading to an imbalanced production of eicosanoids) have been linked to the pathophysiology of different diseases especially nasal polyposis, asthma, and aspirin-exacerbated respiratory disease. Furthermore, viral and bacterial infections have been identified as important factors amplifying the pro-inflammatory reactions in these pathologies. This review summarizes the impact of an imbalance in the eicosanoid pathway and the effect of Staphylococcus aureus enterotoxins on the regulation of the pro-inflammatory network in CRS and their translation into disease severity.
Collapse
Affiliation(s)
| | | | | | - L. Derycke
- Upper Airways Research Laboratory; Department of Otorhinolaryngology; Ghent University; Ghent; Belgium
| | - C. Bachert
- Upper Airways Research Laboratory; Department of Otorhinolaryngology; Ghent University; Ghent; Belgium
| | - C. A. Pérez-Novo
- Upper Airways Research Laboratory; Department of Otorhinolaryngology; Ghent University; Ghent; Belgium
| |
Collapse
|
24
|
Szczeklik W, Sanak M, Mastalerz L, Sokołowska BM, Gielicz A, Soja J, Kumik J, Musiał J, Szczeklik A. 12-hydroxy-eicosatetraenoic acid (12-HETE): a biomarker of Churg-Strauss syndrome. Clin Exp Allergy 2012; 42:513-22. [PMID: 22417211 DOI: 10.1111/j.1365-2222.2011.03943.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Churg-Strauss syndrome (CSS) shares similarities with asthma and hypereosinophilic syndrome (HES). Eicosanoids--important inflammatory and signaling molecules--are present in exhaled breath condensate (EBC) and broncho-alveolar lavage fluid (BALF). OBJECTIVES To assess eicosanoid profile both in EBC and BALF of CSS subjects searching for a pattern characteristic of this syndrome. METHODS EBCs from 23 CSS patients, 30 asthmatics, 12 HES patients and 54 healthy controls (HC) were assessed quantitatively for 19 eicosanoids by a high-performance liquid chromatography - tandem mass spectrometry (HPLC-MS/MS). In addition, in 21 of 23 CSS subjects and in nine asthmatics, eicosanoids were determined in BALF. RESULTS EBC from CSS patients showed markedly elevated levels of 12-HETE as compared with other studied groups. BALF was characterized by a significant elevation of 12-HETE and its metabolite 12-tetranor HETE in CSS as compared with asthma. Clinical activity of CSS correlated with 12-HETE and its metabolites levels in BALF, but not in EBC. CONCLUSION AND CLINICAL RELEVANCE CSS is clearly distinguished from bronchial asthma, and HES by a marked increase in 12-HETE concentration in both EBC and BALF. This points to a possible new pathogenic mechanism in CSS and may help in future in establishing the diagnosis of CSS.
Collapse
Affiliation(s)
- W Szczeklik
- Department of Medicine, Jagiellonian University Medical College, ul. Skawińska 8,Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Eosinophil-derived leukotriene C4 signals via type 2 cysteinyl leukotriene receptor to promote skin fibrosis in a mouse model of atopic dermatitis. Proc Natl Acad Sci U S A 2012; 109:4992-7. [PMID: 22416124 DOI: 10.1073/pnas.1203127109] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atopic dermatitis (AD) skin lesions exhibit epidermal and dermal thickening, eosinophil infiltration, and increased levels of the cysteinyl leukotriene (cys-LT) leukotriene C(4) (LTC(4)). Epicutaneous sensitization with ovalbumin of WT mice but not ΔdblGATA mice, the latter of which lack eosinophils, caused skin thickening, collagen deposition, and increased mRNA expression of the cys-LT generating enzyme LTC(4) synthase (LTC(4)S). Skin thickening and collagen deposition were significantly reduced in ovalbumin-sensitized skin of LTC(4)S-deficient and type 2 cys-LT receptor (CysLT(2)R)-deficient mice but not type 1 cys-LT receptor (CysLT(1)R)-deficient mice. Adoptive transfer of bone marrow-derived eosinophils from WT but not LTC(4)S-deficient mice restored skin thickening and collagen deposition in epicutaneous-sensitized skin of ΔdblGATA recipients. LTC(4) stimulation caused increased collagen synthesis by human skin fibroblasts, which was blocked by CysLT(2)R antagonism but not CysLT(1)R antagonism. Furthermore, LTC(4) stimulated skin fibroblasts to secrete factors that elicit keratinocyte proliferation. These findings establish a role for eosinophil-derived cys-LTs and the CysLT(2)R in the hyperkeratosis and fibrosis of allergic skin inflammation. Strategies that block eosinophil infiltration, cys-LT production, or the CysLT(2)R might be useful in the treatment of AD.
Collapse
|
26
|
Missebukpo A, Metowogo K, Agbonon A, Eklu-Gadeg K, Aklikokou K, Gbeassor M. Evaluation of Anti-asthmatic Activities of Ixora coccinea Linn (Rubiaceae). ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jpt.2011.559.570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Bäck M, Dahlén SE, Drazen JM, Evans JF, Serhan CN, Shimizu T, Yokomizo T, Rovati GE. International Union of Basic and Clinical Pharmacology. LXXXIV: Leukotriene Receptor Nomenclature, Distribution, and Pathophysiological Functions. Pharmacol Rev 2011; 63:539-84. [DOI: 10.1124/pr.110.004184] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Abstract
Inflammatory bowel diseases (IBD) are characterized by the invasion of leukocytes into the intestinal mucosa. However, a mixed inflammatory picture is observed that includes neutrophils, lymphocytes, monocytes, and eosinophils. To this day, the role of eosinophils in health and in disease remains unclear. Investigations into their function stem primarily from allergic diseases, asthma, and parasitic infections. This makes it even more difficult to discern a role for the fascinating eosinophil in IBDs because, unlike the lung or the skin, eosinophils reside in normal intestinal mucosa and increase in disease states; consequently, an intricate system must regulate their migration and numbers. These granulocytes are equipped with the machinery to participate in gastrointestinal (GI) inflammation and in the susceptible microenvironment, they may initiate or perpetuate an inflammatory response. A significant body of literature characterizes eosinophils present in the GI microenvironment where they have the potential to interact with other resident cells, thus promoting intestinal remodeling, mucus production, epithelial barrier, cytokine production, angiogenesis, and neuropeptide release. A number of lines of evidence support both potential beneficial and deleterious roles of eosinophils in the gut. Although studies from the gut and other mucosal organs suggest eosinophils affect mucosal GI inflammation, definitive roles for eosinophils in IBDs await discovery.
Collapse
|
29
|
Mesquita-Santos FP, Bakker-Abreu I, Luna-Gomes T, Bozza PT, Diaz BL, Bandeira-Melo C. Co-operative signalling through DP(1) and DP(2) prostanoid receptors is required to enhance leukotriene C(4) synthesis induced by prostaglandin D(2) in eosinophils. Br J Pharmacol 2011; 162:1674-85. [PMID: 20973774 PMCID: PMC3081113 DOI: 10.1111/j.1476-5381.2010.01086.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 08/25/2010] [Accepted: 09/19/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Prostaglandin (PG) D(2) has emerged as a key mediator of allergic inflammatory pathologies and, particularly, PGD(2) induces leukotriene (LT) C(4) secretion from eosinophils. Here, we have characterized how PGD(2) signals to induce LTC(4) synthesis in eosinophils. EXPERIMENTAL APPROACH Antagonists and agonists of DP(1) and DP(2) prostanoid receptors were used in a model of PGD(2) -induced eosinophilic inflammation in vivo and with PGD(2) -stimulated human eosinophils in vitro, to identify PGD(2) receptor(s) mediating LTC(4) secretion. The signalling pathways involved were also investigated. KEY RESULTS In vivo and in vitro assays with receptor antagonists showed that PGD(2) -triggered cysteinyl-LT (cysLT) secretion depends on the activation of both DP(1) and DP(2) receptors. DP(1) and DP(2) receptor agonists elicited cysLTs production only after simultaneous activation of both receptors. In eosinophils, LTC(4) synthesis, but not LTC(4) transport/export, was activated by PGD(2) receptor stimulation, and lipid bodies (lipid droplets) were the intracellular compartments of DP(1) /DP(2) receptor-driven LTC(4) synthesis. Although not sufficient to trigger LTC(4) synthesis by itself, DP(1) receptor activation, signalling through protein kinase A, did activate the biogenesis of eosinophil lipid bodies, a process crucial for PGD(2) -induced LTC(4) synthesis. Similarly, concurrent DP(2) receptor activation used Pertussis toxin-sensitive and calcium-dependent signalling pathways to achieve effective PGD(2) -induced LTC(4) synthesis. CONCLUSIONS AND IMPLICATIONS Based on pivotal roles of cysLTs in allergic inflammatory pathogenesis and the collaborative interaction between PGD(2) receptors described here, our data suggest that both DP(1) and DP(2) receptor antagonists might be attractive candidates for anti-allergic therapies.
Collapse
Affiliation(s)
- F P Mesquita-Santos
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Bandeira-Melo C, Weller PF, Bozza PT. EicosaCell - an immunofluorescent-based assay to localize newly synthesized eicosanoid lipid mediators at intracellular sites. Methods Mol Biol 2011; 689:163-181. [PMID: 21153792 PMCID: PMC3679533 DOI: 10.1007/978-1-60761-950-5_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Eicosanoids (prostaglandins, leukotrienes and lipoxins) are a family of signaling lipids derived from arachidonic acid that have important roles in physiological and pathological processes. Over the past years, it has been established that successful eicosanoid production is not merely determined by arachidonic acid and eicosanoid-forming enzymes availability, but requires sequential interactions between specific biosynthetic proteins acting in cascade and may involve very unique spatial interactions. Direct assessment of specific subcellular locales of eicosanoid synthesis has been elusive, as those lipid mediators are newly formed, not stored and often rapidly released upon cell stimulation. In this chapter, we discuss the EicosaCell protocol for intracellular detection of eicosanoid-synthesizing compartments by means of a strategy to covalently cross-link and immobilize the lipid mediators at their sites of synthesis followed by immunofluorescent-based localization of the targeted eicosanoid.
Collapse
Affiliation(s)
- Christianne Bandeira-Melo
- Laboratory of Inflammation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | |
Collapse
|
31
|
Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res 2010; 343:57-83. [PMID: 21042920 DOI: 10.1007/s00441-010-1049-6] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/01/2010] [Indexed: 12/27/2022]
Abstract
Eosinophils are innate immune leukocytes found in relatively low numbers within the blood. Terminal effector functions of eosinophils, deriving from their capacity to release their content of tissue-destructive cationic proteins, have historically been considered primary effector mechanisms against specific parasites, and are likewise implicated in tissue damage accompanying allergic responses such as asthma. However, the past decade has seen dramatic advancements in the field of eosinophil immunobiology, revealing eosinophils to also be key participants in many other facets of innate immunity, from bridging innate and adaptive immune responses to orchestrating tissue remodeling events. Here, we review the multifaceted functions of eosinophils in innate immunity that are currently known, and discuss new avenues in this evolving story.
Collapse
Affiliation(s)
- Revital Shamri
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | |
Collapse
|
32
|
Ishitoya J, Sakuma Y, Tsukuda M. Eosinophilic chronic rhinosinusitis in Japan. Allergol Int 2010; 59:239-245. [PMID: 20657162 DOI: 10.2332/allergolint.10-rai-0231] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Indexed: 01/26/2023] Open
Abstract
Chronic rhinosinusitis is a heterogeneous disease. In Europe and the United States, it has recently been divided into two subgroups: chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP). The majority of CRSwNP cases have a strong tendency to recur after surgery and show eosinophil-dominant inflammation. However, this definition has proved difficult to apply in Japan and East Asia, because more than half of the CRSwNP cases do not exhibit eosinophil-dominant inflammation in these areas of the world. In Japan in the 1990s, refractory CRSwNP to the standard treatment was focused on in clinical studies and the term "eosinophilic chronic rhinosinusitis" (ECRS) was introduced to identify this subgroup of chronic rhinosinusitis in 2001. ECRS is different from non-ECRS in terms of many clinical features: symptom appearance, occurrence site of nasal polyps, CT scan findings, the histology of nasal polyps, blood examination findings, clinical course after surgery, and co-morbid asthma, etc. In this review, we describe these clinical features and mention how to make a clinical diagnosis of ECRS as well as how to treat it. Finally, we discuss the pathophysiology of ECRS. The concept of ECRS in Japan would be applicable for CRSwNP in other countries including Europe and the United States.
Collapse
Affiliation(s)
- Junichi Ishitoya
- Department of Otorhinolaryngology, Yokohama City University Medical Center Graduate School of Medicine, Kanagawa, Japan..
| | - Yasunori Sakuma
- Department of Otorhinolaryngology, Yokohama City University Medical Center Graduate School of Medicine, Kanagawa, Japan
| | - Mamoru Tsukuda
- Department of Biology and Function in Head and Neck, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
33
|
Kato M, Suzuki M, Hayashi Y, Kimura H. Role of eosinophils and their clinical significance in allergic inflammation. Expert Rev Clin Immunol 2010; 2:121-33. [PMID: 20477093 DOI: 10.1586/1744666x.2.1.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Eosinophils are believed to play roles in the pathophysiology of allergic inflammation, such as bronchial asthma. However, recent studies on anti-interleukin-5 monoclonal antibody treatment of asthmatic patients raised the possibility that eosinophils may play only a limited role. More recent studies established that eosinophils are essentially involved in the development of airway remodeling. Moreover, it is theoretically conceivable that eosinophils are a cellular source of lipid mediators, such as cysteinyl leukotrienes or platelet-activating factor in asthma. Even in the absence of interleukin-5, it is likely that the 'T-helper Type 2 network', including a cascade of vascular cell adhesion molecule-1, intercellular cell adhesion molecule-1, CC chemokines, granulocyte-macrophage colony-stimulating factor, for example, can maintain sufficient eosinophilic infiltration and effector functions, such as superoxide anion generation and degranulation. Long-term studies, wherein tissue eosinophils are eliminated effectively will be required to establish the exact roles of these cells in asthma. Finally, the authors will demonstrate that eosinophils have the potential for not only playing detrimental roles but also beneficial ones.
Collapse
Affiliation(s)
- Masahiko Kato
- Gunma Children's Medical Center, Department of Allergy and Immunology, Gunma Children's Medical Center, 779 Shimohakoda, Hokkitsu, Gunma 377-8577, Japan.
| | | | | | | |
Collapse
|
34
|
Neves JS, Radke AL, Weller PF. Cysteinyl leukotrienes acting via granule membrane-expressed receptors elicit secretion from within cell-free human eosinophil granules. J Allergy Clin Immunol 2010; 125:477-82. [PMID: 20159258 DOI: 10.1016/j.jaci.2009.11.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (cysLTs) are recognized to act via receptors (cysLTRs) expressed on cell surface plasma membranes. Agents that block cysLT(1) receptor (cysLT(1)R) are therapeutics for allergic disorders. Eosinophils contain multiple preformed proteins stored within their intracellular granules. Cell-free eosinophil granules are present extracellularly as intact membrane-bound organelles in sites associated with eosinophil infiltration, including asthma, rhinitis, and urticaria, but have unknown functional capabilities. OBJECTIVE We evaluated the expression of cysLTRs on eosinophil granule membranes and their functional roles in eliciting protein secretion from within eosinophil granules. METHODS We studied secretory responses of human eosinophil granules isolated by subcellular fractionation. Granules were stimulated with cysLTs, and eosinophil cationic protein and cytokines were measured in the supernatants. Receptor expression on granule membranes and eosinophils was evaluated by flow cytometry and Western blot. RESULTS We report that receptors for cysLTs, cysLT(1)R, cysLT(2) receptor, and the purinergic P2Y12 receptor, are expressed on eosinophil granule membranes. Leukotriene (LT) C(4) and extracellularly generated LTD(4) and LTE(4) stimulated isolated eosinophil granules to secrete eosinophil cationic protein. MRS 2395, a P2Y12 receptor antagonist, inhibited cysLT-induced eosinophil cationic protein release. Montelukast, likely not solely as an inhibitor of cysLT(1)R, inhibited eosinophil cationic protein release elicited by LTC(4) and LTD(4) as well as by LTE(4). CONCLUSION These studies identify previously unrecognized sites of localization, the membranes of intracellular eosinophil granule organelles, and function for cysLT-responsive receptors that mediate cysteinyl leukotriene-stimulated secretion from within eosinophil granules, including those present extracellularly.
Collapse
Affiliation(s)
- Josiane S Neves
- Division of Allergy and Inflammation, Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | |
Collapse
|
35
|
Bozza PT, D’Avila H, Almeida PE, Magalhães KG, Molinaro R, Almeida CJ, Maya-Monteiro CM. Lipid droplets in host–pathogen interactions. ACTA ACUST UNITED AC 2009. [DOI: 10.2217/clp.09.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Mast cells and eosinophils: the two key effector cells in allergic inflammation. Inflamm Res 2009; 58:631-8. [DOI: 10.1007/s00011-009-0042-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 01/09/2023] Open
|
37
|
Bertram CM, Misso NL, Fogel-Petrovic M, Figueroa CD, Foster PS, Thompson PJ, Bhoola KD. Expression of kinin receptors on eosinophils: comparison of asthmatic patients and healthy subjects. J Leukoc Biol 2008; 85:544-52. [DOI: 10.1189/jlb.0508283] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
38
|
Lee CC, Cheng YW, Liao JW, Chiang BL, Lai YL, Kang JJ. Motorcycle exhaust particles augment antigen-induced airway inflammation in BALB/c mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2008; 71:405-412. [PMID: 18246500 DOI: 10.1080/15287390701801687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Evidence indicates that environment pollutants from fossil fuel combustion compromise the immune system by enhancing allergic reactions and damaging the respiratory tract. This study was performed to investigate the effects of motorcycle exhaust particles (MEP), a major air pollutant especially in the urban areas of Taiwan, on allergen-induced airway inflammatory reactions in lab animals. BALB/c mice were intratracheally instilled with ovalbumin (OVA), MEP, or phosphate-buffered saline, 3 times every 2 wk. Airway hyperresponsiveness was measured in unrestrained mice by barometric plethsmography. Bronchoalveolar lavage fluid (BALF) and serum from treated animals were collected for cytokine and antibody determination by enzyme-linked immunosorbent assay (ELISA). Lung tissue stained with hematoxylin/eosin was examined. Data showed that MEP augmented OVA-induced airway inflammation; characterized by infiltration of eosinophils and neutrophils in BALF and lung tissue inflammation. The combination of OVA and MEP markedly increased interleukin-4 (IL-4), interleukin-5 (IL-5), and tumor necrosis factor-alpha (TNF-alpha) protein levels in BALF. In addition, MEP also augmented OVA-induced rise in OVA-specific immunoglobulin (Ig) G1 and IgE and airway hyperresponsiveness. Pretreated lavage cells with mitogen-activated protein kinase (MAPK) inhibitors showed that TNF-alpha release was significantly inhibited. This study found that MEP augmented antigen-induced allergic airway inflammation and airway hyperresponsiveness through a Th2-dominant pathway.
Collapse
Affiliation(s)
- Chen-Chen Lee
- Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Ackerman SJ, Bochner BS. Mechanisms of eosinophilia in the pathogenesis of hypereosinophilic disorders. Immunol Allergy Clin North Am 2007; 27:357-75. [PMID: 17868854 PMCID: PMC2064859 DOI: 10.1016/j.iac.2007.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The increased numbers of activated eosinophils in the blood and tissues that typically accompany hypereosinophilic disorders result from a variety of mechanisms. Exciting advances in translating discoveries achieved from mouse models and molecular strategies to the clinic have led to a flurry of new therapeutics specifically designed to target eosinophil-associated diseases. So far, this form of hypothesis testing in humans in vivo through pharmacology generally has supported the paradigms generated in vitro and in animal models, raising hopes that a spectrum of novel therapies soon may become available to help those who have eosinophil-associated diseases.
Collapse
Affiliation(s)
- Steven J. Ackerman
- Professor of Biochemistry, Molecular Genetics and Medicine, Department of Biochemistry and Molecular Genetics, The University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | - Bruce S. Bochner
- Professor or Medicine, Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
40
|
Rogerio AP, Fontanari C, Borducchi E, Keller AC, Russo M, Soares EG, Albuquerque DA, Faccioli LH. Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. Eur J Pharmacol 2007; 580:262-70. [PMID: 18021768 DOI: 10.1016/j.ejphar.2007.10.034] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 09/23/2007] [Accepted: 10/16/2007] [Indexed: 12/01/2022]
Abstract
We have shown that the ethanolic extract of Lafoensia pacari inhibits eosinophilic inflammation induced by Toxocara canis infection, and that ellagic acid is the secondary metabolite responsible for the anti-eosinophilic activity seen in a model of beta-glucan peritonitis. In the present study, we investigated the preventive and curative effects of L. pacari extract and ellagic acid on allergic lung inflammation using a murine model of ovalbumin-induced asthma. In bronchoalveolar lavage fluid, preventive (22-day) treatment with L. pacari (200 mg/kg) and ellagic acid (10 mg/kg) inhibited neutrophil counts (by 75% and 57%) and eosinophil counts (by 78% and 68%). L. pacari reduced IL-4 and IL-13 levels (by 67% and 73%), whereas ellagic acid reduced IL-4, IL-5 and IL-13 (by 67%, 88% and 85%). To investigate curative anti-inflammatory effects, we treated mice daily with ellagic acid (0.1, 1, or 10 mg/kg), also treating selected mice with L. pacari (200 mg/kg) from day 18 to day 22. The highest ellagic acid dose reduced neutrophil and eosinophil numbers (by 59% and 82%), inhibited IL-4, IL-5, and IL-13 (by 62%, 61%, and 49%). Neither L. pacari nor ellagic acid suppressed ovalbumin-induced airway hyperresponsiveness or cysteinyl leukotriene synthesis in lung homogenates. In mice treated with ellagic acid (10 mg/kg) or L. pacari (200 mg/kg) at 10 min after the second ovalbumin challenge, eosinophil numbers were 53% and 69% lower, respectively. Cytokine levels were unaffected by this treatment. L. pacari and ellagic acid are effective eosinophilic inflammation suppressors, suggesting a potential for treating allergies.
Collapse
Affiliation(s)
- Alexandre P Rogerio
- Universidade Federal de Santa Catarina, Campus Universitário Trindade, Centro de Ciências Biológicas, Florianópolis, SC, 88049-900, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Roa J, Morikawa H, Crawford L, Baatjes A, Duong M, Denburg JA. The effects of montelukast on tissue inflammatory and bone marrow responses in murine experimental allergic rhinitis: interaction with interleukin-5 deficiency. Immunology 2007; 122:438-44. [PMID: 17627772 PMCID: PMC2266019 DOI: 10.1111/j.1365-2567.2007.02664.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cysteinyl leukotrienes (cysLTs) are potent lipid mediators in allergic disease, acting through the receptors, cysLT1R and cysLTR2, and are produced by eosinophils derived from eosinophil/basophil (Eo/B) bone marrow (BM) progenitors. We have demonstrated the suppressive effects of either interleukin-5 (IL-5) deficiency or montelukast on eosinophil recruitment in murine allergic rhinitis, but neither of them fully abrogated the symptoms caused by residual inflammation and cytokine redundancy in eliciting BM Eo/B responses. We hypothesized that IL-5 deficiency and montelukast act synergistically to suppress tissue inflammatory and BM responses. Our objective was to investigate the effects of the cysLT1R antagonist, montelukast, on in vivo tissue inflammatory and BM responses in murine experimental allergic rhinitis with or without IL-5 deficiency. Three groups of age-matched BALB/c mice with or without IL-5 deficiency were tested: controls (ovalbumin sensitization and challenge, placebo treatment) and two montelukast-treated groups (2.5 mg/kg or 5 mg/kg). Nasal symptoms, BM and nasal mucosal eosinophils, basophils, and BM Eo/B colony-forming units (CFU) were evaluated. Montelukast decreased nasal symptoms in a dose-dependent manner, and significantly decreased the number of eosinophils in both BM and nasal tissue in IL-5-replete mice compared to controls. In IL-5-deficient mice, in which eosinophilia was absent, montelukast significantly decreased both nasal symptoms and basophils in BM and nasal mucosal tissue, and lowered IL-5-responsive Eo/B-CFU ex vivo, compared to controls. The addition of cysLT1R blockade to IL-5 deficiency more fully attenuates symptoms and upper airway inflammation than either factor alone, providing evidence of systemic, BM mechanisms in allergic rhinitis.
Collapse
Affiliation(s)
- Johanna Roa
- Division of Clinical Immunology & Allergy, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Rogerio AP, Cardoso CR, Fontanari C, Souza MA, Afonso-Cardoso SR, Silva EV, Koyama NS, Basei FL, Soares EG, Calixto JB, Stowell SR, Dias-Baruffi M, Faccioli LH. Anti-asthmatic potential of a D-galactose-binding lectin from Synadenium carinatum latex. Glycobiology 2007; 17:795-804. [PMID: 17522108 DOI: 10.1093/glycob/cwm053] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Extracts from the plant Synadenium carinatum latex are widely and indiscriminately used in popular medicine to treat a great number of inflammatory disorders and although the mechanisms underlying these effects remain undefined, the lectin isolated from S. carinatum latex (ScLL) is thought to be in part responsible for these anti-inflammatory effects. In order to elucidate possible immunoregulatory activities of ScLL, we investigated the effects of ScLL administration in models of acute and chronic inflammation. Oral administration of ScLL significantly inhibited neutrophil and eosinophil extravasation in models of acute and chronic inflammation and reduced eosinophil and mononuclear blood counts during chronic inflammation. ScLL administration reduced IL(interleukin)-4 and IL-5 levels but increased interferon-gamma and IL-10 in an asthma inflammatory model, which suggested that it might induce a TH2 to TH1 shift in the adaptive immune response. ScLL also inhibited IkappaBalpha degradation, a negative regulator of proinflammatory NF-kappaB. Taken together, these results provide the first description of a single factor isolated from S. carinatum latex extract with immunoregulatory functions and suggest that ScLL may be useful in the treatment of allergic inflammatory disorders.
Collapse
Affiliation(s)
- Alexandre P Rogerio
- Centro de Ciências Biológicas, Campus Universitário Trindade, Universidade Federal de Santa Catarina, Florianópolis, SC 88049-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Eosinophils are traditionally thought to form part of the innate immune response against parasitic helminths acting through the release of cytotoxic granule proteins. However, they are also a central feature in asthma. From their development in the bone marrow to their recruitment to the lung via chemokines and cytokines, they form an important component of the inflammatory milieu observed in the asthmatic lung following allergen challenge. A wealth of studies has been performed in both patients with asthma and in mouse models of allergic pulmonary inflammation to delineate the role of eosinophils in the allergic response. Although the long-standing association between eosinophils and the induction of airway hyper-responsiveness remains controversial, recent studies have shown that eosinophils may also promote airway remodelling. In addition, emerging evidence suggests that the eosinophil may also serve to modulate the immune response. Here we review the highly co-ordinated nature of eosinophil development and trafficking and the evolution of the eosinophil as a multi-factoral leukocyte with diverse functions in asthma.
Collapse
Affiliation(s)
- S. G. Trivedi
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ UK
| | - C. M. Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ UK
| |
Collapse
|
45
|
Blanchet MR, Langlois A, Israël-Assayag E, Beaulieu MJ, Ferland C, Laviolette M, Cormier Y. Modulation of eosinophil activation in vitro by a nicotinic receptor agonist. J Leukoc Biol 2007; 81:1245-51. [PMID: 17289799 DOI: 10.1189/jlb.0906548] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nicotinic receptor agonists decreased the infiltration of eosinophils into the lung and airways in a mouse model of asthma. To better understand the mechanisms implicated in this anti-inflammatory phenomenon, the expression of nicotinic acetylcholine receptors (nAChRs) and the effect of dimethylphenylpiperazinium (DMPP), a nonselective nAChR agonist, on human blood eosinophils were studied. The expression of alpha-3, -4, and -7 nAChR subunits on human blood eosinophils was measured by cell ELISA and immunocytochemistry. mRNA expression for all three subunits was evaluated by quantitative RT-PCR. The effect of DMPP on leukotriene C4 (LTC4) and matrix metalloproteinase-9 (MMP-9) production, eosinophil migration, and intracellular calcium mobilization was measured. The results show that the alpha-3, -4, and -7 nAChR subunits and mRNAs are expressed by blood eosinophils. In vitro treatment of these cells with various concentrations of DMPP reduced platelet-activating factor (PAF)-induced LTC4 production significantly. DMPP (160 microM) decreased eotaxin, and 5-oxo-6,8,11,14-eicosatetranoic acid induced eosinophil migration through Matrigel by 40.9% and 55.5%, respectively. This effect was reversed by the nAChR antagonist mecamylamine. In addition, DMPP reduced MMP-9 release and the inositol 1,4,5-triphosphate-dependent intracellular calcium increase provoked by PAF. Taken together, these results indicate that functional nAChRs are expressed on eosinophils and that nAChR agonists down-regulate eosinophil function in vitro. These anti-inflammatory effects could be of interest in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Marie-Renée Blanchet
- Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, 2725 Chemin Ste-Foy, Ste-Foy, Québec, Canada, G1V 4G5
| | | | | | | | | | | | | |
Collapse
|
46
|
Yoshino T, Ishikawa J, Ohga K, Morokata T, Takezawa R, Morio H, Okada Y, Honda K, Yamada T. YM-58483, a selective CRAC channel inhibitor, prevents antigen-induced airway eosinophilia and late phase asthmatic responses via Th2 cytokine inhibition in animal models. Eur J Pharmacol 2007; 560:225-33. [PMID: 17307161 DOI: 10.1016/j.ejphar.2007.01.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 12/25/2006] [Accepted: 01/08/2007] [Indexed: 11/30/2022]
Abstract
T cells play a regulatory role in the pathogenesis of various immune and allergic diseases, including human asthma. Recently, it was reported that a pyrazole derivative, YM-58483 (BTP2), potently inhibits Ca(2+) release-activated Ca(2+) (CRAC) channels and interleukin (IL)-2 production in T cells. We investigated the effects of YM-58483 on T helper type 2 (Th2) cytokine production in vitro and antigen-induced airway asthmatic responses in vivo. YM-58483 inhibited IL-4 and IL-5 production in a conalbumine-stimulated murine Th2 T cell clone (D10.G4.1), and IL-5 production in phytohemagglutinin-stimulated human whole blood cells with IC(50) values comparable to those reported for its CRAC channel inhibition (around 100 nM). YM-58483 inhibited antigen-induced eosinophil infiltration into airways, and decreased IL-4 and cysteinyl-leukotrienes content in inflammatory airways induced in actively sensitized Brown Norway rats. Furthermore, orally administered YM-58483 prevented antigen-induced late phase asthmatic bronchoconstriction and eosinophil infiltration in actively sensitized guinea pigs. These data suggest that the inhibition of Ca(2+) influx through CRAC channel leads to the prevention of antigen-induced airway inflammation, probably via the inhibition of Th2 cytokine production and inflammatory mediators release. YM-58483 may therefore be useful for treating airway inflammation in bronchial asthma.
Collapse
Affiliation(s)
- Taiji Yoshino
- Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vasquez-Pinto LMC, Landgraf RG, Bozza PT, Jancar S. High vascular endothelial growth factor levels in NZW mice do not correlate with collagen deposition in allergic asthma. Int Arch Allergy Immunol 2006; 142:19-27. [PMID: 17016055 DOI: 10.1159/000095995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 06/20/2006] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Eosinophils contribute to the early features of allergic lung inflammation through the generation and release of a plethora of mediators. Eosinophil peroxidase (EPO) is one of the eosinophil granule proteins involved in the early response, but its participation in airway remodeling is not established. The present study addressed this question comparing an EPO-deficient mouse strain (NZW) with BALB/c and C57Bl/c strains. METHODS Mice were immunized with ovalbumin/alum, challenged twice with ovalbumin aerosol, and lung responses were measured at day 22 or 28. Collagen, mucus and eosinophils were determined in lung sections stained with picrosirius, periodic acid-Schiff or hematoxylin-eosin; transforming growth factor-beta and vascular endothelial growth factor were determined by ELISA, lipid bodies by enumeration in osmium-stained eosinophils, and airway reactivity to methacholine in isolated lung preparations. RESULTS NZW mice showed significantly less collagen around bronchi and blood vessels, less mucus and less eosinophils around bronchi. Eosinophil lipid body formation and airway hyperreactivity were comparable among strains. Levels of transforming growth factor-beta were also comparable; however, the NZW mice showed much higher levels of vascular endothelial growth factor, even under basal conditions. CONCLUSIONS In allergic lung inflammation, the combination of EPO deficiency and overexpression of VEGF found in NZW mice is associated with less collagen deposition, less mucus and reduced tissue eosinophilia. Eosinophil activation and airway hyperreactivity in NZW mice were similar to the other strains.
Collapse
Affiliation(s)
- Luciana M C Vasquez-Pinto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
48
|
Mesquita-Santos FP, Vieira-de-Abreu A, Calheiros AS, Figueiredo IH, Castro-Faria-Neto HC, Weller PF, Bozza PT, Diaz BL, Bandeira-Melo C. Cutting edge: prostaglandin D2 enhances leukotriene C4 synthesis by eosinophils during allergic inflammation: synergistic in vivo role of endogenous eotaxin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 176:1326-30. [PMID: 16424158 DOI: 10.4049/jimmunol.176.3.1326] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In addition to the well-recognized ability of prostaglandin D2 (PGD2) to regulate eosinophil trafficking, we asked whether PGD2 was also able to activate eosinophils and control their leukotriene C4 (LTC4)-synthesizing machinery. PGD2 administration to presensitized mice enhanced in vivo LTC4 production and formation of eosinophil lipid bodies-potential LTC4-synthesizing organelles. Immunolocalization of newly formed LTC4 demonstrated that eosinophil lipid bodies were the sites of LTC4 synthesis during PGD2-induced eosinophilic inflammation. Pretreatment with HQL-79, an inhibitor of PGD synthase, abolished LTC4 synthesis and eosinophil lipid body formation triggered by allergic challenge. Although PGD2 was able to directly activate eosinophils in vitro, in vivo PGD2-induced lipid body-driven LTC4 synthesis within eosinophils was dependent on the synergistic activity of endogenous eotaxin acting via CCR3. Our findings, that PGD2 activated eosinophils and enhanced LTC4 synthesis in vivo in addition to the established PGD2 roles in eosinophil recruitment, heighten the interest in PGD2 as a target for antiallergic therapies.
Collapse
|
49
|
Carey MA, Bradbury JA, Seubert JM, Langenbach R, Zeldin DC, Germolec DR. Contrasting Effects of Cyclooxygenase-1 (COX-1) and COX-2 Deficiency on the Host Response to Influenza A Viral Infection. THE JOURNAL OF IMMUNOLOGY 2005; 175:6878-84. [PMID: 16272346 DOI: 10.4049/jimmunol.175.10.6878] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Influenza is a significant cause of morbidity and mortality worldwide despite extensive research and vaccine availability. The cyclooxygenase (COX) pathway is important in modulating immune responses and is also a major target of nonsteroidal anti-inflammatory drugs (NSAIDs) and the newer COX-2 inhibitors. The purpose of the present study was to examine the effect of deficiency of COX-1 or COX-2 on the host response to influenza. We used an influenza A viral infection model in wild type (WT), COX-1-/-, and COX-2-/- mice. Infection induced less severe illness in COX-2-/- mice in comparison to WT and COX-1-/- mice as evidenced by body weight and body temperature changes. Mortality was significantly reduced in COX-2-/- mice. COX-1-/- mice had enhanced inflammation and earlier appearance of proinflammatory cytokines in the BAL fluid, whereas the inflammatory and cytokine responses were blunted in COX-2-/- mice. However, lung viral titers were markedly elevated in COX-2-/- mice relative to WT and COX-1-/- mice on day 4 of infection. Levels of PGE2 were reduced in COX-1-/- airways whereas cysteinyl leukotrienes were elevated in COX-2-/- airways following infection. Thus, deficiency of COX-1 and COX-2 leads to contrasting effects in the host response to influenza infection, and these differences are associated with altered production of prostaglandins and leukotrienes following infection. COX-1 deficiency is detrimental whereas COX-2 deficiency is beneficial to the host during influenza viral infection.
Collapse
Affiliation(s)
- Michelle A Carey
- Laboratory of Respiratory Biology, Division of Intramural Research, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
50
|
Jones CE. The OXE receptor: a new therapeutic approach for asthma? Trends Mol Med 2005; 11:266-70. [PMID: 15949767 DOI: 10.1016/j.molmed.2005.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/08/2005] [Accepted: 04/28/2005] [Indexed: 11/26/2022]
Abstract
The eicosanoid 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) has recently been identified as the ligand for the oxoeicosanoid (OXE) receptor. In vitro and in vivo studies have suggested that 5-oxo-ETE has a role in the asthmatic inflammatory response and it has been shown to stimulate eosinophil migration to the airways. New data suggest that eosinophils have an important role in the pathogenesis of asthma, being required for mucus accumulation, airway hyperresponsiveness and remodelling of the airways. However, there are several mediators that can stimulate the recruitment of eosinophils to the airways and the development of antagonists against the OXE receptor is required to evaluate the potential of the OXE receptor as a new therapeutic approach for asthma.
Collapse
Affiliation(s)
- Carol E Jones
- Respiratory Diseases Therapeutic Area, Novartis Institutes for Biomedical Research, Horsham, RH12 5AB, UK.
| |
Collapse
|