1
|
Lanna MF, Resende LA, De Luca PM, Goes WM, Zaldívar MF, Costa AT, Dutra WO, Reis AB, Martins-Filho OA, Gollob KJ, de Moura SAL, Dias ES, Monteiro ÉM, Silveira-Lemos D, Giunchetti RC. Application of the Sponge Model Implants in the Study of Vaccine Memory in Mice Previously Immunized with LBSap. Vaccines (Basel) 2024; 12:1322. [PMID: 39771984 PMCID: PMC11680354 DOI: 10.3390/vaccines12121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Considering the large number of candidates in vaccine-testing studies against different pathogens and the amount of time spent in the preclinical and clinical trials, there is a pressing need to develop an improved in vivo system to quickly screen vaccine candidates. The model of a polyester-polyurethane sponge implant provides a rapid analysis of the specific stimulus-response, allowing the study of a compartmentalized microenvironment. The sponge implant's defined measurements were standardized as a compartment to assess the immune response triggered by the vaccinal antigen. The LBSap vaccine (composed of Leishmania braziliensis antigens associated with saponin adjuvant) was used in the sponge model to assess the antigen-specific immunological biomarker, including memory generation after initial contact with the antigen. METHODS Mice strains (Swiss, BALB/c, and C57BL/6) were previously immunized using LBSap vaccine, followed by an antigenic booster performed inside the sponge implant. The sponge implants were assessed after 72 h, and the immune response pattern was analyzed according to leukocyte immunophenotyping and cytokine production. RESULTS After LBSap vaccination, the innate immune response of the antigenic booster in the sponge implants demonstrated higher levels in the Ly+ neutrophils and CD11c+ dendritic cells with reduced numbers of F4/80+ macrophages. Moreover, the adaptive immune response in Swiss mice demonstrated a high CD3+CD4+ T-cell frequency, consisting of an effector memory component, in addition to a cytoxicity response (CD3+CD8+ T cells), displaying the central memory biomarker. The major cell surface biomarker in the BALB/c mice strain was related to CD3+CD4+ effector memory, while the increased CD3+CD8+ effector memory was highlighted in C57/BL6. The cytokine profile was more inflammatory in Swiss mice, with the highest levels of IL-6, TNF, IFN-g, and IL-17, while the same cytokine was observed in in C57BL/6 yet modulated by enhanced IL-10 levels. Similar to Swiss mice, BALB/c mice triggered an inflammatory environment after the antigenic booster in the sponge implant with the increased levels in the ILL-6, TNF, and IFN-g. CONCLUSIONS The findings emphasized the impact of genetic background on the populations engaged in immune responses, suggesting that this model can be utilized to enhance and track both innate and adaptive immune responses in vaccine candidates. Consequently, these results may inform the selection of the most suitable experimental model for biomolecule testing, taking into account how the unique characteristics of each mouse strain affect the immune response dynamics.
Collapse
Affiliation(s)
- Mariana Ferreira Lanna
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
- Immunopathology Laboratory, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Lucilene Aparecida Resende
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Paula Mello De Luca
- Instituto Oswaldo Cruz (IOC), FIOCRUZ Av. Brasil, Rio de Janeiro 21040-900, RJ, Brazil
| | - Wanessa Moreira Goes
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Maykelin Fuentes Zaldívar
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - André Tetzl Costa
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Walderez Ornelas Dutra
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| | - Alexandre Barbosa Reis
- Immunopathology Laboratory, Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil
| | - Kenneth Jhon Gollob
- Albert Einstein Israeli Institute of Education and Research, Albert Einstein Hospital, São Paulo 05652-900, SP, Brazil
| | - Sandra Aparecida Lima de Moura
- Biomaterials and Experimental Pathology Laboratory, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, MG, Brazil
| | - Edelberto Santos Dias
- Taxonomy of Phlebotomines/Epidemiology, Diagnosis and Control of Leishmaniasis Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil; (E.S.D.); (É.M.M.)
| | - Érika Michalsky Monteiro
- Taxonomy of Phlebotomines/Epidemiology, Diagnosis and Control of Leishmaniasis Group, René Rachou Research Institute, Oswaldo Cruz Foundation, Belo Horizonte 30190-002, MG, Brazil; (E.S.D.); (É.M.M.)
| | - Denise Silveira-Lemos
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
- Department of Medicine, José Rosário Vellano University, Belo Horizonte Campus, Belo Horizonte 31270-020, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Biology of Cellular Interactions, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (L.A.R.)
| |
Collapse
|
2
|
Martin MU, Tay CM, Siew TW. Continuous Treatment with IncobotulinumtoxinA Despite Presence of BoNT/A Neutralizing Antibodies: Immunological Hypothesis and a Case Report. Toxins (Basel) 2024; 16:422. [PMID: 39453199 PMCID: PMC11510976 DOI: 10.3390/toxins16100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Botulinum Neurotoxin A (BoNT/A) is a bacterial protein that has proven to be a valuable pharmaceutical in therapeutic indications and aesthetic medicine. One major concern is the formation of neutralizing antibodies (nAbs) to the core BoNT/A protein. These can interfere with the therapy, resulting in partial or complete antibody (Ab)-mediated secondary non-response (SNR) or immunoresistance. If titers of nAbs reach a level high enough that all injected BoNT/A molecules are neutralized, immunoresistance occurs. Studies have shown that continuation of treatment of neurology patients who had developed Ab-mediated partial SNR against complexing protein-containing (CPC-) BoNT/A was in some cases successful if patients were switched to complexing protein-free (CPF-) incobotulinumtoxinA (INCO). This seems to contradict the layperson's basic immunological understanding that repeated injection with the same antigen BoNT/A should lead to an increase in antigen-specific antibody titers. As such, we strive to explain how immunological memory works in general, and based on this, we propose a working hypothesis for this paradoxical phenomenon observed in some, but not all, neurology patients with immunoresistance. A critical factor is the presence of potentially immune-stimulatory components in CPC-BoNT/A products that can act as immunologic adjuvants and activate not only naïve, but also memory B lymphocyte responses. Furthermore, we propose that continuous injection of a BoN/TA formulation with low immunogenicity, e.g., INCO, may be a viable option for aesthetic patients with existing nAbs. These concepts are supported by a real-world case example of a patient with immunoresistance whose nAb levels declined with corresponding resumption of clinical response despite regular INCO injections.
Collapse
Affiliation(s)
| | | | - Tuck Wah Siew
- Radium Medical Aesthetics, 3 Temasek Boulevard #03-325/326/327/328, Suntec City Mall, Singapore 038983, Singapore
| |
Collapse
|
3
|
Xiong H, Shen Z. Tissue-resident memory T cells in immunotherapy and immune-related adverse events by immune checkpoint inhibitor. Int J Cancer 2024; 155:193-202. [PMID: 38554117 DOI: 10.1002/ijc.34940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of T cells that reside in tissues and provide long-term protective immunity against pathogens that enter the body through that specific tissue. TRM cells have specific phenotype and reside preferentially in barrier tissues. Recent studies have revealed that TRM cells are the main target of immune checkpoint inhibitor immunotherapy since their role in cancer immunosurveillance. Furthermore, TRM cells also play a crucial part in pathogenesis of immune-related adverse events (irAEs). Here, we provide a concise review of biological characteristics of TRM cells, and the major advances and recent findings regarding their involvement in immune checkpoint inhibitor immunotherapy and the corresponding irAEs.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Jiang S, Su H. Exploration of the shared gene signatures and biological mechanisms between ischemia-reperfusion injury and antibody-mediated rejection in renal transplantation. Transpl Immunol 2024; 83:102001. [PMID: 38266883 DOI: 10.1016/j.trim.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Antibody-mediated rejection (ABMR) plays a crucial role in graft loss during allogeneic renal transplantation. In renal transplantation, ischemia-reperfusion injury (IRI) is unavoidable, serves as a major contributor to acute rejection, and is linked to graft loss. However, the mechanisms underlying IRI and ABMR are unclear. Therefore, this study aimed to investigate the shared genetic characteristics and biological mechanisms between IRI and ABMR. METHODS Gene expressions for IRI (GSE43974) and ABMR (GSE129166 and GSE36059) were retrieved from the Gene Expression Omnibus database. The shared differentially expressed genes (DEGs) of IRI and ABMR were identified, and subsequent functional enrichment analysis was performed. Immune cell infiltration in ABMR and its relationship with the shared DEGs were investigated using the CIBERSORT method. Random forest analysis, a protein-protein interaction network, and Cytoscape were used to screen hub genes, which were subsequently subjected to gene set enrichment analysis, miRNA prediction, and transcription factors analysis. The survival analysis was performed through Kaplan-Meier curves. Finally, drug compound prediction was performed on the shared DEGs using the Drug Signature Database. RESULTS Overall, 27 shared DEGs were identified between the renal IRI and ABMR groups. Among these, 24 genes exhibited increased co-expression, whereas none showed decreased co-expression. The shared DEGs were primarily enriched in the inflammation signaling pathways. Notably, CD4 memory T cells were identified as potential critical mediators of IRI, leading to ABMR. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), interferon regulatory factor 1 (IRF1), and early growth response 2 (EGR2) were identified as key components in the potential mechanism that link IRI and ABMR. Patients undergoing renal transplantation with higher expression levels of TNFAIP3, IRF1, and EGR2 exhibited decreased survival rates compared to those with lower expression levels. CONCLUSION Inflammation is a key mechanism that links IRI and ABMR, with a potential role played by CD4 memory T cells. Furthermore, TNFAIP3, IRF1, and EGR2 are implicated in the underlying mechanism between IRI and ABMR.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
5
|
Geginat J, Granucci F. Regulatory T-cell-derived interleukin-15 shapes cytotoxic T cell memory. Eur J Immunol 2023; 53:e2250238. [PMID: 36398486 DOI: 10.1002/eji.202250238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
It is well known that regulatory T-cells (Tregs) are required to prevent autoimmunity, but they may also have some less-well understood immune-stimulatory effects. In particular, in CD8+ T-cell responses Tregs select high-affinity clones upon priming and promote memory by inhibiting inflammation-dependent generation of short-lived effector cells. In the current issue of the European Journal of Immunology [Eur. J. Immunol. 2023. 53: 2149400], Madi et al. report the surprising finding that human and murine FOXP3+ Tregs are a physiologically relevant source of IL-15, a homeostatic cytokine that promotes antigen-independent maintenance of CD8+ memory T-cells. In mice that lack IL-15 selectively in FOXP3+ Tregs the authors show that the composition of the CD8+ T-cell memory pool is altered in the absence of Treg-derived IL-15, since a subset of terminally effector memory cells is drastically reduced. Otherwise Treg-derived IL-15 is dispensable for antiviral immune responses and the generation of anti-viral CD8+ memory T-cells. These findings add to our understanding of the multifaceted role of Tregs in immune responses, and how IL-15 derived from different cellular sources maintains anti-viral T-cell memory.
Collapse
Affiliation(s)
- Jens Geginat
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy.,Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Francesca Granucci
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Milan, Italy
| |
Collapse
|
6
|
Influenza Virus Infection during Pregnancy as a Trigger of Acute and Chronic Complications. Viruses 2022; 14:v14122729. [PMID: 36560733 PMCID: PMC9786233 DOI: 10.3390/v14122729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) infection during pregnancy disrupts maternal and fetal health through biological mechanisms, which are to date poorly characterised. During pregnancy, the viral clearance mechanisms from the lung are sub-optimal and involve hyperactive innate and adaptive immune responses that generate wide-spread inflammation. Pregnancy-related adaptations of the immune and the cardiovascular systems appear to result in delayed recovery post-viral infection, which in turn promotes a prolonged inflammatory phenotype, increasing disease severity, and causing maternal and fetal health problems. This has immediate and long-term consequences for the mother and fetus, with complications including acute cardiopulmonary distress syndrome in the mother that lead to perinatal complications such as intrauterine growth restriction (IUGR), and birth defects; cleft lip, cleft palate, neural tube defects and congenital heart defects. In addition, an increased risk of long-term neurological disorders including schizophrenia in the offspring is reported. In this review we discuss the pathophysiology of IAV infection during pregnancy and its striking similarity to other well-established complications of pregnancy such as preeclampsia. We discuss general features of vascular disease with a focus on vascular inflammation and define the "Vascular Storm" that is triggered by influenza infection during pregnancy, as a pivotal disease mechanism for short and long term cardiovascular complications.
Collapse
|
7
|
Sterilizing Immunity against COVID-19: Developing Helper T cells I and II activating vaccines is imperative. Biomed Pharmacother 2021; 144:112282. [PMID: 34624675 PMCID: PMC8486642 DOI: 10.1016/j.biopha.2021.112282] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
Six months after the publication of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) sequence, a record number of vaccine candidates were listed, and quite a number of them have since been approved for emergency use against the novel coronavirus disease 2019 (COVID-19). This unprecedented pharmaceutical feat did not only show commitment, creativity and collaboration of the scientific community, but also provided a swift solution that prevented global healthcare system breakdown. Notwithstanding, the available data show that most of the approved COVID-19 vaccines protect only a proportion of recipients against severe disease but do not prevent clinical manifestation of COVID-19. There is therefore the need to probe further to establish whether these vaccines can induce sterilizing immunity, otherwise, COVID-19 vaccination would have to become a regular phenomenon. The emergence of SARS-CoV-2 variants could further affect the capability of the available COVID-19 vaccines to prevent infection and protect recipients from a severe form of the disease. These notwithstanding, data about which vaccine(s), if any, can confer sterilizing immunity are unavailable. Here, we discuss the immune responses to viral infection with emphasis on COVID-19, and the specific adaptive immune response to SARS-CoV-2 and how it can be harnessed to develop COVID-19 vaccines capable of conferring sterilizing immunity. We further propose factors that could be considered in the development of COVID-19 vaccines capable of stimulating sterilizing immunity. Also, an old, but effective vaccine development technology that can be applied in the development of COVID-19 vaccines with sterilizing immunity potential is reviewed.
Collapse
|
8
|
Lu C, Chen W. Influenza virus infection selectively triggers the accumulation and persistence of more potent Helios-expressing Foxp3 + regulatory T cells in the lungs. Immunol Cell Biol 2021; 99:1011-1025. [PMID: 34251701 DOI: 10.1111/imcb.12492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022]
Abstract
Foxp3+ regulatory T cells (Tregs) represent a special lineage of CD4+ T cells. Analysis of Treg response during primary and secondary influenza virus infection clearly demonstrates a robust accumulation of Tregs into the infected lungs and the existence of a population of long-lived antigen-specific memory Tregs in the same tissues after resolution of the infection. However, it remains unknown whether these Tregs co-express Helios, a member of the Ikaros transcription factor family. In this study, Foxp3+ Helios+ and Foxp3+ Helios- Tregs in the lungs, mLNs and spleens of influenza virus-infected and uninfected control mice were tracked. The data show that while there is a co-existence of Foxp3+ Helios+ and Foxp3+ Helios- Tregs in the tissues, the accumulated Tregs in the lungs and lung-draining mediastinal lymph nodes (mLNs) of the infected mice are highly enriched for Foxp3+ Helios+ cells. It was further demonstrated that, after the clearance of primary infection, Foxp3+ Helios+ cells have the ability to persist in the tissues over their Helios- counterparts. More importantly, Foxp3+ Helios+ Tregs accumulated in an accelerated kinetics during recall response to reinfection. In vitro analysis of Treg suppressive function revealed that Foxp3+ Helios+ Tregs are more capable of suppressing influenza virus-specific CD8+ T cell activation, cytokine production and proliferation. Together, the data provide new insights into Treg responses during primary and secondary influenza virus infection and suggest that Foxp3+ Helios+ Tregs predominantly drive the Treg responses.
Collapse
Affiliation(s)
- Chunni Lu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
9
|
Kupz A, Pai S, Giacomin PR, Whan JA, Walker RA, Hammoudi PM, Smith NC, Miller CM. Treatment of mice with S4B6 IL-2 complex prevents lethal toxoplasmosis via IL-12- and IL-18-dependent interferon-gamma production by non-CD4 immune cells. Sci Rep 2020; 10:13115. [PMID: 32753607 PMCID: PMC7403597 DOI: 10.1038/s41598-020-70102-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Toxoplasmic encephalitis is an AIDS-defining condition. The decline of IFN-γ-producing CD4+ T cells in AIDS is a major contributing factor in reactivation of quiescent Toxoplasma gondii to an actively replicating stage of infection. Hence, it is important to characterize CD4-independent mechanisms that constrain acute T. gondii infection. We investigated the in vivo regulation of IFN-γ production by CD8+ T cells, DN T cells and NK cells in response to acute T. gondii infection. Our data show that processing of IFN-γ by these non-CD4 cells is dependent on both IL-12 and IL-18 and the secretion of bioactive IL-18 in response to T. gondii requires the sensing of viable parasites by multiple redundant inflammasome sensors in multiple hematopoietic cell types. Importantly, our results show that expansion of CD8+ T cells, DN T cells and NK cell by S4B6 IL-2 complex pre-treatment increases survival rates of mice infected with T. gondii and this is dependent on IL-12, IL-18 and IFN-γ. Increased survival is accompanied by reduced pathology but is independent of expansion of TReg cells or parasite burden. This provides evidence for a protective role of IL2C-mediated expansion of non-CD4 cells and may represent a promising lead to adjunct therapy for acute toxoplasmosis.
Collapse
Affiliation(s)
- Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
| | - Saparna Pai
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Jennifer A Whan
- Advanced Analytical Centre, James Cook University, Cairns, QLD, 4878, Australia
| | - Robert A Walker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
| | - Pierre-Mehdi Hammoudi
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Nicholas C Smith
- School of Science and Health, Western Sydney University, Parramatta South Campus, Sydney, NSW, 2116, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Catherine M Miller
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.,Discipline of Biomedicine, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
10
|
Secretory Microneme Proteins Induce T-Cell Recall Responses in Mice Chronically Infected with Toxoplasma gondii. mSphere 2019; 4:4/1/e00711-18. [PMID: 30814319 PMCID: PMC6393730 DOI: 10.1128/msphere.00711-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Current diagnosis of toxoplasmosis relies almost exclusively on antibody detection, and while detection of IgG provides a useful estimate of prior infection, it does not alone indicate immune status. In contrast, detection of IFN-γ responses to T. gondii antigens has been used to monitor immune responsiveness in HIV-infected patients, thus providing valuable predictions about the potential for disease reactivation. However, specific T. gondii antigens that can be used in assays to detect cellular immunity remain largely undefined. In this study, we examined the diagnostic potential of microneme antigens of T. gondii using IFN-γ detection assays. Our findings demonstrate that MIC antigens (MIC1, MIC3, MIC4, and MIC6) elicit IFN-γ responses from memory T cells in chronically infected mice. Monitoring IFN-γ production by T cells stimulated with MIC antigens provided high sensitivity and specificity for detection of T. gondii infection in mice. Taken together, these studies suggest that microneme antigens might be useful as an adjunct to serological testing to monitor immune status during infection. Microneme (MIC) proteins play important roles in the recognition, adhesion, and invasion of host cells by Toxoplasma gondii. Previous studies have shown that MIC proteins are highly immunogenic in the mouse and recognized by human serum antibodies. Here we report that T. gondii antigens MIC1, MIC3, MIC4, and MIC6 were capable of inducing memory responses leading to production of gamma interferon (IFN-γ) by T cells from T. gondii-infected mice. Production of IFN-γ was demonstrated using enzyme-linked immunosorbent spot (ELISPOT) assay and also intracellular cytokine staining. All four MIC antigens displayed very high sensitivity (100%) and specificity (86 to 100%) for detecting chronic infection. Interestingly, IFN-γ was produced by both CD4+ and CD8+ T cells in BALB/c mice but primarily by CD4+ T cells in C57BL/6 mice. Phenotypic characterization of IFN-γ-producing CD4+ and CD8+ T cells in BALB/c mice and CD4+ T cells in C57BL/6 mice revealed effector memory T cells (CD44hi CD62Llo) as the predominant cells that contributed to IFN-γ production in response to MIC antigens. Effector memory responses were seen in mice of different major histocompatibility complex class II (MHC-II) haplotypes, suggesting that MIC antigens contain epitopes that are broadly recognized. IMPORTANCE Current diagnosis of toxoplasmosis relies almost exclusively on antibody detection, and while detection of IgG provides a useful estimate of prior infection, it does not alone indicate immune status. In contrast, detection of IFN-γ responses to T. gondii antigens has been used to monitor immune responsiveness in HIV-infected patients, thus providing valuable predictions about the potential for disease reactivation. However, specific T. gondii antigens that can be used in assays to detect cellular immunity remain largely undefined. In this study, we examined the diagnostic potential of microneme antigens of T. gondii using IFN-γ detection assays. Our findings demonstrate that MIC antigens (MIC1, MIC3, MIC4, and MIC6) elicit IFN-γ responses from memory T cells in chronically infected mice. Monitoring IFN-γ production by T cells stimulated with MIC antigens provided high sensitivity and specificity for detection of T. gondii infection in mice. Taken together, these studies suggest that microneme antigens might be useful as an adjunct to serological testing to monitor immune status during infection.
Collapse
|
11
|
Memory T cells: A helpful guard for allogeneic hematopoietic stem cell transplantation without causing graft-versus-host disease. Hematol Oncol Stem Cell Ther 2017. [PMID: 28636890 DOI: 10.1016/j.hemonc.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (AHSCT) and the major cause of nonrelapse morbidity and mortality of AHSCT. In AHSCT, donor T cells facilitate hematopoietic stem cell (HSC) engraftment, contribute to anti-infection immunity, and mediate graft-versus-leukemia (GVL) responses. However, activated alloreactive T cells also attack recipient cells in vital organs, leading to GVHD. Different T-cell subsets, including naïve T (TN) cells, memory T (TM) cells, and regulatory T (Treg) cells mediate different forms of GVHD and GVL; TN cells mediate severe GVHD, whereas TM cells do not cause GVHD, but preserve T-cell function including GVL. In addition, metabolic reprogramming controls T-cell differentiation and activation in these disease states. This minireview focuses on the role and the related mechanisms of TM cells in AHSCT, and the potential manipulation of T cells in AHSCT.
Collapse
|
12
|
Khan N, Vidyarthi A, Amir M, Mushtaq K, Agrewala JN. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol 2016; 43:133-141. [DOI: 10.1080/1040841x.2016.1185603] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nargis Khan
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Aurobind Vidyarthi
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Mohammed Amir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | - Khurram Mushtaq
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
13
|
Hasan AN, Selvakumar A, Shabrova E, Liu XR, Afridi F, Heller G, Riviere I, Sadelain M, Dupont B, O'Reilly RJ. Soluble and membrane-bound interleukin (IL)-15 Rα/IL-15 complexes mediate proliferation of high-avidity central memory CD8 + T cells for adoptive immunotherapy of cancer and infections. Clin Exp Immunol 2016; 186:249-265. [PMID: 27227483 DOI: 10.1111/cei.12816] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/28/2022] Open
Abstract
The lack of persistence of infused T cells is a principal limitation of adoptive immunotherapy in man. Interleukin (IL)-15 can sustain memory T cell expansion when presented in complex with IL-15Rα (15Rα/15). We developed a novel in-vitro system for generation of stable 15Rα/15 complexes. Immunologically quantifiable amounts of IL-15 were obtained when both IL-15Rα and IL-15 genes were co-transduced in NIH 3T3 fibroblast-based artificial antigen-presenting cells expressing human leucocyte antigen (HLA) A:0201, β2 microglobulin, CD80, CD58 and CD54 [A2-artificial antigen presenting cell (AAPC)] and a murine pro-B cell line (Baf-3) (A2-AAPC15Rα/15 and Baf-315Rα/15 ). Transduction of cells with IL-15 alone resulted in only transient expression of IL-15, with minimal amounts of immunologically detectable IL-15. In comparison, cells transduced with IL-15Rα alone (A2-AAPCRα ) demonstrated stable expression of IL-15Rα; however, when loaded with soluble IL-15 (sIL-15), these cells sequestered 15Rα/15 intracellularly and also demonstrated minimal amounts of IL-15. Human T cells stimulated in vitro against a viral antigen (CMVpp65) in the presence of 15Rα/15 generated superior yields of high-avidity CMVpp65 epitope-specific T cells [cytomegalovirus-cytotoxic T lymphocytes (CMV-CTLs)] responding to ≤ 10- 13 M peptide concentrations, and lysing targets cells at lower effector : target ratios (1 : 10 and 1 : 100), where sIL-15, sIL-2 or sIL-7 CMV-CTLs demonstrated minimal or no activity. Both soluble and surface presented 15Rα/15, but not sIL-15, sustained in-vitro expansion of CD62L+ and CCR7+ central memory phenotype CMV-CTLs (TCM ). 15Rα/15 complexes represent a potent adjuvant for augmenting the efficacy of adoptive immunotherapy. Such cell-bound or soluble 15Rα/15 complexes could be developed for use in combination immunotherapy approaches.
Collapse
Affiliation(s)
- A N Hasan
- Department of Pediatrics, Division of Bone Marrow Transplantation.,Department of Pediatrics, Immunology Program, Sloan-Kettering Institute
| | - A Selvakumar
- Department of Pediatrics, Immunology Program, Sloan-Kettering Institute
| | - E Shabrova
- Department of Pediatrics, Division of Bone Marrow Transplantation
| | - X-R Liu
- Department of Pediatrics, Immunology Program, Sloan-Kettering Institute
| | - F Afridi
- Department of Pediatrics, Division of Bone Marrow Transplantation
| | - G Heller
- Department of Epidemiology and Biostatistics
| | | | | | - B Dupont
- Department of Pediatrics, Immunology Program, Sloan-Kettering Institute.,Division of Bone Marrow Transplantation, Memorial Sloan-Kettering Cancer Center New York, NY, USA
| | - R J O'Reilly
- Department of Pediatrics, Division of Bone Marrow Transplantation. .,Department of Pediatrics, Immunology Program, Sloan-Kettering Institute. .,The Center for Cell Engineering.
| |
Collapse
|
14
|
Guo ZP, Wang T, Xu LP, Zhang XH, Wang Y, Huang XJ, Chang YJ. Factors affecting the CD34 + cell yields from the second donations of healthy donors: The steady-state lymphocyte count is a good predictive factor. Transfus Apher Sci 2016; 55:311-317. [PMID: 27665155 DOI: 10.1016/j.transci.2016.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/02/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND A second allogeneic hematopoietic stem-cell transplantation and donor lymphocyte infusion using cells from the same donor is a therapeutic option in the case of stem-cell graft failure or disease relapse, but little is known about the factors associated with the CD34+ cell yields from second donations. METHODS One-hundred healthy donors who underwent a second mobilization treatment and peripheral blood stem-cell (PBSC) collection were studied. For both mobilization processes, 5 µg of granulocyte colony-stimulating factor per kg per day was administered. The blood counts of the donors were monitored during the processes. RESULTS The second donations from the same donors provided lower apheresis yields than did the initial collections. The number of CD34+ cells collected from normal donors after a second cycle of PBSC mobilization was associated with their steady-state lymphocyte counts and the intertransplantation interval. Female sex negatively affected the CD34+ cell yields. The cutoff value for the steady-state absolute lymphocyte count was 2.055 × 109/L. CONCLUSION To harvest greater numbers of CD34+ cells from second collections, male donors and those with intervals of longer than 9 months between donations should be selected. The lymphocyte counts prior to the first donations may predict the content of CD34+ cells in the allografts prepared using the second donations.
Collapse
Affiliation(s)
- Zhi-Ping Guo
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing 100044, China
| | - Tao Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing 100044, China; Department of Hematology, Shanxi Da Yi Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China
| | - Lan-Ping Xu
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Hui Zhang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing 100044, China
| | - Yu Wang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing 100044, China
| | - Ying-Jun Chang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing 100044, China; Collaborative Innovation Center of Hematology, Peking University, Beijing 100044, China.
| |
Collapse
|
15
|
Kupz A, Zedler U, Stäber M, Kaufmann SHE. A Mouse Model of Latent Tuberculosis Infection to Study Intervention Strategies to Prevent Reactivation. PLoS One 2016; 11:e0158849. [PMID: 27391012 PMCID: PMC4938611 DOI: 10.1371/journal.pone.0158849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/22/2016] [Indexed: 02/07/2023] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) is the leading cause of death in human immunodeficiency virus (HIV)+ individuals, particularly in Sub-Saharan Africa. Management of this deadly co-infection is a significant global health challenge that is exacerbated by the lack of efficient vaccines against both Mtb and HIV, as well as the lack of reliable and robust animal models for Mtb/HIV co-infection. Here we describe a tractable and reproducible mouse model to study the reactivation dynamics of latent Mtb infection following the loss of CD4+ T cells as it occurs in HIV-co-infected individuals. Whereas intradermally (i.d.) infected C57BL/6 mice contained Mtb within the local draining lymph nodes, depletion of CD4+ cells led to progressive systemic spread of the bacteria and induction of lung pathology. To interrogate whether reactivation of Mtb after CD4+ T cell depletion can be reversed, we employed interleukin (IL)-2/anti-IL-2 complex-mediated cell boost approaches. Although populations of non-CD4 lymphocytes, such as CD8+ memory T cells, natural killer (NK) cells and double-negative (DN) T cells significantly expanded after IL-2/anti-IL-2 complex treatment, progressive development of bacteremia and pathologic lung alterations could not be prevented. These data suggest that the failure to reverse Mtb reactivation is likely not due to anergy of the expanded cell subsets and rather indicates a limited potential for IL-2-complex-based therapies in the management of Mtb/HIV co-infection.
Collapse
Affiliation(s)
- Andreas Kupz
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
- Centre for Biosecurity and Tropical Infectious Diseases, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- * E-mail: (SHEK); (AK)
| | - Ulrike Zedler
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Manuela Stäber
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (SHEK); (AK)
| |
Collapse
|
16
|
Ertl HC. Viral vectors as vaccine carriers. Curr Opin Virol 2016; 21:1-8. [PMID: 27327517 DOI: 10.1016/j.coviro.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022]
Abstract
This chapter reviews the performance of viral vectors based on adenoviruses or adeno-associated virus as vaccine carriers for infectious diseases. Replication-defective adenovirus vectors based on multiple human or non-human serotypes have consistently induced potent transgene product-specific B and T cell responses and are increasingly being explored in human clinical trials. The immunogenicity of most vectors based on adeno-associated virus vectors has been poor with the exception of a recently described hybrid vector from rhesus macaques that due to its ability to induce potent responses in mice warrant further investigation.
Collapse
Affiliation(s)
- Hildegund Cj Ertl
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, United States.
| |
Collapse
|
17
|
Yang H, Gu J, Zhu Q, Lu H, Wang K, Ni X, Lu Y, Lu L. Protection of acute GVHD by all-trans retinoic acid through suppression of T cell expansion and induction of regulatory T cells through IL-2 signaling. Int Immunopharmacol 2015; 28:911-6. [DOI: 10.1016/j.intimp.2015.03.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/31/2015] [Indexed: 01/13/2023]
|
18
|
Lin K, Chen S, Chen G. Role of Memory T Cells and Perspectives for Intervention in Organ Transplantation. Front Immunol 2015; 6:473. [PMID: 26441978 PMCID: PMC4568416 DOI: 10.3389/fimmu.2015.00473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/31/2015] [Indexed: 12/12/2022] Open
Abstract
Memory T cells are necessary for protective immunity against invading pathogens, especially under conditions of immunosuppression. However, their presence also threatens transplant survival, making transplantation a great challenge. Significant progress has been achieved in recent years in advancing our understanding of the role that memory T cells play in transplantation. This review focuses on the latest advances in our understanding of the involvement of memory T cells in graft rejection and transplant tolerance and discusses potential strategies for targeting memory T cells in order to minimize allograft rejection and optimize clinical outcomes.
Collapse
Affiliation(s)
- Kailin Lin
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China
| | - Song Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Education , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Public Health , Wuhan , China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Huazhong University of Science and Technology , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Education , Wuhan , China ; Key Laboratory of Organ Transplantation, Ministry of Public Health , Wuhan , China
| |
Collapse
|
19
|
Hwang S, Khan IA. CD8+ T cell immunity in an encephalitis model of Toxoplasma gondii infection. Semin Immunopathol 2015; 37:271-9. [PMID: 25944514 DOI: 10.1007/s00281-015-0483-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/22/2015] [Indexed: 12/19/2022]
Abstract
Toxoplasma gondii infection induces a robust CD8 T cell immunity in the infected host, which is critical for keeping chronic infection under control. IFNγ production and cytolytic activity exhibited by CD8 T cells are critical functions needed to prevent the reactivation of latent infection. Paradoxically, the susceptible mice infected with the parasite develop encephalitis irrespective of the presence of vigorous CD8 T cell immunity. Recent studies from our laboratory have demonstrated that these animals have defect in the memory CD8 T cell population, which become dysfunctional due to exhibition of inhibitory receptors like PD-1. Although the blockade of PD-1-PDL-1 pathway rescues the CD8 response, PD-1(hi) expressing cells are refractory to the treatment. In this review, we discuss the development of CD8 memory response during chronic infection, mechanism responsible for their dysfunctionality, and possible therapeutic measures that can be taken to reverse the process.
Collapse
Affiliation(s)
- SuJin Hwang
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, USA
| | | |
Collapse
|
20
|
Gupta MR, Kolli D, Molteni C, Casola A, Garofalo RP. Paramyxovirus infection regulates T cell responses by BDCA-1+ and BDCA-3+ myeloid dendritic cells. PLoS One 2014; 9:e99227. [PMID: 24918929 PMCID: PMC4053357 DOI: 10.1371/journal.pone.0099227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/13/2014] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) and human Metapneumovirus (hMPV), viruses belonging to the family Paramyxoviridae, are the most important causes of lower respiratory tract infection in young children. Infections with RSV and hMPV are clinically indistinguishable, and both RSV and hMPV infection have been associated with aberrant adaptive immune responses. Myeloid Dendritic cells (mDCs) play a pivotal role in shaping adaptive immune responses during infection; however, few studies have examined how interactions of RSV and hMPV with individual mDC subsets (BDCA-1+ and BDCA-3+ mDCs) affect the outcome of anti-viral responses. To determine whether RSV and hMPV induce virus-specific responses from each subset, we examined co-stimulatory molecules and cytokines expressed by BDCA-1+ and BDCA-3+ mDCs isolated from peripheral blood after infection with hMPV and RSV, and examined their ability to stimulate T cell proliferation and differentiation. Our data show that RSV and hMPV induce virus-specific and subset-specific patterns of co-stimulatory molecule and cytokine expression. RSV, but not hMPV, impaired the capacity of infected mDCs to stimulate T cell proliferation. Whereas hMPV-infected BDCA-1+ and BDCA-3+ mDCs induced expansion of Th17 cells, in response to RSV, BDCA-1+ mDCs induced expansion of Th1 cells and BDCA-3+ mDCs induced expansion of Th2 cells and Tregs. These results demonstrate a virus-specific and subset-specific effect of RSV and hMPV infection on mDC function, suggesting that these viruses may induce different adaptive immune responses.
Collapse
Affiliation(s)
- Meera R. Gupta
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| | - Deepthi Kolli
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Claudio Molteni
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Memory T cells present a different set of challenges to transplant patients; they are needed for protection against invading pathogens, especially under conditions of immunosuppression. But their presence also threatens transplant survival, as some of them are alloreactive. Efforts to resolve this paradox will be critical in the induction of transplant tolerance. RECENT FINDINGS There has been significant progress made in the past few years in the areas of population diversity of memory T cells, metabolic control of their induction, and mechanisms and pathways involved in memory cell exhaustion. Multiple targets on memory T cells have been identified, some of which are under vigorous testing in various transplant models. SUMMARY Memory T cells are both friends and foes to transplant patients, and tolerance strategies should selectively target alloreactive memory T cells and leave other memory cells unaltered. This situation remains a major challenge in the clinic.
Collapse
|
22
|
Mathematical models of memory CD8+ T-cell repertoire dynamics in response to viral infections. Bull Math Biol 2013; 75:491-522. [PMID: 23377628 PMCID: PMC7088647 DOI: 10.1007/s11538-013-9817-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 01/17/2013] [Indexed: 01/29/2023]
Abstract
Immunity to diseases is conferred by pathogen-specific memory cells that prevent disease reoccurrences. A broad repertoire of memory T-cells must be developed and maintained to effectively protect against viral invasions; yet, the total number of memory T-cells is constrained between infections. Thus, creating memory to new infections can require attrition of some existing memory cells. Furthermore, some viruses induce memory T-cell death early in an infection, after which surviving cells proliferate to refill the memory compartment.We develop mathematical models of cellular attrition and proliferation in order to examine how new viral infections impact existing immunity. With these probabilistic models, we qualitatively and quantitatively predict how the composition and diversity of the memory repertoire changes as a result of viral infections. In addition, we calculate how often immunity to prior diseases is lost due to new infections. Comparing our results across multiple general infection types allows us to draw conclusions about, which types of viral effects most drastically alter existing immunity. We find that early memory attrition does not permanently alter the repertoire composition, while infections that spark substantial new memory generation drastically shift the repertoire and hasten the decline of existing immunity.
Collapse
|
23
|
Su B, Wang J, Zhao G, Wang X, Li J, Wang B. Sequential administration of cytokine genes to enhance cellular immune responses and CD4 (+) T memory cells during DNA vaccination. Hum Vaccin Immunother 2012; 8:1659-67. [PMID: 23151452 DOI: 10.4161/hv.22105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Antigen specific memory T cells (Tm) have shown to be an important factor in protecting hosts against subsequent infection by previously encountered pathogens. During T-cell activation, several cytokines including IL-6, IL-7 and IL-15, play crucial roles in the development of T cells into memory T cells. With the aim of generating specific Tm, we examined a strategy of sequential administration of molecular adjuvants. In this strategy a DNA vaccine encoding the VP1 capsid protein of foot and mouth disease virus (designated pcD-VP1) was co-delivered to mice along with an IL-6 expressing plasmid (pVAX-IL-6) as an initial molecular adjuvant and boosted with either an IL-7 or IL-15 expressing plasmid, (pVAX-IL-7 or proVAX-IL-15) as the secondary adjuvant. During the pcD-VP1 immunization, we demonstrated that the groups primed with IL-6 and boosted with either IL-7 or IL-15 resulted in the enhancement of cellular and humoral immune responses, maturation of dendritic cells (DCs) and macrophages, and a higher frequency of CD4 (+) Tm (characterized by expressing CD44 (high) CD62L (low) markers, compared with the other groups). Thus, we took advantage of the different effects of cytokines on T cell development, not only to induce a higher level of immune responses after vaccination, but also to generate a higher ratio of CD4 (+) Tm in this sequential cytokine prime-boost study. This would then lead to the mounting of an effective long-term antigen specific immune response.
Collapse
Affiliation(s)
- Baowei Su
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University; Beijing, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Heng TSP, Reiseger JJ, Fletcher AL, Leggatt GR, White OJ, Vlahos K, Frazer IH, Turner SJ, Boyd RL. Impact of sex steroid ablation on viral, tumour and vaccine responses in aged mice. PLoS One 2012; 7:e42677. [PMID: 22880080 PMCID: PMC3411797 DOI: 10.1371/journal.pone.0042677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/10/2012] [Indexed: 02/02/2023] Open
Abstract
Recent evidence suggests that the decline in resistance to viral infections with age occurs predominantly as a result of a gradual loss of naïve antigen-specific T cells. As such, restoration of the naïve T cell repertoire to levels seen in young healthy adults may improve defence against infection in the aged. We have previously shown that sex steroid ablation (SSA) rejuvenates the ageing thymus and increases thymic export of naïve T cells, but it remains unclear whether T cell responses are improved. Using mouse models of clinically relevant diseases, we now demonstrate that SSA increases the number of naïve T cells able to respond to antigen, thereby enhancing effector responses in aged mice. Specifically, aged mice exhibit a delay in clearing influenza A virus, which correlates with diminished specific cytotoxic activity. This is due to a decreased magnitude of response and not an intrinsic defect in effector T cell function. Upon SSA, aged mice exhibit increased T cell responsiveness that restores efficient viral clearance. We further demonstrate that SSA decreases the incidence of an inducible tumour in aged mice and can potentially increase their responsiveness to a low-dose human papillomavirus vaccine in clearing pre-formed tumours. As thymectomy abrogates the increase in T cell numbers and responsiveness following SSA, we propose that the T cell effects of SSA are dependent on thymic reactivation and subsequent replenishment of the peripheral T cell pool with newly emigrated naïve T cells. These findings have important implications for strategies to improve protection from infection and responsiveness to vaccination in the aged.
Collapse
Affiliation(s)
- Tracy S. P. Heng
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail: (TH); (RB)
| | - Jessica J. Reiseger
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Anne L. Fletcher
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Graham R. Leggatt
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Olivia J. White
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Katerina Vlahos
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | - Ian H. Frazer
- The University of Queensland Diamantina Institute, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Stephen J. Turner
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Richard L. Boyd
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
- * E-mail: (TH); (RB)
| |
Collapse
|
25
|
Kim BS. Strategies to Overcome Memory T Cells Mediatied Allograft Injury. KOREAN JOURNAL OF TRANSPLANTATION 2012. [DOI: 10.4285/jkstn.2012.26.2.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Beom Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Pandiyan P, Zheng L, Lenardo MJ. The molecular mechanisms of regulatory T cell immunosuppression. Front Immunol 2011; 2:60. [PMID: 22566849 PMCID: PMC3342245 DOI: 10.3389/fimmu.2011.00060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 10/19/2011] [Indexed: 12/22/2022] Open
Abstract
CD4⁺CD25⁺Foxp3⁺ T lymphocytes, known as regulatory T cells or T(regs), have been proposed to be a lineage of professional immune suppressive cells that exclusively counteract the effects of the immunoprotective "helper" and "cytotoxic" lineages of T lymphocytes. Here we discuss new concepts on the mechanisms and functions of T(regs). There are several key points we emphasize: 1. Tregs exert suppressive effects both directly on effector T cells and indirectly through antigen-presenting cells; 2. Regulation can occur through a novel mechanism of cytokine consumption to regulate as opposed to the usual mechanism of cytokine/chemokine production; 3. In cases where CD4⁺ effector T cells are directly inhibited by T(regs), it is chiefly through a mechanism of lymphokine withdrawal apoptosis leading to polyclonal deletion; and 4. Contrary to the current view, we discuss new evidence that T(regs), similar to other T-cells lineages, can promote protective immune responses in certain infectious contexts (Chen et al., 2011; Pandiyan et al., 2011). Although these points are at variance to varying degrees with the standard model of T(reg) behavior, we will recount developing findings that support these new concepts.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health Bethesda, MD, USA.
| | | | | |
Collapse
|
27
|
Norup LR, Dalgaard TS, Pedersen AR, Juul-Madsen HR. Assessment of Newcastle disease-specific T cell proliferation in different inbred MHC chicken lines. Scand J Immunol 2011; 74:23-30. [PMID: 21332569 DOI: 10.1111/j.1365-3083.2011.02534.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we have described the establishment of an antigen-specific T cell proliferation assay based on recall stimulation with Newcastle disease (ND) antigen; further, we have described the results obtained after recall stimulation of animals containing different major histocompatibility complex (MHC) haplotypes, vaccinated against ND. First optimization of the assay was performed to lower unspecific proliferation and to enhance antigen-specific T cell proliferation. These two issues were achieved using ethylene diamine tetra acetic acid as stabilizing agent in blood samples and autologous immune serum in culture medium. The optimized assay was used to screen chickens with different MHC haplotypes for their ability to perform T cell proliferation. Results showed that the antigen-specific response of CD4(+) and CD8(+) T cells from B12 chickens was generally low, whereas B13, B130 and B201 chickens were medium in CD4(+) or CD8(+) T cell responses. High responses were seen only in few animals of each haplotype and not in general. A polymorphism in the chicken CD8α gene was found in our experimental chicken lines, resulting in incapability to detect CD8α(+) T cells using antibodies from the CT8 clone. Screening chickens with alternative antibodies showed that antibodies from the 2-398 clone were able to discriminate all CD8α(+) cells from CD8α(-) cells, and consequently this antibody was used in a second vaccination experiment performed with chickens of the haplotypes B13 and B130. This experiment showed a significant difference in antigen-specific proliferation of CD4(+) T cells between the two lines, but not in CD8α(+) T cell proliferation.
Collapse
Affiliation(s)
- L R Norup
- Department of Animal Health and Bioscience, Faculty of Agricultural Sciences, Aarhus University, Tjele, Denmark.
| | | | | | | |
Collapse
|
28
|
Terry E, Marvel J, Arpin C, Gandrillon O, Crauste F. Mathematical model of the primary CD8 T cell immune response: stability analysis of a nonlinear age-structured system. J Math Biol 2011; 65:263-91. [PMID: 21842166 DOI: 10.1007/s00285-011-0459-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/25/2011] [Indexed: 01/07/2023]
Abstract
The primary CD8 T cell immune response, due to a first encounter with a pathogen, happens in two phases: an expansion phase, with a fast increase of T cell count, followed by a contraction phase. This contraction phase is followed by the generation of memory cells. These latter are specific of the antigen and will allow a faster and stronger response when encountering the antigen for the second time. We propose a nonlinear mathematical model describing the T CD8 immune response to a primary infection, based on three nonlinear ordinary differential equations and one nonlinear age-structured partial differential equation, describing the evolution of CD8 T cell count and pathogen amount. We discuss in particular the roles and relevance of feedback controls that regulate the response. First we reduce our system to a system with a nonlinear differential equation with a distributed delay. We study the existence of two steady states, and we analyze the asymptotic stability of these steady states. Second we study the system with a discrete delay, and analyze global asymptotic stability of steady states. Finally, we show some simulations that we can obtain from the model and confront them to experimental data.
Collapse
Affiliation(s)
- Emmanuelle Terry
- Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, 69622, Villeurbanne-Cedex, France.
| | | | | | | | | |
Collapse
|
29
|
Ciabattini A, Pettini E, Fiorino F, Prota G, Pozzi G, Medaglini D. Distribution of primed T cells and antigen-loaded antigen presenting cells following intranasal immunization in mice. PLoS One 2011; 6:e19346. [PMID: 21559409 PMCID: PMC3084830 DOI: 10.1371/journal.pone.0019346] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/28/2011] [Indexed: 10/31/2022] Open
Abstract
Priming of T cells is a key event in vaccination, since it bears a decisive influence on the type and magnitude of the immune response. T-cell priming after mucosal immunization via the nasal route was studied by investigating the distribution of antigen-loaded antigen presenting cells (APCs) and primed antigen-specific T cells. Nasal immunization studies were conducted using the model protein antigen ovalbumin (OVA) plus CpG oligodeoxynucleotide adjuvant. Trafficking of antigen-specific primed T cells was analyzed in vivo after adoptive transfer of OVA-specific transgenic T cells in the presence or absence of fingolimod, a drug that causes lymphocytes sequestration within lymph nodes. Antigen-loaded APCs were observed in mediastinal lymph nodes, draining the respiratory tract, but not in distal lymph nodes. Antigen-specific proliferating T cells were first observed within draining lymph nodes, and later in distal iliac and mesenteric lymph nodes and in the spleen. The presence at distal sites was due to migration of locally primed T cells as shown by fingolimod treatment that caused a drastic reduction of proliferated T cells in non-draining lymph nodes and an accumulation of extensively divided T cells within draining lymph nodes. Homing of nasally primed T cells in distal iliac lymph nodes was CD62L-dependent, while entry into mesenteric lymph nodes depended on both CD62L and α4β7, as shown by in vivo antibody-mediated inhibition of T-cell trafficking. These data, elucidating the trafficking of antigen-specific primed T cells to non-draining peripheral and mucosa-associated lymph nodes following nasal immunization, provide relevant insights for the design of vaccination strategies based on mucosal priming.
Collapse
Affiliation(s)
- Annalisa Ciabattini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie, Università di Siena, Siena, Italy
| | - Elena Pettini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie, Università di Siena, Siena, Italy
| | - Fabio Fiorino
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie, Università di Siena, Siena, Italy
| | - Gennaro Prota
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie, Università di Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie, Università di Siena, Siena, Italy
| | - Donata Medaglini
- Laboratorio di Microbiologia Molecolare e Biotecnologia (LA.M.M.B.), Dipartimento di Biotecnologie, Università di Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
30
|
Abstract
Proper regulation of T cell death is of vital importance for the function of the immune system. Positive and negative selection of developing T cells in the thymus ensures the survival of only those T cells that can recognize peptides presented by self-MHC molecules and at the same time not respond to self-antigens, and thus, T cell death within the thymus is instrumental in shaping the mature T cell repertoire. The death of activated peripheral T cells is crucial for processes such as down-modulation of immune responses after clearance of infectious agents, peripheral tolerance, and maintenance of immune-privileged sites. These processes are largely proceeding due to the enhanced susceptibility of activated T cells to spontaneous, activation-, and Fas-induced apoptosis. The active metabolite of the immune regulator vitamin A, retinoic acid, has been reported to influence various types of apoptotic processes in both thymocytes and activated peripheral T cells. This chapter gives an overview of, and discusses the reported effects of vitamin A on spontaneous and activation-induced cell death of thymocytes and mature T cells, as well as on Fas-induced T cell death.
Collapse
|
31
|
Golshayan D, Wyss JC, Buckland M, Hernandez-Fuentes M, Lechler RI. Differential role of naïve and memory CD4 T-cell subsets in primary alloresponses. Am J Transplant 2010; 10:1749-59. [PMID: 20659087 DOI: 10.1111/j.1600-6143.2010.03180.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The T cell response to major histocompatibility complex (MHC) alloantigens occurs via two main pathways. The direct pathway involves the recognition of intact allogeneic MHC:peptide complexes on donor cells and provokes uniquely high frequencies of responsive T cells. The indirect response results from alloantigens being processed like any other protein antigen and presented as peptide by autologous antigen-presenting cells. The frequencies of T cells with indirect allospecificity are orders of magnitude lower and comparable to other peptide-specific responses. In this study, we explored the contributions of naïve and memory CD4(+) T cells to these two pathways. Using an adoptive transfer and skin transplantation model we found that naive and memory CD4(+) T cells, both naturally occurring and induced by sensitization with multiple third-party alloantigens, contributed equally to graft rejection when only the direct pathway was operative. In contrast, the indirect response was predominantly mediated by the naïve subset. Elimination of regulatory CD4(+)CD25(+) T cells enabled memory cells to reject grafts through the indirect pathway, but at a much slower tempo than for naïve cells. These findings have implications for better targeting of immunosuppression to inhibit immediate and later forms of alloimmunity.
Collapse
Affiliation(s)
- D Golshayan
- Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
32
|
Cell density plays a critical role in ex vivo expansion of T cells for adoptive immunotherapy. J Biomed Biotechnol 2010; 2010:386545. [PMID: 20625484 PMCID: PMC2896674 DOI: 10.1155/2010/386545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 04/05/2010] [Accepted: 05/06/2010] [Indexed: 11/17/2022] Open
Abstract
The successful ex vivo expansion of a large numbers of T cells is a prerequisite for adoptive immunotherapy. In this study, we found that cell density had important effects on the process of expansion of T cells in vitro. Resting T cells were activated to expand at high cell density but failed to be activated at low cell density. Activated T cells (ATCs) expanded rapidly at high cell density but underwent apoptosis at low cell density. Our studies indicated that low-cell-density related ATC death is mediated by oxidative stress. Antioxidants N-acetylcysteine, catalase, and albumin suppressed elevated reactive oxygen species (ROS) levels in low-density cultures and protected ATCs from apoptosis. The viability of ATCs at low density was preserved by conditioned medium from high-density cultures of ATCs in which the autocrine survival factor was identified as catalase. We also found that costimulatory signal CD28 increases T cell activation at lower cell density, paralleled by an increase in catalase secretion. Our findings highlight the importance of cell density in T cell activation, proliferation, survival and apoptosis and support the importance of maintaining T cells at high density for their successful expansion in vitro.
Collapse
|
33
|
Evaluation of the memory CD4+ and CD8+ T cells homeostasis during chronic venous disease of lower limbs. Folia Histochem Cytobiol 2010; 47:471-7. [PMID: 20164034 DOI: 10.2478/v10042-009-0081-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
More and more is known about the role of venous wall abnormalities and valvular incompetence in the development of chronic venous disorders (CVD). Unfortunately detailed mechanisms of CVD pathophysiology are not well understood. Recent studies focus on involvement of the inflammatory process in the structural remodeling of venous valves and venous wall. The aim of this study is to investigate and to document the memory T cells homeostasis in CVD patients. In this study we present lymphocytic changes in blood from varicose veins in terms of total CD4+ and CD8+ T cells and their particular subsets of memory T cells: TN, TCM and TEM. Results suggest that immunological memory may be involved in the CVD development.
Collapse
|
34
|
Keeping the memory of influenza viruses. ACTA ACUST UNITED AC 2010; 58:e79-86. [DOI: 10.1016/j.patbio.2010.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/26/2010] [Indexed: 01/08/2023]
|
35
|
Abstract
EVALUATION OF: Araki K, Turner AP, Shaffer VO et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460(7251), 108-112 (2009). The prime goal of vaccination is to induce an effective memory T-cell response, because memory T cells have a pivotal role in adaptive immunity. When a specific pathogen is encountered after vaccination, memory immune cells induce an adaptive immune response against that pathogen, which is faster and stronger than a primary immune response. Therefore, the development of a successful vaccine requires a T-cell response of adequate magnitude. Although many vaccines effectively induce protective immune responses against specific pathogens, some vaccines require boosting due to inadequate generation of memory immune cells. It was reported recently that rapamycin, which is used as an immunosuppressive drug for organ transplantation, stimulates the production of memory CD8 T cells. This means that rapamycin or related drugs could be used to enhance the efficacy of many types of vaccines.
Collapse
Affiliation(s)
- Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-Do, Korea.
| |
Collapse
|
36
|
The Role of Precursor Frequency in the Differentiation of Memory T Cells: Memory by Numbers. MEMORY T CELLS 2010; 684:69-78. [DOI: 10.1007/978-1-4419-6451-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
37
|
Sandau MM, Kohlmeier JE, Woodland DL, Jameson SC. IL-15 regulates both quantitative and qualitative features of the memory CD8 T cell pool. THE JOURNAL OF IMMUNOLOGY 2009; 184:35-44. [PMID: 19949092 DOI: 10.4049/jimmunol.0803355] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Memory T cells are critical for immunity to various intracellular pathogens. Recent studies have indicated that CD8 secondary memory cells, induced by prime-boost approaches, show enhanced protective function compared with primary memory cells and exhibit phenotypic and functional characteristics that distinguish them from primary memory cells. However, little is known about the cytokine requirements for generation and maintenance of boosted memory CD8 T cells. We studied the role of IL-15 in determining the size and composition of the secondary (2 degrees) memory CD8 T cell pool induced by Listeria monocytogenes infection in mice. Following boosting, IL-15-deficient animals failed to generate a subset of CD8 effector memory cells, including a population of IL-7Ralpha(low) cells, which were prominent among secondary memory cells in normal mice. IL-15 deficiency also resulted in changes within the IL-7Ralpha(high)CD62L(low) subset of 2 degrees memory CD8 T cells, which expressed high levels of CD27 but minimal granzyme B. In addition to these qualitative changes, IL-15 deficiency resulted in reduced cell cycle and impaired Bcl-2 expression by 2 degrees memory CD8 T cells, suggesting a role for IL-15 in supporting both basal proliferation and survival of the pool. Analogous qualitative differences in memory CD8 T cell populations were observed following a primary response to Sendai virus in IL-15(-/-) animals. Collectively, these findings demonstrate that IL-15 plays an important role in dictating the composition rather than simply the maintenance of the CD8 memory pool.
Collapse
Affiliation(s)
- Michelle M Sandau
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
38
|
Ray S, Chhabra A, Mehrotra S, Chakraborty NG, Ribas A, Economou J, Mukherji B. Obstacles to and opportunities for more effective peptide-based therapeutic immunization in human melanoma. Clin Dermatol 2009; 27:603-13. [DOI: 10.1016/j.clindermatol.2008.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Chtanova T, Han SJ, Schaeffer M, van Dooren GG, Herzmark P, Striepen B, Robey EA. Dynamics of T cell, antigen-presenting cell, and pathogen interactions during recall responses in the lymph node. Immunity 2009; 31:342-55. [PMID: 19699173 DOI: 10.1016/j.immuni.2009.06.023] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 04/27/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
Memory T cells circulate through lymph nodes where they are poised to respond rapidly upon re-exposure to a pathogen; however, the dynamics of memory T cell, antigen-presenting cell, and pathogen interactions during recall responses are largely unknown. We used a mouse model of infection with the intracellular protozoan parasite, Toxoplasma gondii, in conjunction with two-photon microscopy, to address this question. After challenge, memory T cells migrated more rapidly than naive T cells, relocalized toward the subcapsular sinus (SCS) near invaded macrophages, and engaged in prolonged interactions with infected cells. Parasite invasion of T cells occurred by direct transfer of the parasite from the target cell into the T cell and corresponded to an antigen-specific increase in the rate of T cell invasion. Our results provide insight into cellular interactions during recall responses and suggest a mechanism of pathogen subversion of the immune response.
Collapse
Affiliation(s)
- Tatyana Chtanova
- Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Zheng H, Matte-Martone C, Jain D, McNiff J, Shlomchik WD. Central memory CD8+ T cells induce graft-versus-host disease and mediate graft-versus-leukemia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5938-48. [PMID: 19414745 PMCID: PMC9844260 DOI: 10.4049/jimmunol.0802212] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In allogeneic hemopoietic stem cell transplantation, mature donor alphabeta T cells in the allograft promote T cell reconstitution in the recipient and mediate the graft-vs-leukemia (GVL) effect. Unfortunately, donor T cells can attack nonmalignant host tissues and cause graft-vs-host disease (GVHD). It has previously been shown that effector memory T cells not primed to alloantigen do not cause GVHD yet transfer functional T cell memory and mediate GVL. Recently, central memory T cells (T(CM)) have also been reported to not cause GVHD. In contrast, in this study, we demonstrate that purified CD8(+) T(CM) not specifically primed to alloantigens mediate GVHD in the MHC-mismatched C57BL/6 (B6)-->BALB/c and the MHC-matched, multiple minor histocompatibility Ag-mismatched C3H.SW-->B6 strain pairings. CD8(+) T(CM) and naive T cells (T(N)) caused similar histological disease in liver, skin, and bowel. B6 CD8(+) T(CM) and T(N) similarly expanded in BALB/c recipients, and the majority of their progeny produced IFN-gamma upon restimulation. However, in both models, CD8(+) T(CM) induced milder clinical GVHD than did CD8(+) T(N). Nonetheless, CD8(+) T(CM) and T(N) were similarly potent mediators of GVL against a mouse model of chronic-phase chronic myelogenous leukemia. Thus, in contrast to what was previously thought, CD8(+) T(CM) are capable of inducing GVHD and are substantially different from T(EM) but only subtly so from T(N).
Collapse
Affiliation(s)
- Hong Zheng
- Penn State Milton S. Hershey Medical Center, Department of Medicine, Hershey, PA
| | - Catherine Matte-Martone
- Yale Cancer Center and Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Dhanpat Jain
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Jennifer McNiff
- Department of Dermatology, Yale University School of Medicine, New Haven, CT
| | - Warren D. Shlomchik
- Yale Cancer Center and Department of Immunobiology, Yale University School of Medicine, New Haven, CT,Correspondence: Warren D. Shlomchik, Yale Comprehensive Cancer Center, PO Box 208032, Yale University School of Medicine, New Haven, CT 06520-8032,
| |
Collapse
|
41
|
Puissant-Lubrano B, Combadière B, Duffy D, Wincker N, Frachette MJ, Ait-Mohand H, Verrier B, Katlama C, Autran B. Influence of antigen exposure on the loss of long-term memory to childhood vaccines in HIV-infected patients. Vaccine 2009; 27:3576-83. [PMID: 19464537 DOI: 10.1016/j.vaccine.2009.03.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 03/03/2009] [Accepted: 03/19/2009] [Indexed: 11/13/2022]
Abstract
The role of antigen exposure and of CD4 cell deficiency in the long-term persistence of immune memory to childhood vaccines remains uncertain, particularly during HIV infection. We analyzed in vaccinated ART-treated HIV+ patients with undetectable plasma HIV and CD4 cells >250/mm(3) the persistence of two memory cell pools: effector IFNgamma-producing and proliferative central memory T cells against two vaccines: (i) vaccinia against the eradicated smallpox virus, and (ii) BCG against Mtb, a persistent pathogen. None of the HIV+ patients had IFNgamma-effector cells against VV while the one patient with BCG-specific effector T cells had a recent history of tuberculosis. Proliferative responses were detectable but showed significantly lower frequency and intensity of VV-specific than tuberculin-specific responses, independently of the CD4 nadir. Thus, differential patterns of persistence or recovery of T cell memory pools against childhood vaccines are observed in treated HIV infection that are governed by antigen exposure.
Collapse
|
42
|
Effector and memory CD4+ and CD8+ T cells in the chronic infection process. Folia Histochem Cytobiol 2009; 46:413-7. [PMID: 19141390 DOI: 10.2478/v10042-008-0077-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell memory in comparison with B cell memory is not well understood. This review focuses on CD8+ and CD4+ memory T cells. In this article we try to define memory cells and also present models of memory T cells formation. We would also like to delineate their differentiation into distinct subsets. Long-lived memory T cells consist in two main subsets: TCM and TEM. Recent studies have shown that not all cells considered to be memory cells differentiate into TCM and TEM, but a small proportion of theses cells exhibit naive cells phenotype. Memory T cells constitute a heterogeneous population of cells. In this study we lay stress on characteristic of main memory T cells subsets and their alleged participation in immune response upon reexposure to the Ag.
Collapse
|
43
|
Geiss A, Larsson K, Junevik K, Rydevik B, Olmarker K. Autologous nucleus pulposus primes T cells to develop into interleukin-4-producing effector cells: an experimental study on the autoimmune properties of nucleus pulposus. J Orthop Res 2009; 27:97-103. [PMID: 18634006 DOI: 10.1002/jor.20691] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An autoimmune response to herniated nucleus pulposus has been proposed to constitute a pathophysiologic mechanism for inducing sciatica based on the fact that nucleus pulposus under normal conditions is excluded from the development of immunological tolerance. The manifestation of an autoimmune response comprises different steps starting with antigen capture, continuing with activation of T helper (T(H)) cells and ending with production of autoantibodies. Activated T(H) cells differentiate into either T(H)1 cells, predominately producing proinflammatory cytokines such as interferon gamma (IFNgamma) or a T(H)2 subset mainly producing anti-inflammatory cytokines such as interleukin-4 (IL-4). The aim of the present study was to examine if exposure of autologous nucleus pulposus (NP) to the immune system for 3 weeks is potent enough to prime T(H) cells to differentiate into T(H)2 cells. The study was performed in a pig model allowing the exposure of NP to the immune system. To assess the polarization of T(H) cells the intracellular production of IFNgamma and IL-4 was measured in T cells by using flow cytometry. The revealed predominant production of IL-4 together with low production of IFNgamma in T cells after NP exposure to the immune system indicates that nucleus pulposus may prime T(H) cells to develop into IL-4-producing T(H)2 cells after being exposed to the immune system, for example, in association with disc herniation.
Collapse
Affiliation(s)
- Andrea Geiss
- Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
44
|
Litjens NHR, Huisman M, Hijdra D, Lambrecht BMN, Stittelaar KJ, Betjes MGH. IL-2 producing memory CD4+ T lymphocytes are closely associated with the generation of IgG-secreting plasma cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:3665-73. [PMID: 18714042 DOI: 10.4049/jimmunol.181.5.3665] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of specific CD4(+) T cell subsets in the induction of humoral immune responses in humans is largely unknown. In this study, the generation of hepatitis B surface Ag-specific CD4(+) T lymphocytes following vaccination was closely monitored and characterized at the single-cell level. The appearance and absolute numbers of hepatitis B surface Ag-specific IL-2 producing effector memory CD4(+) T lymphocytes was solely and tightly related to Ab titers reached. This relation remained present many years after vaccination. Subsequently, a relation was found between Ab titers and number of IL-2 producing memory CD4(+) T lymphocytes for various other Ags. These observations matched the findings of an in vitro assay, using different T cell subsets to induce B cell differentiation into IgG-producing plasma cells. By depleting for IL-2 producing memory T cells, we demonstrated that these cells are important for B cell differentiation into IgG-producing plasma cells. Finally, blocking the action of IL-2 with an IL-2R-alpha Ab inhibited the differentiation of B lymphocytes into IgG-producing plasma cells. Based on these findings, we conclude that the development of Ag-specific IL-2-producing memory T cells appears to be essential for the development of IgG-secreting plasma cells in humans.
Collapse
Affiliation(s)
- Nicolle H R Litjens
- Department of Internal Medicine, Division of Nephrology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Dudani R, Russell M, van Faassen H, Krishnan L, Sad S. Mutation in the Fas pathway impairs CD8+ T cell memory. THE JOURNAL OF IMMUNOLOGY 2008; 180:2933-41. [PMID: 18292515 DOI: 10.4049/jimmunol.180.5.2933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-gamma and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections.
Collapse
Affiliation(s)
- Renu Dudani
- National Research Council of Canada, Institute for Biological Sciences, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
46
|
McKinstry KK, Golech S, Lee WH, Huston G, Weng NP, Swain SL. Rapid default transition of CD4 T cell effectors to functional memory cells. ACTA ACUST UNITED AC 2007; 204:2199-211. [PMID: 17724126 PMCID: PMC2118696 DOI: 10.1084/jem.20070041] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The majority of highly activated CD4 T cell effectors die after antigen clearance, but a small number revert to a resting state, becoming memory cells with unique functional attributes. It is currently unclear when after antigen clearance effectors return to rest and acquire important memory properties. We follow well-defined cohorts of CD4 T cells through the effector-to-memory transition by analyzing phenotype, important functional properties, and gene expression profiles. We find that the transition from effector to memory is rapid in that effectors rested for only 3 d closely resemble canonical memory cells rested for 60 d or longer in the absence of antigen. This is true for both Th1 and Th2 lineages, and occurs whether CD4 T cell effectors rest in vivo or in vitro, suggesting a default pathway. We find that the effector–memory transition at the level of gene expression occurs in two stages: a rapid loss of expression of a myriad of effector-associated genes, and a more gradual gain of expression of a cohort of genes uniquely associated with memory cells rested for extended periods.
Collapse
|
47
|
Jansen CA, Cruijsen CWA, de Ruiter T, Nanlohy N, Willems N, Janssens-Korpela PL, Meyaard L. Regulated expression of the inhibitory receptor LAIR-1 on human peripheral T cells during T cell activation and differentiation. Eur J Immunol 2007; 37:914-24. [PMID: 17330824 DOI: 10.1002/eji.200636678] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The leukocyte-associated Ig-like receptor-1 (LAIR-1) is capable of inhibiting immune cell function through interaction with collagens. LAIR is expressed on the majority of peripheral blood mononuclear cells. The abundant expression of both receptor and ligand calls for regulatory mechanisms to relieve the continuous interaction between collagens and LAIR-1. This regulation may occur at the expression level of the receptor. Here, we report that LAIR-1 is indeed differentially expressed during human T cell differentiation. Naive CD4(+) and CD8(+) T cells as well as CD8(+) T cells of the effector phenotype express higher levels of LAIR-1 compared to memory T cells. In vitro stimulation revealed a decrease in LAIR-1 expression upon activation, and the lower LAIR-1 expression on CD127(-) T cells suggests that activation-induced down-modulation of LAIR-1 may also occur in vivo. Furthermore, crosslinking of LAIR-1 on primary T cells results in an inhibition of T cell function. Our data suggest that regulated expression of LAIR-1 and the subsequent change in the threshold for activation may be a mechanism to modulate inhibition of the immune system.
Collapse
Affiliation(s)
- Christine A Jansen
- Department of Immunology, University Medical Center, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Smeltz RB. Profound enhancement of the IL-12/IL-18 pathway of IFN-gamma secretion in human CD8+ memory T cell subsets via IL-15. THE JOURNAL OF IMMUNOLOGY 2007; 178:4786-92. [PMID: 17404259 DOI: 10.4049/jimmunol.178.8.4786] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human memory CD8(+) T cell subsets, termed central memory and effector memory T cells, can be identified by expression of CD45RA, CD62 ligand (CD62L), and CCR7. Accordingly, functional differences have been described for each subset, reflecting unique roles in immunological memory. The common gamma-chain cytokines IL-15 and IL-7 have been shown to induce proliferation and differentiation of human CD8(+) T cell subsets, as well as increased effector functions (i.e., cytokines, cytotoxicity). In this study, we observed that addition of IL-15 or IL-7 to cultures of human CD8(+) T cells profoundly enhanced the IL-12-IL-18 pathway of IFN-gamma production. Importantly, IL-15 and IL-7 lowered the threshold concentrations of IL-12 and IL-18 required for induction of IFN-gamma by 100-fold. Comparison of IL-15 and IL-7 demonstrated that IL-15 was superior in its ability to enhance IL-12-IL-18-induced IFN-gamma, without evidence of a synergistic effect between IL-15 and IL-7. We also observed that IL-15- and IL-7-mediated enhancement of IL-12-IL-18-induced IFN-gamma production was a functional property of effector memory CD8(+) T cells. Despite a lack of association between cell division and acquisition of IL-12-IL-18-induced IFN-gamma, down-regulation of CD62L expression correlated well with increased IL-12-IL-18-induced IFN-gamma. Purified central memory T cells stimulated with IL-15 and IL-7 down-regulated CD62L and acquired potent IL-12-IL-18-induced IFN-gamma similar to effector memory T cells. Thus, in addition to its known role in development of T cell memory, IL-15 may amplify memory CD8(+) T cell effector functions by increasing sensitivity to proinflammatory cytokine stimulation.
Collapse
Affiliation(s)
- Ronald B Smeltz
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
49
|
Abstract
The control of T- and B-cell proliferation following antigen stimulation lies at the heart of the adaptive immune response. The outcome of a response depends on the number of cells that are activated to go into cycle, the rates at which the cells divide and die, and the number of division cycles the cells undergo. Each of these processes may be under independent control, and the precise outcome of T- or B-cell responses to antigen will depend on how the signals controlling the different events are integrated. In this article, the way different mathematical models in combination with data from carboxyfluorescein diacetate succinamidyl ester (CFSE) experiments can be used to investigate the mechanisms controlling T- and B-cell proliferation is reviewed.
Collapse
Affiliation(s)
- Robin Callard
- Immunobiology Unit, Institute of Child Health, University College London, London, UK.
| | | |
Collapse
|
50
|
Aiello FB, Keller JR, Klarmann KD, Dranoff G, Mazzucchelli R, Durum SK. IL-7 induces myelopoiesis and erythropoiesis. THE JOURNAL OF IMMUNOLOGY 2007; 178:1553-63. [PMID: 17237404 DOI: 10.4049/jimmunol.178.3.1553] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-7 administration to mice was previously reported to increase the mobilization of progenitor cells from marrow to peripheral sites. We now report that IL-7 increases the number of mature myeloid and monocytic cells in spleen and peripheral blood. This effect required T cells, and we show that IL-7 treatment in vivo induced GM-CSF and IL-3 production by T cells with memory phenotype. However, additional myelopoietic cytokines were shown to be involved because mice deficient in both GM-CSF and IL-3 also responded to IL-7 with increased myelopoiesis. Candidate cytokines included IFN-gamma and Flt3 ligand, which were also produced in response to IL-7. Because IFN-gamma-deficient mice also increased myelopoiesis, it was suggested that IL-7 induced production of redundant myelopoietic cytokines. In support of this hypothesis, we found that the supernatant from IL-7-treated, purified T cells contained myelopoietic activity that required a combination of Abs against GM-CSF, IL-3, and anti-Flt3 ligand to achieve maximum neutralization. IL-7 administration increased the number of splenic erythroid cells in either normal, Rag1 or GM-CSF-IL-3-deficient mice, suggesting that IL-7 might directly act on erythroid progenitors. In support of this theory, we detected a percentage of TER-119(+) erythroid cells that expressed the IL-7Ralpha-chain and common gamma-chain. Bone marrow cells expressing IL-7R and B220 generated erythroid colonies in vitro in response to IL-7, erythropoietin, and stem cell factor. This study demonstrates that IL-7 can promote nonlymphoid hemopoiesis and production of cytokines active in the host defense system in vivo, supporting its possible clinical utility.
Collapse
Affiliation(s)
- Francesca B Aiello
- Laboratory of Molecular Immunoregulation, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|