1
|
Arifin MZ, Leitner J, Egan D, Waidhofer-Söllner P, Kolch W, Zhernovkov V, Steinberger P. BTLA and PD-1 signals attenuate TCR-mediated transcriptomic changes. iScience 2024; 27:110253. [PMID: 39021788 PMCID: PMC11253514 DOI: 10.1016/j.isci.2024.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
T cell co-inhibitory immune checkpoints, such as PD-1 or BTLA, are bona fide targets in cancer therapy. We used a human T cell reporter line to measure transcriptomic changes mediated by PD-1- and BTLA-induced signaling. T cell receptor (TCR)-complex stimulation resulted in the upregulation of a large number of genes but also in repression of a similar number of genes. PD-1 and BTLA signals attenuated transcriptomic changes mediated by TCR-complex signaling: upregulated genes tended to be suppressed and the expression of a significant number of downregulated genes was higher during PD-1 or BTLA signaling. BTLA was a significantly stronger attenuator of TCR-complex-induced transcriptome changes than PD-1. A strong overlap between genes that were regulated indicated quantitative rather than qualitative differences between these receptors. In line with their function as attenuators of TCR-complex-mediated changes, we found strongly regulated genes to be prime targets of PD-1 and BTLA signaling.
Collapse
Affiliation(s)
- Muhammad Zainul Arifin
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Judith Leitner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Donagh Egan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Petra Waidhofer-Söllner
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Peter Steinberger
- Center for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Lv D, Fei Y, Chen H, Wang J, Han W, Cui B, Feng Y, Zhang P, Chen J. Crosstalk between T lymphocyte and extracellular matrix in tumor microenvironment. Front Immunol 2024; 15:1340702. [PMID: 38690275 PMCID: PMC11058664 DOI: 10.3389/fimmu.2024.1340702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The extracellular matrix (ECM) is a complex three-dimensional structure composed of proteins, glycans, and proteoglycans, constituting a critical component of the tumor microenvironment. Complex interactions among immune cells, extracellular matrix, and tumor cells promote tumor development and metastasis, consequently influencing therapeutic efficacy. Hence, elucidating these interaction mechanisms is pivotal for precision cancer therapy. T lymphocytes are an important component of the immune system, exerting direct anti-tumor effects by attacking tumor cells or releasing lymphokines to enhance immune effects. The ECM significantly influences T cells function and infiltration within the tumor microenvironment, thereby impacting the behavior and biological characteristics of tumor cells. T cells are involved in regulating the synthesis, degradation, and remodeling of the extracellular matrix through the secretion of cytokines and enzymes. As a result, it affects the proliferation and invasive ability of tumor cells as well as the efficacy of immunotherapy. This review discusses the mechanisms underlying T lymphocyte-ECM interactions in the tumor immune microenvironment and their potential application in immunotherapy. It provides novel insights for the development of innovative tumor therapeutic strategies and drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiao Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Jiang W, Yu X, Dong X, Long C, Chen D, Cheng J, Yan B, Xu S, Lin Z, Chen G, Zhuo S, Yan J. A nomogram based on collagen signature for predicting the immunoscore in colorectal cancer. Front Immunol 2023; 14:1269700. [PMID: 37781377 PMCID: PMC10538535 DOI: 10.3389/fimmu.2023.1269700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Objectives The Immunoscore can categorize patients into high- and low-risk groups for prognostication in colorectal cancer (CRC). Collagen plays an important role in immunomodulatory functions in the tumor microenvironment (TME). However, the correlation between collagen and the Immunoscore in the TME is unclear. This study aimed to construct a collagen signature to illuminate the relationship between collagen structure and Immunoscore. Methods A total of 327 consecutive patients with stage I-III stage CRC were included in a training cohort. The fully quantitative collagen features were extracted at the tumor center and invasive margin of the specimens using multiphoton imaging. LASSO regression was applied to construct the collagen signature. The association of the collagen signature with Immunoscore was assessed. A collagen nomogram was developed by incorporating the collagen signature and clinicopathological predictors after multivariable logistic regression. The performance of the collagen nomogram was evaluated via calibration, discrimination, and clinical usefulness and then tested in an independent validation cohort. The prognostic values of the collagen nomogram were assessed using Cox regression and the Kaplan-Meier method. Results The collagen signature was constructed based on 16 collagen features, which included 6 collagen features from the tumor center and 10 collagen features from the invasive margin. Patients with a high collagen signature were more likely to show a low Immunoscore (Lo IS) in both cohorts (P<0.001). A collagen nomogram integrating the collagen signature and clinicopathological predictors was developed. The collagen nomogram yielded satisfactory discrimination and calibration, with an AUC of 0.925 (95% CI: 0.895-0.956) in the training cohort and 0.911 (95% CI: 0.872-0.949) in the validation cohort. Decision curve analysis confirmed that the collagen nomogram was clinically useful. Furthermore, the collagen nomogram-predicted subgroup was significantly associated with prognosis. Moreover, patients with a low-probability Lo IS, rather than a high-probability Lo IS, could benefit from chemotherapy in high-risk stage II and stage III CRC patients. Conclusions The collagen signature is significantly associated with the Immunoscore in the TME, and the collagen nomogram has the potential to individualize the prediction of the Immunoscore and identify CRC patients who could benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Wei Jiang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- School of Science, Jimei University, Xiamen, Fujian, China
| | - Xian Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
| | - Xiaoyu Dong
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chenyan Long
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dexin Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiaxin Cheng
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Botao Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuoyu Xu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zexi Lin
- School of Science, Jimei University, Xiamen, Fujian, China
| | - Gang Chen
- Department of Pathology, The Affiliated Cancer Hospital of Fujian Medical University, Fujian Provincial Cancer Hospital, Fuzhou, China
- Precision Medicine Center, Fujian Provincial Cancer Hospital, Fuzhou, China
| | - Shuangmu Zhuo
- School of Science, Jimei University, Xiamen, Fujian, China
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zhu Y, Li W, Dong Y, Xia C, Fu R. C. elegans Hemidesmosomes Sense Collagen Damage to Trigger Innate Immune Response in the Epidermis. Cells 2023; 12:2223. [PMID: 37759445 PMCID: PMC10526450 DOI: 10.3390/cells12182223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The collagens are an enormous family of extracellular matrix proteins that play dominant roles in cell adhesion, migration and tissue remodeling under many physiological and pathological conditions. However, their function mechanisms in regulating innate immunity remain largely undiscovered. Here we use C. elegans epidermis as the model to address this question. The C. elegans epidermis is covered with a collagen-rich cuticle exoskeleton and can produce antimicrobial peptides (AMPs) against invading pathogens or physical injury. Through an RNAi screen against collagen-encoding genes, we found that except the previously reported six DPY collagens and the BLI-1 collagen, the majority of collagens tested appear unable to trigger epidermal immune defense when damaged. Further investigation suggests that the six DPY collagens form a specific substructure, which regulates the interaction between BLI-1 and the hemidesmosome receptor MUP-4. The separation of BLI-1 with MUP-4 caused by collagen damage leads to the detachment of the STAT transcription factor-like protein STA-2 from hemidesmosomes and the induction of AMPs. Our findings uncover the mechanism how collagens are organized into a damage sensor and how the epidermis senses collagen damage to mount an immune defense.
Collapse
Affiliation(s)
| | | | | | | | - Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (Y.Z.)
| |
Collapse
|
5
|
van Bree NFHN, Wilhelm M. The Tumor Microenvironment of Medulloblastoma: An Intricate Multicellular Network with Therapeutic Potential. Cancers (Basel) 2022; 14:5009. [PMID: 36291792 PMCID: PMC9599673 DOI: 10.3390/cancers14205009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Medulloblastoma (MB) is a heterogeneous disease in which survival is highly affected by the underlying subgroup-specific characteristics. Although the current treatment modalities have increased the overall survival rates of MB up to 70-80%, MB remains a major cause of cancer-related mortality among children. This indicates that novel therapeutic approaches against MB are needed. New promising treatment options comprise the targeting of cells and components of the tumor microenvironment (TME). The TME of MB consists of an intricate multicellular network of tumor cells, progenitor cells, astrocytes, neurons, supporting stromal cells, microglia, immune cells, extracellular matrix components, and vasculature systems. In this review, we will discuss all the different components of the MB TME and their role in MB initiation, progression, metastasis, and relapse. Additionally, we briefly introduce the effect that age plays on the TME of brain malignancies and discuss the MB subgroup-specific differences in TME components and how all of these variations could affect the progression of MB. Finally, we highlight the TME-directed treatments, in which we will focus on therapies that are being evaluated in clinical trials.
Collapse
Affiliation(s)
| | - Margareta Wilhelm
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institute, 17165 Stockholm, Sweden
| |
Collapse
|
6
|
Jung HJ, Heo WI, Park KY, Lee MK, Ahn JY, Park MY, Seo SJ. The Role of Collagen VI α6 Chain Gene in Atopic Dermatitis. Ann Dermatol 2022; 34:46-54. [PMID: 35221595 PMCID: PMC8831303 DOI: 10.5021/ad.2022.34.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 11/08/2022] Open
Abstract
Background Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Hye Jung Jung
- Department of Dermatology, National Medical Center, Seoul, Korea
| | - Won Il Heo
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Kui Young Park
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Mi-Kyung Lee
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| | - Ji Young Ahn
- Department of Dermatology, National Medical Center, Seoul, Korea
| | - Mi Youn Park
- Department of Dermatology, National Medical Center, Seoul, Korea
| | - Seong Jun Seo
- Department of Dermatology, Chung-Ang University Hospital, Seoul, Korea
| |
Collapse
|
7
|
Rømer AMA, Thorseth ML, Madsen DH. Immune Modulatory Properties of Collagen in Cancer. Front Immunol 2021; 12:791453. [PMID: 34956223 PMCID: PMC8692250 DOI: 10.3389/fimmu.2021.791453] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
During tumor growth the extracellular matrix (ECM) undergoes dramatic remodeling. The normal ECM is degraded and substituted with a tumor-specific ECM, which is often of higher collagen density and increased stiffness. The structure and collagen density of the tumor-specific ECM has been associated with poor prognosis in several types of cancer. However, the reason for this association is still largely unknown. Collagen can promote cancer cell growth and migration, but recent studies have shown that collagens can also affect the function and phenotype of various types of tumor-infiltrating immune cells such as tumor-associated macrophages (TAMs) and T cells. This suggests that tumor-associated collagen could have important immune modulatory functions within the tumor microenvironment, affecting cancer progression as well as the efficacy of cancer immunotherapy. The effects of tumor-associated collagen on immune cells could help explain why a high collagen density in tumors is often correlated with a poor prognosis. Knowledge about immune modulatory functions of collagen could potentially identify targets for improving current cancer therapies or for development of new treatments. In this review, the current knowledge about the ability of collagen to influence T cell activity will be summarized. This includes direct interactions with T cells as well as induction of immune suppressive activity in other immune cells such as macrophages. Additionally, the potential effects of collagen on the efficacy of cancer immunotherapy will be discussed.
Collapse
Affiliation(s)
- Anne Mette Askehøj Rømer
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Marie-Louise Thorseth
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Hargbøl Madsen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark.,Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Zhan D, Yalcin F, Ma D, Fu Y, Wei S, Lal B, Li Y, Dzaye O, Laterra J, Ying M, Lopez-Bertoni H, Xia S. Targeting UDP-α-d-glucose 6-dehydrogenase alters the CNS tumor immune microenvironment and inhibits glioblastoma growth. Genes Dis 2021; 9:717-730. [PMID: 35782977 PMCID: PMC9243400 DOI: 10.1016/j.gendis.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM, WHO grade IV glioma) is the most common and lethal malignant brain tumor in adults with a dismal prognosis. The extracellular matrix (ECM) supports GBM progression by promoting tumor cell proliferation, migration, and immune escape. Uridine diphosphate (UDP)-glucose 6-dehydrogenase (UGDH) is the rate-limiting enzyme that catalyzes the biosynthesis of glycosaminoglycans that are the principal component of the CNS ECM. We investigated how targeting UGDH in GBM influences the GBM immune microenvironment, including tumor-associated microglia/macrophages (TAMs) and T cells. TAMs are the main immune effector cells in GBM and can directly target tumor cells if properly activated. In co-cultures of GBM cells and human primary macrophages, UGDH knockdown in GBM cells promoted macrophage phagocytosis and M1-like polarization. In orthotropic human GBM xenografts and syngeneic mouse glioma models, targeting UGDH decreased ECM deposition, increased TAM phagocytosis marker expression, reduced M2-like TAMs and inhibited tumor growth. UGDH knockdown in GBM cells also promoted cytotoxic T cell infiltration and activation in orthotopic syngeneic mouse glioma models. The potent and in-human-use small molecule GAG synthesis inhibitor 4-methylumbelliferone (4-MU) was found to inhibit GBM cell proliferation and migration in vitro, mimic the macrophage and T-cell responses to UGDH knockdown in vitro and in vivo and inhibit growth of orthotopic murine GBM. Our study shows that UGDH supports GBM growth through multiple mechanisms and supports the development of ECM-based therapeutic strategies to simultaneously target tumor cells and their microenvironment.
Collapse
|
9
|
Venanzi FM, Gabai V, Mariotti F, Magi GE, Vullo C, Sufianov AA, Kolesnikov SI, Shneider A. p62-DNA-encoding plasmid reverts tumor grade, changes tumor stroma, and enhances anticancer immunity. Aging (Albany NY) 2019; 11:10711-10722. [PMID: 31754084 PMCID: PMC6914433 DOI: 10.18632/aging.102486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022]
Abstract
Previously, we reported that the administration of a p62/SQSTM1-encoding plasmid demonstrates high safety and signs of clinical benefits for human cancer patients. The treatment also suppressed tumor growth and metastasis in dogs and mouse models. Here we investigated some mechanistic aspects of these effects. In mammary tumors bearing-dogs, i.m. injections of p62 plasmid reduced tumor sizes and their aggressive potential in 5 out of 6 animals, with one carcinoma switching to adenoma. The treatment increased levels of smooth muscle actin in stroma cells and type III collagen in the extracellular matrix, which correlate with a good clinical prognosis. The p62 treatment also increased the abundance of intratumoral T-cells. Because of the role of adaptive immunity cannot be tested in dogs, we compared the protective effects of the p62 plasmid against B16 melanoma in wild type C57BL/6J mice versus their SCID counterpart lacking lymphocytes. The plasmid was only protective in the wild type strain. Also, p62 plasmid amplified the anti-tumor effect of T-cell transfer from tumor-bearing animals to animals challenged with the same tumors. We conclude that the plasmid acts via re-modeling of the tumor microenvironment, making it more favorable for increased anti-cancer immunity. Thus, the p62-encoding plasmid might be a new adjuvant for cancer treatments.
Collapse
Affiliation(s)
- Franco M. Venanzi
- Sechenov First Moscow State Medical University, Moscow, Russia
- CureLab Oncology, Inc, Deadham, MA 02026, USA
| | - Vladimir Gabai
- CureLab Oncology, Inc, Deadham, MA 02026, USA
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Francesca Mariotti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cecilia Vullo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Albert A. Sufianov
- Sechenov First Moscow State Medical University, Moscow, Russia
- Federal Center of Neurosurgery, Tyumen, Russia
| | - Sergey I. Kolesnikov
- Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
- Research Center of Family Health and Reproduction Problems, Irkutsk, Russia
| | - Alexander Shneider
- Sechenov First Moscow State Medical University, Moscow, Russia
- CureLab Oncology, Inc, Deadham, MA 02026, USA
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
10
|
Di Modugno F, Colosi C, Trono P, Antonacci G, Ruocco G, Nisticò P. 3D models in the new era of immune oncology: focus on T cells, CAF and ECM. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:117. [PMID: 30898166 PMCID: PMC6429763 DOI: 10.1186/s13046-019-1086-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022]
Abstract
Immune checkpoint inhibitor therapy has changed clinical practice for patients with different cancers, since these agents have demonstrated a significant improvement of overall survival and are effective in many patients. However, an intrinsic or acquired resistance frequently occur and biomarkers predictive of responsiveness should help in patient selection and in defining the adequate treatment options. A deep analysis of the complexity of the tumor microenvironment is likely to further advance the field and hopefully identify more effective combined immunotherapeutic strategies. Here we review the current knowledge on tumor microenvironment, focusing on T cells, cancer associated fibroblasts and extracellular matrix. The use of 3D cell culture models to resemble tumor microenvironment landscape and to screen immunomodulatory drugs is also reviewed.
Collapse
Affiliation(s)
- Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| | - Cristina Colosi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Paola Trono
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Giuseppe Antonacci
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS-Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| |
Collapse
|
11
|
Corgnac S, Boutet M, Kfoury M, Naltet C, Mami-Chouaib F. The Emerging Role of CD8 + Tissue Resident Memory T (T RM) Cells in Antitumor Immunity: A Unique Functional Contribution of the CD103 Integrin. Front Immunol 2018; 9:1904. [PMID: 30158938 PMCID: PMC6104123 DOI: 10.3389/fimmu.2018.01904] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy is aimed at stimulating tumor-specific cytotoxic T lymphocytes and their subsequent trafficking so that they may reach, and persist in, the tumor microenvironment, recognizing and eliminating malignant target cells. Thus, characterization of the phenotype and effector functions of CD8+ T lymphocytes infiltrating human solid tumors is essential for better understanding and manipulating the local antitumor immune response, and for defining their contribution to the success of current cancer immunotherapy approaches. Accumulating evidence indicates that a substantial subpopulation of CD3+CD8+ tumor-infiltrating lymphocytes are tissue resident memory T (TRM) cells, and is emerging as an activated tumor-specific T-cell subset. These TRM cells accumulate in various human cancer tissues, including non-small-cell lung carcinoma (NSCLC), ovarian and breast cancers, and are defined by expression of CD103 [αE(CD103)β7] and/or CD49a [α1(CD49a)β1] integrins, along with C-type lectin CD69, which most likely contribute to their residency characteristic. CD103 binds to the epithelial cell marker E-cadherin, thereby promoting retention of TRM cells in epithelial tumor islets and maturation of cytotoxic immune synapse with specific cancer cells, resulting in T-cell receptor (TCR)-dependent target cell killing. Moreover, CD103 integrin triggers bidirectional signaling events that cooperate with TCR signals to enable T-cell migration and optimal cytokine production. Remarkably, TRM cells infiltrating human NSCLC tumors also express inhibitory receptors such as programmed cell death-1, the neutralization of which, with blocking antibodies, enhances CD103-dependent TCR-mediated cytotoxicity toward autologous cancer cells. Thus, accumulation of TRM cells at the tumor site explains the more favorable clinical outcome, and might be associated with the success of immune checkpoint blockade in a fraction of cancer patients.
Collapse
Affiliation(s)
- Stéphanie Corgnac
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Marie Boutet
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Maria Kfoury
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Charles Naltet
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Fathia Mami-Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, PSL, Fac. de Médecine - Univ. Paris-Sud, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
12
|
El Azreq MA, Kadiri M, Boisvert M, Pagé N, Tessier PA, Aoudjit F. Discoidin domain receptor 1 promotes Th17 cell migration by activating the RhoA/ROCK/MAPK/ERK signaling pathway. Oncotarget 2018; 7:44975-44990. [PMID: 27391444 PMCID: PMC5216699 DOI: 10.18632/oncotarget.10455] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Effector T cell migration through the tissue extracellular matrix (ECM) is an important step of the adaptive immune response and in the development of inflammatory diseases. However, the mechanisms involved in this process are still poorly understood. In this study, we addressed the role of a collagen receptor, the discoidin domain receptor 1 (DDR1), in the migration of Th17 cells. We showed that the vast majority of human Th17 cells express DDR1 and that silencing DDR1 or using the blocking recombinant receptor DDR1:Fc significantly reduced their motility and invasion in three-dimensional (3D) collagen. DDR1 promoted Th17 migration by activating RhoA/ROCK and MAPK/ERK signaling pathways. Interestingly, the RhoA/ROCK signaling module was required for MAPK/ERK activation. Finally, we showed that DDR1 is important for the recruitment of Th17 cells into the mouse dorsal air pouch containing the chemoattractant CCL20. Collectively, our results indicate that DDR1, via the activation of RhoA/ROCK/MAPK/ERK signaling axis, is a key pathway of effector T cell migration through collagen of perivascular tissues. As such, DDR1 can contribute to the development of Th17-dependent inflammatory diseases.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Maleck Kadiri
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Marc Boisvert
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Nathalie Pagé
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada
| | - Philippe A Tessier
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada.,Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Fawzi Aoudjit
- Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC, Canada.,Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
13
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
14
|
Vicary GW, Ritzenthaler JD, Panchabhai TS, Torres-González E, Roman J. Nicotine stimulates collagen type I expression in lung via α7 nicotinic acetylcholine receptors. Respir Res 2017; 18:115. [PMID: 28576119 PMCID: PMC5457545 DOI: 10.1186/s12931-017-0596-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
Background Tobacco-related chronic lung diseases are characterized by alterations in lung architecture leading to decreased lung function. Knowledge of the exact mechanisms involved in tobacco-induced tissue remodeling and inflammation remains incomplete. We hypothesize that nicotine stimulates the expression of extracellular matrix proteins, leading to relative changes in lung matrix composition, which may affect immune cells entering the lung after injury. Methods Pulmonary fibroblasts from wildtype and α7 nicotinic acetylcholine receptor knockout (α7KO) mice were exposed to nicotine and examined for collagen type 1 mRNA and protein expression. Testing the potential role on immune cell function, pulmonary fibroblasts were retained in culture for 120 h. The fibroblasts were eliminated by osmotic lysis and the remaining matrix-coated dishes were washed thoroughly. U937 cells were incubated on the matrix-coated dishes for 24 h followed by evaluation of IL-1β gene expression. Wildtype or α7KO C57BL/6 mice (female, 8–12 weeks) were fed normal diet and exposed to nicotine in their drinking water (100 μg/ml) for 8-12weeks. Lungs were processed for mRNA, protein, and histology. Statistical significance was determined at p ≤ .05 by two-tailed test or 2-way ANOVA with Bonferroni posttest. Results We found that nicotine stimulated collagen type I mRNA and protein expression in a dose-dependent manner and up to 72 h in primary lung fibroblasts. The stimulatory effect of nicotine was inhibited in α7KO primary lung fibroblasts. Testing the potential role of these events on immune cell function, U937 monocytic cells were cultured atop matrices derived from nicotine-treated lung fibroblasts. These cells expressed more IL-1β than those cultured atop matrices derived from untreated fibroblasts, and antibodies against the α2β1 collagen integrin receptor inhibited the effect. Nicotine also stimulated fibroblast proliferation via MEK-1/ERK, unveiling a potentially amplifying pathway. In vivo, nicotine increased collagen type I expression was detected in wildtype, but not in α7KO mice. Wildtype mice showed increased collagen staining in lung, primarily around the airways. Conclusions These observations suggest that nicotine stimulates fibroblast proliferation and their expression of collagen type I through α7 nAChRs, thereby altering the relative composition of the lung matrix without impacting the overall lung architecture; this may influence inflammatory responses after injury.
Collapse
Affiliation(s)
- Glenn W Vicary
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jeffrey D Ritzenthaler
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Disorders, University of Louisville School of Medicine, 550 South Jackson Street (3rd floor), Louisville, KY, USA
| | - Tanmay S Panchabhai
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Disorders, University of Louisville School of Medicine, 550 South Jackson Street (3rd floor), Louisville, KY, USA
| | - Edilson Torres-González
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Disorders, University of Louisville School of Medicine, 550 South Jackson Street (3rd floor), Louisville, KY, USA
| | - Jesse Roman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA. .,Department of Medicine, Division of Pulmonary, Critical Care and Sleep Disorders, University of Louisville School of Medicine, 550 South Jackson Street (3rd floor), Louisville, KY, USA. .,Louisville Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA.
| |
Collapse
|
15
|
Novel Mechanisms Revealed in the Trachea Transcriptome of Resistant and Susceptible Chicken Lines following Infection with Newcastle Disease Virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00027-17. [PMID: 28331077 PMCID: PMC5424241 DOI: 10.1128/cvi.00027-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
Newcastle disease virus (NDV) has a devastating impact on poultry production in developing countries. This study examined the transcriptome of tracheal epithelial cells from two inbred chicken lines that differ in NDV susceptibility after challenge with a high-titer inoculum of lentogenic NDV. The Fayoumi line had a significantly lower NDV load postchallenge than the Leghorn line, demonstrating the Fayoumi line's classification as a relatively NDV-resistant breed. Examination of the trachea transcriptome showed a large increase in immune cell infiltration in the trachea in both lines at all times postinfection. The pathways conserved across lines and at all three time points postinfection included iCOS-iCOSL signaling in T helper cells, NF-κB signaling, the role of nuclear factor of activated T cells in the regulation of the immune response, calcium-induced T lymphocyte apoptosis, phospholipase C signaling, and CD28 signaling in T helper cells. Although shared pathways were seen in the Fayoumi and Leghorn lines, each line showed unique responses as well. The downregulation of collagen and the activation of eukaryotic translation initiation factor 2 signaling in the Fayoumis relative to the Leghorns at 2 days postinfection may contribute to the resistance phenotype seen in the Fayoumis. This study provides a further understanding of host-pathogen interactions which could improve vaccine efficacy and, in combination with genome-wide association studies, has the potential to advance strategies for breeding chickens with enhanced resistance to NDV.
Collapse
|
16
|
Wang Y, Li Y, Thérien-Aubin H, Ma J, Zandstra PW, Kumacheva E. Two-dimensional arrays of cell-laden polymer hydrogel modules. BIOMICROFLUIDICS 2016; 10:014110. [PMID: 26858822 PMCID: PMC4723409 DOI: 10.1063/1.4940430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/07/2016] [Indexed: 05/05/2023]
Abstract
Microscale technologies offer the capability to generate in vitro artificial cellular microenvironments that recapitulate the spatial, biochemical, and biophysical characteristics of the native extracellular matrices and enable systematic, quantitative, and high-throughput studies of cell fate in their respective environments. We developed a microfluidic platform for the generation of two-dimensional arrays of micrometer-size cell-laden hydrogel modules (HMs) for cell encapsulation and culture. Fibroblast cells (NIH 3T3) and non-adherent T cells (EL4) encapsulated in HMs showed high viability and proliferation. The platform was used for real-time studies of the effect of spatial constraints and structural and mechanical properties of HMs on cell growth, both on the level of individual cells. Due to the large number of cell-laden HMs and stochastic cell distribution, cell studies were conducted in a time- and labor efficient manner. The platform has a broad range of applications in the exploration of the role of chemical and biophysical cues on individual cells, studies of in vitro cell migration, and the examination of cell-extracellular matrix and cell-cell interactions.
Collapse
Affiliation(s)
- Yihe Wang
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | - Yunfeng Li
- Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H6, Canada
| | | | - Jennifer Ma
- Institute of Biomaterials & Biomedical Engineering, University of Toronto , 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | | | | |
Collapse
|
17
|
Immunosuppressive drugs affect high-mannose/hybrid N-glycans on human allostimulated leukocytes. Anal Cell Pathol (Amst) 2015; 2015:324980. [PMID: 26339568 PMCID: PMC4538311 DOI: 10.1155/2015/324980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/21/2015] [Indexed: 02/04/2023] Open
Abstract
N-glycosylation plays an important role in the majority of physiological and pathological processes occurring in the immune system. Alteration of the type and abundance of glycans is an element of lymphocyte differentiation; it is also common in the development of immune-mediated inflammatory diseases. The N-glycosylation process is very sensitive to different environmental agents, among them the pharmacological environment of immunosuppressive drugs. Some results show that high-mannose oligosaccharides have the ability to suppress different stages of the immune response. We evaluated the effects of cyclosporin A (CsA) and rapamycin (Rapa) on high-mannose/hybrid-type glycosylation in human leukocytes activated in a two-way mixed leukocyte reaction (MLR). CsA significantly reduced the number of leukocytes covered by high-mannose/hybrid N-glycans, and the synergistic action of CsA and Rapa led to an increase of these structures on the remaining leukocytes. This is the first study indicating that β1 and β3 integrins bearing high-mannose/hybrid structures are affected by Rapa and CsA. Rapa taken separately and together with CsA changed the expression of β1 and β3 integrins and, by regulating the protein amount, increased the oligomannose/hybrid-type N-glycosylation on the leukocyte surface. We suggest that the changes in the glycosylation profile of leukocytes may promote the development of tolerance in transplantation.
Collapse
|
18
|
Naci D, Vuori K, Aoudjit F. Alpha2beta1 integrin in cancer development and chemoresistance. Semin Cancer Biol 2015; 35:145-53. [PMID: 26297892 DOI: 10.1016/j.semcancer.2015.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
Abstract
Extracellular matrix, via its receptors the integrins, has emerged as a crucial factor in cancer development. The α2β1 integrin is a major collagen receptor that is widely expressed and known to promote cell migration and control tissue homeostasis. Growing evidence suggests that it can be a key pathway in cancer. Recent studies have shown that α2β1 integrin is a regulator of cancer metastasis either by promoting or inhibiting the dissemination process of cancer cells. The α2β1 integrin signaling can also enhance tumor angiogenesis. Emerging evidence supports a role for α2β1 integrin in cancer chemoresistance especially in hematological malignancies originating from the T cell lineage. In addition, α2β1 integrin has been associated with cancer stem cells. In this review, we will discuss the complex role of α2β1 integrin in these processes. Collagen is a major matrix protein of the tumor microenvironment and thus, understanding how α2β1 integrin regulates cancer pathogenesis is likely to lead to new therapeutic approaches and agents for cancer treatment.
Collapse
Affiliation(s)
- Dalila Naci
- Centre de recherche du CHU de Québec, Axe des maladies infectieuses et immunitaires and Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Kristiina Vuori
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Fawzi Aoudjit
- Centre de recherche du CHU de Québec, Axe des maladies infectieuses et immunitaires and Département de Microbiologie-Immunologie, Faculté de Médecine, Université Laval, Québec, Canada.
| |
Collapse
|
19
|
Wahab N, Roman M, Chakravarthy D, Luttrell T. The Use of a Pure Native Collagen Dressing for Wound Bed Preparation Prior to Use of a Living Bi-layered Skin Substitute. J Am Coll Clin Wound Spec 2015; 6:2-8. [PMID: 26442205 DOI: 10.1016/j.jccw.2015.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Management of chronic wounds in the outpatient setting is quite challenging. The extensive co-morbid medical problems of the chronically ill patient along with the complexities of the wound bed and its biochemical environment has led to a plethora of patients with poor wound healing. This ever increasing population is a challenge for the wound care practitioner and cost to the health care system and patient. Increased wound chronicity has promulgated the use of advanced wound care products, including Living Skin Substitutes (LSS), in an attempt to obtain wound closure, and ultimately both physiological and functional healing.(1-3) In the outpatient setting, it is evident that the efficacy of the LSS varies widely depending on the patient type with some patients responding quite favorably while others who do not achieve healing despite repeated applications of LSS. This case series demonstrates that a systematic method of wound bed preparation prior to the application of LSS improved healing outcomes. The entire wound bed preparation protocol included autolytic, non-selective, and sharp-selective debridement, if deemed appropriate, followed by the weekly application of a pure native collagen. The wound bed preparation protocol was completed prior to LSS application. This case series presents evidence supporting the application of a 100% native collagen dressing to wound bed prior to the final step of LSS utilization.
Collapse
Affiliation(s)
- Naz Wahab
- University Medical Center, 1800 West Charleston Blvd, Las Vegas, NV 89120, USA
| | - Martha Roman
- University Medical Center, 1800 West Charleston Blvd, Las Vegas, NV 89120, USA
| | | | - Tammy Luttrell
- University Medical Center, 1800 West Charleston Blvd, Las Vegas, NV 89120, USA
| |
Collapse
|
20
|
Kuehn C, Vermette P, Fülöp T. Cross talk between the extracellular matrix and the immune system in the context of endocrine pancreatic islet transplantation. A review article. ACTA ACUST UNITED AC 2014; 62:67-78. [DOI: 10.1016/j.patbio.2014.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/31/2014] [Indexed: 12/14/2022]
|
21
|
Abstract
Integrin α1β1 is widely expressed in mesenchyme and the immune system, as well as a minority of epithelial tissues. Signaling through α1 contributes to the regulation of extracellular matrix composition, in addition to supplying in some tissues a proliferative and survival signal that appears to be unique among the collagen binding integrins. α1 provides a tissue retention function for cells of the immune system including monocytes and T cells, where it also contributes to their long-term survival, providing for peripheral T cell memory, and contributing to diseases of autoimmunity. The viability of α1 null mice, as well as the generation of therapeutic monoclonal antibodies against this molecule, have enabled studies of the role of α1 in a wide range of pathophysiological circumstances. The immune functions of α1 make it a rational therapeutic target.
Collapse
|
22
|
El Azreq MA, Boisvert M, Cesaro A, Pagé N, Loubaki L, Allaeys I, Chakir J, Poubelle PE, Tessier PA, Aoudjit F. α2β1 integrin regulates Th17 cell activity and its neutralization decreases the severity of collagen-induced arthritis. THE JOURNAL OF IMMUNOLOGY 2013; 191:5941-50. [PMID: 24244022 DOI: 10.4049/jimmunol.1301940] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Th17 cells play a critical role in the pathogenesis of rheumatoid arthritis (RA), but the mechanisms by which these cells regulate the development of RA are not fully understood. We have recently shown that α2β1 integrin, the receptor of type I collagen, is the major collagen-binding integrin expressed by human Th17 cells. In this study, we examined the role of α2β1 integrin in Th17-mediated destructive arthritis in the murine model of collagen-induced arthritis (CIA). We found that α2β1 integrin is expressed on synovial Th17 cells from CIA mice and its neutralization with a specific mAb significantly reduced inflammation and cartilage degradation, and protected the mice from bone erosion. Blockade of α2β1 integrin led to a decrease in the number of Th17 cells in the joints and to a reduction of IL-17 levels in CIA mice. This was associated with an inhibition of receptor activator of NF-κB ligand levels and osteoclast numbers, and reduction of bone loss. We further show that α2β1 integrin is expressed on synovial Th17 cells from RA patients, and that its ligation with collagen costimulated the production of IL-17 by polarized human Th17 cells by enhancing the expression of retinoic acid receptor-related orphan receptor C through ERK and PI3K/AKT. Our findings provide the first evidence, to our knowledge, that α2β1 integrin is an important pathway in Th17 cell activation in the pathogenesis of CIA, suggesting that its blockade can be beneficial for the treatment of RA and other Th17-associated autoimmune diseases.
Collapse
Affiliation(s)
- Mohammed-Amine El Azreq
- *Axe de Recherche sur les Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Ville de Québec, Québec G1V 4G2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Santambrogio L, Stern LJ. Carrying yourself: self antigen composition of the lymphatic fluid. Lymphat Res Biol 2013; 11:149-54. [PMID: 24024574 DOI: 10.1089/lrb.2013.0009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in proteomics methodology and instrumentation have allowed detailed characterization of the composition of lymph. Far from being a simple ultrafiltrate of blood plasma, lymph has been shown to carry a rich repertoire of proteins and peptides reflecting the tissue of origin and its physiological state. Peptides derived from lymph can be loaded on the MHCII proteins, particularly those present on immature and/or inactivated antigen presenting cells, and may play an important role in maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Laura Santambrogio
- 1 Department of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine , New York, New York
| | | |
Collapse
|
24
|
Tokoyoda K, Radbruch A. Signals controlling rest and reactivation of T helper memory lymphocytes in bone marrow. Cell Mol Life Sci 2012; 69:1609-13. [PMID: 22460581 PMCID: PMC11114998 DOI: 10.1007/s00018-012-0969-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 03/13/2012] [Accepted: 03/13/2012] [Indexed: 12/18/2022]
Abstract
Established views on the maintenance of immunological memory have been challenged recently by the description of memory plasma cells and memory T helper (Th) lymphocytes residing in the bone marrow (BM) in dedicated survival niches, resting in terms of proliferation and migration. While memory plasma cells are no longer reactive to antigen, memory Th lymphocytes are in a state of attentive rest, and can be reactivated fast and efficiently. Here, we discuss the signals controlling these resting states, which the memory lymphocytes receive from their microenvironment.
Collapse
Affiliation(s)
- Koji Tokoyoda
- German Rheumatism Research Center Berlin, Chariteplatz 1, Berlin, Germany.
| | | |
Collapse
|
25
|
Integrin signaling in cancer cell survival and chemoresistance. CHEMOTHERAPY RESEARCH AND PRACTICE 2012; 2012:283181. [PMID: 22567280 PMCID: PMC3332161 DOI: 10.1155/2012/283181] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/10/2012] [Indexed: 01/09/2023]
Abstract
Resistance to apoptosis and chemotherapy is a hallmark of cancer cells, and it is a critical factor in cancer recurrence and patient relapse. Extracellular matrix (ECM) via its receptors, the integrins, has emerged as a major pathway contributing to cancer cell survival and resistance to chemotherapy. Several studies over the last decade have demonstrated that ECM/integrin signaling provides a survival advantage to various cancer cell types against numerous chemotherapeutic drugs and against antibody therapy. In this paper, we will discuss the major findings on how ECM/integrin signaling protects tumor cells from drug-induced apoptosis. We will also discuss the potential role of ECM in malignant T-cell survival and in cancer stem cell resistance. Understanding how integrins and their signaling partners promote tumor cell survival and chemoresistance will likely lead to the development of new therapeutic strategies and agents for cancer treatment.
Collapse
|
26
|
Clement CC, Rotzschke O, Santambrogio L. The lymph as a pool of self-antigens. Trends Immunol 2010; 32:6-11. [PMID: 21123113 DOI: 10.1016/j.it.2010.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/07/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Prenodal lymph is generated from the interstitial fluid that surrounds organs, and thus contains products of organ metabolism and catabolism. New proteomic analyses of lymph have identified proteins and peptides that are derived from capillary extravasation and tissue-specific proteins. Many of these peptides are detected at nanomolar concentrations in the lymph before passage through a regional lymph node. Before entering the node and once inside, proteins and processed peptides are filtered from the lymph by circulating immature dendritic cells (DCs) or non-activated nodal antigen-presenting cells (APCs) (macrophages, B cells and immature DCs). Here, we suggest that this process ensures organ-specific self-antigens are displayed to circulating and nodal APCs, thus contributing to the maintenance of peripheral tolerance.
Collapse
Affiliation(s)
- Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., New York, 10461, USA
| | | | | |
Collapse
|
27
|
Zhuo Y, Wu Y, Guo A, Chen S, Su J. [Establishment and its biological characteristics of patient-derived lung cancer xenograft models]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:568-74. [PMID: 20681441 PMCID: PMC6015149 DOI: 10.3779/j.issn.1009-3419.2010.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
背景与目的 为了更好地研究肺癌的治疗方法,建立起可靠的动物评价模型迫在眉睫。本研究的目的是研究建立肺癌原代组织块小鼠移植瘤模型的成熟方法,观察移植瘤的肿瘤生物学特性,在建模方法及基本特征等方面来证明该肿瘤模型的合理性和科学性,以期为肿瘤研究提供更有效的实验动物模型。 方法 取人新鲜完整肺癌组织块移植于NOD/SCID小鼠右侧前肢肩背部皮下,或经皮肺穿刺取得肿瘤小块移植于BALB/c裸小鼠肾包膜下。待皮下肿瘤增大,将其切下传代于裸小鼠右侧前肢肩背部皮下。观察移植瘤生物学特性,并取肿瘤行常规病理切片及CEA、细胞角蛋白、Ki67免疫组化检测,将原代肿瘤和移植瘤进行EGFR 18-21外显子和K-Ras 12,59外显子基因检测,采用流式细胞仪检测移植瘤细胞的细胞周期。 结果 本研究进行了11例肺癌组织的NOD/SCID小鼠和裸鼠建模,建成3例可多次成功传代的腺癌、小细胞肺癌和鳞癌模型。传代移植成功率高。荷瘤小鼠生长情况良好,生存期长。各代移植瘤模型的组织病理学及免疫组化表型、EGFR和K-Ras基因检测均与来源肺癌组织相一致。移植瘤细胞周期中S期延长,提示瘤细胞有增殖活性。 结论 本研究在国内首次利用新鲜的完整肺癌组织建成了荷肺癌NOD/SCID小鼠及裸鼠模型,并传代移植于裸鼠,建模成功率为27%。移植瘤较好地保留了人原发肺癌的恶性特征及组织病理学、生物学特性,是一种接近人体的肺癌模型,可为肺癌研究提供良好的实验平台。
Collapse
Affiliation(s)
- Ying Zhuo
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | | | | | | | | |
Collapse
|
28
|
Implication of discoidin domain receptor 1 in T cell migration in three-dimensional collagen. Mol Immunol 2010; 47:1866-9. [DOI: 10.1016/j.molimm.2010.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 01/06/2023]
|
29
|
An expanded self-antigen peptidome is carried by the human lymph as compared to the plasma. PLoS One 2010; 5:e9863. [PMID: 20360855 PMCID: PMC2845622 DOI: 10.1371/journal.pone.0009863] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/03/2010] [Indexed: 12/30/2022] Open
Abstract
Background The pre-nodal afferent lymph is the fluid which directly derives from the extracellular milieu from every parenchymal organ and, as it continues to circulate between the cells, it collects products deriving from the organ metabolism/catabolism. A comprehensive qualitative and quantitative investigation of the self-antigenic repertoire transported by the human lymph is still missing. Methodology/Principal Findings A major difference between lymph and plasma could be visualized by FPLC and 2D gel in the amount of low molecular weight products corresponding to peptide fragments. Naturally processed peptides in normal pre-nodal human lymph were then fractionated by HPLC and characterized by multidimensional mass spectrometry. Analysis of more then 300 sequences identified self-peptides derived from both intracellular and extracellular proteins revealing the variety of catabolic products transported by human lymph. Quantitative analysis established that at least some of these peptides are present in the circulating lymph in nanomolar concentration. Conclusions/Significance The peptidome, generated by physiological tissue catabolism and transported by the pre-nodal lymph, is in addition to the self-peptidome generated in endosomal compartment. Unlike self antigen processed by local or nodal APC, which mostly produce epitopes constrained by the endosomal processing activity, self antigens present in the lymph could derived from a wider variety of processing pathways; including caspases, involved in cellular apoptosis, and ADAM and other metalloproteinases involved in surface receptor editing, cytokines processing and matrix remodeling. Altogether, expanding the tissue-specific self-repertoire available for the maintenance of immunological tolerance.
Collapse
|
30
|
Chapman TJ, Topham DJ. Identification of a unique population of tissue-memory CD4+ T cells in the airways after influenza infection that is dependent on the integrin VLA-1. THE JOURNAL OF IMMUNOLOGY 2010; 184:3841-9. [PMID: 20200271 DOI: 10.4049/jimmunol.0902281] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the immune response to influenza infection, activated T cells are distributed to both lymphoid and extralymphoid tissues, including the infected airways where direct recognition of viral Ag-bearing cells takes place. The collagen-binding alpha(1)beta(1) integrin VLA-1 is essential for the development of memory CD8(+) T cells in the airways, and although expressed by some CD4(+) T cells, its significance has not been demonstrated. We investigated the role of VLA-1 on virus-specific CD4(+) T cells during and after primary or secondary influenza infection of mice. The proportion of CD4(+) cells expressing CD49a (alpha(1) integrin) was low in all tissues sampled during primary infection but increased in the airways after viral clearance. Furthermore, during the first 24 h of a secondary influenza challenge, the majority of IFN-gamma-secreting effector CD4(+) T cells from the airways was in the CD49a(+) population. Airway CD49a(+)CD4(+) cells also expressed reduced markers of apoptosis compared with CD49a(-) cells, and fewer memory or effector CD4(+) cells could be recovered from airways of alpha(1)(-/-) mice, although lymphoid tissues appeared unaffected. These data suggest VLA-1 expression defines a population of tissue memory CD4(+) T cells that act as rapid effectors upon reinfection, and VLA-1 expression is integral to their accumulation in the airways.
Collapse
Affiliation(s)
- Timothy J Chapman
- Department of Microbiology and Immunology, David H Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
31
|
New insights into the regulation of ion channels by integrins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 279:135-90. [PMID: 20797679 DOI: 10.1016/s1937-6448(10)79005-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By controlling cell adhesion to the extracellular matrix, integrin receptors regulate processes as diverse as cell migration, proliferation, differentiation, apoptosis, and synaptic stability. Because the underlying mechanisms are generally accompanied by changes in transmembrane ion flow, a complex interplay occurs between integrins, ion channels, and other membrane transporters. This reciprocal interaction regulates bidirectional signal transduction across the cell surface and may take place at all levels of control, from transcription to direct conformational coupling. In particular, it is becoming increasingly clear that integrin receptors form macromolecular complexes with ion channels. Besides contributing to the membrane localization of the channel protein, the integrin/channel complex can regulate a variety of downstream signaling pathways, centered on regulatory proteins like tyrosine kinases and small GTPases. In turn, the channel protein usually controls integrin activation and expression. We review some recent advances in the field, with special emphasis on hematology and neuroscience. Some oncological implications are also discussed.
Collapse
|
32
|
Han MJ, Lim SM, Kim YL, Kim HL, Kim KO, Sacket SJ, Jo JY, Bae YS, Okajima F, Im DS. Albumin and Antioxidants Inhibit Serum-deprivation-induced Cell Adhesion in Hematopoietic Cells. Biomol Ther (Seoul) 2008. [DOI: 10.4062/biomolther.2008.16.4.410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
33
|
Matheu MP, Beeton C, Garcia A, Chi V, Rangaraju S, Safrina O, Monaghan K, Uemura MI, Li D, Pal S, de la Maza LM, Monuki E, Flügel A, Pennington MW, Parker I, Chandy KG, Cahalan MD. Imaging of effector memory T cells during a delayed-type hypersensitivity reaction and suppression by Kv1.3 channel block. Immunity 2008; 29:602-14. [PMID: 18835197 DOI: 10.1016/j.immuni.2008.07.015] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 12/03/2007] [Accepted: 07/09/2008] [Indexed: 01/07/2023]
Abstract
Effector memory T (Tem) cells are essential mediators of autoimmune disease and delayed-type hypersensitivity (DTH), a convenient model for two-photon imaging of Tem cell participation in an inflammatory response. Shortly (3 hr) after entry into antigen-primed ear tissue, Tem cells stably attached to antigen-bearing antigen-presenting cells (APCs). After 24 hr, enlarged Tem cells were highly motile along collagen fibers and continued to migrate rapidly for 18 hr. Tem cells rely on voltage-gated Kv1.3 potassium channels to regulate calcium signaling. ShK-186, a specific Kv1.3 blocker, inhibited DTH and suppressed Tem cell enlargement and motility in inflamed tissue but had no effect on homing to or motility in lymph nodes of naive and central memory T (Tcm) cells. ShK-186 effectively treated disease in a rat model of multiple sclerosis. These results demonstrate a requirement for Kv1.3 channels in Tem cells during an inflammatory immune response in peripheral tissues. Targeting Kv1.3 allows for effector memory responses to be suppressed while central memory responses remain intact.
Collapse
Affiliation(s)
- Melanie P Matheu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4561, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Taylor JL, Bielefeldt-Ohmann H, Pozzi A, Izzo AA. Lack of alpha-1 integrin alters lesion morphology during pulmonary Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2008; 88:444-52. [PMID: 18639492 DOI: 10.1016/j.tube.2008.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 05/01/2008] [Accepted: 05/19/2008] [Indexed: 11/16/2022]
Abstract
The hallmark of Mycobacterium tuberculosis infection is the granuloma, a highly dynamic immune structure that contains the bacilli during chronic infection. Here, we examined if alpha1beta1 integrin is required in the development and maintenance of the granulomatous structure during pulmonary infection using the alpha1 integrin knockout (alpha1-null) mouse. The alpha1beta1 integrin is expressed on activated macrophages and T cells, and interacts with collagen molecules in the extracellular matrix (ECM), and thus may play a role in the granulomatous process. Following pulmonary infection with virulent M. tuberculosis, lungs of alpha1-null infected mice had striking differences in granuloma structure, as well as distinct and markedly thickened alveolar septae. By day 180, there were regions of cell death within granulomatous lesions, characterized by cellular debris in these mice. To determine if this molecule was necessary for T cell trafficking within the lungs, the expression of CD4, CD44 and CD62L was monitored. The number of activated and IFN-gamma-producing CD4+ T cells increased in the lungs of alpha1-null mice during the chronic phase of infection, although they had decreased concentrations of TNF-alpha and MMP-9. These results suggest that while alpha1beta1 integrin is not required for trafficking or maintenance of T cells in M. tuberculosis infected lungs, it does play a role in granuloma structure and integrity during the chronic phase of infection.
Collapse
Affiliation(s)
- Jennifer L Taylor
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
35
|
Simpson-Abelson MR, Sonnenberg GF, Takita H, Yokota SJ, Conway TF, Kelleher RJ, Shultz LD, Barcos M, Bankert RB. Long-term engraftment and expansion of tumor-derived memory T cells following the implantation of non-disrupted pieces of human lung tumor into NOD-scid IL2Rgamma(null) mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:7009-18. [PMID: 18453623 DOI: 10.4049/jimmunol.180.10.7009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Non-disrupted pieces of primary human lung tumor implanted into NOD-scid IL2Rgamma(null) mice consistently result in successful xenografts in which tissue architecture, including tumor-associated leukocytes, stromal fibroblasts, and tumor cells are preserved for prolonged periods with limited host-vs-graft interference. Human CD45(+) tumor-associated leukocytes within the xenograft are predominantly CD3(+) T cells with fewer CD138(+) plasma cells. The effector memory T cells that had been shown to be quiescent in human lung tumor microenvironments can be activated in situ as determined by the production of human IFN-gamma in response to exogenous IL-12. Plasma cells remain functional as evidenced by production of human Ig. Significant levels of human IFN-gamma and Ig were detected in sera from xenograft-bearing mice for up to 9 wk postengraftment. Tumor-associated T cells were found to migrate from the microenvironment of the xenograft to the lung, liver, and primarily the spleen. At 8 wk postengraftment, a significant portion of cells isolated from the mouse spleens were found to be human CD45(+) cells. The majority of CD45(+) cells were CD3(+) and expressed a phenotype consistent with an effector memory T cell, consisting of CD4(+) or CD8(+) T cells that were CD45RO(+), CD44(+), CD62L(-), and CD25(-). Following adoptive transfer into non-tumor bearing NOD-scid IL2Rgamma(null) mice, these human T cells were found to expand in the spleen, produce IFN-gamma, and maintain an effector memory phenotype. We conclude that the NOD-scid IL2Rgamma(null) tumor xenograft model provides an opportunity to study tumor and tumor-stromal cell interactions in situ for prolonged periods.
Collapse
Affiliation(s)
- Michelle R Simpson-Abelson
- State University of New York, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bergamaschi A, Tagliabue E, Sørlie T, Naume B, Triulzi T, Orlandi R, Russnes HG, Nesland JM, Tammi R, Auvinen P, Kosma VM, Ménard S, Børresen-Dale AL. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol 2008; 214:357-67. [PMID: 18044827 DOI: 10.1002/path.2278] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prediction of the clinical outcome of breast cancer is multi-faceted and challenging. There is growing evidence that the complexity of the tumour micro-environment, consisting of several cell types and a complex mixture of proteins, plays an important role in development, progression, and response to therapy. In the current study, we investigated whether invasive breast tumours can be classified on the basis of the expression of extracellular matrix (ECM) components and whether such classification is representative of different clinical outcomes. We first examined the matrix composition of 28 primary breast carcinomas by morphology and gene expression profiling using 22K oligonucleotide Agilent microarrays. Hierarchical clustering of the gene expression profile of 278 ECM-related genes derived from the literature divided the tumours into four main groups (ECM1-4). A set of selected differentially expressed genes was validated by immunohistochemistry. The robustness of the ECM classification was confirmed by studying the four ECM groups in a previously published gene expression data set of 114 early-stage primary breast carcinomas profiled using cDNA arrays. Univariate survival analysis showed significant differences in clinical outcome among the various ECM subclasses. One set of tumours, designated ECM4, had a favourable outcome and was defined by the overexpression of a set of protease inhibitors belonging to the serpin family, while tumours with an ECM1 signature had a poorer prognosis and showed high expression of integrins and metallopeptidases, and low expression of several laminin chains. Furthermore, we identified three surrogate markers of ECM1 tumours: MARCO, PUNC, and SPARC, whose expression levels were associated with breast cancer survival and risk of recurrence. Our findings suggest that primary breast tumours can be classified based upon ECM composition and that this classification provides relevant information on the biology of breast carcinomas, further supporting the hypothesis that clinical outcome is strongly related to stromal characteristics.
Collapse
Affiliation(s)
- A Bergamaschi
- Department of Genetics, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Montebello, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Platelet-derived CD154 enables T-cell priming and protection against Listeria monocytogenes challenge. Blood 2008; 111:3684-91. [PMID: 18256321 DOI: 10.1182/blood-2007-05-091728] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Collagen exposure in tissue activates platelets, initiates wound healing, and modulates adaptive immunity. In this report, data are presented to demonstrate a requirement for platelet-derived CD154 for both collagen-induced augmentation of T-cell immunity and induction of pro-tective immunity to Listeria challenge. Specifically, we demonstrate that Ad5 encoding the membrane-bound form of ovalbumin (Ad5-mOVA) delivered in collagen induces higher ovalbumin-specific cytotoxic T lymphocyte (CTL) activity in a dose-dependent manner compared with Ad5-mOVA delivered in PBS. Increased CTL activity was dependent on the ability of platelets to respond to collagen and to express CD154. Furthermore, mice immunized with low-dose Ad5-mOVA in collagen were able to control a challenge of Listeria monocytogenes recombinant for ovalbumin expression (Lm-OVA), whereas mice immunized with low-dose Ad5-mOVA in PBS were not. These data indicate that in a physiologic setting that mimics wounding, platelets perform a sentinel function when antigen dose is too low to provoke an efficient immune response, and can enhance the generation of antigen-specific CD8 T cells that are functionally relevant to the host.
Collapse
|
38
|
Migration, cell-cell interaction and adhesion in the immune system. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2008:97-137. [PMID: 18510101 DOI: 10.1007/2789_2007_062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Migration is an essential function of immune cells. It is necessary to lead immune cell precursors from their site of generation to the places of maturation or function. Cells of the adaptive immune system also need to interact physically with each other or with specialized antigen presenting cells in lymphatic tissues in order to become activated. Thereby a complex series of controlled migration events, adhesive interactions and signalling responses is induced. Finally cells must be able to leave the activating tissues and re-enter the bloodstream from which they extravasate into inflamed tissue sites. Cells of the innate immune system can function directly without the need for previous activation. However, these cells have to adapt their function to a panoply of pathogens and environmental niches which can be invaded. The current review highlights the central aspects of cellular dynamics underlying adaptive and innate cellular immunity. Thereby a focus will be put on recent results obtained by microscopic observation of live cells in vitro or by intravital 2-photon microscopy in live animals.
Collapse
|
39
|
Söderhäll C, Marenholz I, Kerscher T, Rüschendorf F, Esparza-Gordillo J, Worm M, Gruber C, Mayr G, Albrecht M, Rohde K, Schulz H, Wahn U, Hubner N, Lee YA. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biol 2007; 5:e242. [PMID: 17850181 PMCID: PMC1971127 DOI: 10.1371/journal.pbio.0050242] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 07/09/2007] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disorder and a major manifestation of allergic disease. AD typically presents in early childhood often preceding the onset of an allergic airway disease, such as asthma or hay fever. We previously mapped a susceptibility locus for AD on Chromosome 3q21. To identify the underlying disease gene, we used a dense map of microsatellite markers and single nucleotide polymorphisms, and we detected association with AD. In concordance with the linkage results, we found a maternal transmission pattern. Furthermore, we demonstrated that the same families contribute to linkage and association. We replicated the association and the maternal effect in a large independent family cohort. A common haplotype showed strong association with AD (p = 0.000059). The associated region contained a single gene, COL29A1, which encodes a novel epidermal collagen. COL29A1 shows a specific gene expression pattern with the highest transcript levels in skin, lung, and the gastrointestinal tract, which are the major sites of allergic disease manifestation. Lack of COL29A1 expression in the outer epidermis of AD patients points to a role of collagen XXIX in epidermal integrity and function, the breakdown of which is a clinical hallmark of AD. Atopic dermatitis (AD, eczema) is a common chronic inflammatory skin disorder and a major manifestation of allergic disease. Typically, AD first occurs in early childhood, often preceding the onset of allergic airways disease, such as asthma and hay fever. A family history of allergic disorders is the single strongest predictor for AD, showing that genetic factors play a major role in the disease development. We have previously mapped a disease locus for AD on Chromosome 3q21, Now we have used a dense map of microsatellite markers and single nucleotide polymorphisms (SNPs) to find the underlying disease gene. We identified genetic markers in a subregion that showed association with AD, and replicated this finding in a large independent family cohort. The associated region contained a single gene, COL29A1, which encodes a novel collagen. We demonstrate that AD patients lack COL29A1 expression in the outer epidermis, implicating collagen XXIX in epidermal integrity and function. The gene expression pattern of COL29A1 in other organs, including the lung and the gut, suggests that this gene could have a role in a wider spectrum of allergic diseases and may provide a molecular link between AD and respiratory airways disease and food allergies. The gene underlying atopic dermatitis susceptibility has been identified by gene mapping as expressing a novel collagen, whose expression is lacking in the outer epidermis of atopic dermatitis patients.
Collapse
Affiliation(s)
- Cilla Söderhäll
- Department of Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Germany
- Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
| | - Ingo Marenholz
- Department of Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Germany
- Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
| | - Tamara Kerscher
- Department of Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Germany
- Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
| | | | - Jorge Esparza-Gordillo
- Department of Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Germany
- Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
| | - Margitta Worm
- Department of Dermatology and Allergology, Charité Universitätsmedizin Berlin, Germany
| | - Christoph Gruber
- Department of Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Gabriele Mayr
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Mario Albrecht
- Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Klaus Rohde
- Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
| | - Herbert Schulz
- Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
| | - Ulrich Wahn
- Department of Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Norbert Hubner
- Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
| | - Young-Ae Lee
- Department of Pediatric Pneumology and Immunology, Charité Universitätsmedizin Berlin, Germany
- Max-Delbrück-Centrum for Molecular Medicine, Berlin, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Abstract
Integrin adhesion receptors are critical for antigen recognition by T cells and for regulated recirculation and trafficking into and through various tissues in the body. T-cell receptor (TCR) signaling induces rapid increases in integrin function that facilitate T-cell activation by promoting stable contact with antigen-presenting cells and extracellular proteins in the environment. In this review, we outline the molecular mechanisms by which the TCR signals to integrins and present a model that highlights four key events: (i) initiation of proximal TCR signals nucleated by the linker for activated T cells (LAT) adapter protein and involving Itk, phospholipase C-gamma1, Vav1, and Src homology 2 domain-containing leukocyte-specific phosphoprotein of 76 kDa; (ii) transmission of integrin activation signals from the LAT signalosome to integrins by protein kinase (PK) C and the adapter protein, adhesion and degranulation-promoting adapter protein; (iii) assembly of integrin-associated signaling complexes that include PKD, the guanosine triphosphatase Rap1 and its effectors, and talin; and (iv) reorganization of the actin cytoskeleton by WAVE2 and other actin-remodeling proteins. These events coordinate changes in integrin conformation and clustering that result in enhanced integrin functional activity following TCR stimulation.
Collapse
Affiliation(s)
- Brandon J Burbach
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
41
|
Richter M, Ray SJ, Chapman TJ, Austin SJ, Rebhahn J, Mosmann TR, Gardner H, Kotelianski V, deFougerolles AR, Topham DJ. Collagen distribution and expression of collagen-binding alpha1beta1 (VLA-1) and alpha2beta1 (VLA-2) integrins on CD4 and CD8 T cells during influenza infection. THE JOURNAL OF IMMUNOLOGY 2007; 178:4506-16. [PMID: 17372009 DOI: 10.4049/jimmunol.178.7.4506] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most viral infections occur in extralymphoid tissues, yet the mechanisms that regulate lymphocytes in these environments are poorly understood. One feature common to many extralymphoid environments is an abundance of extracellular matrix. We have studied the expression of two members of the beta(1) integrin family of collagen-binding receptors, alpha(1)beta(1) and alpha(2)beta(1) (CD49a, VLA-1 and CD49b, VLA-2, respectively), on CD4 and CD8 T cells during the response to influenza infection in the lung. Flow cytometry showed that whereas T cells infiltrating the lung and airways can express both CD49a and CD49b, CD49a expression was most strongly associated with the CD8+ subset. Conversely, though fewer CD4+ T cells expressed CD49a, most CD4+ cells in the lung tissue or airways expressed CD49b. This reciprocal pattern suggested that CD4 and CD8 T cells might localize differently within the lung tissue and this was supported by immunofluorescent analysis. CD8+ cells tended to localize in close proximity to the collagen IV-rich basement membranes of either the airways or blood vessels, whereas CD4+ cells tended to localize in the collagen I-rich interstitial spaces, with few in the airways. These observations suggest that CD4 T cell interaction with the tissue microenvironment is distinct from CD8 T cells and support the concept that CD4+ T cells in peripheral tissues are regulated differently than the CD8 subset.
Collapse
Affiliation(s)
- Martin Richter
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Boisvert M, Gendron S, Chetoui N, Aoudjit F. Alpha2 beta1 integrin signaling augments T cell receptor-dependent production of interferon-gamma in human T cells. Mol Immunol 2007; 44:3732-40. [PMID: 17521731 DOI: 10.1016/j.molimm.2007.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 03/27/2007] [Accepted: 04/02/2007] [Indexed: 11/24/2022]
Abstract
The mechanisms by which beta1 integrins modulate T cell costimulation are still poorly defined. In this study, we examined the role of collagen-binding integrins alpha1 beta1 and alpha2 beta1 in the regulation of interferon-gamma (IFN-gamma). We demonstrated that ligation of alpha2 beta1 integrin with Collagen type I (Coll I) but not alpha1 beta1 integrin with Collagen IV (Coll IV) significantly augmented T cell receptor (TCR)-dependent expression and production of IFN-gamma by effector T cells. The effect of Coll I was not due to cell adhesion as soluble Coll I also augmented TCR-dependent production of IFN-gamma. Inhibition studies indicated that activation of ERK and JNK MAPKs and PI3K/AKT are necessary for both TCR- and TCR+alpha2 beta1 integrin-dependent IFN-gamma production and that Coll I increases TCR-dependent activation of ERK and JNK MAPKs, and AKT. In addition, our results showed that Coll IV is less potent than Coll I in augmenting TCR-dependent activation of JNK/MAPK, which may explain the differential effect of collagen matrices on TCR-dependent IFN-gamma production. Together, these results indicate that the costimulatory effect of Coll I on IFN-gamma expression is integrated at the levels of ERK and JNK MAPKs and PI3K/AKT signaling pathways and suggest JNK/MAPK as a major signaling pathway of Coll I costimulation. Thus, our study identifies alpha2 beta1 integrin as an important regulatory pathway of IFN-gamma expression and provides novel insights into the signaling mechanisms of integrin costimulation in T cells. As such, this study further supports the functional importance that Coll I interactions may have on the control of T cell-dependent Th1 inflammatory diseases.
Collapse
Affiliation(s)
- Marc Boisvert
- Centre de Recherche en Rhumatologie et Immunologie, Faculté de médecine, Université Laval 2705, Blvd. Laurier, local T1-49, Ste-Foy, Québec, G1V 4G2 Canada
| | | | | | | |
Collapse
|
43
|
Kim YL, Im YJ, Lee YK, Ha NC, Bae YS, Lim SM, Okajima F, Im DS. Albumin functions as an inhibitor of T cell adhesion in vitro. Biochem Biophys Res Commun 2006; 351:953-7. [PMID: 17094941 DOI: 10.1016/j.bbrc.2006.10.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
Jurkat T cells were found to adhere to a tissue culture flask or cover glass when 10% fetal bovine serum (FBS) was withdrawn. However, the cells adhered to extracellular matrix, especially fibronectin, regardless of the presence of FBS. We hypothesized that a substance in FBS inhibits T cells' adherence. Through a purification and identification procedure performed on the substance, bovine serum albumin (BSA) was found to inhibit T cell adhesion. BSA, furthermore, inhibited the adhesion of human primary cultured T cells. These results suggest a novel function for albumin as a T cell adhesion inhibitor.
Collapse
Affiliation(s)
- Yu-Lee Kim
- Laboratory of Pharmacology, College of Pharmacy and Research Institute for Drug Development, Pusan National University, San 30, Jang-Jun-dong, Geum-Jung-gu, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Neto EH, Coelho ALJ, Sampaio ALF, Henriques MDGMO, Marcinkiewicz C, De Freitas MS, Barja-Fidalgo C. Activation of human T lymphocytes via integrin signaling induced by RGD-disintegrins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:176-84. [PMID: 17081636 DOI: 10.1016/j.bbamcr.2006.09.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 08/19/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
Adhesive interactions play important roles in coordinating T cell migration and activation, which are mediated by binding of integrins to RGD motif found on extracellular matrix proteins. Disintegrins, isolated from snake venoms, contain the RGD sequence that confers selectivity to integrin interaction. We have investigated the ability of three RGD-disintegrins, ligands of alpha(5)beta(1) and alpha(v)beta(3), Flavoridin (Fl), Kistrin (Kr) and Echistatin (Ech), in modulating the activation of human T lymphocyte. The disintegrins induced T cell proliferation and CD69 expression. This activation parallels with actin cytoskeleton reorganization and tyrosine phosphorylation. Furthermore, the peptides induced focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K) activation. Finally, RGD-disintegrins were capable of driving NF-kappaB nuclear translocation and c-Fos expression, in a PI3K and ERK1/2 activities dependent manner. This report is the first to show that RGD-disintegrins interact with integrins on human T lymphocyte surface, modulating cell proliferation and activation of specific pathways coupled to integrin receptor.
Collapse
Affiliation(s)
- Edward Helal Neto
- Departamento de Farmacologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Av. 28 de setembro 87 fds, Vila Isabel, Rio de Janeiro, 20551-030, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
Zweers MC, Siewe L, Wickenhauser C, Krieg T, Roers A, Eckes B. Integrin alpha2beta1 deficiency does not affect contact hypersensitivity. Arch Dermatol Res 2006; 298:201-5. [PMID: 16897075 DOI: 10.1007/s00403-006-0688-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 07/07/2006] [Accepted: 07/11/2006] [Indexed: 12/18/2022]
Abstract
Collagens in the extracellular matrix are thought to play an important role in regulating inflammatory responses by affecting cell adhesion and migration. The contact between collagens and cells is established mainly by alpha1beta1, alpha2beta1 and alpha11beta1integrin receptors. Here, we analyzed the contact hypersensitivity (CHS) reaction in mice that were genetically deficient in the collagen receptor alpha2beta1. Integrin alpha2beta1 is widely expressed and has been suggested to play an important role in mediating inflammatory responses. CHS was induced by applying dinitrofluorobenzene to abdominal skin and challenging with the same reagent on ear skin. Macroscopically and histologically, ear swelling in alpha2beta1-deficient mice did not differ from that in wild-type control mice. Immunohistological detection of infiltrated T lymphocytes, neutrophils and mast cells in inflamed ear skin revealed similar numbers in controls and integrin alpha2beta1-deficient animals. Our results suggest that the adhesive functions of integrin alpha2beta1 are dispensable for the CHS response; they may be compensated for by the collagen receptor alpha1beta1 or other collagen receptors.
Collapse
Affiliation(s)
- Manon C Zweers
- Department of Dermatology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Gendron S, Couture J, Aoudjit F. Collagen type I signaling reduces the expression and the function of human receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes. Eur J Immunol 2006; 35:3673-82. [PMID: 16304637 DOI: 10.1002/eji.200535065] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanisms by which beta1 integrins modulate T cell functions are still poorly defined. We have previously reported that signaling via the collagen type I (Coll I) receptor, alpha2beta1 integrin, inhibited FasL expression and protected Jurkat T cells from activation-induced cell death (AICD). In this study, we examined whether Coll I signaling in T cells also modulates the expression of the human receptor activator of nuclear factor-kappaB ligand (RANKL), a recently identified TNF family member which has important functions in osteoclastogenesis, cell survival and apoptosis. Our results show that in both Jurkat T cells and human primary T cells, Coll I signaling significantly reduces activation-induced RANKL expression by 50-60%. We also found that RANKL is not involved in AICD but participates in doxorubicin-induced apoptosis of leukemia T cell lines including Jurkat, CEM and HSB-2. In this respect, Coll I protected leukemia T cell lines from doxorubicin-induced apoptosis by inhibiting doxorubicin-induced RANKL expression. Together, our results suggest that by limiting the production of RANKL, Coll I signaling may contribute to the resistance of leukemia T cells to chemotherapy. Our study also emphasizes the importance Coll I signaling may have in the control of RANKL-associated T cell functions.
Collapse
Affiliation(s)
- Steve Gendron
- Centre de Recherche en Rhumatologie/Immunologie CHUQ, Pavillon CHUL, Faculté de Médecine, Université Laval, Québec, Canada
| | | | | |
Collapse
|
47
|
Cárcamo C, Pardo E, Oyanadel C, Bravo-Zehnder M, Bull P, Cáceres M, Martínez J, Massardo L, Jacobelli S, González A, Soza A. Galectin-8 binds specific β1 integrins and induces polarized spreading highlighted by asymmetric lamellipodia in Jurkat T cells. Exp Cell Res 2006; 312:374-86. [PMID: 16368432 DOI: 10.1016/j.yexcr.2005.10.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 10/01/2005] [Accepted: 10/28/2005] [Indexed: 11/21/2022]
Abstract
Integrin-mediated encounters of T cells with extracellular cues lead these cells to adhere to a variety of substrates and acquire a spread phenotype needed for their tissue incursions. We studied the effects of galectin-8 (Gal-8), a beta-galactoside binding lectin, on Jurkat T cells. Immobilized Gal-8 bound alpha1beta1, alpha3beta1 and alpha5beta1 but not alpha2beta1 and alpha4beta1 and adhered these cells with similar kinetics to immobilized fibronectin (FN). Function-blocking experiments with monoclonal anti-integrin antibodies suggested that alpha5beta1 is the main mediator of cell adhesion to this lectin. Gal-8, but not FN, induced extensive cell spreading frequently leading to a polarized phenotype characterized by an asymmetric lamellipodial protrusion. These morphological changes involved actin cytoskeletal rearrangements controlled by PI3K, Rac-1 and ERK1/2 activity. Gal-8-induced Rac-1 activation and binding to alpha1 and alpha5 integrins have not been described in any other cellular system. Strikingly, Gal-8 was also a strong stimulus on Jurkat cells in suspension, triggering ERK1/2 activation that in most adherent cells is instead dependent on cell attachment. In addition, we found that patients with systemic lupus erythematosus (SLE), a prototypic autoimmune disorder, produce Gal-8 autoantibodies that impede both its binding to integrins and cell adhesion. These are the first function-blocking autoantibodies reported for a member of the galectin family. These results indicate that Gal-8 constitutes a novel extracellular stimulus for T cells, able to bind specific beta1 integrins and to trigger signaling pathways conducive to cell spreading. Gal-8 could modulate a wide range of T cell-driven immune processes that eventually become altered in autoimmune disorders.
Collapse
Affiliation(s)
- Claudia Cárcamo
- Departamento de Inmunología Clínica y Reumatología, Facultad de Medicina, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Reichardt P, Gunzer M. The biophysics of T lymphocyte activation in vitro and in vivo. Results Probl Cell Differ 2006; 43:199-218. [PMID: 17068973 DOI: 10.1007/400_021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
T cell activation is crucial for the development of specific immune reactions. It requires physical contact between T cells and antigen-presenting cells (APC). Since these cells are initially located at distinct positions in the body, they have to migrate and find each other within secondary lymphoid organs. After encountering each other both cells have to maintain a close membrane contact sufficiently long to ensure successful signaling. Thus, there is the necessity to temporarily synchronize the motile behavior of these cells. Initially, it had been proposed that during antigen recognition, T cells receive a stop signal and maintain a stable contact with APC for several hours when an appropriate APC has been encountered. However, direct cell observation via time-lapse microscopy in vitro and in vivo has revealed a different picture. While long contacts can be observed, many interactions appear to be very short and sequential despite efficient signaling. Thus, two concepts addressing the biophysics of T cell activation have emerged. The single encounter model proposes that after a period of dynamic searching, a T cell stops to interact with one appropriately presenting APC until signaling is completed. The serial encounter model suggests that T cells are able to collect a series of short signals by different APC until a critical activation threshold is achieved. Future research needs to clarify the relative importance of short and dynamic versus long-lived T cell-APC encounters for the outcome of T cell activation. Furthermore, a thorough understanding of the molecular events underlying the observed complex motility patterns will make these phenomena amenable for intervention, which might result in the identification of new types of immune modulating drugs.
Collapse
Affiliation(s)
- Peter Reichardt
- Junior Research Group of Immunodynamics, German Research Centre for Biotechnology (GBF), Braunschweig, Germany
| | | |
Collapse
|
49
|
Abstract
Cellular interactions in lymphoid organs initiate the immune response and determine its outcome. Using two-photon microscopy in the lymph node, several groups have begun to investigate the motility characteristics and interactions among T lymphocytes, B lymphocytes, and dendritic cells (DC) in lymphoid organs. In the first "close encounter", T cells of a particular antigen specificity interact with antigen-bearing dendritic cells and begin to activate. Activation of both CD4+ and CD8+ T cells evolves through several stages; from transient interactions to stable clusters and later to dissociation and proliferation of T cells (clonal expansion). The second "close encounter" requires that antigen-engaged B cells become accessible to T cells by directed migration to the edge of the follicle. T cells and B cells then pair up and waltz together for an extended period, while helper T cells provide signals for B cells to differentiate into plasma cells. In this topical review, we compare the activation choreography of CD4+ T cells interacting first with dendritic cells, and then with B cells, during initiation of the humoral immune response.
Collapse
Affiliation(s)
- Michael D Cahalan
- Department of Physiology and Biophysics and Center for Immunology, University of California, Irvine, CA 92697-4561, USA.
| | | |
Collapse
|
50
|
Brightling CE, Ammit AJ, Kaur D, Black JL, Wardlaw AJ, Hughes JM, Bradding P. The CXCL10/CXCR3 Axis Mediates Human Lung Mast Cell Migration to Asthmatic Airway Smooth Muscle. Am J Respir Crit Care Med 2005; 171:1103-8. [PMID: 15879427 DOI: 10.1164/rccm.200409-1220oc] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mast cell microlocalization within the airway smooth muscle bundle is an important determinant of the asthmatic phenotype. We hypothesized that mast cells migrate toward airway smooth muscle in response to smooth muscle-derived chemokines. In this study, we investigated (1) chemokine receptor expression by mast cells in the airway smooth muscle bundle in bronchial biopsies from subjects with asthma using immunohistology, (2) the concentration of chemokines in supernatants from stimulated ex vivo airway smooth muscle cells from subjects with and without asthma measured by enzyme-linked immunosorbent assay, and (3) mast cell migration toward these supernatants using chemotaxis assays. We found that CXCR3 was the most abundantly expressed chemokine receptor on human lung mast cells in the airway smooth muscle in asthma and was expressed by 100% of these mast cells compared with 47% of mast cells in the submucosa. Human lung mast cell migration was induced by airway smooth muscle cultures predominantly through activation of CXCR3. Most importantly, CXCL10 was expressed preferentially by asthmatic airway smooth muscle in bronchial biopsies and ex vivo cells compared with those from healthy control subjects. These results suggest that inhibition of the CXCL10/CXCR3 axis offers a novel target for the treatment of asthma.
Collapse
Affiliation(s)
- Christopher E Brightling
- Institute for Lung Health, Department of Infection, Inflammation and Immunity, Leicester-Warwick Medical School and University Hospitals of Leicester, Leicester, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|