1
|
van Vliet AA, van den Hout MGCN, Steenmans D, Duru AD, Georgoudaki AM, de Gruijl TD, van IJcken WFJ, Spanholtz J, Raimo M. Bulk and single-cell transcriptomics identify gene signatures of stem cell-derived NK cell donors with superior cytolytic activity. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200870. [PMID: 39346765 PMCID: PMC11426129 DOI: 10.1016/j.omton.2024.200870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/14/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Allogeneic natural killer (NK) cell therapies are a valuable treatment option for cancer, given their remarkable safety and favorable efficacy profile. Although the use of allogeneic donors allows for off-the-shelf and timely patient treatment, intrinsic interindividual differences put clinical efficacy at risk. The identification of donors with superior anti-tumor activity is essential to ensure the success of adoptive NK cell therapies. Here, we investigated the heterogeneity of 10 umbilical cord blood stem cell-derived NK cell batches. First, we evaluated the donors' cytotoxic potential against tumor cell lines from solid and hematological cancer indications, to distinguish a group of superior, "excellent" killers (4/10), compared with "good" killers (6/10). Next, bulk and single-cell RNA sequencing, performed at different stages of NK differentiation, revealed distinct transcriptomic features of the two groups. Excellent donors showed an enrichment in cytotoxicity pathways and a depletion of myeloid traits, linked to the presence of a larger population of effector-like NK cells early on during differentiation. Consequently, we defined a multi-factorial gene expression signature able to predict the donors' cytotoxic potential. Our study contributes to the identification of key traits of superior NK cell batches, supporting the development of efficacious NK therapeutics and the achievement of durable anti-tumor responses.
Collapse
Affiliation(s)
- Amanda A van Vliet
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Mirjam G C N van den Hout
- Erasmus MC Center for Biomics and Department of Cell Biology, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | | | - Adil D Duru
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | | | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Wilfred F J van IJcken
- Erasmus MC Center for Biomics and Department of Cell Biology, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jan Spanholtz
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Monica Raimo
- Glycostem Therapeutics, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| |
Collapse
|
2
|
Covre LP, Fantecelle CH, Queiroz AM, Fardin JM, Miranda PH, Henson S, da Fonseca-Martins AM, de Matos Guedes HL, Mosser D, Falqueto A, Akbar A, Gomes DCO. NKG2C+CD57+ natural killer cells with senescent features are induced during cutaneous leishmaniasis and accumulate in patients with lesional healing impairment. Clin Exp Immunol 2024; 217:279-290. [PMID: 38700066 PMCID: PMC11310703 DOI: 10.1093/cei/uxae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024] Open
Abstract
Natural killer (NK) cells include different subsets with diverse effector capacities that are poorly understood in the context of parasitic diseases. Here, we investigated inhibitory and activating receptor expression on NK cells in patients with cutaneous leishmaniasis (CL) and explored their phenotypic and functional heterogeneity based on CD57 and NKG2C expression. The expression of CD57 identified NK cells that accumulated in CL patients and exhibited features of senescence. The CD57+ cells exhibited heightened levels of the activating receptor NKG2C and diminished expression of the inhibitory receptor NKG2A. RNA sequencing analyses based on NKG2C transcriptome have revealed two distinct profiles among CL patients associated with cytotoxic and functional genes. The CD57+NKG2C+ subset accumulated in the blood of patients and presented conspicuous features of senescence, including the expression of markers such as p16, yH2ax, and p38, as well as reduced proliferative capacity. In addition, they positively correlated with the number of days until lesion resolution. This study provides a broad understanding of the NK cell biology during Leishmania infection and reinforces the role of senescent cells in the adverse clinical outcomes of CL.
Collapse
Affiliation(s)
- Luciana Polaco Covre
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Medicine, University College London, London, UK
| | | | | | - Julia Miranda Fardin
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
| | | | - Sian Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Herbert Leonel de Matos Guedes
- Instituto de Microbiologia Professor Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - David Mosser
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Aloisio Falqueto
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Brazil
| | - Arne Akbar
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Claudio Oliveira Gomes
- Núcleo de Doenças Infecciosas, Universidade Federal do Espírito Santo, Vitória, Brazil
- Division of Medicine, University College London, London, UK
- Núcleo de Biotecnologia, Universidade Federal do Espírito Santo, Vitória, Brazil
| |
Collapse
|
3
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Millan AJ, Allain V, Nayak I, Aguilar OA, Arakawa-Hoyt JS, Ureno G, Rothrock AG, Shemesh A, Eyquem J, Das J, Lanier LL. Spleen Tyrosine Kinase (SYK) negatively regulates ITAM-mediated human NK cell signaling and CD19-CAR NK cell efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602676. [PMID: 39026749 PMCID: PMC11257556 DOI: 10.1101/2024.07.09.602676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
NK cells express activating receptors that signal through ITAM-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction ofCa 2 + influx. While all immature and mature human NK cells co-express SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robustCa + + influx after cross-linking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 but mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished TCR-inducedCa 2 + flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting CAR and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.
Collapse
Affiliation(s)
- Alberto J. Millan
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Vincent Allain
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Biomedical Sciences Graduate Program, Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus OH
| | - Oscar A. Aguilar
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Gabriella Ureno
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Allison Grace Rothrock
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Avishai Shemesh
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Justin Eyquem
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Biomedical Sciences Graduate Program, Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus OH
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Deborah EA, Nabekura T, Shibuya K, Shibuya A. THEMIS2 Impairs Antitumor Activity of NK Cells by Suppressing Activating NK Receptor Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1819-1828. [PMID: 38619282 DOI: 10.4049/jimmunol.2300771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
NK cells are cytotoxic innate lymphocytes that play a critical role in antitumor immunity. NK cells recognize target cells by using a repertoire of activating NK receptors and exert the effector functions. Although the magnitude of activation signals through activating NK receptors controls NK cell function, it has not been fully understood how these activating signals are modulated in NK cells. In this study, we found that a scaffold protein, THEMIS2, inhibits activating NK receptor signaling. Overexpression of THEMIS2 attenuated the effector function of human NK cells, whereas knockdown of THEMIS2 enhanced it. Mechanistically, THEMIS2 binds to GRB2 and phosphorylated SHP-1 and SHP-2 at the proximity of activating NK receptors DNAM-1 and NKG2D. Knockdown of THEMIS2 in primary human NK cells promoted the effector functions. Furthermore, Themis2-deficient mice showed low metastatic burden in an NK cell-dependent manner. These findings demonstrate that THEMIS2 has an inhibitory role in the antitumor activity of NK cells, suggesting that THEMIS2 might be a potential therapeutic target for NK cell-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Elfira Amalia Deborah
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Doctoral Program in Medical Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuko Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Shibuya
- Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
6
|
Cubitt CC, Wong P, Dorando HK, Foltz JA, Tran J, Marsala L, Marin ND, Foster M, Schappe T, Fatima H, Becker-Hapak M, Zhou AY, Hwang K, Jacobs MT, Russler-Germain DA, Mace EM, Berrien-Elliott MM, Payton JE, Fehniger TA. Induced CD8α identifies human NK cells with enhanced proliferative fitness and modulates NK cell activation. J Clin Invest 2024; 134:e173602. [PMID: 38805302 PMCID: PMC11291271 DOI: 10.1172/jci173602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
The surface receptor CD8α is present on 20%-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α- (persistent CD8α-). These iCD8α+ cells originated from an IL-15Rβhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell-activating receptors.
Collapse
Affiliation(s)
| | - Pamela Wong
- Division of Oncology, Siteman Cancer Center, and
| | - Hannah K. Dorando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | - Mark Foster
- Division of Oncology, Siteman Cancer Center, and
| | | | - Hijab Fatima
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | | | | | | | | | - Emily M. Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | | | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
7
|
Mehanna N, Pradhan A, Kaur R, Kontopoulos T, Rosati B, Carlson D, Cheung NK, Xu H, Bean J, Hsu K, Le Luduec JB, Vorkas CK. Loss of circulating CD8α + NK cells during human Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.588542. [PMID: 38659858 PMCID: PMC11042275 DOI: 10.1101/2024.04.16.588542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Natural Killer (NK) cells can recognize and kill Mtb-infected cells in vitro, however their role after natural human exposure has not been well-studied. To identify Mtb-responsive NK cell populations, we analyzed the peripheral blood of healthy household contacts of active Tuberculosis (TB) cases and source community donors in an endemic region of Port-au-Prince, Haiti by flow cytometry. We observed higher CD8α expression on NK cells in putative resistors (IGRA- contacts) with a progressive loss of these circulating cells during household-associated latent infection and disease. In vitro assays and CITE-seq analysis of CD8α+ NK cells demonstrated enhanced maturity, cytotoxic gene expression, and response to cytokine stimulation relative to CD8α- NK cells. CD8α+ NK cells also displayed dynamic surface expression dependent on MHC I in contrast to conventional CD8+ T cells. Together, these results support a specialized role for CD8α+ NK cell populations during Mtb infection correlating with disease resistance.
Collapse
Affiliation(s)
- Nezar Mehanna
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Atul Pradhan
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Rimanpreet Kaur
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Theodota Kontopoulos
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Barbara Rosati
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - David Carlson
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
| | - Nai-Kong Cheung
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Hong Xu
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - James Bean
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Katherine Hsu
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jean-Benoit Le Luduec
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Charles Kyriakos Vorkas
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, 11794
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, 11794
| |
Collapse
|
8
|
Karyu H, Niki T, Sorimachi Y, Hata S, Shimabukuro-Demoto S, Hirabayashi T, Mukai K, Kasahara K, Takubo K, Goda N, Honke K, Taguchi T, Sorimachi H, Toyama-Sorimachi N. Collaboration between a cis-interacting natural killer cell receptor and membrane sphingolipid is critical for the phagocyte function. Front Immunol 2024; 15:1401294. [PMID: 38720899 PMCID: PMC11076679 DOI: 10.3389/fimmu.2024.1401294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Inhibitory natural killer (NK) cell receptors recognize MHC class I (MHC-I) in trans on target cells and suppress cytotoxicity. Some NK cell receptors recognize MHC-I in cis, but the role of this interaction is uncertain. Ly49Q, an atypical Ly49 receptor expressed in non-NK cells, binds MHC-I in cis and mediates chemotaxis of neutrophils and type I interferon production by plasmacytoid dendritic cells. We identified a lipid-binding motif in the juxtamembrane region of Ly49Q and found that Ly49Q organized functional membrane domains comprising sphingolipids via sulfatide binding. Ly49Q recruited actin-remodeling molecules to an immunoreceptor tyrosine-based inhibitory motif, which enabled the sphingolipid-enriched membrane domain to mediate complicated actin remodeling at the lamellipodia and phagosome membranes during phagocytosis. Thus, Ly49Q facilitates integrative regulation of proteins and lipid species to construct a cell type-specific membrane platform. Other Ly49 members possess lipid binding motifs; therefore, membrane platform organization may be a primary role of some NK cell receptors.
Collapse
Affiliation(s)
- Hitomi Karyu
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Takahiro Niki
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuriko Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Shoji Hata
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Shiho Shimabukuro-Demoto
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| | - Tetsuya Hirabayashi
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kojiro Mukai
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kohji Kasahara
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Keiyo Takubo
- Department of Stem Cell Biology, Research Institute, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Koichi Honke
- Department of Biochemistry and Kochi System Glycobiology Center, Kochi University Medical School, Kochi, Japan
| | - Tomohiko Taguchi
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiroyuki Sorimachi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan
| |
Collapse
|
9
|
Dufva O, Gandolfi S, Huuhtanen J, Dashevsky O, Duàn H, Saeed K, Klievink J, Nygren P, Bouhlal J, Lahtela J, Näätänen A, Ghimire BR, Hannunen T, Ellonen P, Lähteenmäki H, Rumm P, Theodoropoulos J, Laajala E, Härkönen J, Pölönen P, Heinäniemi M, Hollmén M, Yamano S, Shirasaki R, Barbie DA, Roth JA, Romee R, Sheffer M, Lähdesmäki H, Lee DA, De Matos Simoes R, Kankainen M, Mitsiades CS, Mustjoki S. Single-cell functional genomics reveals determinants of sensitivity and resistance to natural killer cells in blood cancers. Immunity 2023; 56:2816-2835.e13. [PMID: 38091953 DOI: 10.1016/j.immuni.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cancer cells can evade natural killer (NK) cell activity, thereby limiting anti-tumor immunity. To reveal genetic determinants of susceptibility to NK cell activity, we examined interacting NK cells and blood cancer cells using single-cell and genome-scale functional genomics screens. Interaction of NK and cancer cells induced distinct activation and type I interferon (IFN) states in both cell types depending on the cancer cell lineage and molecular phenotype, ranging from more sensitive myeloid to less sensitive B-lymphoid cancers. CRISPR screens in cancer cells uncovered genes regulating sensitivity and resistance to NK cell-mediated killing, including adhesion-related glycoproteins, protein fucosylation genes, and transcriptional regulators, in addition to confirming the importance of antigen presentation and death receptor signaling pathways. CRISPR screens with a single-cell transcriptomic readout provided insight into underlying mechanisms, including regulation of IFN-γ signaling in cancer cells and NK cell activation states. Our findings highlight the diversity of mechanisms influencing NK cell susceptibility across different cancers and provide a resource for NK cell-based therapies.
Collapse
Affiliation(s)
- Olli Dufva
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Sara Gandolfi
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jani Huuhtanen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Olga Dashevsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hanna Duàn
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Khalid Saeed
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jay Klievink
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Petra Nygren
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jonas Bouhlal
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Anna Näätänen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Bishwa R Ghimire
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Hannunen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Hanna Lähteenmäki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Pauliina Rumm
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Jason Theodoropoulos
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland
| | - Essi Laajala
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland
| | - Jouni Härkönen
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Merja Heinäniemi
- Faculty of Health Sciences, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Maija Hollmén
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
| | - Shizuka Yamano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryosuke Shirasaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michal Sheffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harri Lähdesmäki
- Department of Computer Science, Aalto University, 02150 Espoo, Finland
| | - Dean A Lee
- Hematology/Oncology/BMT, Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ricardo De Matos Simoes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matti Kankainen
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusima (HUS), 00290 Helsinki, Finland
| | - Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, 00290 Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, 00014 Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, 00290 Helsinki, Finland.
| |
Collapse
|
10
|
Mansour R, El-Hassan R, El-Orfali Y, Saidu A, Al-Kalamouni H, Chen Q, Benamar M, Dbaibo G, Hanna-Wakim R, Chatila TA, Massaad MJ. The opposing effects of two gene defects in STX11 and SLP76 on the disease in a patient with an inborn error of immunity. J Allergy Clin Immunol 2023; 152:1597-1606. [PMID: 37595757 DOI: 10.1016/j.jaci.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Inborn errors of immunity are mostly monogenic. However, disease phenotype and outcome may be modified by the coexistence of a second gene defect. OBJECTIVE We sought to identify the genetic basis of the disease in a patient who experienced bleeding episodes, pancytopenia, hepatosplenomegaly, and recurrent pneumonia that resulted in death. METHODS Genetic analysis was done using next-generation sequencing. Protein expression and phosphorylation were determined by immunoblotting. T-cell proliferation and F-actin levels were studied by flow cytometry. RESULTS The patient harbored 2 homozygous deletions in STX11 (c.369_370del, c.374_376del; p.V124fs60∗) previously associated with familial hemophagocytic lymphohistiocytosis and a novel homozygous missense variant in SLP76 (c.767C>T; p.T256I) that resulted in an approximately 85% decrease in SLP76 levels and absent T-cell proliferation. The patient's heterozygous family members showed an approximately 50% decrease in SLP76 levels but normal immune function. SLP76-deficient J14 Jurkat cells did not express SLP76 and had decreased extracellular signal-regulated kinase signaling, basal F-actin levels, and polymerization following T-cell receptor stimulation. Reconstitution of J14 cells with T256I mutant SLP76 resulted in low protein expression and abnormal extracellular signal-regulated kinase phosphorylation and F-actin polymerization after T-cell receptor activation compared with normal expression and J14 function when wild-type SLP76 was introduced. CONCLUSIONS The hypomorphic mutation in SLP76 tones down the hyperinflammation due to STX11 deletion, resulting in a combined immunodeficiency that overshadows the hemophagocytic lymphohistiocytosis phenotype. To our knowledge, this study represents the first report of the opposing effects of 2 gene defects on the disease in a patient with an inborn error of immunity.
Collapse
Affiliation(s)
- Rana Mansour
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rana El-Hassan
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Youmna El-Orfali
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Adam Saidu
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Habib Al-Kalamouni
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Qian Chen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Ghassan Dbaibo
- Department of Biochemistry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon
| | - Rima Hanna-Wakim
- Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Michel J Massaad
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Division of Pediatric Infectious Diseases, Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Center for Infectious Diseases Research, American University of Beirut, Beirut, Lebanon; Research Center of Excellence in Immunity and Infections, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
11
|
Morrison D, Pinpin C, Lee A, Sison C, Chory A, Gregersen PK, Forrest G, Kirshblum S, Harkema SJ, Boakye M, Harrop JS, Bryce TN, Schwab JM, Kwon BK, Stein AB, Bank MA, Bloom O. Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis. J Neurotrauma 2023; 40:2621-2637. [PMID: 37221869 PMCID: PMC10722895 DOI: 10.1089/neu.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Abstract Individuals with SCI are severely affected by immune system changes, resulting in increased risk of infections and persistent systemic inflammation. While recent data support that immunological changes after SCI differ in the acute and chronic phases of living with SCI, only limited immunological phenotyping in humans is available. To characterize dynamic molecular and cellular immune phenotypes over the first year, we assess RNA (bulk-RNA sequencing), protein, and flow cytometry (FACS) profiles of blood samples from 12 individuals with SCI at 0-3 days and at 3, 6, and 12 months post injury (MPI) compared to 23 uninjured individuals (controls). We identified 967 differentially expressed (DE) genes in individuals with SCI (FDR <0.001) compared to controls. Within the first 6 MPI we detected a reduced expression of NK cell genes, consistent with reduced frequencies of CD56bright, CD56dim NK cells present at 12 MPI. Over 6MPI, we observed increased and prolonged expression of genes associated with inflammation (e.g. HMGB1, Toll-like receptor signaling) and expanded frequencies of monocytes acutely. Canonical T-cell related DE genes (e.g. FOXP3, TCF7, CD4) were upregulated during the first 6 MPI and increased frequencies of activated T cells at 3-12 MPI. Neurological injury severity was reflected in distinct whole blood gene expression profiles at any time after SCI, verifying a persistent 'neurogenic' imprint. Overall, 2876 DE genes emerge when comparing motor complete to motor incomplete SCI (ANOVA, FDR <0.05), including those related to neutrophils, inflammation, and infection. In summary, we identify a dynamic immunological phenotype in humans, including molecular and cellular changes which may provide potential targets to reduce inflammation, improve immunity, or serve as candidate biomarkers of injury severity.
Collapse
Affiliation(s)
- Debra Morrison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Camille Pinpin
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Annette Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Cristina Sison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Ashley Chory
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Peter K. Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Gail Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Kirshblum
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation. West Orange, New Jersey, USA
| | - Susan J. Harkema
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - James S. Harrop
- Department of Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Jan M. Schwab
- The Belford Center for Spinal Cord Injury, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neurology, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam B. Stein
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Matthew A. Bank
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
- North Shore University Hospital, Manhasset, New York, USA
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| |
Collapse
|
12
|
Ijaz A, Broere F, Rutten VPMG, Jansen CA, Veldhuizen EJA. Perforin and granzyme A release as novel tool to measure NK cell activation in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105047. [PMID: 37625470 DOI: 10.1016/j.dci.2023.105047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that are present in the circulation but also in many organs including spleen and gut, where they play an important role in the defense against infections. Interaction of NK cells with target cells leads to degranulation, which results in the release of perforin and granzymes in the direct vicinity of the target cell. Chicken NK cells have many characteristics similar to their mammalian counterparts and based on similarities with studies on human NK cells, surface expression of CD107 was always presumed to correlate with granule release. However, proof of this degranulation or in fact the actual presence of perforin (PFN) and granzyme A (GrA) in chicken NK cells and their release upon activation is lacking. Therefore, the purpose of the present study was to determine the presence of perforin and granzyme A in primary chicken NK cells and to measure their release upon degranulation, as an additional tool to study the function of chicken NK cells. Using human specific antibodies against PFN and GrA in fluorescent and confocal microscopy resulted in staining in chicken NK cells. The presence of PFN and GrA was also confirmed by Western blot analyses and its gene expression by PCR. Stimulation of NK cells with the pectin SPE6 followed by flow cytometry resulted in reduced levels of intracellular PFN and GrA, suggesting release of PFN and GrA. Expression of PFN and GrA reversely correlated with increased surface expression of the lysosomal marker CD107. Finally it was shown that the supernatant of activated NK cells, containing the NK cell granule content including PFN and GrA, was able to kill Escherichia coli. This study correlates PFN and GrA release to activation of chicken NK cells and establishes an additional tool to study activity of cytotoxic lymphocytes in chickens.
Collapse
Affiliation(s)
- Adil Ijaz
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Femke Broere
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Victor P M G Rutten
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Edwin J A Veldhuizen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Nabekura T, Deborah EA, Tahara S, Arai Y, Love PE, Kako K, Fukamizu A, Muratani M, Shibuya A. Themis2 regulates natural killer cell memory function and formation. Nat Commun 2023; 14:7200. [PMID: 37938555 PMCID: PMC10632368 DOI: 10.1038/s41467-023-42578-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Immunological memory is a hallmark of the adaptive immune system. Although natural killer (NK) cells are innate immune cells important for the immediate host defence, they can differentiate into memory NK cells. The molecular mechanisms controlling this differentiation are yet to be fully elucidated. Here we identify the scaffold protein Themis2 as a critical regulator of memory NK cell differentiation and function. Themis2-deficient NK cells expressing Ly49H, an activating NK receptor for the mouse cytomegalovirus (MCMV) antigen m157, show enhanced differentiation into memory NK cells and augment host protection against MCMV infection. Themis2 inhibits the effector function of NK cells after stimulation of Ly49H and multiple activating NK receptors, though not specific to memory NK cells. Mechanistically, Themis2 suppresses Ly49H signalling by attenuating ZAP70/Syk phosphorylation, and it also translocates to the nucleus, where it promotes Zfp740-mediated repression to regulate the persistence of memory NK cells. Zfp740 deficiency increases the number of memory NK cells and enhances the effector function of memory NK cells, which further supports the relevance of the Themis2-Zfp740 pathway. In conclusion, our study shows that Themis2 quantitatively and qualitatively regulates NK cell memory formation.
Collapse
Affiliation(s)
- Tsukasa Nabekura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| | - Elfira Amalia Deborah
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Saeko Tahara
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuya Arai
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Bioinformatics Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Biological Sciences, School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Paul E Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Koichiro Kako
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Shibuya
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8575, Japan.
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- R&D Center for Innovative Drug Discovery, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
14
|
Volkov DV, Stepanova VM, Rubtsov YP, Stepanov AV, Gabibov AG. Protein Tyrosine Phosphatase CD45 As an Immunity Regulator and a Potential Effector of CAR-T therapy. Acta Naturae 2023; 15:17-26. [PMID: 37908772 PMCID: PMC10615191 DOI: 10.32607/actanaturae.25438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 11/02/2023] Open
Abstract
The leukocyte common antigen CD45 is a receptor tyrosine phosphatase and one of the most prevalent antigens found on the surface of blood cells. CD45 plays a crucial role in the initial stages of signal transmission from receptors of various immune cell types. Immunodeficiency, autoimmune disorders, and oncological diseases are frequently caused by gene expression disorders and imbalances in CD45 isoforms. Despite extensive research into the structure and functions of CD45, the molecular mechanisms behind its role in transmitting signals from T-cell receptors and chimeric antigen receptors remain not fully understood. It is of utmost importance to comprehend the structural features of CD45 and its function in regulating immune system cell activation to study oncological diseases and the impact of CD45 on lymphocytes and T cells modified by chimeric antigen receptors.
Collapse
Affiliation(s)
- D. V. Volkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - V. M. Stepanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - Y. P. Rubtsov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. V. Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| | - A. G. Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russian Federation
| |
Collapse
|
15
|
Wu K, Liu YY, Shao S, Song W, Chen XH, Dong YT, Zhang YM. The microglial innate immune receptors TREM-1 and TREM-2 in the anterior cingulate cortex (ACC) drive visceral hypersensitivity and depressive-like behaviors following DSS-induced colitis. Brain Behav Immun 2023:S0889-1591(23)00141-1. [PMID: 37286175 DOI: 10.1016/j.bbi.2023.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition with a high recurrence rate. To date, the clinical treatment of IBD mainly focuses on inflammation and gastrointestinal symptoms while ignoring the accompanying visceral pain, anxiety, depression, and other emotional symptoms. Evidence is accumulating that bi-directional communication between the gut and the brain is indispensable in the pathophysiology of IBD and its comorbidities. Increasing efforts have been focused on elucidating the central immune mechanisms in visceral hypersensitivity and depression following colitis. The triggering receptors expressed on myeloid cells-1/2 (TREM-1/2) are newly identified receptors that can be expressed on microglia. In particular, TREM-1 acts as an immune and inflammatory response amplifier, while TREM-2 may function as a molecule with a putative antagonist role to TREM-1. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we found that peripheral inflammation induced microglial and glutamatergic neuronal activation in the anterior cingulate cortex (ACC). Microglial ablation mitigated visceral hypersensitivity in the inflammation phase rather than in the remission phase, subsequently preventing the emergence of depressive-like behaviors in the remission phase. Moreover, a further mechanistic study revealed that overexpression of TREM-1 and TREM-2 remarkably aggravated DSS-induced neuropathology. The improved outcome was achieved by modifying the balance of TREM-1 and TREM-2 via genetic and pharmacological means. Specifically, a deficiency of TREM-1 attenuated visceral hyperpathia in the inflammatory phase, and a TREM-2 deficiency improved depression-like symptoms in the remission phase. Taken together, our findings provide insights into mechanism-based therapy for inflammatory disorders and establish that microglial innate immune receptors TREM-1 and TREM-2 may represent a therapeutic target for the treatment of pain and psychological comorbidities associated with chronic inflammatory diseases by modulating neuroinflammatory responses.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Wei Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
16
|
Morales R, Bolarín JM, Muro M, Legaz I. Presence of KIR2DL2/S2, KIR2DL5, and KIR3DL1 Molecules in Liver Transplant Recipients with Alcoholic Cirrhosis Could Be Implicated in Death by Graft Failure. Diagnostics (Basel) 2023; 13:diagnostics13071217. [PMID: 37046435 PMCID: PMC10093628 DOI: 10.3390/diagnostics13071217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Background: The second-most frequent diagnosis among patients receiving liver transplants (LTs) is alcoholic liver disease. The multifactorial pathophysiology of alcoholic liver disease depends on the innate immune system and the inflammatory cascade. According to recent studies on these receptors, killer-cell immunoglobulin-like receptors (KIRs) may be involved in sepsis, liver rejection, and virus relapse. We aimed to investigate the impact of preclinical issues like ascites and encephalopathy and KIR genetic traits on death from sepsis, multiorgan failure (MF), and graft failure (GF) in AC patients undergoing LTs. Methods: We retrospectively reviewed 164 consecutive and deceased Caucasian AC patients who underwent LTs. Pre-transplant complications, cause of death, and patient survival were analyzed. Genomic DNA was taken from peripheral blood, and PCR-SSO was used for genotyping KIR. Results: Compared to GF patients, there was a statistically significant increase in the frequency of KIR2DL2+ (75.8% vs. 51.2%; p = 0.047). Another increase in frequency was also observed in KIR2DS2+ in sepsis compared to the GF group (51.2% vs. 43.7%; p = 0.018). In patients who passed away from MF, a decrease in KIR2DL5+ was observed in AC patients with and without encephalopathy (p = 0.018). The frequency of KIR3DL1+ in the AC patients significantly increased the mortality from sepsis (p = 0.045), which was confirmed by multivariate logistic regression. The frequency of KIR3DL1+ in the AC patients significantly increased the mortality from sepsis (p = 0.012) and was confirmed by multivariate logistic regression. KIR2DS1+ and KIR2DS4+ showed increased mortality due to GF compared to patients without these genes (p = 0.011 and 0.012, respectively). However, this fact was confirmed only for KIR2DS1+ by multivariate logistic Cox regression. Conclusions: The presence of the KIR2DL2/S2+, KIR2DL5+, and KIR3DL1+ genes increases the frequency of death from multiple organ failure or graft failure. Our findings highlight the AC patient’s vulnerability to a LT during hospitalization. Following the transplant and outside of it, we adopt essential preventive measures to create a routine healthcare screening to enhance and modify treatments to increase survival.
Collapse
Affiliation(s)
- Raquel Morales
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - José Miguel Bolarín
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
| | - Manuel Muro
- Immunology Service, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA), 30120 Murcia, Spain
- Correspondence: (M.M.); (I.L.); Tel.: +34-968-369-599 (M.M.); +34-868-883-957 (I.L.); Fax: +34-968-349-678 (M.M.); +34-868-834-307 (I.L.)
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum”, Faculty of Medicine, University of Murcia, 30100 Murcia, Spain
- Correspondence: (M.M.); (I.L.); Tel.: +34-968-369-599 (M.M.); +34-868-883-957 (I.L.); Fax: +34-968-349-678 (M.M.); +34-868-834-307 (I.L.)
| |
Collapse
|
17
|
Anderko RR, Mailliard RB. Mapping the interplay between NK cells and HIV: therapeutic implications. J Leukoc Biol 2023; 113:109-138. [PMID: 36822173 PMCID: PMC10043732 DOI: 10.1093/jleuko/qiac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Although highly effective at durably suppressing plasma HIV-1 viremia, combination antiretroviral therapy (ART) treatment regimens do not eradicate the virus, which persists in long-lived CD4+ T cells. This latent viral reservoir serves as a source of plasma viral rebound following treatment interruption, thus requiring lifelong adherence to ART. Additionally, challenges remain related not only to access to therapy but also to a higher prevalence of comorbidities with an inflammatory etiology in treated HIV-1+ individuals, underscoring the need to explore therapeutic alternatives that achieve sustained virologic remission in the absence of ART. Natural killer (NK) cells are uniquely positioned to positively impact antiviral immunity, in part due to the pleiotropic nature of their effector functions, including the acquisition of memory-like features, and, therefore, hold great promise for transforming HIV-1 therapeutic modalities. In addition to defining the ability of NK cells to contribute to HIV-1 control, this review provides a basic immunologic understanding of the impact of HIV-1 infection and ART on the phenotypic and functional character of NK cells. We further delineate the qualities of "memory" NK cell populations, as well as the impact of HCMV on their induction and subsequent expansion in HIV-1 infection. We conclude by highlighting promising avenues for optimizing NK cell responses to improve HIV-1 control and effect a functional cure, including blockade of inhibitory NK receptors, TLR agonists to promote latency reversal and NK cell activation, CAR NK cells, BiKEs/TriKEs, and the role of HIV-1-specific bNAbs in NK cell-mediated ADCC activity against HIV-1-infected cells.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, United States
| |
Collapse
|
18
|
The Role of Platelets in the Pathogenesis and Pathophysiology of Adenomyosis. J Clin Med 2023; 12:jcm12030842. [PMID: 36769489 PMCID: PMC9918158 DOI: 10.3390/jcm12030842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Widely viewed as an enigmatic disease, adenomyosis is a common gynecological disease with bewildering pathogenesis and pathophysiology. One defining hallmark of adenomyotic lesions is cyclic bleeding as in eutopic endometrium, yet bleeding is a quintessential trademark of tissue injury, which is invariably followed by tissue repair. Consequently, adenomyotic lesions resemble wounds. Following each bleeding episode, adenomyotic lesions undergo tissue repair, and, as such, platelets are the first responder that heralds the subsequent tissue repair. This repeated tissue injury and repair (ReTIAR) would elicit several key molecular events crucial for lesional progression, eventually leading to lesional fibrosis. Platelets interact with adenomyotic cells and actively participate in these events, promoting the lesional progression and fibrogenesis. Lesional fibrosis may also be propagated into their neighboring endometrial-myometrial interface and then to eutopic endometrium, impairing endometrial repair and causing heavy menstrual bleeding. Moreover, lesional progression may result in hyperinnervation and an enlarged uterus. In this review, the role of platelets in the pathogenesis, progression, and pathophysiology is reviewed, along with the therapeutic implication. In addition, I shall demonstrate how the notion of ReTIAR provides a much needed framework to tether to and piece together many seemingly unrelated findings and how it helps to make useful predictions.
Collapse
|
19
|
Refurbishment of NK cell effector functions through their receptors by depleting the activity of nTreg cells in Dalton’s Lymphoma-induced tumor microenvironment: an in vitro and in vivo study. Cancer Immunol Immunother 2022; 72:1429-1444. [DOI: 10.1007/s00262-022-03339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
|
20
|
Sabag B, Levy M, Kivelevitz J, Dashevsky N, Ben-Shmuel A, Puthenveetil A, Awwad F, Barda-Saad M. Actin Retrograde Flow Regulated by the Wiskott–Aldrich Syndrome Protein Drives the Natural Killer Cell Response. Cancers (Basel) 2022; 14:cancers14153756. [PMID: 35954420 PMCID: PMC9367451 DOI: 10.3390/cancers14153756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding the crosstalk between natural killer (NK) cells and the tumor microenvironment (TME) has enhanced the potential of exploiting the interplay between activation and inhibition of NK cells for immunotherapy. This interaction is crucial for understanding how tumor cells escape NK cell immune surveillance. NK cell dysfunction is regulated by two molecular mechanisms, downregulated activating receptor ligand expression on the tumor cells, and upregulated inhibitory signals delivered to NK cells. Recent studies demonstrated the role of mechanotransduction in modulating NK cell responses in the TME. The immunological synapse represents a functional interface between the NK cell and its target, regulated by Actin Retrograde Flow (ARF), which drives the adhesion molecules and receptors toward the central zone of the immunological synapse (IS). Here, we further characterize the role of ARF in controlling the immune response of NK cells, using CRISPR/cas9-mediated Wiskott–Aldrich Syndrome protein (WASp) gene silencing of NK cells. We demonstrate that WASp regulates ARF velocity, affecting the conformation and function of the key NK inhibitory regulator, SH2-domain containing protein tyrosine phosphatase-1 (SHP-1), and consequently, the NK cell response. Our results demonstrate the potential of modulating the biophysical and intracellular regulation of NK activation as a promising approach for improving immunotherapy.
Collapse
|
21
|
Lin ML, Hsu CC, Fu TC, Lin YT, Huang YC, Wang JS. Exercise Training Improves Mitochondrial Bioenergetics of Natural Killer Cells. Med Sci Sports Exerc 2022; 54:751-760. [PMID: 34935709 DOI: 10.1249/mss.0000000000002842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Mitochondrial bioenergetics is critical for immune function in natural killer (NK) cell. Physical exercise modulates NK cell functionality, depending on the intensity and type of exercise. This study elucidates how interval and continuous exercise regimens affect the phenotypes and mitochondrial bioenergetics of NK cells. METHODS Sixty healthy sedentary males were randomly assigned to engage in either high-intensity interval training (HIIT, 3-min intervals at 80% and 40% maximal O2, n = 20; age, 22.2 yr; body mass index [BMI], 24.3 kg·m-2) or moderate-intensity continuous training (MICT, sustained 60% maximal O2, n = 20; age, 22.3 yr; BMI, 23.3 kg·m-2) for 30 min·d-1, 5 d·wk-1 for 6 wk or were assigned to a control group that did not receive exercise intervention (n = 20; age, 22.6 yr; BMI, 24.0 kg·m-2). Natural killer cell phenotypes, granule proteins, and mitochondrial oxidative stress/oxidative phosphorylation after graded exercise test (GXT) were measured before and after the various interventions. RESULTS Before the intervention, the GXT increased the mobilization of CD57+NK cells into the blood and elevated mitochondrial matrix oxidant burden (MOB) in NK cells, Following the 6 wk of interventions, both HIIT and MICT (i) diminished mobilization of CD57+NK cells into the blood and depressed mitochondrial MOB level in NK cells immediately after GXT, (ii) increased mitochondrial membrane potential and cellular perforin and granzyme B levels in NK cells, and (iii) enhanced the maximal and reserve O2 consumption rates and heightened bioenergetic health index in NK cells. In addition, HIIT increased maximal work rate than those of MICT. CONCLUSIONS Either HIIT or MICT increases the expressions of cytotoxic granule proteins and depresses mitochondrial MOB elevated by GXT, along with improving mitochondrial bioenergetic functionality in NK cells. Moreover, HIIT is superior to MICT in improving aerobic capacity.
Collapse
Affiliation(s)
- Ming-Lu Lin
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan, TAIWAN
| | - Chih-Chin Hsu
- Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Kwei-Shan, TAIWAN
| | - Tieh-Cheng Fu
- Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Kwei-Shan, TAIWAN
| | - Yu-Ting Lin
- Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical College, Chang Gung University, Tao-Yuan, TAIWAN
| | - Yu-Chieh Huang
- Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung, TAIWAN
| | | |
Collapse
|
22
|
Rethacker L, Boy M, Bisio V, Roussin F, Denizeau J, Vincent-Salomon A, Borcoman E, Sedlik C, Piaggio E, Toubert A, Dulphy N, Caignard A. Innate lymphoid cells: NK and cytotoxic ILC3 subsets infiltrate metastatic breast cancer lymph nodes. Oncoimmunology 2022; 11:2057396. [PMID: 35371620 PMCID: PMC8973349 DOI: 10.1080/2162402x.2022.2057396] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) – which include cytotoxic Natural Killer (NK) cells and helper-type ILC – are important regulators of tissue immune homeostasis, with possible roles in tumor surveillance. We analyzed ILC and their functionality in human lymph nodes (LN). In LN, NK cells and ILC3 were the prominent subpopulations. Among the ILC3s, we identified a CD56+/ILC3 subset with a phenotype close to ILC3 but also expressing cytotoxicity genes shared with NK. In tumor-draining LNs (TD-LNs) and tumor samples from breast cancer (BC) patients, NK cells were prominent, and proportions of ILC3 subsets were low. In tumors and TD-LN, NK cells display reduced levels of NCR (Natural cytotoxicity receptors), despite high transcript levels and included a small subset CD127− CD56− NK cells with reduced function. Activated by cytokines CD56+/ILC3 cells from donor and patients LN acquired cytotoxic capacity and produced IFNg. In TD-LN, all cytokine activated ILC populations produced TNFα in response to BC cell line. Analyses of cytotoxic and helper ILC indicate a switch toward NK cells in TD-LN. The local tumor microenvironment inhibited NK cell functions through downregulation of NCR, but cytokine stimulation restored their functionality.
Collapse
Affiliation(s)
- Louise Rethacker
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Maxime Boy
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - Valeria Bisio
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| | - France Roussin
- Service d’Anesthésie-Réanimation, AP-HP, Hôpital Saint-Louis, Paris, France
| | - Jordan Denizeau
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Anne Vincent-Salomon
- Diagnostic and Theranostic Medicine Division, Institut Curie, PSL Research University, Paris, France
| | - Edith Borcoman
- Department of Medical Oncology, Institut Curie, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
| | - Christine Sedlik
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Eliane Piaggio
- INSERM U932, Département de Recherche Translationelle, Institut Curie, Université de Recherche Paris Sciences & Lettres (PSL), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Antoine Toubert
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
- Assistance Publique–Hôpitaux de Paris (AP–HP), Hôpital Saint-Louis, Laboratoire d’Immunologie et Histocompatibilité, Paris, France
| | - Nicolas Dulphy
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
- Université Paris Diderot, Université de Paris, Paris, France
- Assistance Publique–Hôpitaux de Paris (AP–HP), Hôpital Saint-Louis, Laboratoire d’Immunologie et Histocompatibilité, Paris, France
| | - Anne Caignard
- INSERM U1160, Institut de Recherche Saint-Louis, Hôpital Saint Louis, Paris, France
| |
Collapse
|
23
|
Ben-Shmuel A, Sabag B, Puthenveetil A, Biber G, Levy M, Jubany T, Awwad F, Roy RK, Joseph N, Matalon O, Kivelevitz J, Barda-Saad M. Inhibition of SHP-1 activity by PKC-θ regulates NK cell activation threshold and cytotoxicity. eLife 2022; 11:73282. [PMID: 35258455 PMCID: PMC8903836 DOI: 10.7554/elife.73282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells play a crucial role in immunity, killing virally infected and cancerous cells. The balance of signals initiated upon engagement of activating and inhibitory NK receptors with cognate ligands determines killing or tolerance. Nevertheless, the molecular mechanisms regulating rapid NK cell discrimination between healthy and malignant cells in a heterogeneous tissue environment are incompletely understood. The SHP-1 tyrosine phosphatase is the central negative NK cell regulator that dephosphorylates key activating signaling proteins. Though the mechanism by which SHP-1 mediates NK cell inhibition has been partially elucidated, the pathways by which SHP-1 is itself regulated remain unclear. Here, we show that phosphorylation of SHP-1 in NK cells on the S591 residue by PKC-θ promotes the inhibited SHP-1 ‘folded’ state. Silencing PKC-θ maintains SHP-1 in the active conformation, reduces NK cell activation and cytotoxicity, and promotes tumor progression in vivo. This study reveals a molecular pathway that sustains the NK cell activation threshold through suppression of SHP-1 activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Abhishek Puthenveetil
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Moria Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tammir Jubany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Fatima Awwad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Roshan Kumar Roy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noah Joseph
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omri Matalon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Jessica Kivelevitz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
24
|
Eaton-Fitch N, Du Preez S, Cabanas H, Muraki K, Staines D, Marshall-Gradisnik S. Impaired TRPM3-dependent calcium influx and restoration using Naltrexone in natural killer cells of myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med 2022; 20:94. [PMID: 35172836 PMCID: PMC8848670 DOI: 10.1186/s12967-022-03297-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious disorder of unknown aetiology. While the pathomechanism of ME/CFS remains elusive, reduced natural killer (NK) cell cytotoxic function is a consistent immunological feature. NK cell effector functions rely on long-term sustained calcium (Ca2+) influx. In recent years evidence of transient receptor potential melastatin 3 (TRPM3) dysfunction supports the hypothesis that ME/CFS is potentially an ion channel disorder. Specifically, reports of single nucleotide polymorphisms, low surface expression and impaired function of TRPM3 have been reported in NK cells of ME/CFS patients. It has been reported that mu (µ)-opioid receptor (µOR) agonists, known collectively as opioids, inhibit TRPM3. Naltrexone hydrochloride (NTX), a µOR antagonist, negates the inhibitory action of µOR on TRPM3 function. Importantly, it has recently been reported that NTX restores impaired TRPM3 function in NK cells of ME/CFS patients. Methods Live cell immunofluorescent imaging was used to measure TRPM3-dependent Ca2+ influx in NK cells isolated from n = 10 ME/CFS patients and n = 10 age- and sex-matched healthy controls (HC) following modulation with TRPM3-agonist, pregnenolone sulfate (PregS) and TRPM3-antaognist, ononetin. The effect of overnight (24 h) NTX in vitro treatment on TRPM3-dependent Ca2+ influx was determined. Results The amplitude (p < 0.0001) and half-time of Ca2+ response (p < 0.0001) was significantly reduced at baseline in NK cells of ME/CFS patients compared with HC. Overnight treatment of NK cells with NTX significantly improved TRPM3-dependent Ca2+ influx in ME/CFS patients. Specifically, there was no significance between HC and ME/CFS patients for half-time response, and the amplitude of Ca2+ influx was significantly increased in ME/CFS patients (p < 0.0001). Conclusion TRPM3-dependent Ca2+ influx was restored in ME/CFS patients following overnight treatment of isolated NK cells with NTX in vitro. Collectively, these findings validate that TRPM3 loss of function results in altered Ca2+ influx supporting the growing evidence that ME/CFS is a TRP ion channel disorder and that NTX provides a potential therapeutic intervention for ME/CFS. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03297-8.
Collapse
Affiliation(s)
- Natalie Eaton-Fitch
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia. .,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia. .,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
| | - Stanley Du Preez
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Australia.,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Hélène Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.,Université de Paris, INSERM U944 and CNRS UMR 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, 75010, Paris, France
| | - Katsuhiko Muraki
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.,Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya, Japan
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
25
|
Cruz-Zárate D, Miguel-Rodríguez CE, Martínez-Vargas IU, Santos-Argumedo L. Myosin 1g and 1f: A Prospective Analysis in NK Cell Functions. Front Immunol 2022; 12:760290. [PMID: 34970258 PMCID: PMC8712487 DOI: 10.3389/fimmu.2021.760290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/23/2021] [Indexed: 02/05/2023] Open
Abstract
NK cells are contained in the ILC1 group; they are recognized for their antiviral and antitumor cytotoxic capacity; NK cells also participate in other immune response processes through cytokines secretion. However, the mechanisms that regulate these functions are poorly understood since NK cells are not as abundant as other lymphocytes, which has made them difficult to study. Using public databases, we identified that NK cells express mRNA encoding class I myosins, among which Myosin 1g and Myosin 1f are prominent. Therefore, this mini-review aims to generate a model of the probable participation of Myosin 1g and 1f in NK cells, based on information reported about the function of these myosins in other leukocytes.
Collapse
Affiliation(s)
- David Cruz-Zárate
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Carlos Emilio Miguel-Rodríguez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Irving Ulises Martínez-Vargas
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico.,Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
26
|
Wu Z, Lau CM, Sottile R, Le Luduec JB, Panjwani MK, Conaty PM, Srpan K, Laib Sampaio K, Mertens T, Adler SP, Hill AB, Barker JN, Cheung NKV, Sun JC, Hsu KC. Human Cytomegalovirus Infection Promotes Expansion of a Functionally Superior Cytoplasmic CD3 + NK Cell Subset with a Bcl11b-Regulated T Cell Signature. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2534-2544. [PMID: 34625521 PMCID: PMC8578400 DOI: 10.4049/jimmunol.2001319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 09/04/2021] [Indexed: 11/19/2022]
Abstract
Human CMV (HCMV) is a ubiquitous pathogen that indelibly shapes the NK cell repertoire. Using transcriptomic, epigenomic, and proteomic approaches to evaluate peripheral blood NK cells from healthy human volunteers, we find that prior HCMV infection promotes NK cells with a T cell-like gene profile, including the canonical markers CD3ε, CD5, and CD8β, as well as the T cell lineage-commitment transcription factor Bcl11b. Although Bcl11b expression is upregulated during NK maturation from CD56bright to CD56dim, we find a Bcl11b-mediated signature at the protein level for FcεRIγ, PLZF, IL-2Rβ, CD3γ, CD3δ, and CD3ε in later-stage, HCMV-induced NK cells. BCL11B is targeted by Notch signaling in T cell development, and culture of NK cells with Notch ligand increases cytoplasmic CD3ε expression. The Bcl11b-mediated gain of CD3ε, physically associated with CD16 signaling molecules Lck and CD247 in NK cells is correlated with increased Ab-dependent effector function, including against HCMV-infected cells, identifying a potential mechanism for their prevalence in HCMV-infected individuals and their prospective clinical use in Ab-based therapies.
Collapse
Affiliation(s)
- Zeguang Wu
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Colleen M Lau
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Rosa Sottile
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jean-Benoît Le Luduec
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - M Kazim Panjwani
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Peter M Conaty
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Katja Srpan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Thomas Mertens
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Ann B Hill
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Juliet N Barker
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joseph C Sun
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY; and
| | - Katharine C Hsu
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY;
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| |
Collapse
|
27
|
Karmakar S, Pal P, Lal G. Key Activating and Inhibitory Ligands Involved in the Mobilization of Natural Killer Cells for Cancer Immunotherapies. Immunotargets Ther 2021; 10:387-407. [PMID: 34754837 PMCID: PMC8570289 DOI: 10.2147/itt.s306109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are the most potent arm of the innate immune system and play an important role in immunity, alloimmunity, autoimmunity, and cancer. NK cells recognize “altered-self” cells due to oncogenic transformation or stress due to viral infection and target to kill them. The effector functions of NK cells depend on the interaction of the activating and inhibitory receptors on their surface with their cognate ligand expressed on the target cells. These activating and inhibitory receptors interact with major histocompatibility complex I (MHC I) expressed on the target cells and make decisions to mount an immune response. NK cell immune response includes cytolytic activity and secretion of cytokines to help with the ongoing immune response. The advancement of our knowledge on the expression of inhibitory and activating molecules led us to exploit these molecules in the treatment of cancer. This review discusses the importance of activating and inhibitory receptors on NK cells and their clinical importance in cancer immunotherapy.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Pradipta Pal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Pune, MH, 411007, India
| |
Collapse
|
28
|
Arnesen VS, Gras Navarro A, Chekenya M. Challenges and Prospects for Designer T and NK Cells in Glioblastoma Immunotherapy. Cancers (Basel) 2021; 13:4986. [PMID: 34638471 PMCID: PMC8507952 DOI: 10.3390/cancers13194986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent, aggressive primary brain tumour with a dismal prognosis. Treatment at diagnosis has limited efficacy and there is no standardised treatment at recurrence. New, personalised treatment options are under investigation, although challenges persist for heterogenous tumours such as GBM. Gene editing technologies are a game changer, enabling design of novel molecular-immunological treatments to be used in combination with chemoradiation, to achieve long lasting survival benefits for patients. Here, we review the literature on how cutting-edge molecular gene editing technologies can be applied to known and emerging tumour-associated antigens to enhance chimeric antigen receptor T and NK cell therapies for GBM. A tight balance of limiting neurotoxicity, avoiding tumour antigen loss and therapy resistance, while simultaneously promoting long-term persistence of the adoptively transferred cells must be maintained to significantly improve patient survival. We discuss the opportunities and challenges posed by the brain contexture to the administration of the treatments and achieving sustained clinical responses.
Collapse
Affiliation(s)
| | - Andrea Gras Navarro
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| |
Collapse
|
29
|
Pisibon C, Ouertani A, Bertolotto C, Ballotti R, Cheli Y. Immune Checkpoints in Cancers: From Signaling to the Clinic. Cancers (Basel) 2021; 13:cancers13184573. [PMID: 34572799 PMCID: PMC8468441 DOI: 10.3390/cancers13184573] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
The immune system is known to help fight cancers. Ten years ago, the first immune checkpoint inhibitor targeting CTLA4 was approved by the FDA to treat patients with metastatic melanoma. Since then, immune checkpoint therapies have revolutionized the field of oncology and the treatment of cancer patients. Numerous immune checkpoint inhibitors have been developed and tested, alone or in combination with other treatments, in melanoma and other cancers, with overall clear benefits to patient outcomes. However, many patients fail to respond or develop resistance to these treatments. It is therefore essential to decipher the mechanisms of action of immune checkpoints and to understand how immune cells are affected by signaling to be able to understand and overcome resistance. In this review, we discuss the signaling and effects of each immune checkpoint on different immune cells and their biological and clinical relevance. Restoring the functionality of T cells and their coordination with other immune cells is necessary to overcome resistance and help design new clinical immunotherapy strategies. In this respect, NK cells have recently been implicated in the resistance to anti-PD1 evoked by a protein secreted by melanoma, ITGBL1. The complexity of this network will have to be considered to improve the efficiency of future immunotherapies and may lead to the discovery of new immune checkpoints.
Collapse
Affiliation(s)
- Céline Pisibon
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Amira Ouertani
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Corine Bertolotto
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Robert Ballotti
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
| | - Yann Cheli
- Université Côte d’Azur, 06103 Nice, France; (C.P.); (A.O.); (C.B.); (R.B.)
- INSERM, Centre Méditerranéen de Médecine Moléculaire, Biology and Pathologies of Melanocytes, Team1, 06200 Nice, France
- Correspondence:
| |
Collapse
|
30
|
Patel KR, Roberts JT, Barb AW. Allotype-specific processing of the CD16a N45-glycan from primary human natural killer cells and monocytes. Glycobiology 2021; 30:427-432. [PMID: 31967297 DOI: 10.1093/glycob/cwaa002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/31/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Fc γ receptor IIIa/CD16a is an activating cell surface receptor with a well-defined role in natural killer (NK) cell and monocyte effector function. The extracellular domain is decorated with five asparagine (N)-linked glycans; N-glycans at N162 and N45 directly contribute to high-affinity antibody binding and protein stability. N-glycan structures at N162 showed significant donor-dependent variation in a recent study of CD16a isolated from primary human NK cells, but structures at N45 were relatively homogeneous. In this study, we identified variations in N45 glycan structures associated with a polymorphism coding for histidine instead of leucine at position 48 of CD16a from two heterozygous donors. It is known that H48 homozygous individuals suffer from immunodeficiency and recurrent viral infections. A mass spectrometry analysis of protein isolated from the primary natural killer cells of individuals expressing both CD16a L48 and H48 variants demonstrated clear processing differences at N45. CD16a H48 displayed a greater proportion of complex-type N45 glycans compared to the more common L48 allotype with predominantly hybrid N45-glycoforms. Structures at the four other N-glycosylation sites showed minimal differences from data collected on donors expressing only the predominant L48 variant. CD16a H48 purified from a pool of monocytes similarly displayed increased processing at N45. Here, we provide evidence that CD16a processing is affected by the H48 residue in primary NK cells and monocytes from healthy human donors.
Collapse
Affiliation(s)
- Kashyap R Patel
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Jacob T Roberts
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Adam W Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, 122 Green Street, Athens, GA 30602, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
31
|
Reusing SB, Vallera DA, Manser AR, Vatrin T, Bhatia S, Felices M, Miller JS, Uhrberg M, Babor F. CD16xCD33 Bispecific Killer Cell Engager (BiKE) as potential immunotherapeutic in pediatric patients with AML and biphenotypic ALL. Cancer Immunol Immunother 2021; 70:3701-3708. [PMID: 34398302 PMCID: PMC8571204 DOI: 10.1007/s00262-021-03008-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/04/2021] [Indexed: 11/30/2022]
Abstract
Similar to pediatric acute myeloid leukemia (AML) the subgroup of biphenotypic acute lymphoblastic leukemia (ALL) is a rare complex entity with adverse outcome, characterized by the surface expression of CD33. Despite novel and promising anti-CD19 targeted immunotherapies such as chimeric antigen receptor T cells and bispecific anti-CD19/CD3 antibodies, relapse and resistance remain a major challenge in about 30% to 60% of patients. To investigate the potential role of the fully humanized bispecific antibody CD16 × CD33 (BiKE) in children with CD33+ acute leukemia, we tested whether the reagent was able to boost NK cell effector functions against CD33+ AML and biphenotypic ALL blasts. Stimulation of primary NK cells from healthy volunteers with 16 × 33 BiKE led to increased cytotoxicity, degranulation and cytokine production against CD33+ cell lines. Moreover, BiKE treatment significantly increased degranulation, IFN-γ and TNF-α production against primary ALL and AML targets. Importantly, also NK cells from leukemic patients profited from restoration of effector functions by BiKE treatment, albeit to a lesser extent than NK cells from healthy donors. In particular, those patients with low perforin and granzyme expression showed compromised cytotoxic function even in the presence of BiKE. In patients with intrinsic NK cell deficiency, combination therapy of CD16xCD33 BiKE and allogeneic NK cells might thus be a promising therapeutic approach. Taken together, CD16xCD33 BiKE successfully increased NK cell effector functions against pediatric AML and biphenotypic ALL blasts and constitutes a promising new option for supporting maintenance therapy or “bridging” consolidation chemotherapy before hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Sarah B Reusing
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Dan A Vallera
- Department of Therapeutic Radiology-Radiation Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Angela R Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, Düsseldorf, Germany
| | - Titus Vatrin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Martin Felices
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Minneapolis, MN, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Minneapolis, MN, USA
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, Düsseldorf, Germany
| | - Florian Babor
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Centre for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
32
|
Eaton-Fitch N, Cabanas H, du Preez S, Staines D, Marshall-Gradisnik S. The effect of IL-2 stimulation and treatment of TRPM3 on channel co-localisation with PIP 2 and NK cell function in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med 2021; 19:306. [PMID: 34266470 PMCID: PMC8281618 DOI: 10.1186/s12967-021-02974-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious multifactorial disorder. The origin remains ambiguous, however reduced natural killer (NK) cell cytotoxicity is a consistent immunological feature of ME/CFS. Impaired transient receptor potential melastatin 3 (TRPM3), a phosphatidylinositol dependent channel, and impaired calcium mobilisation have been implicated in ME/CFS pathology. This investigation aimed to examine the localisation of TRPM3 at the NK cell plasma membrane and co-localisation with phosphatidylinositol 4,5-bisphosphate (PIP2). The effect of IL-2 priming and treatment using pregnenolone sulfate (PregS) and ononetin on TRPM3 co-localisation and NK cell cytotoxicity in ME/CFS patients and healthy controls (HC) was also investigated. METHODS NK cells were isolated from 15 ME/CFS patients and 15 age- and sex-matched HC. Immunofluorescent technique was used to determine co-localisation of TRPM3 with the NK cell membrane and with PIP2 of ME/CFS patients and HC. Flow cytometry was used to determine NK cell cytotoxicity. Following IL-2 stimulation and treatment with PregS and ononetin changes in co-localisation and NK cell cytotoxicity were measured. RESULTS Overnight treatment of NK cells with PregS and ononetin resulted in reduced co-localisation of TRPM3 with PIP2 and actin in HC. Co-localisation of TRPM3 with PIP2 in NK cells was significantly reduced in ME/CFS patients compared with HC following priming with IL-2. A significant increase in co-localisation of TRPM3 with PIP2 was reported following overnight treatment with ononetin within ME/CFS patients and between groups. Baseline NK cell cytotoxicity was significantly reduced in ME/CFS patients; however, no changes were observed following overnight incubation with IL-2, PregS and ononetin between HC and ME/CFS patients. IL-2 stimulation significantly enhanced NK cell cytotoxicity in HC and ME/CFS patients. CONCLUSION Significant changes in co-localisation suggest PIP2-dependent TRPM3 function may be impaired in ME/CFS patients. Stimulation of NK cells with IL-2 significantly enhanced cytotoxic function in ME/CFS patients demonstrating normal function compared with HC. A crosstalk exists between IL-2 and TRPM3 intracellular signalling pathways which are dependent on Ca2+ influx and PIP2. While IL-2R responds to IL-2 binding in vitro, Ca2+ dysregulation and impaired intracellular signalling pathways impede NK cell function in ME/CFS patients.
Collapse
Affiliation(s)
- Natalie Eaton-Fitch
- School of Medical Sciences, Griffith University, Gold Coast, Australia. .,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia. .,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
| | - Hélène Cabanas
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Stanley du Preez
- School of Medical Sciences, Griffith University, Gold Coast, Australia.,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
33
|
Coexistence of inhibitory and activating killer-cell immunoglobulin-like receptors to the same cognate HLA-C2 and Bw4 ligands confer breast cancer risk. Sci Rep 2021; 11:7932. [PMID: 33846431 PMCID: PMC8041876 DOI: 10.1038/s41598-021-86964-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
Human leukocyte antigen (HLA) class I-specific killer-cell immunoglobulin-like receptors (KIR) regulate natural killer (NK) cell function in eliminating malignancy. Breast cancer (BC) patients exhibit reduced NK-cytotoxicity in peripheral blood. To test the hypothesis that certain KIR-HLA combinations impairing NK-cytotoxicity predispose to BC risk, we analyzed KIR and HLA polymorphisms in 162 women with BC and 278 controls. KIR-Bx genotypes increased significantly in BC than controls (83.3% vs. 71.9%, OR 1.95), and the increase was more pronounced in advanced-cancer (OR 5.3). No difference was observed with inhibitory KIR (iKIR) and HLA-ligand combinations. The activating KIR (aKIR) and HLA-ligand combinations, 2DS1 + C2 (OR 2.98) and 3DS1 + Bw4 (OR 2.6), were significantly increased in advanced-BC. All patients with advanced-cancer carrying 2DS1 + C2 or 3DS1 + Bw4 also have their iKIR counterparts 2DL1 and 3DL1, respectively. Contrarily, the 2DL1 + C2 and 3DL1 + Bw4 pairs without their aKIR counterparts are significantly higher in controls. These data suggest that NK cells expressing iKIR to the cognate HLA-ligands in the absence of putative aKIR counterpart are instrumental in antitumor response. These data provide a new framework for improving the utility of genetic risk scores for individualized surveillance.
Collapse
|
34
|
Recent Advances to Augment NK Cell Cancer Immunotherapy Using Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13040525. [PMID: 33918941 PMCID: PMC8069998 DOI: 10.3390/pharmaceutics13040525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Among various immunotherapies, natural killer (NK) cell cancer immunotherapy using adoptive transfer of NK cells takes a unique position by targeting tumor cells that evade the host immune surveillance. As the first-line innate effector cell, it has been revealed that NK cells have distinct mechanisms to both eliminate cancer cells directly and amplify the anticancer immune system. Over the last 40 years, NK cell cancer immunotherapy has shown encouraging reports in pre-clinic and clinic settings. In total, 288 clinical trials are investigating various NK cell immunotherapies to treat hematologic and solid malignancies in 2021. However, the clinical outcomes are unsatisfying, with remained challenges. The major limitation is attributed to the immune-suppressive tumor microenvironment (TME), low activity of NK cells, inadequate homing of NK cells, and limited contact frequency of NK cells with tumor cells. Innovative strategies to promote the cytolytic activity, durable persistence, activation, and tumor-infiltration of NK cells are required to advance NK cell cancer immunotherapy. As maturing nanotechnology and nanomedicine for clinical applications, there is a greater opportunity to augment NK cell therapeutic efficacy for the treatment of cancers. Active molecules/cytokine delivery, imaging, and physicochemical properties of nanoparticles are well equipped to overcome the challenges of NK cell cancer immunotherapy. Here, we discuss recent clinical trials of NK cell cancer immunotherapy, NK cell cancer immunotherapy challenges, and advances of nanoparticle-mediated NK cell therapeutic efficacy augmentation.
Collapse
|
35
|
Denaeghel S, De Pelsmaeker S, Van Waesberghe C, Favoreel HW. Pseudorabies Virus Infection Causes Downregulation of Ligands for the Activating NK Cell Receptor NKG2D. Viruses 2021; 13:266. [PMID: 33572245 PMCID: PMC7915010 DOI: 10.3390/v13020266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022] Open
Abstract
Herpesviruses display a complex and carefully balanced interaction with important players in the antiviral immune response of immunocompetent natural hosts, including natural killer (NK) cells. With regard to NK cells, this delicate balance is illustrated on the one hand by severe herpesvirus disease reported in individuals with NK cell deficiencies and on the other hand by several NK cell evasion strategies described for herpesviruses. In the current study, we report that porcine cells infected with the porcine alphaherpesvirus pseudorabies virus (PRV) display a rapid and progressive downregulation of ligands for the major activating NK cell receptor NKG2D. This downregulation consists both of a downregulation of NKG2D ligands that are already expressed on the cell surface of an infected cell and an inhibition of cell surface expression of newly expressed NKG2D ligands. Flow cytometry and RT-qPCR assays showed that PRV infection results in downregulation of the porcine NKG2D ligand pULBP1 from the cell surface and a very substantial suppression of mRNA expression of pULBP1 and of another potential NKG2D ligand, pMIC2. Furthermore, PRV-induced NKG2D ligand downregulation was found to be independent of late viral gene expression. In conclusion, we report that PRV infection of host cells results in a very pronounced downregulation of ligands for the activating NK cell receptor NKG2D, representing an additional NK evasion strategy of PRV.
Collapse
Affiliation(s)
| | | | | | - Herman W. Favoreel
- Laboratory of Immunology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (S.D.); (S.D.P.); (C.V.W.)
| |
Collapse
|
36
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
37
|
Millan AJ, Hom BA, Libang JB, Sindi S, Manilay JO. Evidence for Prescribed NK Cell Ly-49 Developmental Pathways in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 206:1215-1227. [PMID: 33495236 DOI: 10.4049/jimmunol.2000613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Previous studies of NK cell inhibitory Ly-49 genes showed their expression is stochastic. However, relatively few studies have examined the mechanisms governing acquisition of inhibitory receptors in conjunction with activating Ly-49 receptors and NK cell development. We hypothesized that the surface expression of activating Ly-49 receptors is nonrandom and is influenced by inhibitory Ly-49 receptors. We analyzed NK cell "clusters" defined by combinatorial expression of activating (Ly-49H and Ly-49D) and inhibitory (Ly-49I and Ly-49G2) receptors in C57BL/6 mice. Using the product rule to evaluate the interdependencies of the Ly-49 receptors, we found evidence for a tightly regulated expression at the immature NK cell stage, with the highest interdependencies between clusters that express at least one activating receptor. Further analysis demonstrated that certain NK clusters predominated at the immature (CD27+CD11b-), transitional (CD27+CD11b+), and mature (CD27-CD11b-) NK cell stages. Using parallel in vitro culture and in vivo transplantation of sorted NK clusters, we discovered nonrandom expression of Ly-49 receptors, suggesting that prescribed pathways of NK cluster differentiation exist. Our data infer that surface expression of Ly-49I is an important step in NK cell maturation. Ki-67 expression and cell counts confirmed that immature NK cells proliferate more than mature NK cells. We found that MHC class I is particularly important for regulation of Ly-49D and Ly-49G2, even though no known MHC class I ligand for these receptors is present in B6 mice. Our data indicate that surface expression of both activating and inhibitory Ly-49 receptors on NK cell clusters occurs in a nonrandom process correlated to their maturation stage.
Collapse
Affiliation(s)
- Alberto J Millan
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343.,Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and
| | - Bryan A Hom
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Jeremy B Libang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Suzanne Sindi
- Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, Merced, CA 95343; and.,Quantitative and Systems Biology Graduate Group, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| | - Jennifer O Manilay
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343; .,Quantitative and Systems Biology Graduate Group, School of Natural Sciences, University of California, Merced, Merced, CA 95343
| |
Collapse
|
38
|
Natural killer frequency determines natural killer cytotoxicity directly in accentuated zones and indirectly in "moderate-to-normal frequency" segment. Cent Eur J Immunol 2021; 45:315-324. [PMID: 33437184 DOI: 10.5114/ceji.2020.101263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK) frequency and NK cytotoxicity (NKc) are key determining factors of a clinical outcome. In our previous study, we showed the prognostic clinical significance of immune parameters when they are beyond the optimal range (accentuated). In this study, we attempted to explain the disparity of accentuated but physiologically and immunologically normal NK parameters that might serve as negative clinical prognostics indications of failed pregnancies. We have analyzed NK%, NKc levels, and their reciprocal correlation in 2,804 patients with reproductive failures. In the entire clinical population, NK% correlates with NKc. Interestingly, we found this relationship to be strongly dependent on NK level's status. NK%-NKc correlation was the strongest (r = 0.2021, p < 0.0001) in a patient group with high NK% (> 17.5%). Patients with NK% between 15-17.5% manifested lower but still significant correlation NK%-NKc (r = 0.1213, p = 0.0155). Additionally, significant correlation (r = 0.2689, p < < 0.0001) between NK% and NKc was observed in a group of patients with NK levels < 7% (1.7-7%). While patients' groups with NK% (7-15%) did not reveal NK%-NKc association. This led us to hypothesize that the qualitative-quantitative status of NK population is responsible for their cytotoxic activity. Consistent with our hypothesis, the "balanced zone" NK% is tightly controlled, and thus does not correlate directly with NKc. In contrast, the "accentuated zones" of NK% escape this control and directly affecting NKc. Demonstrated phenomena supports our idea about the clinical significance of immune accentuation and explains its novel physiological role.
Collapse
|
39
|
Sun H, Feng J, Tang L. Function of TREM1 and TREM2 in Liver-Related Diseases. Cells 2020; 9:2626. [PMID: 33297569 PMCID: PMC7762355 DOI: 10.3390/cells9122626] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
TREM1 and TREM2 are members of the triggering receptors expressed on myeloid cells (TREM) family. Both TREM1 and TREM2 are immunoglobulin superfamily receptors. Their main function is to identify foreign antigens and toxic substances, thereby adjusting the inflammatory response. In the liver, TREM1 and TREM2 are expressed on non-parenchymal cells, such as liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, and cells which infiltrate the liver in response to injury including monocyte-derived macrophages and neutrophils. The function of TREM1 and TREM2 in inflammatory response depends on Toll-like receptor 4. TREM1 mainly augments inflammation during acute inflammation, while TREM2 mainly inhibits chronic inflammation to protect the liver from pathological changes. Chronic inflammation often induces metabolic abnormalities, fibrosis, and tumorigenesis. The above physiological changes lead to liver-related diseases, such as liver injury, nonalcoholic steatohepatitis, hepatic fibrosis, and hepatocellular carcinoma. Here, we review the function of TREM1 and TREM2 in different liver diseases based on inflammation, providing a more comprehensive perspective for the treatment of liver-related diseases.
Collapse
Affiliation(s)
- Huifang Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China;
| |
Collapse
|
40
|
Li C, Luo J, Xu X, Zhou Z, Ying S, Liao X, Wu K. Single cell sequencing revealed the underlying pathogenesis of the development of osteoarthritis. Gene 2020; 757:144939. [PMID: 32640306 DOI: 10.1016/j.gene.2020.144939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/25/2020] [Accepted: 07/01/2020] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is a chronic degenerative change with high incidence and leads to a lower quality of life and a larger socioeconomic burden. This study aimed to explore potential crucial genes and pathways associated with OA that can be used as potential biomarkers forearly treatment. Single-cell gene expression profile of 1464 chondrocytes and 192 fibroblasts in OA were downloaded from the public database (GSE104782 and GSE109449) for subsequent analysis. A total of eight clusters in chondrocytes and three clusters in fibroblasts of OA were identified using the Seurat pipeline and the "SingleR" package for cell-type annotation. Moreover, 44 common marker-genes between fibroblastic-like chondrocytes and fibroblasts were identified and the focal adhesions pathway was further identified as a significant potential mechanism of OA via functional enrichment analysis. Further, the reverse transcription quantitative real-time PCR (RT-qPCR) experiments at tissue's and cellular level confirmed that two key marker-genes (COL6A3 and ACTG1) might participate in the progression of OA. Summarily, we inferred that chondrocytes in OA might up-regulate the expression of COL6A3 and ACTG1 to complete fibroblasts transformation through the focal adhesion pathway. These findings are expected to gain a further insight into the development of OA fibrosis process and provide a promising target for treatment for early OA.
Collapse
Affiliation(s)
- Chenlu Li
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Luo
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zihao Zhou
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Senhong Ying
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xin Liao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Keke Wu
- Wenzhou Center for Disease Control and Prevention, Wenzhou, China.
| |
Collapse
|
41
|
Park SM, Do-Thi VA, Lee JO, Lee H, Kim YS. Interleukin-9 Inhibits Lung Metastasis of Melanoma through Stimulating Anti-Tumor M1 Macrophages. Mol Cells 2020; 43:479-490. [PMID: 32326670 PMCID: PMC7264476 DOI: 10.14348/molcells.2020.0047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Interleukin-9 (IL-9) is well known for its role in allergic inflammation. For cancer, both pro- and anti-tumor effects of IL-9 were controversially reported, but the impact of IL-9 on tumor metastasis has not yet been clarified. In this study, IL-9 was expressed as a secretory form (sIL-9) and a membrane-bound form (mbIL-9) on B16F10 melanoma cells. The mbIL-9 was engineered as a chimeric protein with the transmembrane and cytoplasmic region of TNF-α. The effect of either mbIL-9 or sIL-9 expressing cells were analyzed on the metastasis capability of the cancer cells. After three weeks of tumor implantation into C57BL/6 mice through the tail vein, the number of tumor modules in lungs injected with IL-9 expressing B16F10 was 5-fold less than that of control groups. The percentages of CD4+ T cells, CD8+ T cells, NK cells, and M1 macrophages considerably increased in the lungs of the mice injected with IL-9 expressing cells. Among them, the M1 macrophage subset was the most significantly enhanced. Furthermore, peritoneal macrophages, which were stimulated with either sIL-9 or mbIL-9 expressing transfectant, exerted higher anti-tumor cytotoxicity compared with that of the mock control. The IL-9-stimulated peritoneal macrophages were highly polarized to M1 phenotype. Stimulation of RAW264.7 macrophages with sIL-9 or mbIL-9 expressing cells also significantly increased the cytotoxicity of those macrophages against wild-type B16F10 cells. These results clearly demonstrate that IL-9 can induce an anti-metastasis effect by enhancing the polarization and proliferation of M1 macrophages.
Collapse
Affiliation(s)
- Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 3434, Korea
| | - Van Anh Do-Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 3434, Korea
| | - Jie-Oh Lee
- Department of Life Sciences, POSTECH, Pohang 37673, Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 414, Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 3434, Korea
| |
Collapse
|
42
|
Giladi A, Cohen M, Medaglia C, Baran Y, Li B, Zada M, Bost P, Blecher-Gonen R, Salame TM, Mayer JU, David E, Ronchese F, Tanay A, Amit I. Dissecting cellular crosstalk by sequencing physically interacting cells. Nat Biotechnol 2020; 38:629-637. [PMID: 32152598 DOI: 10.1038/s41587-020-0442-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
Crosstalk between neighboring cells underlies many biological processes, including cell signaling, proliferation and differentiation. Current single-cell genomic technologies profile each cell separately after tissue dissociation, losing information on cell-cell interactions. In the present study, we present an approach for sequencing physically interacting cells (PIC-seq), which combines cell sorting of physically interacting cells (PICs) with single-cell RNA-sequencing. Using computational modeling, PIC-seq systematically maps in situ cellular interactions and characterizes their molecular crosstalk. We apply PIC-seq to interrogate diverse interactions including immune-epithelial PICs in neonatal murine lungs. Focusing on interactions between T cells and dendritic cells (DCs) in vitro and in vivo, we map T cell-DC interaction preferences, and discover regulatory T cells as a major T cell subtype interacting with DCs in mouse draining lymph nodes. Analysis of T cell-DC pairs reveals an interaction-specific program between pathogen-presenting migratory DCs and T cells. PIC-seq provides a direct and broadly applicable technology to characterize intercellular interaction-specific pathways at high resolution.
Collapse
Affiliation(s)
- Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Precision Immunology Institute, Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chiara Medaglia
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Microbiology and Molecular Medicine, University of Geneva Medical School, Geneva, Switzerland
| | - Yael Baran
- Department of Computer Science and Applied Mathematics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Baoguo Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mor Zada
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Pierre Bost
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Systems Biology Group, Center for Bioinformatics, Biostatistics and Integrative Biology (C3BI) and USR 3756, Institut Pasteur CNRS, Paris, France.,Sorbonne Université, Complexité du vivant, Paris, France
| | - Ronnie Blecher-Gonen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Department of Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | | | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Franca Ronchese
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
43
|
Ben-Shmuel A, Biber G, Barda-Saad M. Unleashing Natural Killer Cells in the Tumor Microenvironment-The Next Generation of Immunotherapy? Front Immunol 2020; 11:275. [PMID: 32153582 PMCID: PMC7046808 DOI: 10.3389/fimmu.2020.00275] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence of immunotherapy for cancer treatment bears considerable clinical promise. Nevertheless, many patients remain unresponsive, acquire resistance, or suffer dose-limiting toxicities. Immune-editing of tumors assists their escape from the immune system, and the tumor microenvironment (TME) induces immune suppression through multiple mechanisms. Immunotherapy aims to bolster the activity of immune cells against cancer by targeting these suppressive immunomodulatory processes. Natural Killer (NK) cells are a heterogeneous subset of immune cells, which express a diverse array of activating and inhibitory germline-encoded receptors, and are thus capable of directly targeting and killing cancer cells without the need for MHC specificity. Furthermore, they play a critical role in triggering the adaptive immune response. Enhancing the function of NK cells in the context of cancer is therefore a promising avenue for immunotherapy. Different NK-based therapies have been evaluated in clinical trials, and some have demonstrated clinical benefits, especially in the context of hematological malignancies. Solid tumors remain much more difficult to treat, and the time point and means of intervention of current NK-based treatments still require optimization to achieve long term effects. Here, we review recently described mechanisms of cancer evasion from NK cell immune surveillance, and the therapeutic approaches that aim to potentiate NK function. Specific focus is placed on the use of specialized monoclonal antibodies against moieties on the cancer cell, or on both the tumor and the NK cell. In addition, we highlight newly identified mechanisms that inhibit NK cell activity in the TME, and describe how biochemical modifications of the TME can synergize with current treatments and increase susceptibility to NK cell activity.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
44
|
Maibach V, Langergraber K, Leendertz FH, Wittig RM, Vigilant L. Differences in MHC-B diversity and KIR epitopes in two populations of wild chimpanzees. Immunogenetics 2019; 71:617-633. [PMID: 31797008 PMCID: PMC6900261 DOI: 10.1007/s00251-019-01148-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/17/2019] [Indexed: 11/26/2022]
Abstract
The major histocompatibility complex (MHC) class I genes play a critical role within the immune system, both by the presentation of antigens from intracellular pathogens to immunocompetent cells and by the interaction with killer cell immunoglobulin-like receptors (KIR) on natural killer cells (NK cells). Genes of the MHC are highly diverse, and MHC variation can have effects on the immune functionality of individuals; hence, comparisons of MHC diversity among closely related phylogenetic taxa may give insight into the factors responsible for the shaping of its diversity. The four geographically separated chimpanzee subspecies differ in their overall genetic diversity, have different population histories, and are confronted with different pathogens in their natural habitat, all of which may affect MHC class I DNA sequence diversity. Here, we compare the MHC-B exon two DNA sequence diversity from 24 wild western and 46 wild eastern chimpanzees using necropsy and noninvasively collected fecal samples, respectively. We found a higher MHC-B exon two nucleotide diversity, in our western than eastern chimpanzees. The inclusion of previously published MHC-B exon two data from other western and eastern chimpanzees supported this finding. In addition, our results confirm and extend the finding of a very low C1 epitope frequency at eastern chimpanzee MHC-B molecules, which likely affects the ability of these molecules to interact with NK cells. While the understanding of the differing pathogen environments encountered by disparate populations of a species is a challenging endeavor, these findings highlight the potential for these pathogens to selectively shape immune system variation.
Collapse
Affiliation(s)
- Vincent Maibach
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Kevin Langergraber
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85281, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85281, USA
| | | | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Taï Chimpanzee Project, CSRS, Abidjan, 01, Côte d'Ivoire
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| |
Collapse
|
45
|
Pugh J, Nemat-Gorgani N, Djaoud Z, Guethlein LA, Norman PJ, Parham P. In vitro education of human natural killer cells by KIR3DL1. Life Sci Alliance 2019; 2:2/6/e201900434. [PMID: 31723004 PMCID: PMC6856763 DOI: 10.26508/lsa.201900434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
Using NK cells isolated from individuals who lack the Bw4 epitope on HLA-B, Pugh et al reveal that KIR3DL1+ NK cells can be educated in vitro by co-culturing them with target cells that display the missing epitope. During development, NK cells are “educated” to respond aggressively to cells with low surface expression of HLA class I, a hallmark of malignant and infected cells. The mechanism of education involves interactions between inhibitory killer immunoglobulin–like receptors (KIRs) and specific HLA epitopes, but the details of this process are unknown. Because of the genetic diversity of HLA class I genes, most people have NK cells that are incompletely educated, representing an untapped source of human immunity. We demonstrate how mature peripheral KIR3DL1+ human NK cells can be educated in vitro. To accomplish this, we trained NK cells expressing the inhibitory KIR3DL1 receptor by co-culturing them with target cells that expressed its ligand, Bw4+HLA-B. After this training, KIR3DL1+ NK cells increased their inflammatory and lytic responses toward target cells lacking Bw4+HLA-B, as though they had been educated in vivo. By varying the conditions of this basic protocol, we provide mechanistic and translational insights into the process NK cell education.
Collapse
Affiliation(s)
- Jason Pugh
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zakia Djaoud
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Immunology, School of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
46
|
Abstract
Natural killer (NK) cells are bone marrow-derived large granular lymphocytes defined by CD3negCD56pos and represent 5% to 25% of peripheral blood mononuclear cell fraction of the healthy humans. NK cells have a highly specific and sophisticated target cell recognition receptor system arbitrated by the integration of signals triggered by a multitude of inhibitory and activating receptors. Human NK cells express distinct families of receptors, including (1) killer cell immunoglobulin-like receptors, (2) killer cell lectin-like receptors, (3) leukocyte immunoglobulin-like receptors, and (4) natural cytotoxicity receptors.
Collapse
Affiliation(s)
- Raja Rajalingam
- Department of Surgery, Immunogenetics and Transplantation Laboratory, University of California San Francisco, 3333 California Street, Suite 150, San Francisco, CA 94118, USA.
| |
Collapse
|
47
|
Würfel FM, Winterhalter C, Trenkwalder P, Wirtz RM, Würfel W. European Patent in Immunoncology: From Immunological Principles of Implantation to Cancer Treatment. Int J Mol Sci 2019; 20:ijms20081830. [PMID: 31013867 PMCID: PMC6514949 DOI: 10.3390/ijms20081830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
The granted European patent EP 2 561 890 describes a procedure for an immunological treatment of cancer. It is based on the principles of the HLA-supported communication of implantation and pregnancy. These principles ensure that the embryo is not rejected by the mother. In pregnancy, the placenta, more specifically the trophoblast, creates an “interface” between the embryo/fetus and the maternal immune system. Trophoblasts do not express the “original” HLA identification of the embryo/fetus (HLA-A to -DQ), but instead show the non-classical HLA groups E, F, and G. During interaction with specific receptors of NK cells (e.g., killer-immunoglobulin-like receptors (KIR)) and lymphocytes (lymphocyte-immunoglobulin-like receptors (LIL-R)), the non-classical HLA groups inhibit these immunocompetent cells outside pregnancy. However, tumors are known to be able to express these non-classical HLA groups and thus make use of an immuno-communication as in pregnancies. If this occurs, the prognosis usually worsens. This patent describes, in a first step, the profiling of the non-classical HLA groups in primary tumor tissue as well as metastases and recurrent tumors. The second step comprises tailored antibody therapies, which is the subject of this patent. In this review, we analyze the underlying mechanisms and describe the currently known differences between HLA-supported communication of implantation and that of tumors.
Collapse
Affiliation(s)
- Franziska M Würfel
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | | | | - Ralph M Wirtz
- STRATIFYER Molecular Pathology GmbH, D-50935 Cologne, Werthmannstrasse 1c, 50935 Cologne, Germany.
| | | |
Collapse
|
48
|
Shan M, Yang D, Dou H, Zhang L. Fucosylation in cancer biology and its clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:93-119. [PMID: 30905466 DOI: 10.1016/bs.pmbts.2019.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fucosylation is the process of transferring fucose from GDP-fucose to their substrates, which includes certain proteins, N- and O-linked glycans in glycoprotein or glycolipids, by fucosyltransferases in all mammalian cells. Fucosylated glycans play vital role in selectin-mediated leukocyte extravasation, lymphocyte homing, and pathogen-host interactions, whereas fucosylated proteins are essential for signaling transduction in numerous ontogenic events. Aberrant fucosylation due to the availability of high energy donor GDP-fucose, abnormal expression of FUTs and/or α-fucosidase, and the availability of their substrates leads to different fucosylated glycan or protein structures. Accumulating evidence demonstrates that aberrant fucosylation plays important role in all aspects of cancer biology. In this review, we will summarize the current knowledge about fucosylation in different physiological and pathological processes with a focus on their roles not only in cancer cell proliferation, invasion, and metastasis but also in tumor immune surveillance. Furthermore, the clinical potential and applications of fucosylation in cancer diagnosis and treatment will also be discussed.
Collapse
Affiliation(s)
- Ming Shan
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
49
|
Wroblewski EE, Parham P, Guethlein LA. Two to Tango: Co-evolution of Hominid Natural Killer Cell Receptors and MHC. Front Immunol 2019; 10:177. [PMID: 30837985 PMCID: PMC6389700 DOI: 10.3389/fimmu.2019.00177] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells have diverse roles in hominid immunity and reproduction. Modulating these functions are the interactions between major histocompatibility complex (MHC) class I molecules that are ligands for two NK cell surface receptor types. Diverse killer cell immunoglobulin-like receptors (KIR) bind specific motifs encoded within the polymorphic MHC class I cell surface glycoproteins, while, in more conserved interactions, CD94:NKG2A receptors recognize MHC-E with bound peptides derived from MHC class I leader sequences. The hominid lineage presents a choreographed co-evolution of KIR with their MHC class I ligands. MHC-A, -B, and -C are present in all great apes with species-specific haplotypic variation in gene content. The Bw4 epitope recognized by lineage II KIR is restricted to MHC-B but also present on some gorilla and human MHC-A. Common to great apes, but rare in humans, are MHC-B possessing a C1 epitope recognized by lineage III KIR. MHC-C arose from duplication of MHC-B and is fixed in all great apes except orangutan, where it exists on approximately 50% of haplotypes and all allotypes are C1-bearing. Recent study showed that gorillas possess yet another intermediate MHC organization compared to humans. Like orangutans, but unlike the Pan-Homo species, duplication of MHC-B occurred. However, MHC-C is fixed, and the MHC-C C2 epitope (absent in orangutans) emerges. The evolution of MHC-C drove expansion of its cognate lineage III KIR. Recently, position −21 of the MHC-B leader sequence has been shown to be critical in determining NK cell educational outcome. In humans, methionine (−21M) results in CD94:NKG2A-focused education whereas threonine (−21T) produces KIR-focused education. This is another dynamic position among hominids. Orangutans have exclusively −21M, consistent with their intermediate stage in lineage III KIR-focused evolution. Gorillas have both −21M and −21T, like humans, but they are unequally encoded by their duplicated B genes. Chimpanzees have near-fixed −21T, indicative of KIR-focused NK education. Harmonious with this observation, chimpanzee KIR exhibit strong binding and, compared to humans, smaller differences between binding levels of activating and inhibitory KIR. Consistent between these MHC-NK cell receptor systems over the course of hominid evolution is the evolution of polymorphism favoring the more novel and dynamic KIR system.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University, St. Louis, MO, United States
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
50
|
Ben-Shmuel A, Joseph N, Sabag B, Barda-Saad M. Lymphocyte mechanotransduction: The regulatory role of cytoskeletal dynamics in signaling cascades and effector functions. J Leukoc Biol 2019; 105:1261-1273. [DOI: 10.1002/jlb.mr0718-267r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Noah Joseph
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology; Bar-Ilan University; The Mina and Everard Goodman Faculty of Life Sciences; Ramat-Gan Israel
| |
Collapse
|