1
|
Al-Asfour A, Bhardwaj RG, Karched M. Growth Suppression of Oral Squamous Cell Carcinoma Cells by Lactobacillus Acidophilus. Int Dent J 2024; 74:1151-1160. [PMID: 38679518 DOI: 10.1016/j.identj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is a highly aggressive form of oral cancer. Probiotic lactobacilli have demonstrated anticancer effects, whilst their interaction with Streptococcus mutans in this context remains unexplored. The objective of this study was to investigate the antiproliferative effect of Lactobacillus acidophilus on OSCC and to understand the effect of S mutans on OSCCs and whether it affects the antiproliferative potential of L acidophilus when co-exposed to OSCC. METHODS The human head and neck squamous cell carcinoma cells of the oral cavity (HNO97 cell line) were exposed to cultures of L acidophilus and S mutans separately and in combination. Further, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess the viability of HNO97 cells. Bacterial adhesion to HNO97 cells was examined by confocal microscopy and apoptosis by Nexin staining. To understand the underlying mechanism of apoptosis, expression of the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) gene and protein were determined by real-time polymerase chain reaction and quantitative enzyme-linked immunosorbent assay, respectively. RESULTS A significant decrease (53%-56%) in the viability of HNO97 cells on exposure to L acidophilus, S mutans, and the 2 species together demonstrated the antiproliferative activity of L acidophilus and S mutans. Both bacteria showed adhesion to HNO97 cells. The expression of the TRAIL gene increased 5-fold in HNO97 cells on treatment with L acidophilus and S mutans, which further increased to ∼17-fold with both species present. Expression levels of the TRAIL protein were significantly (P < .05) increased in bacteria-treated cell lysates. Further, bacteria-treated HNO97 cells exhibited lower live and intact cell percentages with higher proportions of cells in early and late apoptotic stages. CONCLUSIONS L acidophilus exhibits the antiproliferative activity against OSCC cells possibly partially via a TRAIL-induced mechanism of apoptosis, which is not affected by the presence of S mutans. These findings may encourage further investigation into the possible therapeutic application of probiotic L acidophilus in OSCC.
Collapse
Affiliation(s)
- Adel Al-Asfour
- Department of Surgical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait; Department of Biotechnology, School of Arts and Science, American International University, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
2
|
Kundu M, Greer YE, Lobanov A, Ridnour L, Donahue RN, Ng Y, Ratnayake S, Voeller D, Weltz S, Chen Q, Lockett SJ, Cam M, Meerzaman D, Wink DA, Weigert R, Lipkowitz S. TRAIL-induced cytokine production via NFKB2 pathway promotes neutrophil chemotaxis and immune suppression in triple negative breast cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604341. [PMID: 39091795 PMCID: PMC11291031 DOI: 10.1101/2024.07.19.604341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapeutic that induces apoptosis in cancer cells while sparing the non-malignant cells in preclinical models. However, its efficacy in clinical trials has been limited, suggesting unknown modulatory mechanisms responsible for the lack of TRAIL activity in patients. Here, we hypothesized that TRAIL treatment elicits transcriptional changes in triple negative breast cancer (TNBC) cells that alter the immune milieu. To test this, we performed an RNAseq analysis of MDA-MB-231 cells treated with TRAIL, followed by validation in additional TNBC cell lines. TRAIL significantly induces expression of multiple cytokines such as CXCLs 1, 2, 3, 8,11 and IL-6, which are known to modify neutrophil function. Mechanistically, the induction of these cytokines was predominantly mediated by death receptor 5, caspase 8 (but not caspase 8 enzymatic activity), and the non-canonical NFKB2 pathway. The cytokines produced by the TRAIL-treated TNBC cells enhanced chemotaxis of healthy human donor isolated neutrophils. In vivo , TRAIL treated TNBC murine xenograft tumors showed activation of the NFKB2 pathway, elevated production of CXCLs and IL-6, and increased neutrophil recruitment into the tumors. Moreover, donor isolated neutrophils preincubated in supernatants from TRAIL-treated TNBC cells exhibited impaired cytotoxic effect against TNBC cells. Transcriptomic analysis of neutrophils incubated with either TRAIL alone or supernatant of TRAIL-treated TNBC cells revealed increased expression of inflammatory cytokines, immune modulatory genes, immune checkpoint genes, and genes implicated in delayed neutrophil apoptosis. Functional studies with these neutrophils confirmed their suppressive effect on T cell proliferation and an increase in Treg suppressive phenotype. Collectively, our study demonstrates a novel role of TRAIL-induced NFKB2-dependent cytokine production that promotes neutrophil chemotaxis and immune suppression.
Collapse
|
3
|
Targeting TRAIL Death Receptors in Triple-Negative Breast Cancers: Challenges and Strategies for Cancer Therapy. Cells 2022; 11:cells11233717. [PMID: 36496977 PMCID: PMC9739296 DOI: 10.3390/cells11233717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells via death receptor (DR) activation with little toxicity to normal cells or tissues. The selectivity for activating apoptosis in cancer cells confers an ideal therapeutic characteristic to TRAIL, which has led to the development and clinical testing of many DR agonists. However, TRAIL/DR targeting therapies have been widely ineffective in clinical trials of various malignancies for reasons that remain poorly understood. Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers. Targeting the TRAIL DR pathway has shown notable efficacy in a subset of TNBC in preclinical models but again has not shown appreciable activity in clinical trials. In this review, we will discuss the signaling components and mechanisms governing TRAIL pathway activation and clinical trial findings discussed with a focus on TNBC. Challenges and potential solutions for using DR agonists in the clinic are also discussed, including consideration of the pharmacokinetic and pharmacodynamic properties of DR agonists, patient selection by predictive biomarkers, and potential combination therapies. Moreover, recent findings on the impact of TRAIL treatment on the immune response, as well as novel strategies to address those challenges, are discussed.
Collapse
|
4
|
Ravula V, Lo YL, Wu YT, Chang CW, Patri SV, Wang LF. Arginine-tocopherol bioconjugated lipid vesicles for selective pTRAIL delivery and subsequent apoptosis induction in glioblastoma cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112189. [PMID: 34082988 DOI: 10.1016/j.msec.2021.112189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
The incorporation of specific therapeutic gene into glioblastoma offers potent therapeutic strategy to treat the disease. Non-viral gene delivery vectors are of particular interest due to their tuneable transfection efficiency and easy scale-up. Herein, we demonstrate successful delivery of plasmid encoding tumor necrosis factor (TNF)-related apoptosis-inducing ligand (pTRAIL) using arginine-conjugated tocopherol lipid (AT) nanovesicles into glioblastoma cell lines. Another cationic lipid, glycine-conjugated tocopherol lipid (GT) having glycine in the head group region is also synthesized as a control lipid. Both lipid-derived liposomes effectively condensed the pDNA and the corresponding biomacromolecular assemblies (lipoplexes) are efficiently transfected into different cell lines. AT-based liposomes exhibit higher transfection efficacy in various cell lines, particularly selective in glioma cell lines. At an optimized N/P ratio, both the liposomal formulations show low cytotoxicity. AT-based lipoplexes have superior cellular uptake in U87 than the control lipid GT. The expression of TRAIL protein regulated death receptor and apoptosis signaling pathway is assayed by western blot using transfection of AT-based/pTRAIL into U87 cell lines. Induction of apoptosis in U87 cells exposed to AT-based/pTRAIL plasmid is evaluated by MTT assay as well as Annexin V-propidium iodide dual-staining assay. All results indicate that the developed AT-based/pTRAIL system offers a potentially safe and efficient therapeutic strategy for glioblastoma gene therapy.
Collapse
Affiliation(s)
- Venkatesh Ravula
- Department of Chemistry, National Institute of Technology, Warangal 506004, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Lun Lo
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Ting Wu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Srilakshmi V Patri
- Department of Chemistry, National Institute of Technology, Warangal 506004, India.
| | - Li-Fang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
5
|
Je H, Nam GH, Kim GB, Kim W, Kim SR, Kim IS, Lee EJ. Overcoming therapeutic efficiency limitations against TRAIL-resistant tumors using re-sensitizing agent-loaded trimeric TRAIL-presenting nanocages. J Control Release 2021; 331:7-18. [DOI: 10.1016/j.jconrel.2021.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022]
|
6
|
Small in Size, but Large in Action: microRNAs as Potential Modulators of PTEN in Breast and Lung Cancers. Biomolecules 2021; 11:biom11020304. [PMID: 33670518 PMCID: PMC7922700 DOI: 10.3390/biom11020304] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are well-known regulators of biological mechanisms with a small size of 19–24 nucleotides and a single-stranded structure. miRNA dysregulation occurs in cancer progression. miRNAs can function as tumor-suppressing or tumor-promoting factors in cancer via regulating molecular pathways. Breast and lung cancers are two malignant thoracic tumors in which the abnormal expression of miRNAs plays a significant role in their development. Phosphatase and tensin homolog (PTEN) is a tumor-suppressor factor that is capable of suppressing the growth, viability, and metastasis of cancer cells via downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling. PTEN downregulation occurs in lung and breast cancers to promote PI3K/Akt expression, leading to uncontrolled proliferation, metastasis, and their resistance to chemotherapy and radiotherapy. miRNAs as upstream mediators of PTEN can dually induce/inhibit PTEN signaling in affecting the malignant behavior of lung and breast cancer cells. Furthermore, long non-coding RNAs and circular RNAs can regulate the miRNA/PTEN axis in lung and breast cancer cells. It seems that anti-tumor compounds such as baicalein, propofol, and curcumin can induce PTEN upregulation by affecting miRNAs in suppressing breast and lung cancer progression. These topics are discussed in the current review with a focus on molecular pathways.
Collapse
|
7
|
Improved melanoma suppression with target-delivered TRAIL and Paclitaxel by a multifunctional nanocarrier. J Control Release 2020; 325:10-24. [PMID: 32251770 DOI: 10.1016/j.jconrel.2020.03.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/21/2020] [Accepted: 03/31/2020] [Indexed: 12/27/2022]
Abstract
Malignant melanoma, a highly dangerous type of skin cancer, is usually resistant to pro-apoptosis agents such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) due to low death receptor expression levels. After verifying combination of chemotherapy drug paclitaxel (PTX) and TRAIL could significantly enhance their anti-melanoma effects, we developed a liposomal melanoma target-delivery system with tumor microenvironment responsiveness (TRAIL-[Lip-PTX]C18-TR) to co-deliver TRAIL and PTX. TRAIL is attached to negatively-charged liposome surface while PTX is encapsulated inside, with final surface modification of a stearyl chain (C18) fused pH-sensitive cell-penetrating peptide (TR). Here, C18-TR could specifically binds to melanoma-rich integrin receptors αvβ3 for melanoma targeting, help release TRAIL in low pH microenvironment by reversing the liposomal charge, and facilitate consequent liposome internalization. TRAIL-[Lip-PTX]C18-TR displayed significantly better in vitro half-maximal inhibitory concentration (IC50) than other formulations, and an in vivo tumor inhibition rate of 93.8%. Mechanistic study revealed that this synergistic effect is associated with the upregulation of death receptors DR4/5 by PTX. This co-delivery system significantly improved TRAIL-based therapy against melanoma, and provided a simple platform to co-deliver other drugs/agents for melanoma treatment.
Collapse
|
8
|
Zayed SA, Zahran NM, Khorshied MM, Abdel-Aziz AO, Mahmoud O, Morsy SA, Shousha HI, Elbaz TM, Nabeel MM, Harb ARK. Genetic variations in death receptor domain 4 gene and the susceptibility to hepatitis C related hepatocellular carcinoma. J Med Virol 2019; 91:1537-1544. [PMID: 30945308 DOI: 10.1002/jmv.25476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide, particularly in Egypt. The role of apoptosis in tumorigenesis has been well-documented and resistance to apoptosis is a hallmark of cancer. Several studies discussed the association between death receptor 4 (DR4) genetic variants and HCC risk. AIM To study the possible link between DR4 gene polymorphisms and the susceptibility to HCC. METHODS Genotyping of DR4-C626G, -A683C, and DR4-A1322G single nucleotide polymorphisms (SNP) was determined by polymerase chain reaction assay for 100 de novo HCV-related HCC patients, 100 chronic hepatitis C-related liver cirrhosis patients, and 150 healthy controls. RESULTS DR4-A1322G polymorphic genotypes (AG and GG) were significantly higher in HCC and cirrhotic patients than controls. The AG genotype conferred two-fold increased risk of HCC (odds ratio [OR], 2.34; 95% confidence interval [CI], 1.56-3.51) and the risk increased to three-fold for the GG genotype (OR, 3.51; 95%CI, 2.33-5.28). The frequency of DR4-C626G and -A683C SNPs in HCC and cirrhotic patients were not significantly different from the controls. Combined genotype analysis showed that coinheritance of the polymorphic genotypes of DR4-C626G and -A1322G conferred nine-fold increased risk of HCC (OR, 9.34; 95%CI, 3.76-23.12). The risk increased to be 12-fold when DR4-A683C and -A1322G variants were coinherited (OR, 11.9; 95%CI, 4.82-29.39). Coexistence of the variant genotypes of the three SNPs conferred almost 10-fold increased risk of HCC (OR, 9.75; 95%CI, 1.86-51.19). CONCLUSIONS The G allele of DR4 -A1322G could be considered as a novel independent molecular predictor for HCV-related HCC in the Egyptian population.
Collapse
Affiliation(s)
- Shahira Amin Zayed
- Department of Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nariman M Zahran
- Department of Clinical & Chemical Pathology, Hematology Laboratory, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Mervat Mamdooh Khorshied
- Department of Clinical & Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ashraf Omar Abdel-Aziz
- Department of Endemic medicine and Hepato-gastroenterology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ola Mahmoud
- Department of Clinical & Chemical Pathology, Hematology Laboratory, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Shereif Ahmed Morsy
- Department Tropical and Internal Medicine, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Hend Ibrahim Shousha
- Department of Endemic Medicine and Hepato-gastroenterology, Faculty of medicine, Cairo University, Cairo, Egypt
| | - Tamer Mahmoud Elbaz
- Department of Endemic Medicine and Hepato-gastroenterology, Cairo University, Cairo, Egypt
| | | | | |
Collapse
|
9
|
Zhou X, Liu Z, Wang H, Liu X, Zhou Z, Tang J, Liu X, Zheng M, Shen Y. SAHA (vorinostat) facilitates functional polymer-based gene transfection via upregulation of ROS and synergizes with TRAIL gene delivery for cancer therapy. J Drug Target 2018; 27:306-314. [PMID: 30188217 DOI: 10.1080/1061186x.2018.1519028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-viral gene delivery is an attractive approach for the treatment of many diseases including cancer, benefiting from its safety and large-scale production concerns. However, the relatively low transfection efficacy compared with viral vectors restricts the clinical applications of non-viral gene vectors. Reactive oxygen species (ROS) triggered charge reversal polymers (named B-PDEAEA) presented improved transfection efficacy, because of fast release of plasmid DNA responding to enhanced oxidative stress in cancer cells. But inadequate dissociation can still occur owing to the insufficient intracellular ROS generation. Here, we report SAHA (vorinostat), which is a clinical histone deacetylase inhibitor and anticancer drug, induces the ROS accumulation in cancer cells, and facilitates the charge reversal process of B-PDEAEA and the cellular dissociation of the delivered gene from the vectors. As a result, SAHA remarkably increases the gene transfection efficacy in an ROS-dependent manner. Importantly, SAHA synergizes with B-PDEAEA mediated therapeutic gene TNF-related apoptosis-inducing ligand (TRAIL) delivery in inducing apoptosis of cancer cells. These findings support the first concept of improving the gene delivery efficacy of stimuli-responsive vectors through upregulating the cellular ROS via an FDA approved anticancer agent. Additionally, combination of SAHA and TRAIL gene therapy could be a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Xuefei Zhou
- a Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Zimo Liu
- a Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Huifang Wang
- a Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Xin Liu
- a Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Zhuxian Zhou
- a Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Jianbin Tang
- a Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Xiangrui Liu
- a Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| | - Min Zheng
- b State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Medical School , Zhejiang University , Hangzhou , China
| | - Youqing Shen
- a Key Laboratory of Biomass Chemical Engineering of Ministry of Education and Center for Bionanoengineering, College of Chemical and Biological Engineering , Zhejiang University , Hangzhou , China
| |
Collapse
|
10
|
Werner TA, Nolten I, Dizdar L, Riemer JC, Schütte SC, Verde PE, Raba K, Schott M, Knoefel WT, Krieg A. IAPs cause resistance to TRAIL-dependent apoptosis in follicular thyroid cancer. Endocr Relat Cancer 2018; 25:295-308. [PMID: 29317481 DOI: 10.1530/erc-17-0479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
Abstract
Follicular thyroid cancer's (FTC) excellent long-term prognosis is mainly dependent on postoperative radioactive iodine (RAI) treatment. However, once the tumour becomes refractory, the 10-year disease-specific survival rate drops below 10%. The aim of our study was to evaluate the prognostic and biological role of the TRAIL system in FTC and to elucidate the influence of small-molecule-mediated antagonisation of inhibitor of apoptosis proteins (IAPs) on TRAIL sensitivity in vitro Tissue microarrays were constructed from forty-four patients with histologically confirmed FTC. Expression levels of TRAIL and its receptors were correlated with clinicopathological data and overall as well as recurrence-free survival. Non-iodine-retaining FTC cell lines TT2609-bib2 and FTC133 were treated with recombinant human TRAIL alone and in combination with Smac mimetics GDC-0152 or Birinapant. TRAIL-R2/DR5 as well as TRAIL-R3/DcR1 and TRAIL-R4/DcR2 were significantly higher expressed in advanced tumour stages. Both decoy receptors were negatively associated with recurrence-free and overall survival. TRAIL-R4/DcR2 additionally proved to be an independent negative prognostic marker in FTC (HR = 1.446, 95% CI: 1.144-1.826; P < 0.001). In vitro, the co-incubation of Birinapant or GDC-0152 with rh-TRAIL-sensitised FTC cell lines for TRAIL-induced apoptosis, through degradation of cIAP1/2. The TRAIL system plays an important role in FTC tumour biology. Its decoy receptors are associated with poor prognosis as well as earlier recurrence. The specific degradation of cIAP1/2 sensitises FTC cells to TRAIL-induced apoptosis and might highlight a new point of attack in patients with RAI refractory disease.
Collapse
Affiliation(s)
- Thomas A Werner
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Inga Nolten
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Levent Dizdar
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jasmin C Riemer
- Institute of PathologyHeinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sina C Schütte
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Pablo E Verde
- Coordination Centre for Clinical TrialsHeinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Katharina Raba
- Institute for Transplantation Diagnostics and Cell TherapeuticsHeinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Matthias Schott
- Division of EndocrinologyHeinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfram T Knoefel
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Andreas Krieg
- Department of Surgery (A)Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
11
|
Kang TH, Yoon G, Kang IA, Oh HN, Chae JI, Shim JH. Natural Compound Licochalcone B Induced Extrinsic and Intrinsic Apoptosis in Human Skin Melanoma (A375) and Squamous Cell Carcinoma (A431) Cells. Phytother Res 2017; 31:1858-1867. [PMID: 29027311 DOI: 10.1002/ptr.5928] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Abstract
Licochalcone B (Lico B), which is normally isolated from the roots of Glycyrrhiza inflata (Chinese Licorice), generally classified into organic compounds including retrochalcones. Potential pharmacological properties of Lico B include anti-inflammatory, anti-bacterial, anti-oxidant, and anti-cancer activities. However, its biological effects on melanoma and squamous cell carcinoma (SCC) are unknown. Based on these known facts, this study investigated the role of Lico B in apoptosis, through the extrinsic and intrinsic pathways and additional regulation of specificity protein 1 in human skin cancer cell lines. Annexin V/7-aminoactinomycin D staining, western blot analysis, mitochondrial membrane potential assay, and an anchorage-independent cell transformation assay demonstrated that Lico B treatment of human melanoma and SCC cells significantly inhibited cell proliferation and induced apoptotic cell death. More specifically, Lico B induced apoptosis through the regulation of specificity protein 1 and apoptosis-related proteins including CCAAT/enhancer-binding protein homologous protein, death receptors, and poly (ADP-ribose) polymerase. These results indicate that Lico B has apoptotic effect on A375 and A431 skin cancer cells, suggesting the potential value of Lico B for the treatment of human melanoma and SCC. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tae-Ho Kang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - In-A Kang
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
12
|
Elmallah MI, Micheau O, Eid MAG, Hebishy AM, Abdelfattah MS. Marine actinomycete crude extracts with potent TRAIL-resistance overcoming activity against breast cancer cells. Oncol Rep 2017; 37:3635-3642. [DOI: 10.3892/or.2017.5595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/16/2017] [Indexed: 11/05/2022] Open
|
13
|
Li X, Yang B, Wang L, Chen L, Luo X, Liu L. SPAG6 regulates cell apoptosis through the TRAIL signal pathway in myelodysplastic syndromes. Oncol Rep 2017; 37:2839-2846. [DOI: 10.3892/or.2017.5540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 02/23/2017] [Indexed: 11/05/2022] Open
|
14
|
Kanatli I, Akkaya B, Uysal H, Kahraman S, Sanlioglu AD. Analysis of TNF-related apoptosis-inducing ligand and receptors and implications in thymus biology and myasthenia gravis. Neuromuscul Disord 2016; 27:128-135. [PMID: 28012741 DOI: 10.1016/j.nmd.2016.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
Myasthenia Gravis is an autoantibody-mediated, neuromuscular junction disease, and is usually associated with thymic abnormalities presented as thymic tumors (~10%) or hyperplastic thymus (~65%). The exact role of thymus in Myasthenia Gravis development is not clear, yet many patients benefit from thymectomy. The apoptotic ligand TNF-Related Apoptosis-Inducing Ligand is thought to be involved in the regulation of thymocyte counts, although conflicting results are reported. We investigated differential expression profiles of TNF-Related Apoptosis-Inducing Ligand and its transmembrane receptors, Nuclear Factor-kB activation status, and apoptotic cell counts in healthy thymic tissue and pathological thymus from Myasthenia Gravis patients. All tissues expressed TNF-Related Apoptosis-Inducing Ligand and its receptors, with hyperplastic tissue having the highest expression levels of death receptors DR4 and DR5. No detectable Nuclear Factor-kB activation, at least via the canonical Protein Kinase A-mediated p65 Ser276 phosphorylation, was evident in any of the tissues studied. Apoptotic cell counts were higher in MG-associated tissue compared to the normal thymus. Possible use of the TNF-Related Apoptosis-Inducing Ligand within the concept of an apoptotic ligand-mediated medical thymectomy in thymoma- or thymic hyperplasia-associated Myasthenia Gravis is also discussed.
Collapse
Affiliation(s)
- Irem Kanatli
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey; Center for Gene and Cell Therapy, Akdeniz University, 07058 Antalya, Turkey
| | - Bahar Akkaya
- Department of Pathology, Faculty of Medicine, Akdeniz University, 07058 Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, 07058 Antalya, Turkey
| | - Sevim Kahraman
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey; Center for Gene and Cell Therapy, Akdeniz University, 07058 Antalya, Turkey
| | - Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey; Center for Gene and Cell Therapy, Akdeniz University, 07058 Antalya, Turkey.
| |
Collapse
|
15
|
Combinatorial treatment with anacardic acid followed by TRAIL augments induction of apoptosis in TRAIL resistant cancer cells by the regulation of p53, MAPK and NFκβ pathways. Apoptosis 2016; 21:578-93. [PMID: 26921178 DOI: 10.1007/s10495-016-1223-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
TRAIL, an apoptosis inducing cytokine currently in phase II clinical trial, was investigated for its capability to induce apoptosis in six different human tumor cell lines out of which three cell lines showed resistance to TRAIL induced apoptosis. To investigate whether Anacardic acid (A1) an active component of Anacardium occidentale can sensitize the resistant cell lines to TRAIL induced apoptosis, we treated the resistant cells with suboptimal concentration of A1 and showed that it is a potent enhancer of TRAIL induced apoptosis which up-regulates the expression of both DR4 and DR5 receptors, which has been observed in the cellular, protein and mRNA levels. The death receptors upregulation consequent to A1 treatment was corroborated by the activation of p53 as well as phosphorylation of p38 and JNK MAP kinases and concomitant inactivation of NFκβ and ERK signaling cascades. Also, A1 modulated the expression of key apoptotic players like Bax, Bcl-2 and CAD along with the abatement of tumor angiogenesis in vivo in EAT mouse model. Thus, post A1 treatment the TRAIL resistant cells turned into TRAIL sensitive cells. Hence our results demonstrate that A1 can synergize TRAIL induced apoptosis through the upregulation of death receptors and downregulation of anti-apoptotic proteins in cancer context.
Collapse
|
16
|
Engineered adenovirus fiber shaft fusion homotrimer of soluble TRAIL with enhanced stability and antitumor activity. Cell Death Dis 2016; 7:e2274. [PMID: 27336718 PMCID: PMC5143403 DOI: 10.1038/cddis.2016.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/15/2016] [Accepted: 05/27/2016] [Indexed: 12/16/2022]
Abstract
Successful cancer therapies aim to induce selective apoptosis in neoplastic cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered an attractive anticancer agent due to its tumor cell-specific cytotoxicity. However, earlier studies with recombinant TRAIL revealed many shortcomings, including a short half-life, off-target toxicity and existence of TRAIL-resistant tumor cells. In this study, we developed a novel engineering strategy for recombinant soluble TRAIL by redesigning its structure with the adenovirus knobless fiber motif to form a stable homotrimer with improved antitumor activity. The result is a highly stable fiber-TRAIL fusion protein that could form homotrimers similar to natural TRAIL. The recombinant fusion TRAIL developed here displayed high specific activity in both cell-based assays in vitro and animal tests in vivo. This construct will serve as a foundation for a new generation of recombinant proteins suitable for use in preclinical and clinical studies and for effective combination therapies to overcome tumor resistance to TRAIL.
Collapse
|
17
|
Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol-A Natural Compound Present in Humulus lupulus L. Int J Mol Sci 2016; 17:ijms17060837. [PMID: 27338375 PMCID: PMC4926371 DOI: 10.3390/ijms17060837] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/31/2023] Open
Abstract
TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) is an endogenous ligand, which plays role in immune surveillance and anti-tumor immunity. It has ability to selectively kill tumor cells showing no toxicity to normal cells. We tested the apoptotic and cytotoxic activities of xanthohumol, a prenylated chalcone found in Humulus lupulus on androgen-sensitive human prostate adenocarcinoma cells (LNCaP) in combination with TRAIL. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay (MTT) and lactate dehydrogenase assay (LDH). The expression of death receptors (DR4/TRAIL-R1 and DR5/TRAIL-R2) and apoptosis were detected using flow cytometry. We examined mitochondrial membrane potential (ΔΨm) by DePsipher reagent using fluorescence microscopy. The intracellular expression of proteins was evaluated by Western blotting. Our study showed that xanthohumol enhanced cytotoxic and apoptotic effects of TRAIL. The tested compounds activated caspases-3, -8, -9, Bid, and increased the expression of Bax. They also decreased expression of Bcl-xL and decreased mitochondrial membrane potential, while the expression of death receptors was not changed. The findings suggest that xanthohumol is a compound of potential use in chemoprevention of prostate cancer due to its sensitization of cancer cells to TRAIL-mediated apoptosis.
Collapse
|
18
|
Tsai HF, Hsu PN. Modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by Helicobacter pylori in immune pathogenesis of gastric mucosal damage. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 50:4-9. [PMID: 26947589 DOI: 10.1016/j.jmii.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 12/20/2015] [Accepted: 01/17/2016] [Indexed: 12/28/2022]
Abstract
Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, gastric carcinoma, and gastric mucosa-associated lymphoid tissue lymphomas. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Enhanced gastric epithelial cell apoptosis during H. pylori infection was suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells. Human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death-receptor signaling. The induction of TRAIL sensitivity by H. pylori is dependent upon the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex through downregulation of cellular FLICE-inhibitory protein. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, significant increases in CCR6+ CD3+ T cell infiltration in the gastric mucosa was observed, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These mechanisms initiate chemokine-mediated T lymphocyte trafficking into inflamed epithelium and induce mucosal injury during Helicobacter infection. This article will review recent findings on the interactions of H. pylori with host-epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation and mucosal damage.
Collapse
Affiliation(s)
- Hwei-Fang Tsai
- Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
19
|
Amarante-Mendes GP, Griffith TS. Therapeutic applications of TRAIL receptor agonists in cancer and beyond. Pharmacol Ther 2015; 155:117-31. [PMID: 26343199 DOI: 10.1016/j.pharmthera.2015.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent manner following TRAIL death receptor trimerization. Because tumor cells were shown to be particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served as one of our major physiologic weapons against cancer. In line with this, a number of research laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., receptor-specific mAb) for therapeutic purposes. In this review article we will describe the biochemical pathways used by TRAIL to induce different cell death programs. We will also summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-related therapies. In recent years, the physiological importance of TRAIL has expanded beyond being a tumoricidal molecule to one critical for a number of clinical settings - ranging from infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the future.
Collapse
Affiliation(s)
- Gustavo P Amarante-Mendes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia, Brazil.
| | - Thomas S Griffith
- Department of Urology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN, USA; Minneapolis VA Health Care System, Minneapolis, MN 55417, USA.
| |
Collapse
|
20
|
Role of Bcl-xL/Beclin-1 in synergistic apoptotic effects of secretory TRAIL-armed adenovirus in combination with mitomycin C and hyperthermia on colon cancer cells. Apoptosis 2015; 19:1603-15. [PMID: 25156145 PMCID: PMC4196052 DOI: 10.1007/s10495-014-1028-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, we attempted to develop a multimodality approach using chemotherapeutic agent mitomycin C, biologic agent tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L), and mild hyperthermia to treat colon cancer. For this study, human colon cancer LS174T, LS180, HCT116 and CX-1 cells were infected with secretory TRAIL-armed adenovirus (Ad.TRAIL) and treated with chemotherapeutic agent mitomycin C and hyperthermia. The combinatorial treatment caused a synergistic induction of apoptosis which was mediated through an increase in caspase activation. The combinational treatment promoted the JNK-Bcl-xL-Bak pathway which transmitted the synergistic effect through the mitochondria-dependent apoptotic pathway. JNK signaling led to Bcl-xL phosphorylation at serine 62, dissociation of Bak from Bcl-xL, oligomerization of Bak, alteration of mitochondrial membrane potential, and subsequent cytochrome c release. Overexpression of dominant-negative mutant of Bcl-xL (S62A), but not dominant-positive mutant of Bcl-xL (S62D), suppressed the synergistic death effect. Interestingly, Beclin-1 was dissociated from Bcl-xL and overexpression of dominant-negative mutant of Bcl-xL (S62A), but not dominant-positive mutant of Bcl-xL (S62D), suppressed dissociation of Beclin-1 from Bcl-xL. A combinatorial treatment of mitomycin C, Ad.TRAIL and hyperthermia induced Beclin-1 cleavage, but the Beclin-1 cleavage was abolished in Beclin-1 double mutant (D133A/D146A) knock-in HCT116 cells, suppressing the apoptosis induced by the combination therapy. We believe that this study supports the application of the multimodality approach to colon cancer therapy.
Collapse
|
21
|
Dao P, Smith N, Scott-Algara D, Garbay C, Herbeuval J, Chen H. Restoration of TRAIL-induced apoptosis in resistant human pancreatic cancer cells by a novel FAK inhibitor, PH11. Cancer Lett 2015; 360:48-59. [DOI: 10.1016/j.canlet.2015.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 11/27/2022]
|
22
|
Byeon HJ, Kim I, Choi JS, Lee ES, Shin BS, Youn YS. PEGylated apoptotic protein-loaded PLGA microspheres for cancer therapy. Int J Nanomedicine 2015; 10:739-48. [PMID: 25632232 PMCID: PMC4304599 DOI: 10.2147/ijn.s75821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of the current study was to investigate the antitumor potential of poly (D,L-lactic-co-glycolic acid) microspheres (PLGA MSs) containing polyethylene glycol (PEG)-conjugated (PEGylated) tumor necrosis factor–related apoptosis-inducing ligand (PEG-TRAIL). PEG-TRAIL PLGA MSs were prepared by using a water-in-oil-in-water double-emulsion method, and the apoptotic activities of supernatants released from the PLGA MSs at days 1, 3, and 7 were examined. The antitumor effect caused by PEG-TRAIL PLGA MSs was evaluated in pancreatic Mia Paca-2 cell-xenografted mice. PEG-TRAIL PLGA MS was found to be spherical and 14.4±1.06 μm in size, and its encapsulation efficiency was significantly greater than that of TRAIL MS (85.7%±4.1% vs 43.3%±10.9%, respectively). The PLGA MS gradually released PEG-TRAIL for 14 days, and the released PEG-TRAIL was shown to have clear apoptotic activity in Mia Paca-2 cells, whereas TRAIL released after 1 day had a negligible activity. Finally, PEG-TRAIL PLGA MS displayed remarkably greater antitumor efficacy than blank or TRAIL PLGA MS in Mia Paca-2 cell-xenografted mice in terms of tumor volume and weight, apparently due to increased stability and well-retained apoptotic activity of PEG-TRAIL in PLGA MS. We believe that this PLGA MS system, combined with PEG-TRAIL, should be considered a promising candidate for treating pancreatic cancer.
Collapse
Affiliation(s)
- Hyeong Jun Byeon
- Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Insoo Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ji Su Choi
- Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon-si, Republic of Korea
| | - Beom Soo Shin
- Department of Pharmacy, College of Pharmacy, Catholic University of Daegu, Gyeongsan-si, Republic of Korea
| | - Yu Seok Youn
- Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
23
|
Bolkun L, Lemancewicz D, Piszcz J, Moniuszko M, Bolkun-Skornicka U, Szkiladz M, Jablonska E, Kloczko J, Dzieciol J. Relationship between tumour necrosis factor-related apoptosis inducing ligand (TRAIL) and vascular endothelial growth factor in human multiple myeloma patients. Hematol Oncol 2014; 33:199-205. [PMID: 25370722 DOI: 10.1002/hon.2182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/26/2014] [Accepted: 10/22/2014] [Indexed: 12/12/2022]
Abstract
Tumour necrosis factor-alfa (TNF-α) is an inflammatory cytokine with a wide spectrum of biological activity, including angiogenesis. Tumour necrosis factor-related apoptosis inducing ligand (TRAIL), which belongs to the TNF family of proteins, plays a role in the regulation of vascular responses, but its effect on the formation of new blood vessels (angiogenesis) is unclear. We analysed TRAIL concentrations in parallel with pro-angiogenic cytokines in serum and their expression in trephine biopsy (TB) in 56 patients with newly diagnosed IgG MM and 24 healthy volunteers. The study showed statistically higher concentrations of TRAIL and TNF-α, as well as of VEGF and its receptor, in MM patients compared to healthy volunteers and patients in advanced stages of the disease. Furthermore, we observed a significant decrease in all studied pro-angiogenic cytokines and significant increase of TRAIL concentration after anti-angiogenic therapy, with meaningful differences between responders (at least partial remission) and patients with progression during the induction treatment. It was also established that TRAIL correlated statistically and negatively with pro-angiogenic cytokines such as VEGF with its receptor and expression of VEGF and syndecan-1 in TB. In summary, our data indicate that in MM patients, both clinical course and treatment responsiveness are associated with dynamic yet corresponding changes of levels of TRAIL parallel pro-angiogenic mediators such as VEGF with its receptor and expression of VEGF and syndecan-1 in TB.
Collapse
Affiliation(s)
- Lukasz Bolkun
- Department of Haematology, Medical University of Bialystok, Poland
| | - Dorota Lemancewicz
- Department of Haematology, Medical University of Bialystok, Poland.,Department of Human Anatomy, Medical University of Bialystok, Poland
| | - Jaroslaw Piszcz
- Department of Haematology, Medical University of Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Poland.,Department of Allergology and Internal Medicine, Medical University of Bialystok, Poland
| | | | | | - Ewa Jablonska
- Department of Immunology, Medical University of Bialystok, Poland
| | - Janusz Kloczko
- Department of Haematology, Medical University of Bialystok, Poland
| | - Janusz Dzieciol
- Department of Human Anatomy, Medical University of Bialystok, Poland
| |
Collapse
|
24
|
Wang H, Xu C, Kong X, Li X, Kong X, Wang Y, Ding X, Yang Q. Trail resistance induces epithelial-mesenchymal transition and enhances invasiveness by suppressing PTEN via miR-221 in breast cancer. PLoS One 2014; 9:e99067. [PMID: 24905916 PMCID: PMC4048247 DOI: 10.1371/journal.pone.0099067] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 05/12/2014] [Indexed: 01/05/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis of cancer cells and is verified effective to various cancers. However, a variety of breast cancer cell lines are resistant to TRAIL and the mechanisms of resistance are largely unknown. In our present experiment, we successfully utilized breast cancer cell line MDA-MB-231 to establish TRAIL-resistant cell line. We found resistance to TRAIL could induce epithelial-mesenchymal transition (EMT) and enhance invasiveness. We further demonstrated PTEN was down-regulated in TRAIL-resistant cells. Silencing miR-221, PTEN expression was up-regulated, the process of EMT could be reversed, and the ability of migration and invasion were correspondingly weakened. We also demonstrated knockdown of miR-221 could reverse resistance to TRAIL partially by targeting PTEN. Our findings suggest that resistance to TRAIL could induce EMT and enhance invasiveness by suppressing PTEN via miR-221. Re-expression of miR-221 or targeting PTEN might serve as potential therapeutic approaches for the treatment of Trail-resistant breast cancer.
Collapse
Affiliation(s)
- Haiji Wang
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong Province, China
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Chunyuan Xu
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, China
| | - Xiaoli Kong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiangnan Kong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xia Ding
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
- * E-mail:
| |
Collapse
|
25
|
Wachsmann MB, Pop LM, Vitetta ES. Pancreatic ductal adenocarcinoma: a review of immunologic aspects. J Investig Med 2014. [PMID: 22406516 DOI: 10.231/jim.0b013e31824a4d79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
26
|
Du W, Uslar L, Sevala S, Shah K. Targeting c-Met receptor overcomes TRAIL-resistance in brain tumors. PLoS One 2014; 9:e95490. [PMID: 24748276 PMCID: PMC3991662 DOI: 10.1371/journal.pone.0095490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/27/2014] [Indexed: 12/22/2022] Open
Abstract
Tumor necrosis factor related apoptosis-inducing ligand (TRAIL) induced apoptosis specifically in tumor cells. However, with approximately half of all known tumor lines being resistant to TRAIL, the identification of TRAIL sensitizers and their mechanism of action become critical to broadly use TRAIL as a therapeutic agent. In this study, we explored whether c-Met protein contributes to TRAIL sensitivity. We found a direct correlation between the c-Met expression level and TRAIL resistance. We show that the knock down c-Met protein, but not inhibition, sensitized brain tumor cells to TRAIL-mediated apoptosis by interrupting the interaction between c-Met and TRAIL cognate death receptor (DR) 5. This interruption greatly induces the formation of death-inducing signaling complex (DISC) and subsequent downstream apoptosis signaling. Using intracranially implanted brain tumor cells and stem cell (SC) lines engineered with different combinations of fluorescent and bioluminescent proteins, we show that SC expressing a potent and secretable TRAIL (S-TRAIL) have a significant anti-tumor effect in mice bearing c-Met knock down of TRAIL-resistant brain tumors. To our best knowledge, this is the first study that demonstrates c-Met contributes to TRAIL sensitivity of brain tumor cells and has implications for developing effective therapies for brain tumor patients.
Collapse
Affiliation(s)
- Wanlu Du
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liubov Uslar
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sindhura Sevala
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Khalid Shah
- Molecular Neurotherapy and Imaging Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
27
|
Pei N, Jie F, Luo J, Wan R, Zhang Y, Chen X, Liang Z, Du H, Li A, Chen B, Zhang Y, Sumners C, Li J, Gu W, Li H. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells. PLoS One 2014; 9:e92253. [PMID: 24658029 PMCID: PMC3962398 DOI: 10.1371/journal.pone.0092253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/19/2014] [Indexed: 11/30/2022] Open
Abstract
Increased expression of angiotensin II type 2 receptor (AT2R) induces apoptosis in numerous tumor cell lines, with either Angiotensin II-dependent or Angiotensin II-independent regulation, but its molecular mechanism remains poorly understood. Here, we used PCR Array analysis to determine the gene and microRNA expression profiles in human prostate cancer cell lines transduced with AT2R recombinant adenovirus. Our results demonstrated that AT2R over expression leads to up-regulation of 6 apoptosis-related genes (TRAIL-R2, BAG3, BNIPI, HRK, Gadd45a, TP53BP2), 2 cytokine genes (IL6 and IL8) and 1 microRNA, and down-regulation of 1 apoptosis-related gene TNFSF10 and 2 cytokine genes (BMP6, BMP7) in transduced DU145 cells. HRK was identified as an up-regulated gene in AT2R-transduced PC-3 cells by real-time RT-PCR. Next, we utilized siRNAs to silence the up-regulated genes to further determine their roles on AT2R overexpression mediated apoptosis. The results showed downregulation of Gadd45a reduced the apoptotic effect by ∼30% in DU145 cells, downregulation of HRK reduced AT2R-mediated apoptosis by more than 50% in PC-3 cells, while downregulation of TRAIL-R2 enhanced AT2R-mediated apoptosis more than 4 times in DU145 cells. We also found that the effects on AT2R-mediated apoptosis caused by downregulation of Gadd45a, TRAIL-R2 and HRK were independent in activation of p38 MAPK, p44/42 MAPK and p53. Taken together, our results demonstrated that TRAIL-R2, Gadd45a and HRK may be novel target genes for further study of the mechanism of AT2R-mediated apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Nana Pei
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Feilong Jie
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie Luo
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Renqiang Wan
- Department of Otolaryngology-Head and Neck Surgery, Guangdong No. 2 Provincial People’s Hospital, Guangzhou, Guangdong, China
| | - Yanling Zhang
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinglu Chen
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhibing Liang
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Du
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Andrew Li
- Department of Neuroscience, University of Florida, Gainesville, Florida, United States of America
| | - Baihong Chen
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zhang
- Department of Pharmacology, University of Florida, Gainesville, Florida, United States of America
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, United States of America
| | - Jinlong Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (WG); (HL)
| | - Weiwang Gu
- Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (WG); (HL)
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (WG); (HL)
| |
Collapse
|
28
|
Byeon HJ, Choi SH, Choi JS, Kim I, Shin BS, Lee ES, Park ES, Lee KC, Youn YS. Four-arm PEG cross-linked hyaluronic acid hydrogels containing PEGylated apoptotic TRAIL protein for treating pancreatic cancer. Acta Biomater 2014; 10:142-50. [PMID: 24021228 DOI: 10.1016/j.actbio.2013.08.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/02/2013] [Accepted: 08/29/2013] [Indexed: 01/29/2023]
Abstract
Four-arm polyethylene glycol (PEG) cross-linked hyaluronic acid (HA) hydrogels containing PEGylated tumor necrosis factor-related apoptosis-inducing ligand (PEG-TRAIL) were fabricated, and their antitumor effects were evaluated in pancreatic cell (Mia Paca-2)-xenografted mice. HA was conjugated with 4-arm PEG(10k)-amine (a cross-linker) at ratios of 100:1 and 100:2 using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride as a cross-linker, and TRAIL or PEG-TRAIL was incorporated into these HA hydrogels. HA hydrogels at a 100:1 ratio were prepared in good yields (>88%), were moderately stiff, and gradually released PEG-TRAIL over ~14 days in vitro and over ~7 days in vivo (as determined by high-pressure liquid chromatography and infrared imaging). The released PEG-TRAIL was found to have obvious apoptotic activity in Mia Paca-2 cells. PEG-TRAIL HA hydrogels displayed remarkably more antitumor efficacy than TRAIL HA hydrogels in Mia Paca-2 cell-xenografted mice in terms of tumor volumes (size) and weights (453.2mm(3) and 1.03 g vs. 867.5mm(3) and 1.86 g). Furthermore, this improved antitumor efficacy was found to be due to the apoptotic activity of PEG-TRAIL in vivo (determined by a TUNEL assay) despite its substantially lower cytotoxicity than native TRAIL (IC50 values: 71.8 and 202.5 ng ml(-1), respectively). This overall enhanced antitumor effect of PEG-TRAIL HA hydrogels appeared to be due to the increased stability of PEGylated TRAIL in HA hydrogels. These findings indicate that this HA hydrogel system combined with PEG-TRAIL should be considered a potential candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Hyeong Jun Byeon
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Byeon HJ, Choi SH, Choi JS, Kim TH, Lee ES, Lee KC, Youn YS. Apoptotic activity and antitumor efficacy of PEGylated TNF-related apoptosis-inducing ligand (TRAIL) in a Mia Paca-2 cell-xenografted mouse model. Biomed Pharmacother 2013; 68:65-9. [PMID: 24268811 DOI: 10.1016/j.biopha.2013.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/24/2013] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to demonstrate the apoptotic activity and antitumor effect of PEGylated tumor necrosis factor-related apoptosis-inducing ligand (PEG-TRAIL) in pancreatic carcinoma Mia Paca-2 cells and in Mia Paca-2 cell-xenografted mice. PEG-TRAIL was prepared using mPEG-aldehyde (Mw 5 kDa). The apoptosis induced by PEG-TRAIL in Mia Paca-2 cells and in the tumors of Mia Paca-2 cell-xenografted mice was quantified by FACS analysis and using a TUNEL assay. Mia Paca-2 cell-xenografted BALB/c nu/nu mice were administered intratumoral injections of PEG-TRAIL (50 μg/mouse/injection) every 3 days from day 0 (~4 weeks after xenografting) to day 15. Tumor volumes were measured every 3 days from day 0 to day 27. PEG-TRAIL displayed obvious apoptotic activity in Mia Paca-2 cells; the FACS signal was shifted to the apoptotic area and the cells exhibited green fluorescence indicating apoptosis in the TUNEL assay. Furthermore, PEG-TRAIL was found to suppress tumors in Mia Paca-2 cell-xenografted mice (tumor volumes: 183.9±134.1 for PEG-TRAIL vs. 1827.3±264.5 mm(3) for saline control). In addition, in vivo TUNEL assays of tumor tissues showed that the antitumor effect of PEG-TRAIL was due apoptosis. Our findings provide clear in vivo evidence of the antitumor potential of PEG-TRAIL in a Mia Paca-2 cell-xenografted mouse model based of pancreatic cancer.
Collapse
Affiliation(s)
- Hyeong Jun Byeon
- School of Pharmacy, Sungkyunkwan University, 300, Cheoncheon-dong, Jangan-gu, 440-746 Suwon, Republic of Korea
| | - Seong Ho Choi
- School of Pharmacy, Sungkyunkwan University, 300, Cheoncheon-dong, Jangan-gu, 440-746 Suwon, Republic of Korea
| | - Ji Su Choi
- School of Pharmacy, Sungkyunkwan University, 300, Cheoncheon-dong, Jangan-gu, 440-746 Suwon, Republic of Korea
| | - Tae Hyung Kim
- School of Pharmacy, Sungkyunkwan University, 300, Cheoncheon-dong, Jangan-gu, 440-746 Suwon, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43-1, Yeokgok 2-dong, Wonmi-gu, Bucheon-si, 420-743 Gyeonggi-do, Republic of Korea
| | - Kang Choon Lee
- School of Pharmacy, Sungkyunkwan University, 300, Cheoncheon-dong, Jangan-gu, 440-746 Suwon, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300, Cheoncheon-dong, Jangan-gu, 440-746 Suwon, Republic of Korea.
| |
Collapse
|
30
|
Gupta SC, Francis SK, Nair MS, Mo YY, Aggarwal BB. Azadirone, a limonoid tetranortriterpene, induces death receptors and sensitizes human cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) through a p53 protein-independent mechanism: evidence for the role of the ROS-ERK-CHOP-death receptor pathway. J Biol Chem 2013; 288:32343-32356. [PMID: 24078627 DOI: 10.1074/jbc.m113.455188] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has shown efficacy in a phase 2 clinical trial, development of resistance to TRAIL by tumor cells is a major roadblock. We investigated whether azadirone, a limonoidal tetranortriterpene, can sensitize human tumor cells to TRAIL. Results indicate that azadirone sensitized cancer cells to TRAIL. The limonoid induced expression of death receptor (DR) 5 and DR4 but did not affect expression of decoy receptors in cancer cells. The induction of DRs was mediated through activation of ERK and through up-regulation of a transcription factor CCAAT enhancer-binding protein homologous protein (CHOP) as silencing of these signaling molecules abrogated the effect of azadirone. These effects of azadirone were cancer cell-specific. The CHOP binding site on the DR5 gene was required for induction of DR5 by azadirone. Up-regulation of DRs was mediated through the generation of reactive oxygen species (ROS) as ROS scavengers reduced the effect of azadirone on ERK activation, CHOP up-regulation, DR induction, and TRAIL sensitization. The induction of DRs by this limonoid was independent of p53, but sensitization to TRAIL was p53-dependent. The limonoid down-regulated the expression of cell survival proteins and up-regulated the proapoptotic proteins. The combination of azadirone with TRAIL was found to be additive at concentrations lower than IC50, whereas at higher concentrations, the combination was synergistic. Overall, this study indicates that azadirone can sensitize cancer cells to TRAIL through ROS-ERK-CHOP-mediated up-regulation of DR5 and DR4 signaling, down-regulation of cell survival proteins, and up-regulation of proapoptotic proteins.
Collapse
Affiliation(s)
- Subash C Gupta
- From the Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,; the Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Sajin K Francis
- the Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, 695 019 Kerala, India
| | - Mangalam S Nair
- the Organic Chemistry Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, 695 019 Kerala, India
| | - Yin-Yuan Mo
- the Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Bharat B Aggarwal
- From the Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030,.
| |
Collapse
|
31
|
Evaluation of TNF superfamily molecules in multiple myeloma patients: Correlation with biological and clinical features. Leuk Res 2013; 37:1089-93. [DOI: 10.1016/j.leukres.2013.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/13/2013] [Accepted: 05/18/2013] [Indexed: 01/14/2023]
|
32
|
Death receptor 5 agonistic antibody PRO95780: preclinical pharmacokinetics and concentration-effect relationship support clinical dose and regimen selection. Cancer Chemother Pharmacol 2013; 72:405-15. [PMID: 23771513 DOI: 10.1007/s00280-013-2200-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/19/2013] [Indexed: 12/26/2022]
Abstract
PURPOSE PRO95780, a human monoclonal antibody (mAb) against death receptor 5 (DR5/TRAIL-R2/TNFRSF10B), was developed for the treatment for cancer. Our objective was to characterize pharmacokinetics (PK) in mice, rats, and cynomolgus monkeys and concentration-effect relationships of PRO95780 in xenograft mouse models of human cancers; this would guide the selection of dose and regimen for clinical trials. METHODS The PK profiles were determined in mice, rats, and cynomolgus monkeys. Three xenograft models with a wide range of in vitro sensitivities to PRO95780 were selected for efficacy studies. Tumoristatic serum concentrations (TSCs) were determined using PK/pharmacodynamic (PD) modeling with tumor growth as a PD endpoint. A species-invariant time PK scaling method was employed to estimate disposition in humans using PK data in cynomolgus monkeys. Furthermore, the predicted human PK parameters were used to estimate dose and regimen to achieve TSC observed in mice at the steady-state trough concentrations (C trough ss) in the clinic. RESULTS Linear PK was observed across species. A serum concentration of 22 μg/mL was identified to be the target TSC in mice. A dose of 10 mg/kg administered once every 2 weeks (Q2W) was predicted to achieve a TSC at C trough ss in 95 % of patients. CONCLUSIONS PRO95780 has linear PK in mice, rats, and monkeys. Estimated TSCs varied among different xenograft models. A projected target dose in humans is achievable for Q2W administration within the dose range used for other commercial mAbs.
Collapse
|
33
|
Schön T, Lerm M, Stendahl O. Shortening the 'short-course' therapy- insights into host immunity may contribute to new treatment strategies for tuberculosis. J Intern Med 2013; 273:368-82. [PMID: 23331325 DOI: 10.1111/joim.12031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Achieving global control of tuberculosis (TB) is a great challenge considering the current increase in multidrug resistance and mortality rate. Considerable efforts are therefore being made to develop new effective vaccines, more effective and rapid diagnostic tools as well as new drugs. Shortening the duration of TB treatment with revised regimens and modes of delivery of existing drugs, as well as development of new antimicrobial agents and optimization of the host response with adjuvant immunotherapy could have a profound impact on TB cure rates. Recent data show that chronic worm infection and deficiencies in micronutrients such as vitamin D and arginine are potential areas of intervention to optimize host immunity. Nutritional supplementation to enhance nitric oxide production and vitamin D-mediated effector functions as well as the treatment of worm infection to reduce immunosuppressive effects of regulatory T (Treg) lymphocytes may be more suitable and accessible strategies for highly endemic areas than adjuvant cytokine therapy. In this review, we focus mainly on immune control of human TB, and discuss how current treatment strategies, including immunotherapy and nutritional supplementation, could be optimized to enhance the host response leading to more effective treatment.
Collapse
Affiliation(s)
- T Schön
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden
| | | | | |
Collapse
|
34
|
Szliszka E, Krol W. Polyphenols Isolated from Propolis Augment TRAIL-Induced Apoptosis in Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:731940. [PMID: 23573148 PMCID: PMC3615595 DOI: 10.1155/2013/731940] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/04/2013] [Indexed: 11/17/2022]
Abstract
Epidemiological data support the concept that phenols and polyphenols in diet are safe and nontoxic, and have long-lasting beneficial effects on human health. The potential target for complementary and alternative medicine (CAM) research has been on the discovery of natural compounds that can be used in the prevention and treatment of cancer. Propolis is one of the richest sources of plant phenolics (flavonoids and phenolic acids). The ethanolic extract of propolis (EEP) and its polyphenols possess immunomodulatory, chemopreventive, and antitumor effects. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is a naturally occurring anticancer agent that preferentially induces apoptosis in cancer cells and is not toxic to normal cells. Endogenous TRAIL plays a significant role in immunosurveillance and defense against cancer cells. However, as more tumor cells are reported to be resistant to TRAIL-mediated death, it is important to develop new strategies to overcome this resistance. EEP and polyphenols isolated from propolis have been shown to sensitize cancer cells to TRAIL-induced apoptosis. In this paper we demonstrate for the first time the crucial role of the main phenolics isolated from propolis in enhancing TRAIL-mediated death in tumor cells for cancer chemoprevention.
Collapse
Affiliation(s)
| | - Wojciech Krol
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Jordana 19, 41 808 Zabrze, Poland
| |
Collapse
|
35
|
Kargi A, Bisgin A, Yalcin AD, Kargi AB, Sahin E, Gumuslu S. Increased serum S-TRAIL level in newly diagnosed stage-IV lung adenocarcinoma but not squamous cell carcinoma is correlated with age and smoking. Asian Pac J Cancer Prev 2013; 14:4819-22. [PMID: 24083751 DOI: 10.7314/apjcp.2013.14.8.4819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer mortality in the world. Many factors can protect against or facilitate its development. A TNF family member TRAIL, has a complex physiological role beyond that of merely activating the apoptotic pathway in cancer cells. Vitamin D is converted to its active form locally in the lung, and is also thought to play an important role in lung health. Our goal was to investigate the possible clinical significance of serum sTRAIL and 1,25-dihydroxyvitamin D(3) levels in patients with non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Totals of 18 consecutive adenocarcinoma and 22 squamous cell carcinoma patients with stage-IV non-small cell lung cancer referred to our institute were included in this study. There were 12 men and 6 women, with ages ranging from 38 to 97 (mean 60.5) years with adenocarcinoma, and 20 men and 2 women, with ages ranging from 46 to 80 (mean 65) years with squamous cell carcinoma. Serum levels of sTRAIL and 1,25-dihydroxyvitamin D(3) were measured in all samples at the time of diagnosis. RESULTS sTRAIL levels in NSCLC patients were higher than in the control group. Although there was no correlation between patient survival and sTRAIL levels, the highest sTRAIL levels were correlated with age and cigarette smoking in the adenocarcinoma patients. sTRAIL level in healthy individuals were correlated with serum 1,25-dihydroxyvitamin D(3). CONCLUSIONS Serum sTRAIL concentrations were increased in NSCLC patients, and correlated with age and smoking history, but not with overall survival.
Collapse
Affiliation(s)
- Aysegul Kargi
- Division of Medical Oncology, Department of Internal Medicine, Antalya Training and Research Hospital, Antalya, Turkey E-mail :
| | | | | | | | | | | |
Collapse
|
36
|
TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane. J Immunol Methods 2012; 387:147-56. [PMID: 23085529 DOI: 10.1016/j.jim.2012.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/07/2012] [Accepted: 10/12/2012] [Indexed: 01/01/2023]
Abstract
The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images.
Collapse
|
37
|
Waerzeggers Y, Monfared P, Viel T, Faust A, Kopka K, Schäfers M, Tavitian B, Winkeler A, Jacobs A. Specific biomarkers of receptors, pathways of inhibition and targeted therapies: pre-clinical developments. Br J Radiol 2012; 84 Spec No 2:S168-78. [PMID: 22433827 DOI: 10.1259/bjr/66405626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A deeper understanding of the role of specific genes, proteins, pathways and networks in health and disease, coupled with the development of technologies to assay these molecules and pathways in patients, promises to revolutionise the practice of clinical medicine. Especially the discovery and development of novel drugs targeted to disease-specific alterations could benefit significantly from non-invasive imaging techniques assessing the dynamics of specific disease-related parameters. Here we review the application of imaging biomarkers in the management of patients with brain tumours, especially malignant glioma. In our other review we focused on imaging biomarkers of general biochemical and physiological processes related with tumour growth such as energy, protein, DNA and membrane metabolism, vascular function, hypoxia and cell death. In this part of the review, we will discuss the use of imaging biomarkers of specific disease-related molecular genetic alterations such as apoptosis, angiogenesis, cell membrane receptors and signalling pathways and their application in targeted therapies.
Collapse
Affiliation(s)
- Y Waerzeggers
- European Institute for Molecular Imaging, Westfaelische Wilhelms-University, Muenster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Qiao C, Hu M, Guo L, Lv M, Lin Z, Geng J, Lang X, Li X, Li Y, Ma Y, Feng J, Shen B. Structural basis of LaDR5, a novel agonistic anti-death receptor 5 (DR5) monoclonal antibody, to inhibit DR5/TRAIL complex formation. BMC Immunol 2012; 13:40. [PMID: 22788777 PMCID: PMC3436762 DOI: 10.1186/1471-2172-13-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022] Open
Abstract
Background As a member of the TNF superfamily, TRAIL could induce human tumor cell apoptosis through its cognate death receptors DR4 or DR5, which can induce formation of the death inducing signaling complex (DISC) and activation of the membrane proximal caspases (caspase-8 or caspase-10) and mitochondrial pathway. Some monoclonal antibodies against DR4 or DR5 have been reported to have anti-tumor activity. Results In this study, we reported a novel mouse anti-human DR5 monoclonal antibody, named as LaDR5, which could compete with TRAIL to bind DR5 and induce the apoptosis of Jurkat cells in the absence of second cross-linking in vitro. Using computer-guided molecular modeling method, the 3-D structure of LaDR5 Fv fragment was constructed. According to the crystal structure of DR5, the 3-D complex structure of DR5 and LaDR5 was modeled using molecular docking method. Based on distance geometry method and intermolecular hydrogen bonding analysis, the key functional domain in DR5 was predicted and the DR5 mutants were designed. And then, three mutants of DR5 was expressed in prokaryotic system and purified by affinity chromatograph to determine the epitope of DR5 identified by LaDR5, which was consistent with the theoretical results of computer-aided analysis. Conclusions Our results demonstrated the specific epitope located in DR5 that plays a crucial role in antibody binding and even antineoplastic bioactivity. Meanwhile, revealed structural features of DR5 may be important to design or screen novel drugs agonist DR5.
Collapse
Affiliation(s)
- Chunxia Qiao
- Department of Immunology, Institute of Basic Medical Sciences, Beijing, 100850, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bisgin A, Yalcin AD, Gorczynski RM. Circulating soluble tumor necrosis factor related apoptosis inducing-ligand (TRAIL) is decreased in type-2 newly diagnosed, non-drug using diabetic patients. Diabetes Res Clin Pract 2012; 96:e84-6. [PMID: 22446096 DOI: 10.1016/j.diabres.2012.02.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 02/08/2023]
Abstract
We examined the association between serum sTRAIL measured by ELISA and HbA1C levels, pre/post-prandial blood glucose levels and body mass index in 22 newly diagnosed type-2 diabetic patients. A significant difference in sTRAIL levels was found between study group and controls.
Collapse
Affiliation(s)
- A Bisgin
- Department of Medical Genetics, Human Gene and Cell Therapy Center of Akdeniz University Hospital and Clinics, Antalya, Turkey.
| | | | | |
Collapse
|
40
|
ZHANG HAIPING, SUI AIHUA, WANG ZHENLI, LIU SHIHAI, YAO RUYONG. Adenovirus-mediated TRAIL expression and downregulation of Bcl-2 expression suppresses non-small cell lung cancer growth in vitro and in vivo. Int J Mol Med 2012; 30:358-64. [DOI: 10.3892/ijmm.2012.998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/20/2012] [Indexed: 11/06/2022] Open
|
41
|
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B. Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Laurentiu M. Pop
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| | - Ellen S. Vitetta
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
- The Departments of Microbiology and Immunology, University of Texas Southwestern Medical Center at Dallas, 6000 Harry Hines Blvd, Dallas, Texas 75390-8576, USA
| |
Collapse
|
42
|
Barblu L, Herbeuval JP. Three-dimensional microscopy characterization of death receptor 5 expression by over-activated human primary CD4+ T cells and apoptosis. PLoS One 2012; 7:e32874. [PMID: 22412938 PMCID: PMC3295789 DOI: 10.1371/journal.pone.0032874] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 02/06/2012] [Indexed: 12/14/2022] Open
Abstract
Activation-induced cell death is a natural process that prevents tissue damages from over-activated immune cells. TNF-Related apoptosis ligand (TRAIL), a TNF family member, induces apoptosis of infected and tumor cells by binding to one of its two death receptors, DR4 or DR5. TRAIL was reported to be secreted by phytohemagglutinin (PHA)-stimulated CD4(+) T cells in microvesicles.We investigate here TRAIL and DR5 regulation by activated primary CD4(+) T cells and its consequence on cell death. We observed that PHA induced CD4(+) T cell apoptosis in a dose-dependent manner. Thus, we investigated molecules involved in PHA-mediated cell death and demonstrated that TRAIL and DR5 were over-expressed on the plasma membrane of PHA-stimulated CD4(+) T cells. Surprisingly, DR5 was constitutively expressed in naive CD4(+) T cells at messenger RNA (mRNA) and protein levels. Thus, using 3 dimensional microscopy and intracellular staining assays, we show that DR5 is constitutively expressed in CD4(+) T cells and is pre-stocked in the cytoplasm. When cells are stimulated by PHA, DR5 is relocalized from cytoplasm to plasma membrane. Small interference RNA (siRNA) and blocking antibody assays demonstrate that TRAIL/DR5 interaction is mainly responsible for PHA-mediated CD4(+) T cell apoptosis. Thus, membrane DR5 expression leading to TRAIL-mediated apoptosis may represent one of the pathways responsible for eradication of over-activated CD4(+) T cells during immune responses.
Collapse
Affiliation(s)
- Lucie Barblu
- CNRS UMR 8147, Université Paris Descartes, Paris, France
| | | |
Collapse
|
43
|
Kim JH, Park B, Gupta SC, Kannappan R, Sung B, Aggarwal BB. Zyflamend sensitizes tumor cells to TRAIL-induced apoptosis through up-regulation of death receptors and down-regulation of survival proteins: role of ROS-dependent CCAAT/enhancer-binding protein-homologous protein pathway. Antioxid Redox Signal 2012; 16:413-27. [PMID: 22004570 PMCID: PMC3261028 DOI: 10.1089/ars.2011.3982] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIM TNF (tumor necrosis factor)-related apoptosis-inducing ligand (TRAIL), is a selective killer of tumor cells, although its potential is limited by the development of resistance. In this article, we investigated whether the polyherbal preparation Zyflamend(®) can sensitize tumor cells to TRAIL. RESULTS We found that Zyflamend potentiated TRAIL-induced apoptosis in human cancer cells. Zyflamend manifested its effects through several mechanisms. First, it down-regulated the expression of cell survival proteins known to be linked to resistance to TRAIL. Second, Zyflamend up-regulated the expression of pro-apoptotic protein, Bax. Third, Zyflamend up-regulated the expression of death receptors (DRs) for TRAIL. Up-regulation of DRs was critical as gene-silencing of these receptors significantly reduced the effect of Zyflamend on TRAIL-induced apoptosis. The up-regulation of DRs was dependent on CCAAT/enhancer-binding protein-homologous protein (CHOP), as Zyflamend induced CHOP, its gene-silencing abolished the induction of receptors, and mutation of the CHOP binding site on DR5 promoter abolished Zyflamend-mediated DR5 transactivation. Zyflamend mediated its effects through reactive oxygen species (ROS), as ROS quenching reduced its effect. Further, Zyflamend induced DR5 and CHOP and down-regulated the expression of cell survival proteins in nude mice bearing human pancreatic cancer cells. INNOVATION Zyflamend can sensitize tumor cells to TRAIL through modulation of multiple cell signaling mechanisms that are linked to ROS. CONCLUSION Zyflamend potentiates TRAIL-induced apoptosis through the ROS-CHOP-mediated up-regulation of DRs, increase in pro-apoptotic protein and down-regulation of cell survival proteins.
Collapse
Affiliation(s)
- Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
44
|
Jiang HH, Kim TH, Lee S, Chen X, Youn YS, Lee KC. PEGylated TNF-related apoptosis-inducing ligand (TRAIL) for effective tumor combination therapy. Biomaterials 2011; 32:8529-37. [DOI: 10.1016/j.biomaterials.2011.07.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 07/16/2011] [Indexed: 11/24/2022]
|
45
|
Rommelaere G, Michel S, Malaisse J, Charlier S, Arnould T, Renard P. Hypersensitivity of A8344G MERRF mutated cybrid cells to staurosporine-induced cell death is mediated by calcium-dependent activation of calpains. Int J Biochem Cell Biol 2011; 44:139-49. [PMID: 22037425 DOI: 10.1016/j.biocel.2011.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/13/2011] [Accepted: 10/16/2011] [Indexed: 11/18/2022]
Abstract
Mutations in the mitochondrial DNA can lead to the development of mitochondrial diseases such as Myoclonic Epilepsy with Ragged Red Fibers (MERRF) or Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS). We first show that human 143B-derived cybrid cells harboring either the A8344G (MERRF) or the A3243G (MELAS) mutation, are more prone to undergo apoptosis then their wild-type counterpart, when challenged with various apoptotic inducers such as staurosporine, etoposide and TRAIL. In addition, investigating the mechanisms underlying A8344G cybrid cells hypersensitivity to staurosporine-induced cell death, we found that staurosporine treatment activates caspases independently of cytochrome c release in both wild-type and mutated cells. Caspases are activated, at least partly, through the activation of calcium-dependent calpain proteases, a pathway that is more strongly activated in mutated cybrid cells than in wild-type cells exposed to staurosporine. These results suggest that calcium homeostasis perturbation induced by mitochondrial dysfunction could predispose cells to apoptosis, a process that could take part into the progressive cell degeneration observed in MERRF syndrome, and more generally in mitochondrial diseases.
Collapse
Affiliation(s)
- Guillaume Rommelaere
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (NAmur Research Institute for Life Sciences), University of Namur (FUNDP), Namur, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Brincks EL, Gurung P, Langlois RA, Hemann EA, Legge KL, Griffith TS. The magnitude of the T cell response to a clinically significant dose of influenza virus is regulated by TRAIL. THE JOURNAL OF IMMUNOLOGY 2011; 187:4581-8. [PMID: 21940678 DOI: 10.4049/jimmunol.1002241] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An immune response of appropriate magnitude should be robust enough to control pathogen spread but not simultaneously lead to immunopathology. Primary infection with influenza A virus (IAV) results in a localized pulmonary infection and inflammation and elicits an IAV-specific CD8 T cell immune response necessary for viral clearance. Clearance of IAV-infected cells, and recovery from infection, is mediated by perforin/granzyme B- and Fas/FasL-mediated mechanisms. We recently reported that TRAIL is another means by which IAV-specific CD8 T cells can kill IAV-infected cells. The current study examined the role of TRAIL in the pulmonary CD8 T cell response to a clinically significant IAV [A/PR/8/34 (PR8; H1N1)] infection (i.e., leads to observable, but limited, morbidity and mortality in wild-type [WT] mice). Compared with WT mice, IAV-infected Trail(-/-) mice experienced increased morbidity and mortality despite similar rates of viral clearance from the lungs. The increased morbidity and mortality in Trail(-/-) mice correlated with increased pulmonary pathology and inflammatory chemokine production. Analysis of lung-infiltrating lymphocytes revealed increased numbers of IAV-specific CD8 T cells in infected Trail(-/-) mice, which correlated with increased pulmonary cytotoxic activity and increased pulmonary expression of MIG and MIP-1α. In addition, there was decreased apoptosis and increased proliferation of IAV-specific CD8 T cells in the lungs of Trail(-/-) mice compared with WT mice. Together, these data suggest that TRAIL regulates the magnitude of the IAV-specific CD8 T cell response during a clinically significant IAV infection to decrease the chance for infection-induced immunopathology.
Collapse
Affiliation(s)
- Erik L Brincks
- Department of Urology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
47
|
Kim TH, Youn YS, Jiang HH, Lee S, Chen X, Lee KC. PEGylated TNF-Related Apoptosis-Inducing Ligand (TRAIL) Analogues: Pharmacokinetics and Antitumor Effects. Bioconjug Chem 2011; 22:1631-7. [DOI: 10.1021/bc200187k] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tae Hyung Kim
- College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| | - Yu Seok Youn
- College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| | - Hai Hua Jiang
- College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| | - Seulki Lee
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Kang Choon Lee
- College of Pharmacy, SungKyunKwan University, 300 Chonchon-dong, Jangan-ku, Suwon City 440-746, Korea
| |
Collapse
|
48
|
Combination of vorinostat and adenovirus-TRAIL exhibits a synergistic antitumor effect by increasing transduction and transcription of TRAIL in lung cancer cells. Cancer Gene Ther 2011; 18:467-77. [PMID: 21455254 DOI: 10.1038/cgt.2011.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Soluble TRAIL and adenovirus (ad)-TRAIL exhibit a strong antitumor effect by inducing apoptosis. Vorinostat is the histone deacetylase (HDAC) inhibitor that induces cell death in cancer cell lines and regulates the expression of epigenetically silenced genes, such as Coxackie adenoviral receptor (CAR), the receptor for adenoviral entry. We propose a new strategy in which vorinostat will induce high expression of ad-TRAIL and a strong antitumor response, and investigated the mechanism involved. The effect of vorinostat on transcription and expression of TRAIL from ad-TRAIL-transduced lung cancer cells were confirmed by reverse transciption-PCR (RT-PCR), quantitative real time-PCR and western blot assay. Anti-tumor effects were measured after cotreatment of vorinostat and ad-TRAIL, and the drug interactions were analyzed. After combined treatment of vorinostat and ad-TRAIL, apoptosis and western blot assays for Akt, Bcl-2 and caspase were performed. Vorinostat increased the expression of CAR in lung cancer cell lines and increased the expression of luciferase (luc) from ad-luc-transduced cells and TRAIL from ad-TRAIL-transduced cells. RT-PCR and quantitative real time-PCR, after sequential vorinostat treatment, revealed that vorinostat may enhance TRAIL expression from ad-TRAIL by increasing transduction through enhanced CAR expression and increasing adenoviral transgene transcription. Combined vorinostat and ad-TRAIL treatment showed the synergistic anti-tumor effect in lung cancer cell lines. Combined vorinostat and ad-TRAIL induced stronger apoptosis induction, suppression of NF-κB activation and breakdown of the anti-apoptotic molecule Bcl-2. In conclusion, the vorinostat synergistically enhanced the anti-tumor effect of ad-TRAIL by (1) increasing adenoviral transduction through the increased expression of CAR and (2) increasing adenoviral transgene (TRAIL) transcription in lung cancer cell lines.
Collapse
|
49
|
Tang H, Qin Y, Li J, Gong X. The scavenging of superoxide radicals promotes apoptosis induced by a novel cell-permeable fusion protein, sTRAIL:FeSOD, in tumor necrosis factor-related apoptosis-inducing ligand-resistant leukemia cells. BMC Biol 2011; 9:18. [PMID: 21418589 PMCID: PMC3068130 DOI: 10.1186/1741-7007-9-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/19/2011] [Indexed: 12/25/2022] Open
Abstract
Background Many cancer cells develop resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, necessitating combination with chemotherapy, and normal cells manifest side effects due to the combined treatment regimen of TRAIL and chemotherapeutic drugs. A novel cancer therapy utilizing TRAIL is thus urgently needed. Results In this study, we exploited TRAIL receptor-mediated endocytosis for the first time to produce a cell-permeable molecule, soluble forms of recombinant TRAIL:iron superoxide dismutase (sTRAIL:FeSOD), which possesses sTRAIL-induced apoptotic ability and FeSOD antioxidant activity. The FeSOD component was rapidly introduced into the cell by sTRAIL and intracellular superoxide radical (O2-), which have been implicated as potential modulators of apoptosis in cancer cells, was eliminated, resulting in a highly reduced cellular environment. The decrease in cellular O2-, which was accompanied by a brief accumulation of H2O2 and downregulation of phosphorylated Akt (p-Akt) and cellular FLICE-inhibitory protein, sensitized K562 leukemia cells and human promyelocytic leukemia (HL-60) cells to TRAIL-induced apoptosis. The low H2O2 levels protected human LO2 hepatocytes from sTRAIL:FeSOD-induced apoptosis despite downregulation of p-Akt. We also obtained evidence that the lack of response to sTRAIL:FeSOD in normal T cells occurred because sTRAIL:FeSOD shows much stronger shifts of redox state in erythroleukemia (K562) and HL-60 cells compared to that in normal T cells. K562 and HL-60 cells underwent sTRAIL:FeSOD-induced apoptosis without the dysfunction of mitochondria. Conclusions The fusion protein overcomes the inability of FeSOD to permeate the cell membrane, exhibits synergistic apoptotic effects on K562 and HL-60 cells and demonstrates minimal toxicity to normal T cells and the normal liver cell line LO2, indicating its potential value for the treatment of leukemia.
Collapse
Affiliation(s)
- Hongyun Tang
- Institute of Biochemistry, College of Life Sciences, Zijingang campus, Room 345, Zhejiang University, Hangzhou, PR China
| | | | | | | |
Collapse
|
50
|
PEGylated TNF-related apoptosis-inducing ligand (TRAIL)-loaded sustained release PLGA microspheres for enhanced stability and antitumor activity. J Control Release 2011; 150:63-9. [DOI: 10.1016/j.jconrel.2010.10.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 10/14/2010] [Accepted: 10/31/2010] [Indexed: 11/21/2022]
|