1
|
Etayo A, Lie KK, Bjelland RM, Hordvik I, Øvergård AC, Sæle Ø. The thymus and T-cell ontogeny in ballan wrasse ( Labrus bergylta) is nutritionally modelled. Front Immunol 2023; 14:1166785. [PMID: 37197651 PMCID: PMC10183603 DOI: 10.3389/fimmu.2023.1166785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023] Open
Abstract
Marine fish larvae often experience high mortality unrelated to predation during early life stages, and farmed ballan wrasse (Labrus bergylta) is no exception. Knowing when the adaptive immune system is developed and fully functional, and how nutrition may modulate these processes is therefore of importance to establish effective prophylactic measures and will also extend the relatively limited knowledge on the immune system in lower vertebrates. The thymus anlage of ballan wrasse was found to be histologically visible for the first time at larval stage 3 (20-30 days post hatch, dph) and becomes lymphoid at stage 5 (50-60 dph) correlating with an increase of T-cell marker transcripts. At this stage, a clear zonation into a RAG1+ cortex and a RAG1- CD3ϵ+ medulla was distinguished, indicating that T-cell maturation processes in ballan wrasse are similar to other teleosts. The higher abundance of CD4-1+ compared to CD8β+ cells in the thymus together with the apparent lack of CD8β+ cells in gill, gut, and pharynx, where CD4-1+ cells were identified, indicates that helper T-cells have a more prominent role during larval development compared to cytotoxic T-cells. As ballan wrasse lacks a stomach but has an exceptionally high IgM expression in the hindgut, we hypothesize that helper T-cells are crucial for activation and recruitment of IgM+ B-cells and possibly other leukocytes to the gut during early development. Nutritional factors such as DHA/EPA, Zn and Se may lead to an earlier expression of certain T-cell markers as well as a larger size of the thymus, indicating an earlier onset of adaptive immunity. Including live feeds that supplies the larva with higher amounts of these nutrients can therefore be beneficial for ballan wrasse farming.
Collapse
Affiliation(s)
- Angela Etayo
- Feed and Nutrition group, Institute of Marine Research, Bergen, Norway
- Fish Health Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
- *Correspondence: Angela Etayo,
| | - Kai K. Lie
- Feed and Nutrition group, Institute of Marine Research, Bergen, Norway
| | - Reidun M. Bjelland
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Ivar Hordvik
- Fish Health Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Fish Health Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Øystein Sæle
- Feed and Nutrition group, Institute of Marine Research, Bergen, Norway
| |
Collapse
|
2
|
Stepanova K, Sinkorova J, Srutkova D, Sinkora M, Sinkora S, Splichal I, Splichalova A, Butler JE, Sinkora M. The order of immunoglobulin light chain κ and λ usage in primary and secondary lymphoid tissues of germ-free and conventional piglets. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104392. [PMID: 35271860 DOI: 10.1016/j.dci.2022.104392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In pigs (Sus scrofa), the initial immunoglobulin rearrangement of the κ light chain is replaced by λ before the heavy chains rearrange, and the light chains may rearrange even later. This study investigates whether these developmental differences are reflected in the usage of IGK and IGL genes. We found large differences between peripheral B cells and those developing in the bone marrow, and between B cells in germ-free piglets and conventional pigs. During early B cell development in the bone marrow, more 3' V and 5' J gene segments for both light chains are used. However, in the peripheral naive repertoire, more 5' IGLV and 3' IGLJ genes are used. A similar shift toward the use of more 5' IGKV and 3' IGKJ genes is observed later after antigen exposure in conventional pigs. The expression profile showed that most λ+ B cells are generated earlier, while κ+ B cells develop from late precursors that already contain the λ rearrangement. The initial λ rearrangement is retained in both λ+ and κ+ B lymphocytes, and multiple λ transcripts can be found in individual cells. The overall pool of the IGLV repertoire is therefore much larger and more diversified than for IGKV. The κ repertoire is further restricted to the preferential use of only two major IGKV genes, reflecting the limitation for only two consecutive rearrangements. Tracing of silenced λ transcripts in κ+ B cells further confirmed the unconventional mechanism of differential rearrangements in pigs. Our results underline the diversity of the immune system among mammals.
Collapse
Affiliation(s)
- Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Jana Sinkorova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Simon Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - John E Butler
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| |
Collapse
|
3
|
Jin YB, Cao X, Shi CW, Feng B, Huang HB, Jiang YL, Wang JZ, Yang GL, Yang WT, Wang CF. Lactobacillus rhamnosus GG Promotes Early B Lineage Development and IgA Production in the Lamina Propria in Piglets. THE JOURNAL OF IMMUNOLOGY 2021; 207:2179-2191. [PMID: 34497150 DOI: 10.4049/jimmunol.2100102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/04/2021] [Indexed: 01/04/2023]
Abstract
Gut microbes play an important role in the development of host B cells. It has been controversial whether GALT is the development site of B cells in pigs. By investigating the relationship between gut microbes and the development of B cells in the GALT of piglets, we found, to our knowledge for the first time, that early B cells exist in the gut lamina propria (LP) in pigs at different ages. We further used Lactobacillus rhamnosus GG (LGG) to treat piglets. The results showed that LGG promotes the development of the early B lineage, affects the composition of the Ig CDR3 repertoires of B cells, and promotes the production of IgA in the intestinal LP. Additionally, we found that the p40 protein derived from LGG can activate the EGFR/AKT and NF-κB signaling pathways, inducing porcine intestinal epithelial cells (IPEC-J2) to secrete a proliferation-inducing ligand (APRIL), which promotes IgA production in B cells. Finally, we identified ARF4 and DIF3 as candidates for p40 receptors on IPEC-J2 by GST pull-down, liquid chromatography-mass spectrometry/mass spectrometry analysis, and coimmunoprecipitation. In conclusion, LGG could promote early B cell differentiation and development in the intestinal LP in piglets and might contribute to promoting IgA production via secretion of p40, which interacts with the membrane receptors on IPEC-J2 and induces them to secrete APRIL. Our study will provide insight to aid in better utilization of probiotics to increase human health.
Collapse
Affiliation(s)
- Yu-Bei Jin
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and.,Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University School of Medicine, Shenzhen, China
| | - Xin Cao
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Chun-Wei Shi
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Bo Feng
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Hai-Bin Huang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Yan-Long Jiang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Jian-Zhong Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Gui-Lian Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Wen-Tao Yang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| | - Chun-Feng Wang
- College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China; and
| |
Collapse
|
4
|
Velázquez J, Acosta J, Lugo JM, Reyes E, Herrera F, González O, Morales A, Carpio Y, Estrada MP. Discovery of immunoglobulin T in Nile tilapia (Oreochromis niloticus): A potential molecular marker to understand mucosal immunity in this species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:124-136. [PMID: 30012536 DOI: 10.1016/j.dci.2018.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/12/2018] [Accepted: 07/12/2018] [Indexed: 05/08/2023]
Abstract
Immunoglobulin molecules play an important role in the immune defense system in all jawed vertebrates, by protecting the organism from a wide variety of pathogens. Nile tilapia (Oreochromis niloticus) is extensively cultivated worldwide, with a strong established market demand. It constitutes one of the model species for the study of fish immunology and its genome is currently fully sequenced. The presence of the immunoglobulin M gene in this species is well documented, as well as its major role in systemic immunity. To date, the IgT gene from O. niloticus has not been identified and, therefore, no information is available on the role of this immunoglobulin isotype in the immune response in tilapia. In the present work, novel secreted and membrane immunoglobulin T isotypes and a fragment of IgM were isolated from tilapia head kidney lymphocytes. Their transcriptional profiles were analyzed by quantitative PCR in larval development and in different tissues of healthy or lipopolysaccharide/Edwardsiella tarda-challenged tilapia adults. The presence of IgT and IgM were detected in early stages of larval development. Additionally, these genes exhibited differential expression profiles in basal conditions and after E. tarda infection in adult tilapia, in accord with the proposed effector functions of these immunoglobulins in the systemic and mucosal compartments. Our results suggest the potential involvement of this new Ig in mucosal immunity in tilapia.
Collapse
Affiliation(s)
- Janet Velázquez
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba
| | - Jannel Acosta
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba; University of Concepción, Interdisciplinary Center for Aquaculture Research of the UdeC (INCAR), O'higgins, 1695, Concepción, Chile
| | - Juana María Lugo
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba
| | - Eduardo Reyes
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba
| | - Fidel Herrera
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba
| | - Osmany González
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba
| | - Antonio Morales
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba
| | - Yamila Carpio
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba.
| | - Mario Pablo Estrada
- Veterinary Immunology Project, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba.
| |
Collapse
|
5
|
Caldwell RB, Braselmann H, Heuer S, Schötz U, Zitzelsberger H. Gain-of-function analysis of cis-acting diversification elements in DT40 cells. Immunol Cell Biol 2018; 96:948-957. [PMID: 29665088 DOI: 10.1111/imcb.12158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
Abstract
Activation-induced cytidine deaminase (AID) is required for the immunoglobulin diversification processes of somatic hypermutation, gene conversion and class-switch recombination. The targeting of AID's deamination activity is thought to be a combination of cis- and trans-acting elements, but has not been fully elucidated. Deletion analysis of putative proximal cis-regulatory motifs, while helpful, fails to identify additive versus cumulative effects, redundancy, and may create new motifs where none previously existed. In contrast, gain-of-function analysis can be more insightful with fewer of the same drawbacks and the output is a positive result. Here, we show five defined DNA regions of the avian Igλ locus that are sufficient to confer events of hypermutation to a target gene. In our analysis, the essential cis-targeting elements fully reconstituted diversification of a transgene under heterologous promotion in the avian B-cell line DT40. Furthermore, to the best of our knowledge two of the five regions we report on here have not previously been described as individually having an influence on somatic hypermutation.
Collapse
Affiliation(s)
- Randolph B Caldwell
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany
| | - Herbert Braselmann
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany
| | - Steffen Heuer
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany
| | - Ulrike Schötz
- Department of Radiotherapy and Radiooncology, Philipps-University Marburg, University Hospital Gießen and Marburg, Marburg, 35043, Germany
| | - Horst Zitzelsberger
- Department of Radiation Sciences - Research Unit Radiation Cytogenetics, Helmholtz Center Munich - German Research Center for Environmental Health (GmbH), Neuherberg, 85764, Germany.,Helmholtz Center Munich, Clinical Cooperation Group 'Personalized Radiotherapy of Head and Neck Cancer', Neuherberg, 85764, Germany.,Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universitaet, University Hospital Munich, Munich, 81377, Germany
| |
Collapse
|
6
|
Kobitzsch B, Gökbuget N, Schwartz S, Reinhardt R, Brüggemann M, Viardot A, Wäsch R, Starck M, Thiel E, Hoelzer D, Burmeister T. Loss-of-function but not dominant-negative intragenic IKZF1 deletions are associated with an adverse prognosis in adult BCR-ABL-negative acute lymphoblastic leukemia. Haematologica 2017; 102:1739-1747. [PMID: 28751559 PMCID: PMC5622858 DOI: 10.3324/haematol.2016.161273] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Genetic alterations of the transcription factor IKZF1 ("IKAROS") are detected in around 15-30% of cases of BCR-ABL-negative B-cell precursor acute lymphoblastic leukemia. Different types of intragenic deletions have been observed, resulting in a functionally inactivated allele ("loss-of-function") or in "dominant-negative" isoforms. The prognostic impact of these alterations especially in adult acute lymphoblastic leukemia is not well defined. We analyzed 482 well-characterized cases of adult BCR-ABL-negative B-precursor acute lymphoblastic leukemia uniformly treated in the framework of the GMALL studies and detected IKZF1 alterations in 128 cases (27%). In 20%, the IKZF1 alteration was present in a large fraction of leukemic cells ("high deletion load") while in 7% it was detected only in small subclones ("low deletion load"). Some patients showed more than one IKZF1 alteration (8%). Patients exhibiting a loss-of-function isoform with high deletion load had a shorter overall survival (OS at 5 years 28% vs. 59%; P<0.0001), also significant in a subgroup analysis of standard risk patients according to GMALL classification (OS at 5 years 37% vs. 68%; P=0.0002). Low deletion load or dominant-negative IKZF1 alterations had no prognostic impact. The results thus suggest that there is a clear distinction between loss-of-function and dominant-negative IKZF1 deletions. Affected patients should thus be monitored for minimal residual disease carefully to detect incipient relapses at an early stage and they are potential candidates for alternative or intensified treatment regimes. (clinicaltrials.gov identifiers: 00199056 and 00198991).
Collapse
Affiliation(s)
- Benjamin Kobitzsch
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany
| | - Stefan Schwartz
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Germany
| | | | - Monika Brüggemann
- Department of Hematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andreas Viardot
- Department of Medicine III (Hematology, Oncology), Ulm University, Munich, Germany
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg Medical Center, Munich, Germany
| | - Michael Starck
- Department of Hematology, Klinikum München-Schwabing, Munich, Germany
| | - Eckhard Thiel
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Dieter Hoelzer
- Department of Medicine II, Hematology/Oncology, Goethe University, Frankfurt/Main, Germany
| | - Thomas Burmeister
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
7
|
Jin YB, Yang WT, Huang KY, Chen HL, Shonyela SM, Liu J, Liu Q, Feng B, Zhou Y, Zhi SL, Jiang YL, Wang JZ, Huang HB, Shi CW, Yang GL, Wang CF. Expression and purification of swine RAG2 in E. coli for production of porcine RAG2 polyclonal antibodies. Biosci Biotechnol Biochem 2017. [PMID: 28644752 DOI: 10.1080/09168451.2017.1340086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Recombination activating gene 2 (RAG2) is necessary for immature B cell differentiation. Antibodies to human and rabbit RAG2 are currently commercially available, but antibodies to swine RAG remain unavailable to date. In this study, the swine RAG2 genes sequence was synthesized and then cloned into a pET-28a vector. The recombinant fusion protein was successfully expressed in E. coli, purified through nickel column chromatography, and further digested with Tobacco Etch Virus protease. The cleaved protein was purified by molecular-exclusion chromatography and named pRAG2. We used pRAG2 to immunize rabbits, collected the serum and purified rabbit anti-pRAG2 polyclonal antibodies. The rabbit anti-pRAG2 polyclonal antibodies were tested via immunofluorescence on eukaryotic cells overexpressing pRAG2 and also able to recognize pig natural RAG2 and human RAG2 protein in western blotting. These results indicated that the prepared rabbit anti-pRAG2 polyclonal antibodies may serve as a tool to detect immature B cell differentiation of swine.
Collapse
Affiliation(s)
- Yu-Bei Jin
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Wen-Tao Yang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Ke-Yan Huang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Hong-Liang Chen
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Seria-Masole Shonyela
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Jing Liu
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Qiong Liu
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Bo Feng
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - You Zhou
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Shu-Li Zhi
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Yan-Long Jiang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Jian-Zhong Wang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Hai-Bin Huang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Chun-Wei Shi
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Gui-Lian Yang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| | - Chun-Feng Wang
- a College of Animal Science and Technology, Jilin Provincial Engineering Research Center of Animal Probiotics, Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education , Jilin Agricultural University , Changchun , China
| |
Collapse
|
8
|
Lee JW, Kim JE, Goo IB, Hwang JA, Im JH, Choi HS, Lee JH. Expression of Immune-Related Genes during Loach (Misgurnus anguillicaudatus) Embryonic and Early Larval Development. Dev Reprod 2016; 19:181-7. [PMID: 26973969 PMCID: PMC4786479 DOI: 10.12717/dr.2015.19.4.181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Early life stage mortality in fish is one of the problems faced by loach aquaculture. However, our understanding of immune system in early life stage fish is still incomplete, and the information available is restricted to a few fish species. In the present work, we investigated the expression of immune-related transcripts in loach during early development. In fishes, recombination-activating gene 1 (RAG-1) and sacsin (SACS) have been considered as immunological function. In this study, the expression of the both genes was assessed throughout the early developmental stages of loach using real-time PCR method. maRAG-1 mRNA was first detected in 0 dph, observed the increased mostly until 40 dph. Significant expression of maRAG-1 was detected in 0 to 40 dph. These patterns of expression may suggest that the loach start to develop its function after hatching. On the other hand, maSACS was detected in unfertilized oocyte to molura stages and 0 to 40 dph. maSACS mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred.
Collapse
Affiliation(s)
- Jang Wook Lee
- Inland Aquaculture Research Center, National Fisheries Research & Development Institute, Changwon 645-806, Korea
| | - Jung Eun Kim
- Inland Aquaculture Research Center, National Fisheries Research & Development Institute, Changwon 645-806, Korea
| | - In Bon Goo
- Inland Aquaculture Research Center, National Fisheries Research & Development Institute, Changwon 645-806, Korea
| | - Ju-Ae Hwang
- Inland Aquaculture Research Center, National Fisheries Research & Development Institute, Changwon 645-806, Korea
| | - Jea Hyun Im
- Inland Aquaculture Research Center, National Fisheries Research & Development Institute, Changwon 645-806, Korea
| | - Hye-Sung Choi
- Inland Aquaculture Research Center, National Fisheries Research & Development Institute, Changwon 645-806, Korea
| | - Jeong-Ho Lee
- Inland Aquaculture Research Center, National Fisheries Research & Development Institute, Changwon 645-806, Korea
| |
Collapse
|
9
|
Lee JW, Yang H, Noh JK, Kim HC, Park CJ, Park JW, Hwang IJ, Kim SY, Lee JH. RAG-1 and IgM Genes, Markers for Early Development of the Immune System in Olive Flounder, Paralichthys olivaceus. Dev Reprod 2015; 18:99-106. [PMID: 25949177 PMCID: PMC4282251 DOI: 10.12717/dr.2014.18.2.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 11/25/2022]
Abstract
Fish larvae are immediately exposed to microbes from hatching to maturation of their lymphoid organs, therefore effective innate mechanisms is very important for survival. However, the knowledge of the development of immune system in fish is limited and in demand now. In vertebrates, recombination-activating gene 1 (RAG-1) and immunoglobulin M (IgM) have been considered as very useful markers of the physiological maturity of the immune system. In this study, the expression of the both genes was assessed throughout the early developmental stages of olive flounder larvae (5-55 dph) and used as markers to follow the development of immune system. RAG-1 and IgM mRNA expression was detectable at 5 dph and remained so until 55 dph. These patterns of expression may suggest that the olive flounder start to develop its function around 5 dph. Tissue distribution was found that both genes mRNAs are only expressed in the immune-related organ such as spleen, kidney and gill. The early detection of IgM mRNA led to the investigation of its presence in oocytes. Both RAG-1 and IgM mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. The biological significance of such a phenomenon remains to be investigated.
Collapse
Affiliation(s)
- Jang-Wook Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Yang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jae Koo Noh
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Hyun Chul Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Choul-Ji Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jong-Won Park
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - In Joon Hwang
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Sung Yeon Kim
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| | - Jeong-Ho Lee
- Genetics and Breeding Research Center, NFRDI, Geoje 656-842, Republic of Korea
| |
Collapse
|
10
|
Wesemann DR, Portuguese AJ, Meyers RM, Gallagher MP, Cluff-Jones K, Magee JM, Panchakshari RA, Rodig SJ, Kepler TB, Alt FW. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 2013; 501:112-5. [PMID: 23965619 PMCID: PMC3807868 DOI: 10.1038/nature12496] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 07/23/2013] [Indexed: 12/11/2022]
Abstract
The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy (IgH) and light (IgL) chain variable region exons from germline gene segments to generate primary antibody repertoires. IgH V(D)J assembly occurs in progenitor (pro-) B cells followed by that of IgL in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR). Rag expression can continue in immature B cells, allowing continued Igκ V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity. This 'receptor editing' process, which can also lead to Igλ V(D)J recombination and expression, provides a mechanism whereby antigen encounter at the Rag-expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of Rag-expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor editing, Rag-expressing LP B-lineage cells have similar VH repertoires, but significantly different Vκ repertoires, compared to those of Rag2-expressing bone marrow counterparts. Moreover, colonization of germ-free mice leads to an increased ratio of Igλ-expressing versus Igκ-expressing B cells specifically in the LP. We conclude that B-cell development occurs in the intestinal mucosa, where it is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires.
Collapse
Affiliation(s)
- Duane R Wesemann
- Program in Cellular and Molecular Medicine and Department of Medicine, Children's Hospital Boston, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Covello JM, Bird S, Morrison RN, Bridle AR, Battaglene SC, Secombes CJ, Nowak BF. Isolation of RAG-1 and IgM transcripts from the striped trumpeter (Latris lineata), and their expression as markers for development of the adaptive immune response. FISH & SHELLFISH IMMUNOLOGY 2013; 34:778-788. [PMID: 23291253 DOI: 10.1016/j.fsi.2012.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
A partial sequence of the recombination activating gene-1 (RAG-1) and several full length sequences of the immunoglobulin M (IgM) heavy chain mRNA were obtained from the striped trumpeter (Latris lineata). The RAG-1 fragment consisted of 205 aa and fell within the core region of the open reading frame. The complete IgM heavy chain sequences translated into peptides ranging between 581 and 591 aa. Both genes showed good homology to other vertebrate sequences. The expression of the two genes was assessed throughout the early developmental stages of striped trumpeter larvae (5-100 dph) and used as markers to follow the ontogeny of the adaptive immune response. Using RT-PCR, RAG-1 mRNA expression was detectable at 5 dph and remained so until 80 dph, before becoming undetectable at 100 dph. IgM expression was also detectable at 5 dph, and remained so throughout. These patterns of expression may suggest that the striped trumpeter possess mature B cells with surface IgM at 100 dph. However, complete immunological competence is likely not reached until some time later. The early detection of IgM mRNA at 5 dph led to the investigation of its presence in oocytes. Both RAG-1 and IgM mRNA transcripts were detected in unfertilized oocytes, suggesting that they are maternally transferred. The biological significance of such a phenomenon remains to be investigated.
Collapse
Affiliation(s)
- J M Covello
- National Centre for Marine Conservation and Resource Sustainability, University of Tasmania, Private Bag 1370, Launceston, Tasmania 7250, Australia.
| | | | | | | | | | | | | |
Collapse
|
12
|
Martins VC, Ruggiero E, Schlenner SM, Madan V, Schmidt M, Fink PJ, von Kalle C, Rodewald HR. Thymus-autonomous T cell development in the absence of progenitor import. ACTA ACUST UNITED AC 2012; 209:1409-17. [PMID: 22778389 PMCID: PMC3420332 DOI: 10.1084/jem.20120846] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To be added Thymus function is thought to depend on a steady supply of T cell progenitors from the bone marrow. The notion that the thymus lacks progenitors with self-renewal capacity is based on thymus transplantation experiments in which host-derived thymocytes replaced thymus-resident cells within 4 wk. Thymus grafting into T cell–deficient mice resulted in a wave of T cell export from the thymus, followed by colonization of the thymus by host-derived progenitors, and cessation of T cell development. Compound Rag2−/−γc−/−KitW/Wv mutants lack competitive hematopoietic stem cells (HSCs) and are devoid of T cell progenitors. In this study, using this strain as recipients for wild-type thymus grafts, we noticed thymus-autonomous T cell development lasting several months. However, we found no evidence for export of donor HSCs from thymus to bone marrow. A diverse T cell antigen receptor repertoire in progenitor-deprived thymus grafts implied that many thymocytes were capable of self-renewal. Although the process was most efficient in Rag2−/−γc−/−KitW/Wv hosts, γc-mediated signals alone played a key role in the competition between thymus-resident and bone marrow–derived progenitors. Hence, the turnover of each generation of thymocytes is not only based on short life span but is also driven via expulsion of resident thymocytes by fresh progenitors entering the thymus.
Collapse
Affiliation(s)
- Vera C Martins
- Institute for Immunology, University of Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang XL, Lu YS, Jian JC, Wu ZH. Cloning and expression analysis of recombination activating genes (RAG1/2) in red snapper (Lutjanus sanguineus). FISH & SHELLFISH IMMUNOLOGY 2012; 32:534-543. [PMID: 22266137 DOI: 10.1016/j.fsi.2012.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Recombination activating genes (RAG1 and RAG2), involved in the V(D)J recombination of immunoglobulin and T-cell receptor genes play a crucial role in the adaptive immune response in vertebrates. The expression of these genes was required for the proper development and maturity of lymphocytes so that they can be used as useful markers to evaluate the development of lymphoid organ. In this paper, the cDNA of RAG1 and RAG2 in red snapper, Lutjanus sanguineus were cloned by homological cloning and rapid amplification of cDNA ends (RACE) methods. Results showed the full length of RAG1 cDNA was 3944 bp, containing a 5' untranslated region (UTR) of 200 bp, a 3'-UTR of 561 bp and an open reading frame of 3183 bp encoding 1060 amino acids. Three important structural motifs, a RING/U-box domain, a RING/FYVE/PHD-type domain and a RAG Nonamer-binding domain were detected in the deduced amino acid sequence of RAG1 by InterProScan analysis. The full length of RAG2 cDNA was 2200 bp, consisting of a 141 bp 5'-UTR, a 457 bp 3'-UTR and an open reading frame of 1602 bp encoding 533 amino acids. Two important structural motifs, a Galactose oxidase/kelch, beta-propeller domain and a kelch-type beta-propeller domain were detected in the deduced amino acid sequence of RAG2 by InterProScan analysis. BLAST analysis revealed that the RAG1 and RAG2 in red snapper shared a high homology with other known RAG1 and RAG2 genes, while the greatest degree of identity was observed with Hippoglossus hippoglossus RAG1 at 82% and Takifugu rubripes RAG2 at 87%, respectively. The differential expressions of RAG1 and RAG2 in various tissues of red snapper were analyzed by fluorescent quantitative real-time PCR. The overall expression pattern of the two genes was quite similar. In healthy red snappers, the RAGs transcripts were mainly detected in thymus, following head kidney, spleen, intestine, liver and brain. After vaccinated with inactivated Vibrio alginolyticus 48 h later, the RAGs mRNA expression was significantly up-regulated in all studied tissues of red snapper. A clear time-dependent expression pattern of RAG1 and RAG2 after immunization and the expression reached the highest level at 48 h in thymus, 60 h in head kidney and spleen, respectively. These findings indicated that RAG1 and RAG2 could play an important role in the immune response to bacteria in red snapper.
Collapse
Affiliation(s)
- X L Zhang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China
| | | | | | | |
Collapse
|
14
|
Abstract
The differentiation of natural killer (NK) cells and a subpopulation of NK cells which requires an intact thymus, that is, thymic NK cells, is poorly understood. Previous in vitro studies indicate that double negative (CD4⁻CD8⁻, DN) thymocytes can develop into cells with NK cell markers, but these cells have not been well characterized. Herein, we generated and characterized NK cells differentiating from thymic DN precursors. Sorted DN1 (CD44⁺CD25⁻) CD122⁻NK1.1⁻ thymocytes from Rag1(⁻/⁻) mice were adoptively transferred into Rag1(⁻/⁻)Ly5.1 congenic mice. After intrathymic injection, donor-derived cells phenotypically resembling thymic NK cells were found. To further study their differentiation, we seeded sorted DN1 CD122⁻)NK1.1⁻ thymocytes on irradiated OP9 bone marrow stromal cells with IL-15, IL-7, Flt3L, and stem cell factor. NK1.1⁺ cells emerged after 7 days. In vitro differentiated NK cells acquired markers associated with immature bone marrow-derived NK cells, but also expressed CD127, which is typically found on thymic NK cells. Furthermore, we found that in vitro cells generated from thymic precursors secreted cytokines when stimulated and degranulated on target exposure. Together, these data indicate that functional thymic NK cells can develop from a DN1 progenitor cell population.
Collapse
|
15
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
16
|
Hathcock KS, Farrington L, Ivanova I, Livak F, Selimyan R, Sen R, Williams J, Tai X, Hodes RJ. The requirement for pre-TCR during thymic differentiation enforces a developmental pause that is essential for V-DJβ rearrangement. PLoS One 2011; 6:e20639. [PMID: 21673984 PMCID: PMC3108609 DOI: 10.1371/journal.pone.0020639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/06/2011] [Indexed: 01/26/2023] Open
Abstract
T cell development occurs in the thymus and is critically dependent on productive TCRβ rearrangement and pre-TCR expression in DN3 cells. The requirement for pre-TCR expression results in the arrest of thymocytes at the DN3 stage (β checkpoint), which is uniquely permissive for V-DJβ recombination; only cells expressing pre-TCR survive and develop beyond the DN3 stage. In addition, the requirement for TCRβ rearrangement and pre-TCR expression enforces suppression of TCRβ rearrangement on a second allele, allelic exclusion, thus ensuring that each T cell expresses only a single TCRβ product. However, it is not known whether pre-TCR expression is essential for allelic exclusion or alternatively if allelic exclusion is enforced by developmental changes that can occur in the absence of pre-TCR. We asked if thymocytes that were differentiated without pre-TCR expression, and therefore without pause at the β checkpoint, would suppress all V-DJβ rearrangement. We previously reported that premature CD28 signaling in murine CD4(-)CD8(-) (DN) thymocytes supports differentiation of CD4(+)CD8(+) (DP) cells in the absence of pre-TCR expression. The present study uses this model to define requirements for TCRβ rearrangement and allelic exclusion. We demonstrate that if cells exit the DN3 developmental stage before TCRβ rearrangement occurs, V-DJβ rearrangement never occurs, even in DP cells that are permissive for D-Jβ and TCRα rearrangement. These results demonstrate that pre-TCR expression is not essential for thymic differentiation to DP cells or for V-DJβ suppression. However, the requirement for pre-TCR signals and the exclusion of alternative stimuli such as CD28 enforce a developmental "pause" in early DN3 cells that is essential for productive TCRβ rearrangement to occur.
Collapse
MESH Headings
- Animals
- B7-2 Antigen/genetics
- B7-2 Antigen/metabolism
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- Cell Differentiation
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation/immunology
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Histones/chemistry
- Histones/metabolism
- Lysine
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Methylation
- Mice
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- Karen S Hathcock
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Orlando L, Accomasso L, Circosta P, Turinetto V, Lantelme E, Porcedda P, Minieri V, Pautasso M, Willemsen RA, Cignetti A, Giachino C. TCR transfer induces TCR-mediated tonic inhibition of RAG genes in human T cells. Mol Immunol 2011; 48:1369-76. [PMID: 21481940 DOI: 10.1016/j.molimm.2011.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/22/2011] [Accepted: 02/24/2011] [Indexed: 11/24/2022]
Abstract
Induction of the TCR signaling pathway terminates the expression of RAG genes, and a link between this pathway and their transcriptional control is evident from the recent demonstration of their re-expression if the TCR is subsequently lost or down-regulated. Since unstimulated T cells display a steady-state level of "tonic" TCR signaling, i.e. in the absence of any antigenic stimulus, it was uncertain whether this control was exerted through ligand-dependent or ligand-independent TCR signaling. Here we demonstrate for the first time that exogenous TCR α and β chains transferred into the human immature RAG(+) T cell line Sup-T1 by lentiviral transduction inhibit RAG expression through tonic signaling, and that this inhibition could itself be reverted by pharmacological tonic pathway inhibitors. We also suggest that mature T cells already expressing an endogenous TCR on their surface maintain some levels of plasticity at the RAG locus when their basal TCR signaling is interfered with. Lastly, we show that the TCR constructs employed in TCR gene therapy do not possess the same basal signaling transduction capability, a feature that may have therapeutic implications.
Collapse
Affiliation(s)
- Luca Orlando
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Øvergård AC, Fiksdal IU, Nerland AH, Patel S. Expression of T-cell markers during Atlantic halibut (Hippoglossus hippoglossus L.) ontogenesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:203-213. [PMID: 20883716 DOI: 10.1016/j.dci.2010.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/22/2010] [Accepted: 09/22/2010] [Indexed: 05/29/2023]
Abstract
The immune system of Atlantic halibut is relatively undeveloped at the time of hatching, and thus larvae are vulnerable to bacterial and viral diseases that can result in high mortalities. To enable establishment of effective prophylactic measures, it is important to know when the adaptive immune system is developed. This depends on both B- and T-cell functions. In the present study the expression of RAG1, TCRα, TCRβ, CD3γδ, CD3ɛ, CD3ζ, CD4, CD4-2, CD8α, CD8β, Lck, and ZAP-70 was analyzed in larval and juvenile stages during halibut development. Using real time RT-PCR, low basal mRNA levels of all 12 genes could be detected at early stages. An increase in mRNA transcripts for the genes was seen at different time points, from 38 days post hatching (dph) about the time when the first anlage of thymus is found, and onwards. The transcription patterns of the 12 mRNAs were found to be similar throughout the developmental stages tested. In situ hybridization on larval cross-sections showed that RAG1 and Lck could be detected in lymphocyte like cells within the thymus at 42 dph. CD4 expression could not be detected within the thymus before 66 dph, however, positive cells were restricted to the cortical region. At 87 dph, the zonation of the thymus in a cortical, cortico-medullary, and a medullary region seemed to be more evident with CD8α expressing cells found in all regions, indicating the presence of mature T-cells. This correlates with previous results describing thymus development and the appearance of IgM(+) cells during halibut ontogenesis.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Base Sequence
- Flounder/genetics
- Flounder/growth & development
- Flounder/immunology
- Gene Expression
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, RAG-1
- Immunocompetence/genetics
- Immunocompetence/immunology
- Immunoglobulin M/genetics
- Immunoglobulin M/immunology
- In Situ Hybridization
- RNA, Messenger/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/immunology
- Thymus Gland/growth & development
- Thymus Gland/immunology
Collapse
|
19
|
Lopez-Granados E. Epigenetic Control of Lymphocyte Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:26-35. [DOI: 10.1007/978-1-4419-8216-2_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
20
|
Nduati EW, Ng DHL, Ndungu FM, Gardner P, Urban BC, Langhorne J. Distinct kinetics of memory B-cell and plasma-cell responses in peripheral blood following a blood-stage Plasmodium chabaudi infection in mice. PLoS One 2010; 5:e15007. [PMID: 21124900 PMCID: PMC2990717 DOI: 10.1371/journal.pone.0015007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 10/04/2010] [Indexed: 12/25/2022] Open
Abstract
B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC). To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgD− IgM− CD19+ B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1)-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138+ plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25) or secondary (day 10) infection. CD138+ plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood.
Collapse
Affiliation(s)
- Eunice W. Nduati
- KEMRI/Wellcome Trust Collaborative Research Programme, Centre for Geographical Medicine Research Coast, Kilifi, Kenya
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Dorothy H. L. Ng
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Francis M. Ndungu
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Peter Gardner
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Britta C. Urban
- KEMRI/Wellcome Trust Collaborative Research Programme, Centre for Geographical Medicine Research Coast, Kilifi, Kenya
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Abstract
The gut epithelial border is in continuous contact with exogenous antigens and harbors a distinctive and very abundant CD8 alpha alpha intraepithelial T-lymphocyte effector population. We describe here the characteristics of these cells that distinguish them from all other T-cell types in the body as well as their functions in local protection. We also describe how these cells differentiate from local precursors present in the gut cryptopatches (CPs) following a pathway of T-cell differentiation unique to the gut wall. Finally, we describe the origin of the precursors of CD8 alpha alpha T cells, which come from the bone marrow in athymic mice but are first imprinted in the thymus in euthymic mice. Indeed, CD3(-)CD4(-)CD8(-) T-cell-committed precursors can leave the thymus before T-cell receptor rearrangements and then colonize the gut CPs, proceeding with their differentiation within the gut wall.
Collapse
Affiliation(s)
- Benedita Rocha
- Institut National de la Santé et de la Recherche Médicale (INSERM), U591, Faculté de Médecine René Descarte Paris V, Institut Necker, Paris, France.
| |
Collapse
|
22
|
Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2006; 103:15166-71. [PMID: 17015828 PMCID: PMC1622794 DOI: 10.1073/pnas.0603349103] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a clonal disease that evolves through the accrual of genetic rearrangements and/or mutations within the dominant clone. The TEL-AML1 (ETV6-RUNX1) fusion in precursor-B (pre-B) ALL is the most common genetic rearrangement in childhood cancer; however, the cellular origin and the molecular pathogenesis of TEL-AML1-induced leukemia have not been identified. To study the origin of TEL-AML1-induced ALL, we generated transgenic zebrafish expressing TEL-AML1 either ubiquitously or in lymphoid progenitors. TEL-AML1 expression in all lineages, but not lymphoid-restricted expression, led to progenitor cell expansion that evolved into oligoclonal B-lineage ALL in 3% of the transgenic zebrafish. This leukemia was transplantable to conditioned wild-type recipients. We demonstrate that TEL-AML1 induces a B cell differentiation arrest, and that leukemia development is associated with loss of TEL expression and elevated Bcl2/Bax ratio. The TEL-AML1 transgenic zebrafish models human pre-B ALL, identifies the molecular pathways associated with leukemia development, and serves as the foundation for subsequent genetic screens to identify modifiers and leukemia therapeutic targets.
Collapse
Affiliation(s)
- Hatem E Sabaawy
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Liu Z, Widlak P, Zou Y, Xiao F, Oh M, Li S, Chang MY, Shay JW, Garrard WT. A recombination silencer that specifies heterochromatin positioning and ikaros association in the immunoglobulin kappa locus. Immunity 2006; 24:405-15. [PMID: 16618599 DOI: 10.1016/j.immuni.2006.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 01/05/2006] [Accepted: 02/01/2006] [Indexed: 01/03/2023]
Abstract
Allelic exclusion ensures that individual B lymphocytes produce only one kind of antibody molecule. Previous studies have shown that allelic exclusion of the mouse Igkappa locus occurs by the combination of monoallelic silencing and a low level of monoallelic activation for rearrangement combined with a negative feedback loop blocking additional functional rearrangements. Using yeast artificial chromosome-based single-copy isotransgenic mice, we have identified a cis-acting element that negatively regulates rearrangement in this locus, specifically in B cells. The element, termed Sis, resides in the V-J intervening sequence. Sis specifies the targeting of Igkappa transgenes in pre-B and B cells to centromeric heterochromatin and associates with Ikaros, a repressor protein that also colocalizes with centromeric heterochromatin. Significantly, these are hallmarks of silenced endogenous germline Igkappa genes in B cells. These results lead us to propose that Sis participates in the monoallelic silencing aspect of allelic exclusion regulation.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dudley DD, Chaudhuri J, Bassing CH, Alt FW. Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 2006; 86:43-112. [PMID: 15705419 DOI: 10.1016/s0065-2776(04)86002-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
V(D)J recombination is the process by which the variable region exons encoding the antigen recognition sites of receptors expressed on B and T lymphocytes are generated during early development via somatic assembly of component gene segments. In response to antigen, somatic hypermutation (SHM) and class switch recombination (CSR) induce further modifications of immunoglobulin genes in B cells. CSR changes the IgH constant region for an alternate set that confers distinct antibody effector functions. SHM introduces mutations, at a high rate, into variable region exons, ultimately allowing affinity maturation. All of these genomic alteration processes require tight regulatory control mechanisms, both to ensure development of a normal immune system and to prevent potentially oncogenic processes, such as translocations, caused by errors in the recombination/mutation processes. In this regard, transcription of substrate sequences plays a significant role in target specificity, and transcription is mechanistically coupled to CSR and SHM. However, there are many mechanistic differences in these reactions. V(D)J recombination proceeds via precise DNA cleavage initiated by the RAG proteins at short conserved signal sequences, whereas CSR and SHM are initiated over large target regions via activation-induced cytidine deaminase (AID)-mediated DNA deamination of transcribed target DNA. Yet, new evidence suggests that AID cofactors may help provide an additional layer of specificity for both SHM and CSR. Whereas repair of RAG-induced double-strand breaks (DSBs) involves the general nonhomologous end-joining DNA repair pathway, and CSR also depends on at least some of these factors, CSR requires induction of certain general DSB response factors, whereas V(D)J recombination does not. In this review, we compare and contrast V(D)J recombination and CSR, with particular emphasis on the role of the initiating enzymes and DNA repair proteins in these processes.
Collapse
Affiliation(s)
- Darryll D Dudley
- Howard Hughes Medical Institute, The Children's Hospital Boston, CBR Institute for Biomedical Research, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
25
|
Yuan SW, Agard EA, Larijani M, Wu GE. Coding joint diversity in mature and immature B-cell lines. Scand J Immunol 2005; 62 Suppl 1:114-8. [PMID: 15953194 DOI: 10.1111/j.1365-3083.2005.01619.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antigen receptor gene rearrangement is regulated by many factors in B and T lymphocytes. The sequences of the gene segments themselves, their associated recombination signal sequences (RSS), expression of the RAG genes and the chromatin accessibility of the particular gene segments to be rearranged all influence the outcome of recombination and thus antigen receptor diversity. In the present study, we have evaluated the effect of variations in RAG activity level on the junctional diversity of coding joint sequences. Using the pre-B-like 204-1-8 and the mature B DR3 cell lines under different transfection conditions, we were able to investigate recombination activity levels that varied 100-fold. We evaluated the sequences of the coding joints for junctional diversity resulting from nucleotide addition or deletion. Surprisingly, we found that the sequence of coding joints of these recombinants did not exhibit significant variation despite the large difference in recombination frequency. Our results indicate that the fidelity of the joining phase of V(D)J recombination is not jeopardized by varying RAG activity.
Collapse
Affiliation(s)
- S W Yuan
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Abstract
V(D)J recombination assembles antigen receptor genes from component gene segments. We review findings that have shaped our current understanding of this remarkable mechanism, with a focus on two major reports--the first detailed comparison of germline and rearranged antigen receptor loci and the discovery of the recombination activating gene-1.
Collapse
Affiliation(s)
- David Jung
- Howard Hughes Medical Institute, The Children's Hospital, The CBR Institute for Biomedical Research, Inc., Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Roose JP, Diehn M, Tomlinson MG, Lin J, Alizadeh AA, Botstein D, Brown PO, Weiss A. T cell receptor-independent basal signaling via Erk and Abl kinases suppresses RAG gene expression. PLoS Biol 2003; 1:E53. [PMID: 14624253 PMCID: PMC261890 DOI: 10.1371/journal.pbio.0000053] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Accepted: 09/17/2003] [Indexed: 02/07/2023] Open
Abstract
Signal transduction pathways guided by cellular receptors commonly exhibit low-level constitutive signaling in a continuous, ligand-independent manner. The dynamic equilibrium of positive and negative regulators establishes such a tonic signal. Ligand-independent signaling by the precursors of mature antigen receptors regulates development of B and T lymphocytes. Here we describe a basal signal that controls gene expression profiles in the Jurkat T cell line and mouse thymocytes. Using DNA microarrays and Northern blots to analyze unstimulated cells, we demonstrate that expression of a cluster of genes, including RAG-1 and RAG-2, is repressed by constitutive signals requiring the adapter molecules LAT and SLP-76. This TCR-like pathway results in constitutive low-level activity of Erk and Abl kinases. Inhibition of Abl by the drug STI-571 or inhibition of signaling events upstream of Erk increases RAG-1 expression. Our data suggest that physiologic gene expression programs depend upon tonic activity of signaling pathways independent of receptor ligation. In the absence of basal signaling, RAG activity is high at a time during T cell development when it is otherwise normally suppressed
Collapse
Affiliation(s)
- Jeroen P Roose
- 1Department of Medicine, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
- 2Department of Microbiology and Immunology, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
| | - Maximilian Diehn
- 3Department of Biochemistry, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Michael G Tomlinson
- 1Department of Medicine, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
- 2Department of Microbiology and Immunology, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
| | - Joseph Lin
- 1Department of Medicine, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
- 2Department of Microbiology and Immunology, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
| | - Ash A Alizadeh
- 3Department of Biochemistry, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - David Botstein
- 4Department of Genetics, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Patrick O Brown
- 3Department of Biochemistry, Stanford University School of MedicineStanford, CaliforniaUnited States of America
- 5Howard Hughes Medical Institute, Stanford University School of MedicineStanford, CaliforniaUnited States of America
| | - Arthur Weiss
- 1Department of Medicine, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
- 2Department of Microbiology and Immunology, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
- 6Howard Hughes Medical Institute, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
- 7Rosalind Russell Medical Research Center for Arthritis, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
| |
Collapse
|
28
|
Abstract
DNA double-strand breaks (DSBs) represent dangerous chromosomal lesions that can lead to mutation, neoplastic transformation, or cell death. DSBs can occur by extrinsic insult from environmental sources or may occur intrinsically as a result of cellular metabolism or a genetic program. Mammalian cells possess potent and efficient mechanisms to repair DSBs, and thus complete normal development as well as mitigate oncogenic potential and prevent cell death. When DSB repair (DSBR) fails, chromosomal instability results and can be associated with tumor formation or progression. Studies of mice deficient in various components of the non-homologous end joining pathway of DSBR have revealed key roles in both the developmental program of B and T lymphocytes as well as in the maintenance of general genome stability. Here, we review the current thinking about DSBs and DSBR in chromosomal instability and tumorigenesis, and we highlight the implications for understanding the karyotypic features associated with human tumors.
Collapse
|
29
|
Chen M, Aosai F, Mun HS, Norose K, Piao LX, Yano A. Correlation between the avidity maturation of anti-HSP70 IgG autoantibody and recombination activating gene expressions in peripheral lymphoid tissues of Toxoplasma gondii-infected mice. Microbiol Immunol 2003; 47:217-21. [PMID: 12725292 DOI: 10.1111/j.1348-0421.2003.tb03390.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The avidity maturation of anti-TgHSP70 IgG antibody produced by B-2 cells of BALB/c mice (a resistant strain) and that of anti-mHSP70 IgG autoantibody produced by B-1 cells of C57BL/6 mice (B6; a susceptible strain) was observed after Toxoplasma gondii infection. Recombination-activating genes (RAGs) were predominantly expressed in B-1 cells from peritoneal exudate cells (PECs) of T. gondii-infected B6 mice, while RAGs were expressed in B-2 cells from PECs of BALB/c mice. These results suggest that the involvement of RAG gene activations in the peripheral lymphoid tissues in the avidity maturation of anti-TgHSP70 IgG antibody and anti-mHSP70 IgG autoantibody in T. gondii-infected mice.
Collapse
Affiliation(s)
- Mei Chen
- Department of Infection and Host Defense, Graduate School of Medicine, Chiba University, Chiba, Chiba 260-8670, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Cooper CJ, Orr MT, McMahan CJ, Fink PJ. T cell receptor revision does not solely target recent thymic emigrants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:226-33. [PMID: 12817002 DOI: 10.4049/jimmunol.171.1.226] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CD4(+)Vbeta5(+) T cells enter one of two tolerance pathways after recognizing a peripherally expressed superantigen encoded by an endogenous retrovirus. One pathway leads to deletion, while the other, termed TCR revision, results in cellular rescue upon expression of an alternate TCR that no longer recognizes the tolerogen. TCR revision requires the rearrangement of novel TCR beta-chain genes and depends on recombinase-activating gene (RAG) expression in peripheral T cells. In line with recent findings that RAG(+) splenic B cells are immature cells that have maintained RAG expression, it has been hypothesized that TCR revision is limited to recent thymic emigrants that have maintained RAG expression and TCR loci in a recombination-permissive configuration. Using mice in which the expression of green fluorescent protein is driven by the RAG2 promoter, we now show that in vitro stimulation can drive reporter expression in noncycling, mature, peripheral CD4(+) T cells. In addition, thymectomized Vbeta5 transgenic RAG reporter mice are used to demonstrate that TCR revision can target peripheral T cells up to 2 mo after thymectomy. Both sets of experiments strongly suggest that reinduction of RAG genes triggers TCR revision. Approximately 3% of CD4(+)Vbeta5(+) T cells in thymectomized Vbeta5 transgenic reporter mice have undergone TCR revision within the previous 4-5 days. TCR revision can also occur in Vbeta5(+) T cells from nontransgenic mice, illustrating the relevance of this novel tolerance mechanism in unmanipulated animals.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- DNA-Binding Proteins/antagonists & inhibitors
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Gene Silencing/immunology
- Genes, Reporter/immunology
- Green Fluorescent Proteins
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Immune Tolerance/genetics
- Luminescent Proteins/biosynthesis
- Luminescent Proteins/genetics
- Lymphocyte Count
- Mammary Tumor Virus, Mouse/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Recombination, Genetic
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- Thymectomy
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Thymus Gland/virology
- Transgenes/immunology
Collapse
Affiliation(s)
- Cristine J Cooper
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
31
|
Muegge K, Young H, Ruscetti F, Mikovits J. Epigenetic control during lymphoid development and immune responses: aberrant regulation, viruses, and cancer. Ann N Y Acad Sci 2003; 983:55-70. [PMID: 12724212 DOI: 10.1111/j.1749-6632.2003.tb05962.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methylation of cytosines controls a number of biologic processes such as imprinting and X chromosomal inactivation. DNA hypermethylation is closely associated with transcriptional silencing, while DNA hypomethylation is associated with transcriptional activation. Hypoacetylation of histones leads to compact chromatin with reduced accessibility to the transcriptional machinery. Methyl-CpG binding proteins can recruit corepressors and histone deacetylases; thus, the interplay between these epigenetic mechanisms regulates gene activation. Methylation has been implicated as an important mechanism during immune development, controlling VDJ recombination, lineage-specific expression of cell surface antigens, and transcriptional regulation of cytokine genes during immune responses. Aberrations in epigenetic machinery, either by genetic mutations or by somatic changes such as viral infections, are associated with early alterations in chronic diseases such as immunodeficiency and cancer.
Collapse
Affiliation(s)
- Kathrin Muegge
- Laboratories of Molecular Immunoregulation, SAIC, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
32
|
Serra P, Amrani A, Han B, Yamanouchi J, Thiessen SJ, Santamaria P. RAG-dependent peripheral T cell receptor diversification in CD8+ T lymphocytes. Proc Natl Acad Sci U S A 2002; 99:15566-71. [PMID: 12432095 PMCID: PMC137757 DOI: 10.1073/pnas.242321099] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rearrangement of T cell receptor (TCR) genes is driven by transient expression of V(D)J recombination-activating genes (RAGs) during lymphocyte development. Immunological dogma holds that T cells irreversibly terminate RAG expression before exiting the thymus, and that all of the progeny arising from mature T cells express the parental TCRs. When single pancreatic islet-derived, NRP-A7 peptide-reactive CD8(+) T cells from nonobese diabetic (NOD) mice were repeatedly stimulated with peptide-pulsed dendritic cells, daughter T cells reexpressed RAGs, lost their ability to bind to NRP-A7K(d) tetramers, ceased to transcribe tetramer-specific TCR genes, and, instead, expressed a vast array of other TCR rearrangements. Pancreatic lymph node (PLN) CD8(+) T cells from animals expressing a transgenic NRP-A7-reactive TCR transcribed and translated RAGs in vivo and displayed endogenous TCRs on their surface. RAG reexpression also occurred in the PLN CD8(+) T cells of wild-type NOD mice and could be induced in the peripheral CD8(+) T cells of nondiabetes-prone TCR-transgenic B10.H2(g7) mice by stimulation with peptide-pulsed dendritic cells. In contrast, reexpression of RAGs could not be induced in the CD8(+) T cells of B6 mice expressing an ovalbumin-specific, K(b)-restricted TCR, or in the CD8(+) T cells of NOD mice expressing a lymphocytic choriomeningitis virus-specific, D(b)-restricted TCR. Extra-thymic reexpression of the V(D)J recombination machinery in certain CD8(+) T cell subpopulations, therefore, enables further diversification of the peripheral T cell repertoire.
Collapse
MESH Headings
- Animals
- Antigen Presentation
- Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Clone Cells/immunology
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/physiology
- Dendritic Cells/immunology
- Gene Expression Regulation
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Genes, RAG-1
- H-2 Antigens/immunology
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/physiology
- Islets of Langerhans/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Transgenic
- Ovalbumin/immunology
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Pau Serra
- Department of Microbiology and Infectious Diseases, and Julia McFarlane Diabetes Research Centre, Faculty of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive N.W., AB, Canada T2N 4N1
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
V(D)J recombination is the specialized DNA rearrangement used by cells of the immune system to assemble immunoglobulin and T-cell receptor genes from the preexisting gene segments. Because there is a large choice of segments to join, this process accounts for much of the diversity of the immune response. Recombination is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to make double-strand breaks at specific recognition sequences (recombination signal sequences, RSSs). The neighboring coding DNA is converted to a hairpin during breakage. Broken ends are then processed and joined with the help of several factors also involved in repair of radiation-damaged DNA, including the DNA-dependent protein kinase (DNA-PK) and the Ku, Artemis, DNA ligase IV, and Xrcc4 proteins, and possibly histone H2AX and the Mre11/Rad50/Nbs1 complex. There may be other factors not yet known. V(D)J recombination is strongly regulated by limiting access to RSS sites within chromatin, so that particular sites are available only in certain cell types and developmental stages. The roles of enhancers, histone acetylation, and chromatin remodeling factors in controlling accessibility are discussed. The RAG proteins are also capable of transposing RSS-ended fragments into new DNA sites. This transposition helps to explain the mechanism of RAG action and supports earlier proposals that V(D)J recombination evolved from an ancient mobile DNA element.
Collapse
Affiliation(s)
- Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892-0540, USA.
| |
Collapse
|
34
|
Abstract
Lymphocytes arise from hematopoietic stem cells through the coordinated action of transcription factors. The E proteins (E12, E47, HEB and E2-2) have emerged as key regulators of both B and T lymphocyte differentiation. This review summarizes the current data and examines the various functions of E proteins and their antagonists, Id2 and Id3, throughout lymphoid maturation. Beyond an established role in B and T lineage commitment, E proteins continue to be essential at subsequent stages of development. E protein activity regulates the expression of surrogate and antigen receptor genes, promotes Ig and TCR rearrangements, and coordinates cell survival and proliferation with developmental progression in response to TCR signaling. Finally, this review also discusses the role of E47 as a tumor suppressor.
Collapse
Affiliation(s)
- Melanie W Quong
- Division of Biology, University of California, San Diego, 9500 Gilman Drive, MC 0366, La Jolla, California 92093-0366, USA.
| | | | | |
Collapse
|
35
|
Tripathi R, Jackson A, Krangel MS. A change in the structure of Vbeta chromatin associated with TCR beta allelic exclusion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:2316-24. [PMID: 11859121 DOI: 10.4049/jimmunol.168.5.2316] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate chromatin control of TCR beta rearrangement and allelic exclusion, we analyzed TCR beta chromatin structure in double negative (DN) thymocytes, which are permissive for TCR beta recombination, and in double positive (DP) thymocytes, which are postallelic exclusion and nonpermissive for Vbeta to DbetaJbeta recombination. Histone acetylation mapping and DNase I sensitivity studies indicate Vbeta and DbetaJbeta segments to be hyperacetylated and accessible in DN thymocytes. However, they are separated from each other by hypoacetylated and inaccessible trypsinogen chromatin. The transition from DN to DP is accompanied by selective down-regulation of Vbeta acetylation and accessibility. The level of DP acetylation and accessibility is minimal for five of six Vbeta segments studied but remains substantial for one. Hence, the observed changes in Vbeta chromatin structure appear sufficient to account for allelic exclusion of many Vbeta segments. They may contribute to, but not by themselves fully account for, allelic exclusion of others.
Collapse
Affiliation(s)
- Rajkamal Tripathi
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
36
|
Lambolez F, Azogui O, Joret AM, Garcia C, von Boehmer H, Di Santo J, Ezine S, Rocha B. Characterization of T cell differentiation in the murine gut. J Exp Med 2002; 195:437-49. [PMID: 11854357 PMCID: PMC2193617 DOI: 10.1084/jem.20010798] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gut intraepithelial CD8 T lymphocytes (T-IEL) are distinct from thymus-derived cells and are thought to derive locally from cryptopatch (CP) precursors. The intermediate stages of differentiation between CP and mature T-IEL were not identified, and the local differentiation process was not characterized. We identified and characterized six phenotypically distinct lineage-negative populations in the CP and the gut epithelium: (a) we determined the kinetics of their generation from bone marrow precursors; (b) we quantified CD3-epsilon, recombination activating gene (Rag)-1, and pre-Talpha mRNAs expression at single cell level; (c) we characterized TCR-beta, -gamma, and -alpha locus rearrangements; and (d) we studied the impact of different mutations on the local differentiation. These data allowed us to establish a sequence of T cell precursor differentiation in the gut. We also observed that the gut differentiation varied from that of the thymus by a very low frequency of pre-Talpha chain mRNA expression, a different kinetics of Rag-1 mRNA expression, and a much higher impact of CD3 epsilon/delta and pre-Talpha deficiencies. Finally, only 3% of CP cells were clearly involved in T cell differentiation, suggesting that these structures may have additional physiological roles in the gut.
Collapse
Affiliation(s)
- Florence Lambolez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U345, Institut Necker, Rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Tissue engineering and cellular therapies, either on their own or in combination with therapeutic gene delivery, have the potential to significantly impact medicine. Implementation of technologies based on these approaches requires a readily available source of cells for the generation of cells and tissues outside a living body. Because of their unique capacity to regenerate functional tissue for the lifetime of an organism, stem cells are an attractive "raw material" for multiple biotechnological applications. By definition they are self-renewing because on cell division they can generate daughter stem cells. They are also multipotent because they can differentiate into numerous specialized, functional cells. Recent findings have shown that stem cells exist in most, if not all, tissues, and that stem cell tissue specificity may be more flexible than originally thought. Although the potential for producing novel cell-based products from stem cells is large, currently there are no effective technologically relevant methodologies for culturing stem cells outside the body, or for reproducibly stimulating them to differentiate into functional cells. A mechanistic understanding of the parameters important in the control of stem cell self-renewal and lineage commitment is thus necessary to guide the development of bioprocesses for the ex vivo culture of stem cells and their derivates.
Collapse
Affiliation(s)
- P W Zandstra
- Institute of Biomaterials and Biomedical Engineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada.
| | | |
Collapse
|
38
|
Marculescu R, Le T, Böcskör S, Mitterbauer G, Chott A, Mannhalter C, Jaeger U, Nadel B. Alternative end-joining in follicular lymphomas' t(14;18) translocation. Leukemia 2002; 16:120-6. [PMID: 11840271 DOI: 10.1038/sj.leu.2402324] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2001] [Accepted: 08/21/2001] [Indexed: 11/09/2022]
Abstract
T(14;18) chromosomal translocation is assumed to result from illegitimate rearrangement between the BCL2 proto-oncogene and the IGH locus during the D(H) to J(H) joining phase of V(D)J recombination in early B cells. Analysis of the breakpoint junctions suggests that translocation derives from the fusion between normal V(D)J recombination intermediates at the IGH locus and non-V(D)J-mediated broken-ends at the BCL2 locus. So far, BCL2 broken-ends have only been observed fused to coding-ends, raising questions concerning the molecular constraints of the illegitimate joining process. Using a combination of genome walking and long-range PCR assays, we describe in this report that in 4.5% (2/44) of the t(14;18), one of the BCL2 broken-ends is fused to a signal-end. The formation of these J(H)RSS/BCL2 junctions provides direct evidence that BCL2 broken-ends are capable of joining to both products of V(D)J recombination, suggesting their presence in the RAG-mediated post-cleavage complex. In addition, junctions generated by this alternative end-joining do not involve deletion of the chromosome 14 intervening sequences generally lost in the standard translocation, providing a unique opportunity to investigate the rearrangement status of this region in the translocated IGH allele. In both cases, a DJ(H) rearrangement could be detected 5' of the J(H)-RSS/BCL2 junction. These findings, together with the previously reported bias towards the most external D(H) and J(H) segments in standard breakpoints, strongly suggest that t(14;18) preferentially occurs during an attempted secondary D(H) to J(H) rearrangement. This unusual and restricted window of differentiation opens intriguing questions concerning the etiology of the translocation.
Collapse
MESH Headings
- Base Sequence
- Chromosome Breakage
- Chromosome Walking
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 14/ultrastructure
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 18/ultrastructure
- DNA Nucleotidyltransferases/metabolism
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Genes, Immunoglobulin
- Genes, bcl-2
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Joining Region/genetics
- Molecular Sequence Data
- Polymerase Chain Reaction
- Proto-Oncogene Mas
- Translocation, Genetic/genetics
- VDJ Recombinases
Collapse
Affiliation(s)
- R Marculescu
- Department of Internal Medicine I, Division of Hematology, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Mutations in recombination activating genes cause a spectrum of severe immunodeficiencies ranging from T-B severe combined immunodeficiency to Omenn syndrome (a particular type of severe combined immunodeficiency presenting a T+ B- profile). Although environmental factors and genetic background could also contribute to the genesis of this pathological condition, a residual recombination activating gene activity allowing for a few recombinational events to occur, is the first determinant of this variability in the clinical picture.
Collapse
Affiliation(s)
- A Villa
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, Italy.
| | | | | |
Collapse
|
40
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
41
|
Abstract
Primary damage caused by injury to the CNS is often followed by delayed degeneration of initially spared neurons. Studies in our laboratory have shown that active or passive immunization with CNS myelin-associated self-antigens can reduce this secondary loss. Here we show, using four experimental paradigms in rodents, that CNS trauma spontaneously evokes a beneficial T cell-dependent immune response, which reduces neuronal loss. (1) Survival of retinal ganglion cells in rats was significantly higher when optic nerve injury was preceded by an unrelated CNS (spinal cord) injury. (2) Locomotor activity of rat hindlimbs (measured in an open field using a locomotor rating scale) after contusive injury of the spinal cord (T8) was significantly better (by three to four score grades) after passive transfer of myelin basic protein (MBP)-activated splenocytes derived from spinally injured rats than in untreated injured control rats or rats similarly treated with splenocytes from naive animals or with splenocytes from spinally injured rats activated ex vivo with ovalbumin or without any ex vivo activation. (3) Neuronal survival after optic nerve injury was 40% lower in adult rats devoid of mature T cells (caused by thymectomy at birth) than in normal rats. (4) Retinal ganglion cell survival after optic nerve injury was higher (119 +/- 3.7%) in transgenic mice overexpressing a T cell receptor (TcR) for MBP and lower (85 +/- 1.3%) in mice overexpressing a T cell receptor for the non-self antigen ovalbumin than in matched wild types. Taken together, the results imply that CNS injury evokes a T cell-dependent neuroprotective response.
Collapse
|
42
|
Huang J, Muegge K. Control of chromatin accessibility for V(D)J recombination by interleukin‐7. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.6.907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jiaqiang Huang
- Laboratory of Molecular Immuneregulation, SAIC‐FCRDC, National Cancer Institute, Frederick, Maryland
| | - Kathrin Muegge
- Laboratory of Molecular Immuneregulation, SAIC‐FCRDC, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
43
|
Kwon J, Morshead KB, Guyon JR, Kingston RE, Oettinger MA. Histone acetylation and hSWI/SNF remodeling act in concert to stimulate V(D)J cleavage of nucleosomal DNA. Mol Cell 2000; 6:1037-48. [PMID: 11106743 DOI: 10.1016/s1097-2765(00)00102-7] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ordered assembly of immunoglobulin and TCR genes by V(D)J recombination depends on the regulated accessibility of individual loci. We show here that the histone tails and intrinsic nucleosome structure pose significant impediments to V(D)J cleavage. However, alterations to nucleosome structure via histone acetylation or by stable hSWI/SNF-dependent remodeling greatly increase the accessibility of nucleosomal DNA to V(D)J cleavage. Moreover, acetylation and hSWI/SNF remodeling can act in concert on an individual nucleosome to achieve levels of V(D)J cleavage approaching those observed on naked DNA. These results are consistent with a model in which regulated recruitment of chromatin modifying activities is involved in mediating the lineage and stage-specific control of V(D)J recombination.
Collapse
Affiliation(s)
- J Kwon
- Department of Molecular Biology Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|