1
|
Hashish EA, Elgaml SA, El-Fattah A, Shalaby SI, Abdelaziz S. β-Amyrin supplementation ameliorates the toxic effect of glycerol in the kidney of rat model. Hum Exp Toxicol 2020; 39:930-937. [PMID: 32081053 DOI: 10.1177/0960327120907136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute kidney injury (AKI) is a common life-threatening complication. In this study, β-amyrin is hypothesized to exert a potential nephroprotective effect against glycerol-induced nephrotoxicity in rats. Thirty-two female Sprague-Dawley rats were divided into four groups: normal control, β-amyrin treated (50 mg kg-1 body weight) for 14 days, glycerol 25% (10 ml kg-1 BW volume/volume in sterile saline, intramuscular), and β-amyrin + glycerol-treated rats. Assessing kidney function was done through the measurement of serum urea and creatinine (SCr). Real-time quantitative polymerase chain reaction analysis was done to measure the changes in the gap junction protein and intermediate filament proteins (IFPs) messenger RNA (mRNA) levels. Renal tissue histopathology was also observed. Glycerol exhibited significant elevation in the SCr and urea with significant upregulation of connexin43, vimentin, and nestin. The levels of all disrupted parameters were improved by the pre-administration of β-amyrin. The β-amyrin exerts significant improvement of the biochemical parameters with a restoration of the renal tissue histopathological picture. Significant downregulation of the expression levels of the gap junction protein and IFPs mRNA was also seen. Collectively, the administration of β-amyrin showed a promising effect for a protection against glycerol-induced AKI in rats.
Collapse
Affiliation(s)
- E A Hashish
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkyia, Egypt
| | - S A Elgaml
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkyia, Egypt
| | - Aha El-Fattah
- Department of Veterinary Genetics and Genetic Engineering, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkyia, Egypt
| | - S I Shalaby
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Sharkyia, Egypt
| | - S Abdelaziz
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Sharkyia, Egypt
| |
Collapse
|
2
|
Li S, You M, Chai W, Xu Y, Wang Y. Developmental exposure to nonylphenol induced rat axonal injury in vivo and in vitro. Arch Toxicol 2019; 93:2673-2687. [PMID: 31456014 DOI: 10.1007/s00204-019-02536-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023]
Abstract
Increasing evidence indicates that developmental exposure to nonylphenol (NP) causes damage to the central nervous system (CNS). As the most unique and primary component of neuron, axon is an essential structure for the CNS function. Here, we investigated whether developmental exposure to NP affected rat axonal development in vivo and in vitro. Our results showed that developmental exposure to NP 10, 50, and 100 mg/(kg day) caused an obvious decrease in axonal length and density in the hippocampus. Developmental exposure to NP also altered the expression of CRMP-2 and p-CRMP-2, and activated Wnt-Dvl-GSK-3β cascade in the hippocampus, the crucial signaling that regulates axonal development. Even months after the exposure, impairment of axonal growth and alteration of this cascade were not fully restored. In the primary cultured neurons, 30, 50, and 70 μM NP treatment decreased axonal length and impaired axonal function. Similar to in vivo results, it also activated Wnt-Dvl-GSK-3β cascade in cultured neurons. SB-216763, a specific GSK-3β inhibitor, recovered the shortening of axon and the impairment of axonal function induced by NP. Taken together, our results support the idea that exposure to NP induces axonal injury in the developing neurons. Furthermore, the activation of Wnt-Dvl-GSK-3β cascade contributes to the axonal injury induced by NP.
Collapse
Affiliation(s)
- Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Wenjie Chai
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China.
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, 110122, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Gao WL, Tian F, Zhang SQ, Zhang H, Yin ZS. Epidermal growth factor increases the expression of Nestin in rat reactive astrocytes through the Ras–Raf–ERK pathway. Neurosci Lett 2014; 562:54-9. [DOI: 10.1016/j.neulet.2014.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/19/2013] [Accepted: 01/13/2014] [Indexed: 12/18/2022]
|
4
|
Lee NPY, Cheng CY. Nitric oxide and cyclic nucleotides: their roles in junction dynamics and spermatogenesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:25-32. [PMID: 19794905 PMCID: PMC2715196 DOI: 10.4161/oxim.1.1.6856] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Department of Medicine/Surgery, University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | |
Collapse
|
5
|
Desai MK, Sudol KL, Janelsins MC, Mastrangelo MA, Frazer ME, Bowers WJ. Triple-transgenic Alzheimer's disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia 2009; 57:54-65. [PMID: 18661556 DOI: 10.1002/glia.20734] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a progressively debilitating brain disorder pathologically defined by extracellular amyloid plaques, intraneuronal neurofibrillary tangles, and synaptic disintegrity. AD has not been widely considered a disease of white matter, but more recent evidence suggests the existence of abnormalities in myelination patterns and myelin attrition in AD-afflicted human brains. Herein, we demonstrate that triple-transgenic AD (3xTg-AD) mice, which harbor the human amyloid precursor protein Swedish mutant transgene, presenilin knock-in mutation, and tau P301L mutant transgene, exhibit significant region-specific alterations in myelination patterns and in oligodendrocyte marker expression profiles at time points preceding the appearance of amyloid and tau pathology. These immunohistochemical signatures are coincident with age-related alterations in axonal and myelin sheath ultrastructure as visualized by comparative electron microscopic examination of 3xTg-AD and nontransgenic mouse brain tissue. Overall, these findings indicate that 3xTg-AD mice represent a viable model in which to examine mechanisms underlying AD-related myelination and neural transmission defects that occur early during presymptomatic stages of the disease process.
Collapse
Affiliation(s)
- Maya K Desai
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
6
|
Lee NPY, Cheng CY. Nitric oxide and cyclic nucleotides: their roles in junction dynamics and spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:172-85. [PMID: 19856168 DOI: 10.1007/978-0-387-09597-4_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Department of Medicine and Surgery, University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | |
Collapse
|
7
|
Jensen HL. Herpes simplex virus type 1 morphogenesis and virus-cell interactions: significance of cytoskeleton and methodological aspects. APMIS 2006:7-55. [PMID: 16930175 DOI: 10.1111/j.1600-0463.2006.apm_v114_s119.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
De Sandre-Giovannoli A, Lévy N. Altered splicing in prelamin A-associated premature aging phenotypes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 44:199-232. [PMID: 17076270 DOI: 10.1007/978-3-540-34449-0_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hutchinson-Gilford progeria (HGPS), a rare and severe developmental disorder characterized by features recalling premature aging, and restrictive dermopathy (RD), a neonatal lethal genodermatosis, have recently been identified as being primary or secondary "laminopathies." These are heterogeneous disorders due to altered function of lamins A/C or related proteins. In physiological conditions, mature lamin A is obtained through a series of post-translational processing steps performed on a protein precursor, prelamin A. The major pathophysiological mechanism involved in progeria is an aberrant splicing of pre-mRNAs issued from the LMNA gene, due to a de novo heterozygous point mutation, leading to the production and accumulation of truncated lamin A precursors. Aberrant splicing of prelamin A pre-mRNAs causing the production of more extensively truncated precursors is involved in the allelic disease restrictive dermopathy. Other restrictive dermopathy cases are due to the inactivation of a key enzyme involved in the maturation of lamin A precursors (ZMPSTE24). In functional terms, all these conditions share the same pathophysiological basis: intranuclear accumulation of lamin A precursors, which cannot be fully processed (due to primary or secondary events) and exert toxic, dominant negative effects on nuclear homeostasis. Most other laminopathies are due to autosomal dominant LMNA point mutations inferred to cause single amino acid substitutions. In any case, the impact of these mutations on pre-mRNA splicing has rarely been assessed. These disorders affect different tissues and organs, mainly including bone, skin, striated muscles, adipose tissue, vessels, and peripheral nerves in isolated or combined fashions, giving rise to syndromes whose severity ranges from mild to perinatally lethal. In this chapter we review the structure and functions of lamins A/C in physiological and pathological conditions, describe their known or putative roles, namely, in the pathogenesis of HGPS and RD in relation to existing animal models, and envisage possible targeted therapeutic strategies on the basis of recent research results.
Collapse
Affiliation(s)
- Annachiara De Sandre-Giovannoli
- Laboratoire de Génétique Moléculaire, Département de Génétique Médicale, Hôpital d'Enfants la Timone, 264 Rue St. Pierre, 13385 Marseille, Cedex 5, France
| | | |
Collapse
|
9
|
Zamoner A, Corbelini PF, Funchal C, Menegaz D, Silva FRMB, Pessoa-Pureur R. Involvement of calcium-dependent mechanisms in T3-induced phosphorylation of vimentin of immature rat testis. Life Sci 2005; 77:3321-35. [PMID: 15985269 DOI: 10.1016/j.lfs.2005.05.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 05/09/2005] [Indexed: 11/29/2022]
Abstract
Thyroid hormones have been shown to act at extra nuclear sites, inducing target cell responses by several mechanisms, frequently involving intracellular calcium concentration. It has also been reported that cytoskeletal proteins are a target for thyroid and steroid hormones and cytoskeletal rearrangements are observed during hormone-induced differentiation and development of rat testes. However, little is known about the effect of 3,5,3'-triiodo-L-thyronine (T3) on the intermediate filament (IF) vimentin in rat testes. In this study we investigated the immunocontent and in vitro phosphorylation of vimentin in the cytoskeletal fraction of immature rat testes after a short-term in vitro treatment with T3. Gonads were incubated with or without T3 and 32P orthophosphate for 30 min and the intermediate filament-enriched cytoskeletal fraction was extracted in a high salt Triton-containing buffer. Vimentin immunoreactivity was analyzed by immunoblotting and the in vitro 32P incorporation into this protein was measured. Results showed that 1 microM T3 was able to increase the vimentin immunoreactivity and in vitro phosphorylation in the cytoskeletal fraction without altering total vimentin immunocontent in immature rat testes. Besides, these effects were independent of active protein synthesis. The involvement of Ca2+-mediated mechanisms in vimentin phosphorylation was evident when specific channel blockers (verapamil and nifedipine) or chelating agents (EGTA and BAPTA) were added during pre-incubation and incubation of the testes with T3. The effect of T3 was prevented when Ca2+ influx was blocked or intracellular Ca2+ was chelated. These results demonstrate a rapid nongenomic Ca2+-dependent action of T3 in phosphorylating vimentin in immature rat testes.
Collapse
Affiliation(s)
- Ariane Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo CEP 90035-003 Porto Alegre RS Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Herrmann H, Aebi U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem 2004; 73:749-89. [PMID: 15189158 DOI: 10.1146/annurev.biochem.73.011303.073823] [Citation(s) in RCA: 509] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The superfamily of intermediate filament (IF) proteins contains at least 65 distinct proteins in man, which all assemble into approximately 10 nm wide filaments and are principal structural elements both in the nucleus and the cytoplasm with essential scaffolding functions in metazoan cells. At present, we have only circumstantial evidence of how the highly divergent primary sequences of IF proteins lead to the formation of seemingly similar polymers and how this correlates with their function in individual cells and tissues. Point mutations in IF proteins, particularly in lamins, have been demonstrated to lead to severe, inheritable multi-systemic diseases, thus underlining their importance at several functional levels. Recent structural work has now begun to shed some light onto the complex fine tuning of structure and function in these fibrous, coiled coil forming multidomain proteins and their contribution to cellular physiology and gene regulation.
Collapse
Affiliation(s)
- Harald Herrmann
- Department of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
11
|
Mücke N, Wedig T, Bürer A, Marekov LN, Steinert PM, Langowski J, Aebi U, Herrmann H. Molecular and biophysical characterization of assembly-starter units of human vimentin. J Mol Biol 2004; 340:97-114. [PMID: 15184025 DOI: 10.1016/j.jmb.2004.04.039] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 04/06/2004] [Accepted: 04/20/2004] [Indexed: 11/23/2022]
Abstract
We have developed an assembly protocol for the intermediate filament (IF) protein vimentin based on a phosphate buffer system, which enables the dynamic formation of authentic IFs. The advantage of this physiological buffer is that analysis of the subunit interactions by chemical cross-linking of internal lysine residues becomes feasible. By this system, we have analyzed the potential interactions of the coiled-coil rod domains with one another, which are assumed to make a crucial contribution to IF formation and stability. We show that headless vimentin, which dimerizes under low salt conditions, associates into tetramers of the A(22)-type configuration under assembly conditions, indicating that one of the effects of increasing the ionic strength is to favor coil 2-coil 2 interactions. Furthermore, in order to obtain insight into the molecular interactions that occur during the first phase of assembly of full-length vimentin, we employed a temperature-sensitive variant of human vimentin, which is arrested at the "unit-length filament" (ULF) state at room temperature, but starts to elongate upon raising the temperature to 37 degrees C. Most importantly, we demonstrate by cross-linking analysis that ULF formation predominantly involves A(11)-type dimer-dimer interactions. The presence of A(22) and A(12) cross-linking products in mature IFs, however, indicates that major rearrangements do occur during the longitudinal annealing and radial compaction steps of IF assembly.
Collapse
Affiliation(s)
- Norbert Mücke
- Division of Biophysics of Macromolecules, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ma Y, Shakiryanova D, Vardya I, Popov SV. Quantitative Analysis of Microtubule Transport in Growing Nerve Processes. Curr Biol 2004; 14:725-30. [PMID: 15084289 DOI: 10.1016/j.cub.2004.03.061] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 01/19/2004] [Accepted: 03/02/2004] [Indexed: 11/24/2022]
Abstract
In neurons, tubulin is synthesized primarily in the cell body, whereas the molecular machinery for neurite extension and elaboration of microtubule (MT) array is localized to the growth cone region. This unique functional and biochemical compartmentalization of neuronal cells requires transport mechanisms for the delivery of newly synthesized tubulin and other cytoplasmic components from the cell body to the growing axon. According to the polymer transport model, tubulin is transported along the axon as a polymer. Because the majority of axonal MTs are stationary at any given moment, it has been assumed that only a small fraction of MTs translocates along the axon by saltatory movement reminiscent of the fast axonal transport. Such intermittent "stop and go" MT transport has been difficult to detect or to exclude by using direct video microscopy methods. In this study, we measured the translocation of MT plus ends in the axonal shaft by expressing GFP-EB1 in Xenopus embryo neurons in culture. Formal quantitative analysis of MT assembly/disassembly indicated that none of the MTs in the axonal shaft were rapidly transported. Our results suggest that transport of axonal MTs is not required for delivery of newly synthesized tubulin to the growing nerve processes.
Collapse
Affiliation(s)
- Yitao Ma
- Department of Physiology and Biophysics, M/C 901, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
13
|
Toivola DM, Krishnan S, Binder HJ, Singh SK, Omary MB. Keratins modulate colonocyte electrolyte transport via protein mistargeting. ACTA ACUST UNITED AC 2004; 164:911-21. [PMID: 15007064 PMCID: PMC2172274 DOI: 10.1083/jcb.200308103] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The function of intestinal keratins is unknown, although keratin 8 (K8)–null mice develop colitis, hyperplasia, diarrhea, and mistarget jejunal apical markers. We quantified the diarrhea in K8-null stool and examined its physiologic basis. Isolated crypt-units from K8-null and wild-type mice have similar viability. K8-null distal colon has normal tight junction permeability and paracellular transport but shows decreased short circuit current and net Na absorption associated with net Cl secretion, blunted intracellular Cl/HCO3-dependent pH regulation, hyperproliferation and enlarged goblet cells, partial loss of the membrane-proximal markers H,K-ATPase-β and F-actin, increased and redistributed basolateral anion exchanger AE1/2 protein, and redistributed Na-transporter ENaC-γ. Diarrhea and protein mistargeting are observed 1–2 d after birth while hyperproliferation/inflammation occurs later. The AE1/2 changes and altered intracellular pH regulation likely account, at least in part, for the ion transport defects and hyperproliferation. Therefore, colonic keratins have a novel function in regulating electrolyte transport, likely by targeting ion transporters to their cellular compartments.
Collapse
Affiliation(s)
- Diana M Toivola
- Palo Alto VA Medical Center, 3801 Miranda Ave., Mail code 154J, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
For many years, cytoplasmic intermediate filaments (IFs) were considered to be stable cytoskeletal elements contributing primarily to the maintenance of the structural and mechanical integrity of cells. However, recent studies of living cells have revealed that IFs and their precursors possess a remarkably wide array of dynamic and motile properties. These properties are in large part due to interactions with molecular motors such as conventional kinesin, cytoplasmic dynein, and myosin. The association between IFs and motors appears to account for much of the well-documented molecular cross talk between IFs and the other major cytoskeletal elements, microtubules, and actin-containing microfilaments. Furthermore, the associations with molecular motors are also responsible for the high-speed, targeted delivery of nonfilamentous IF protein cargo to specific regions of the cytoplasm where they polymerize into IFs. This review considers the functional implications of the motile properties of IFs and discusses the potential relationships between malfunctions in these motile activities and human diseases.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
15
|
Windoffer R, Leube RE. Imaging of keratin dynamics during the cell cycle and in response to phosphatase inhibition. Methods Cell Biol 2004; 78:321-52. [PMID: 15646624 DOI: 10.1016/s0091-679x(04)78012-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg-University, 55128 Mainz, Germany
| | | |
Collapse
|
16
|
Gervasi C, Szaro BG. Performing functional studies of Xenopus laevis intermediate filament proteins through injection of macromolecules into early embryos. Methods Cell Biol 2004; 78:673-701. [PMID: 15646635 DOI: 10.1016/s0091-679x(04)78023-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine Gervasi
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, USA
| | | |
Collapse
|
17
|
Werner NS, Windoffer R, Strnad P, Grund C, Leube RE, Magin TM. Epidermolysis bullosa simplex-type mutations alter the dynamics of the keratin cytoskeleton and reveal a contribution of actin to the transport of keratin subunits. Mol Biol Cell 2003; 15:990-1002. [PMID: 14668478 PMCID: PMC363056 DOI: 10.1091/mbc.e03-09-0687] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dominant keratin mutations cause epidermolysis bullosa simplex by transforming keratin (K) filaments into aggregates. As a first step toward understanding the properties of mutant keratins in vivo, we stably transfected epithelial cells with an enhanced yellow fluorescent protein-tagged K14R125C mutant. K14R125C became localized as aggregates in the cell periphery and incorporated into perinuclear keratin filaments. Unexpectedly, keratin aggregates were in dynamic equilibrium with soluble subunits at a half-life time of <15 min, whereas filaments were extremely static. Therefore, this dominant-negative mutation acts by altering cytoskeletal dynamics and solubility. Unlike previously postulated, the dominance of mutations is limited and strictly depends on the ratio of mutant to wild-type protein. In support, K14R125C-specific RNA interference experiments resulted in a rapid disintegration of aggregates and restored normal filaments. Most importantly, live cell inhibitor studies revealed that the granules are transported from the cell periphery inwards in an actin-, but not microtubule-based manner. The peripheral granule zone may define a region in which keratin precursors are incorporated into existing filaments. Collectively, our data have uncovered the transient nature of keratin aggregates in cells and offer a rationale for the treatment of epidermolysis bullosa simplex by using short interfering RNAs.
Collapse
Affiliation(s)
- Nicola Susann Werner
- Institut fuer Physiologische Chemie, Abteilung fuer Zellbiochemie, Universitaetsklinikum Bonn, 53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
18
|
de Almeida LMV, Funchal C, Pelaez PDL, Pessutto FDB, Loureiro SO, Vivian L, Wajner M, Pessoa-Pureur R. Effect of propionic and methylmalonic acids on the in vitro phosphorylation of intermediate filaments from cerebral cortex of rats during development. Metab Brain Dis 2003; 18:207-19. [PMID: 14567471 DOI: 10.1023/a:1025555132675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study we investigated the in vivo and in vitro effects of methylmalonic (MMA) and propionic acids (PA), at concentrations usually found in methylmalonic acidemia and propionic acidemia respectively, on the phosphorylation of intermediate filament proteins in cerebral cortex of rats during development. Rats of 9, 12, and 17 days were acutely injected with the acids and sacrificed 90 min after injection. The cerebral cortex was dissected, and slices were incubated with 32P-orthophosphate. The cytoskeletal fraction was extracted and the radioactivity incorporated into intermediate filament subunits was measured. In addition, cortical slices from nontreated rats of 9, 12, 15, 17, 21, and 60 days of life were incubated with the acids in the presence of 32P-orthophosphate, the cytoskeletal fraction was extracted and the radioactivity was measured. Results demonstrated that MMA and PA significantly decreased the radioactivity incorporated into intermediate filament proteins at day 12, both in vivo and in tissue slices. In contrast, PA increased the in vitro phosphorylation of the cytoskeletal proteins in slices of 21-day-old animals. It acts through PP2A and PP2B in 12-day-old rats and through PKA and PKCaMII in 21-day-old animals. We propose that alteration of cytoskeletal protein phosphorylation caused by methylmalonic and propionic acids may be related to the neurological dysfunction characteristic of propionic and methylmalonic acidemia.
Collapse
Affiliation(s)
- Lúcia Maria Vieira de Almeida
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saude, Departamento de Bioquímica, Rua Ramiro Barcelos 2600 anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Helfand BT, Loomis P, Yoon M, Goldman RD. Rapid transport of neural intermediate filament protein. J Cell Sci 2003; 116:2345-59. [PMID: 12711702 DOI: 10.1242/jcs.00526] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Peripherin is a neural intermediate filament protein that is expressed in peripheral and enteric neurons, as well as in PC12 cells. A determination of the motile properties of peripherin has been undertaken in PC12 cells during different stages of neurite outgrowth. The results reveal that non-filamentous, non-membrane bound peripherin particles and short peripherin intermediate filaments, termed 'squiggles', are transported at high speed throughout PC12 cell bodies, neurites and growth cones. These movements are bi-directional, and the majority require microtubules along with their associated molecular motors, conventional kinesin and cytoplasmic dynein. Our data demonstrate that peripherin particles and squiggles can move as components of a rapid transport system capable of delivering cytoskeletal subunits to the most distal regions of neurites over relatively short time periods.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 11-145, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
20
|
Cheng TJ, Tseng YF, Chang WM, Chang MDT, Lai YK. Retaining of the assembly capability of vimentin phosphorylated by mitogen-activated protein kinase-activated protein kinase-2. J Cell Biochem 2003; 89:589-602. [PMID: 12761892 DOI: 10.1002/jcb.10511] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intermediate filament (IF) networks can be regulated by phosphorylation of unit proteins, such as vimentin, by specific kinases leading to reorganization of the IF filamentous structure. Recently, we identified mitogen-activated protein kinase-activated protein kinase-2 (MAPKAP kinase-2) as a vimentin kinase (Cheng and Lai [1998] J. Cell. Biochem. 71:169-181). Herein we describe the results of further in vitro studies investigating the effects of MAPKAP kinase-2 phosphorylation on vimentin and the effects of the phosphorylation on the filamentous structure. We show that MAPKAP kinase-2 mainly phosphorylates vimentin at Ser-38, Ser-50, Ser-55, and Ser-82, residues all located in the head domain of the protein. Surprisingly, and in stark contrast to phosphorylation by most other kinases, phosphorylation of vimentin by MAPKAP kinase-2 has no discernable effect on its assembly. It suggested that structure disassembly is not the only obligated consequence of phosphorylated vimentin as regulated by other kinases. Finally, a mutational analysis of each of the phosphorylated serine residues in vimentin suggested that no single serine site was primarily responsible for structure maintenance, implying that the retention of filamentous structure may be the result of the coordinated action of several phosphorylated serine sites. This also shed new lights on the functional task(s) of vimentin that is intermediate filament proteins might provide a phosphate reservoir to accommodate the phosphate surge without any structural changes.
Collapse
Affiliation(s)
- Ting-Jen Cheng
- Department of Life Science, National Tsing Hua University, Hsinshu, Taiwan 30013, Republic of China
| | | | | | | | | |
Collapse
|
21
|
Luciano L, Groos S, Reale E. Brush cells of rodent gallbladder and stomach epithelia express neurofilaments. J Histochem Cytochem 2003; 51:187-98. [PMID: 12533527 DOI: 10.1177/002215540305100207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been suggested that brush cells (BCs), a distinct type of cell occurring in various epithelia of the respiratory and gastrointestinal tracts, may function as receptor cells. The major characteristics of BCs are a prominent brush border and an unusually highly ordered arrangement of cytoskeletal elements (F-actin, microtubules, and intermediate filaments). In this study we aimed to characterize the nature of the intermediate filaments in BCs by light and electron microscopic immunostaining. Gallbladder and stomach specimens from mice and rats, respectively, were fixed in various solutions, embedded either in paraffin or epoxy resin, and processed for immunodetection. Commercially available, well-characterized antibodies against neurofilaments, peripherin, and cytokeratin peptide 18 were used. The polyclonal antiserum cocktail to neurofilaments was applied as a supplement in a double-labeling procedure with anti-actin and anti-cytokeratin 18 antibodies. The results demonstrate that the BCs of both organs express two types of intermediate filaments, i.e., neurofilaments and cytokeratin 18 filaments, and that these have a compartmentalized distribution in the cytoplasm. BCs do not express peripherin. The immunodetection of intermediate filaments distinctive for mature neurons in BCs supports their putative receptor function. The co-expression of neurofilaments and cytokeratins is shown for the first time in healthy tissues.
Collapse
Affiliation(s)
- Liliana Luciano
- Department of Cell Biology, Center of Anatomy, Hannover Medical School, Hannover, Germany.
| | | | | |
Collapse
|
22
|
Gavet O, El Messari S, Ozon S, Sobel A. Regulation and subcellular localization of the microtubule-destabilizing stathmin family phosphoproteins in cortical neurons. J Neurosci Res 2002; 68:535-50. [PMID: 12111843 DOI: 10.1002/jnr.10234] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Stathmin is a ubiquitous cytosolic phosphoprotein, preferentially expressed in the nervous system, and the generic element of a protein family that includes the neural-specific proteins SCG10, SCLIP, and RB3 and its splice variants, RB3' and RB3". All phosphoproteins of the family share with stathmin its tubulin binding and microtubule (MT)-destabilizing activities. To understand better the specific roles of these proteins in neuronal cells, we performed a comparative study of their expression, regulation, and intracellular distribution in embryonic cortical neurons in culture. We found that stathmin is highly expressed ( approximately 0.25% of total proteins) and uniformly present in the various neuronal compartments (cell body, dendrites, axon, growth cones). It appeared mainly unphosphorylated or weakly phosphorylated on one site, and antisera to specific phosphorylated sites (serines 16, 25, or 38) did not reveal a differential regulation of its phosphorylation among neuronal cell compartments. However, they revealed a subpopulation of cells in which stathmin was highly phosphorylated on serine 16, possibly by CaM kinase II also active in a similar subpopulation. The other proteins of the stathmin family are expressed about 100-fold less than stathmin in partially distinct neuronal populations, RB3 being detected in only about 20% of neurons in culture. In contrast to stathmin, they are each mostly concentrated at the Golgi apparatus and are also present along dendrites and axons, including growth cones. Altogether, our results suggest that the different members of the stathmin family have complementary, at least partially distinct functions in neuronal cell regulation, in particular in relation to MT dynamics.
Collapse
Affiliation(s)
- Olivier Gavet
- INSERM U440, Institut du Fer à Moulin, Paris, France
| | | | | | | |
Collapse
|
23
|
Helfand BT, Mikami A, Vallee RB, Goldman RD. A requirement for cytoplasmic dynein and dynactin in intermediate filament network assembly and organization. J Cell Biol 2002; 157:795-806. [PMID: 12034772 PMCID: PMC2173407 DOI: 10.1083/jcb.200202027] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Revised: 04/05/2002] [Accepted: 04/24/2002] [Indexed: 12/15/2022] Open
Abstract
We present evidence that vimentin intermediate filament (IF) motility in vivo is associated with cytoplasmic dynein. Immunofluorescence reveals that subunits of dynein and dynactin are associated with all structural forms of vimentin in baby hamster kidney-21 cells. This relationship is also supported by the presence of numerous components of dynein and dynactin in IF-enriched cytoskeletal preparations. Overexpression of dynamitin biases IF motility toward the cell surface, leading to a perinuclear clearance of IFs and their redistribution to the cell surface. IF-enriched cytoskeletal preparations from dynamitin-overexpressing cells contain decreased amounts of dynein, actin-related protein-1, and p150Glued relative to controls. In contrast, the amount of dynamitin is unaltered in these preparations, indicating that it is involved in linking vimentin cargo to dynactin. The results demonstrate that dynein and dynactin are required for the normal organization of vimentin IF networks in vivo. These results together with those of previous studies also suggest that a balance among the microtubule (MT) minus and plus end-directed motors, cytoplasmic dynein, and kinesin are required for the assembly and maintenance of type III IF networks in interphase cells. Furthermore, these motors are to a large extent responsible for the long recognized relationships between vimentin IFs and MTs.
Collapse
Affiliation(s)
- Brian T Helfand
- Northwestern University School of Medicine, Department of Cell and Molecular Biology, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
24
|
Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 2002; 156:1051-63. [PMID: 11901170 PMCID: PMC2173473 DOI: 10.1083/jcb.200108057] [Citation(s) in RCA: 660] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the effect of microtubule-associated tau protein on trafficking of vesicles and organelles in primary cortical neurons, retinal ganglion cells, and neuroblastoma cells. Tau inhibits kinesin-dependent transport of peroxisomes, neurofilaments, and Golgi-derived vesicles into neurites. Loss of peroxisomes makes cells vulnerable to oxidative stress and leads to degeneration. In particular, tau inhibits transport of amyloid precursor protein (APP) into axons and dendrites, causing its accumulation in the cell body. APP tagged with yellow fluorescent protein and transfected by adenovirus associates with vesicles moving rapidly forward in the axon (approximately 80%) and slowly back (approximately 20%). Both movements are strongly inhibited by cotransfection with fluorescently tagged tau (cyan fluorescent protein-tau) as seen by two-color confocal microscopy. The data suggests a linkage between tau and APP trafficking, which may be significant in Alzheimer's disease.
Collapse
Affiliation(s)
- K Stamer
- Max-Planck-Unit for Structural Molecular Biology, 22607 Hamburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Abstract
The highly regulated expression of neurofilament (NF) proteins during axon outgrowth suggests that NFs are important for axon development, but their contribution to axon growth is unclear. Previous experiments in Xenopus laevis embryos demonstrated that antibody-induced disruption of NFs stunts axonal growth but left unresolved how the loss of NFs affects the dynamics of axon growth. In the current study, dissociated cultures were made from the spinal cords of embryos injected at the two-cell stage with an antibody to the middle molecular mass NF protein (NF-M), and time-lapse videomicroscopy was used to study early neurite outgrowth in descendants of both the injected and uninjected blastomeres. The injected antibody altered the growth dynamics primarily in long neurites (>85 microm). These neurites were initiated just as early and terminated growth no sooner than did normal ones. Rather, they spent relatively smaller fractions of time actively extending than normal. When growth occurred, it did so at the same velocity. In very young neurites, which have NFs made exclusively of peripherin, NFs were unaffected, but in the shaft of older neurites, which have NFs that contain NF-M, NFs were disrupted. Thus growth was affected only after NFs were disrupted. In contrast, the distributions of alpha-tubulin and mitochondria were unaffected; thus organelles were still transported into neurites. However, mitochondrial staining was brighter in descendants of injected blastomeres, suggesting a greater demand for energy. Together, these results suggest a model in which intra-axonal NFs facilitate elongation of long axons by making it more efficient.
Collapse
|
26
|
Sardet C, Prodon F, Dumollard R, Chang P, Chênevert J. Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 2002; 241:1-23. [PMID: 11784091 DOI: 10.1006/dbio.2001.0474] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Christian Sardet
- BioMarCell, UMR 7009 Biologie du Developpement, Villefranche sur Mer, 06230, France.
| | | | | | | | | |
Collapse
|
27
|
Windoffer R, Leube RE. De novo formation of cytokeratin filament networks originates from the cell cortex in A-431 cells. CELL MOTILITY AND THE CYTOSKELETON 2001; 50:33-44. [PMID: 11746670 DOI: 10.1002/cm.1039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Of the three major cytoskeletal filament systems, the intermediate filaments are the least understood. Since they differ fundamentally from the actin- and microtubule-based networks by their lack of polarity, it has remained a mystery how and where these principally endless filaments are formed. Using a recently established epithelial cell system in which fluorescently labeled intermediate filaments of the cytokeratin type can be monitored in living cells, we address these issues. By multidimensional time-lapse fluorescence microscopy, we examine de novo intermediate filament network formation from non-filamentous material at the end of mitosis and show that it mirrors disassembly. It is demonstrated that filament formation is initiated from the cell cortex without focal preference after cytokinesis. Furthermore, it is shown that this process is dependent on energy, on the integrity of the actin filament network and the microtubule system, and that it can be inhibited by the tyrosine phosphatase inhibitor pervanadate. Based on these observations, a two-step working model is proposed involving (1) interactions within the planar cortical layer acting as an organizing center forming a two-dimensional network and (2) subsequent radial dynamics facilitating the formation of a mature three-dimensional network.
Collapse
Affiliation(s)
- R Windoffer
- Department of Anatomy, Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|