1
|
Chang YK, Lin YJ, Cheng CY, Tsai PC, Wang CY, Nielsen BL, Liu HJ. Nucleocytoplasmic shuttling of BEFV M protein-modulated by lamin A/C and chromosome maintenance region 1 through a transcription-, carrier- and energy-dependent pathway. Vet Microbiol 2024; 291:110026. [PMID: 38364467 DOI: 10.1016/j.vetmic.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
This study demonstrates for the first time that the matrix (M) protein of BEFV is a nuclear targeting protein that shuttles between the nucleus and the cytoplasm in a transcription-, carrier-, and energy-dependent manner. Experiments performed in both intact cells and digitonin-permeabilized cells revealed that M protein targets the nucleolus and requires carrier, cytosolic factors or energy input. By employing sequence and mutagenesis analyses, we have determined both nuclear localization signal (NLS) 6KKGKSK11 and nuclear export signal (NES) 98LIITSYL TI106 of M protein that are important for the nucleocytoplasmic shuttling of M protein. Furthermore, we found that both lamin A/C and chromosome maintenance region 1 (CRM-1) proteins could be coimmunoprecipitated and colocalized with the BEFV M protein. Knockdown of lamin A/C by shRNA and inhibition of CRM-1 by leptomycin B significantly reduced virus yield. Collectively, this study provides novel insights into nucleocytoplasmic shuttling of the BEFV M protein modulated by lamin A/C and CRM-1 and by a transcription- and carrier- and energy-dependent pathway.
Collapse
Affiliation(s)
- Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC; Depertment of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yi-Jyum Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Ching-Yuan Cheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Pei-Chien Tsai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chi-Young Wang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan, ROC; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, USA
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, ROC; The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC; Ph.D Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, ROC; Rong Hsing Research Center for Translational Medicine, National Chung Hsing, Taiwan, ROC.
| |
Collapse
|
2
|
Goswami R, Gupta A, Bednova O, Coulombe G, Patel D, Rotello VM, Leyton JV. Nuclear localization signal-tagged systems: relevant nuclear import principles in the context of current therapeutic design. Chem Soc Rev 2024; 53:204-226. [PMID: 38031452 PMCID: PMC10798298 DOI: 10.1039/d1cs00269d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nuclear targeting of therapeutics provides a strategy for enhancing efficacy of molecules active in the nucleus and minimizing off-target effects. 'Active' nuclear-directed transport and efficient translocations across nuclear pore complexes provide the most effective means of maximizing nuclear localization. Nuclear-targeting systems based on nuclear localization signal (NLS) motifs have progressed significantly since the beginning of the current millennium. Here, we offer a roadmap for understanding the basic mechanisms of nuclear import in the context of actionable therapeutic design for developing NLS-therapeutics with improved treatment efficacy.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Olga Bednova
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada
| | - Gaël Coulombe
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dipika Patel
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Jeffrey V Leyton
- École des sciences pharmaceutiques, Université d'Ottawa, Ottawa, Ontario, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Zaheri B, Morse D. An overview of transcription in dinoflagellates. Gene 2022; 829:146505. [PMID: 35447242 DOI: 10.1016/j.gene.2022.146505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022]
Abstract
Dinoflagellates are a vital diverse family of unicellular algae widespread in various aquatic environments. Typically large genomes and permanently condensed chromosomes without histones make these organisms unique among eukaryotes in terms of chromatin structure and gene expression. Genomic and transcriptomic sequencing projects have provided new insight into the genetic foundation of dinoflagellate behaviors. Genes in tandem arrays, trans-splicing of mRNAs and lower levels of transcriptional regulation compared to other eukaryotes all contribute to the differences seen. Here we present a general overview of transcription in dinoflagellates based on previously described work.
Collapse
Affiliation(s)
- Bahareh Zaheri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, 4101 Sherbrooke est, Université de Montréal, Montréal H1X 2B2, Canada.
| |
Collapse
|
4
|
Raices M, D'Angelo MA. Structure, Maintenance, and Regulation of Nuclear Pore Complexes: The Gatekeepers of the Eukaryotic Genome. Cold Spring Harb Perspect Biol 2022; 14:a040691. [PMID: 34312247 PMCID: PMC8789946 DOI: 10.1101/cshperspect.a040691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the genetic material is segregated inside the nucleus. This compartmentalization of the genome requires a transport system that allows cells to move molecules across the nuclear envelope, the membrane-based barrier that surrounds the chromosomes. Nuclear pore complexes (NPCs) are the central component of the nuclear transport machinery. These large protein channels penetrate the nuclear envelope, creating a passage between the nucleus and the cytoplasm through which nucleocytoplasmic molecule exchange occurs. NPCs are one of the largest protein assemblies of eukaryotic cells and, in addition to their critical function in nuclear transport, these structures also play key roles in many cellular processes in a transport-independent manner. Here we will review the current knowledge of the NPC structure, the cellular mechanisms that regulate their formation and maintenance, and we will provide a brief description of a variety of processes that NPCs regulate.
Collapse
Affiliation(s)
- Marcela Raices
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| | - Maximiliano A D'Angelo
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA
| |
Collapse
|
5
|
Schnell SJ, Tingey M, Yang W. Speed Microscopy: High-Speed Single Molecule Tracking and Mapping of Nucleocytoplasmic Transport. Methods Mol Biol 2022; 2502:353-371. [PMID: 35412250 PMCID: PMC10131132 DOI: 10.1007/978-1-0716-2337-4_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclear pore complex (NPC) functions as a gateway through which molecules translocate into and out of the nucleus. Understanding the transport dynamics of these transiting molecules and how they interact with the NPC has great potentials in the discovery of clinical targets. Single-molecule microscopy techniques are powerful tools to provide sub-diffraction limit information about the dynamic and structural details of nucleocytoplasmic transport. Here we detail single-point edge-excitation subdiffraction (SPEED) microscopy, a high-speed superresolution microscopy technique designed to track and map proteins and RNAs as they cross native NPCs.
Collapse
Affiliation(s)
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
de Lange N, Kleijn JM, Leermakers FAM. Structural and mechanical parameters of lipid bilayer membranes using a lattice refined self-consistent field theory. Phys Chem Chem Phys 2021; 23:5152-5175. [PMID: 33624676 DOI: 10.1039/d0cp05597b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The self-consistent field theory of Scheutjens and Fleer is implemented on a grid with (lattice) sites that are smaller than the segment size. In this quasi lattice-free implementation we consider united atom-like molecular models and study bilayer self-assembly of phospholipids in a selective solvent (water). We find structural as well as mechanical parameters for these bilayers. The mean (κ) and Gaussian ([small kappa, Greek, macron]) bending moduli, as well as the spontaneous curvature of the monolayer (Jm0), are computed for the first time following a grand canonical ensemble route. Results are in line with previous estimates for mechanical parameters that at the time could not be made following this correct route. This proves that the mean bending modulus is only a very weak function of the membrane tension. We performed a systematic study on the effects of model parameter variations. The mean bending modulus generally grows with increasing bilayer thickness. As expected Jm0 and [small kappa, Greek, macron] behave oppositely with respect to each other and for classical phospholipids assumes values near zero. As an example, an increase in the lipophilic to hydrophilic ratio in the lipids, may cause the Gaussian bending rigidity to switch sign from negative to positive, while - not necessarily at the same point - the spontaneous curvature of the monolayer may switch sign from positive to negative. Together with other investigated trends, these results point to mechanisms of how topological phase transitions of the lipid bilayer membranes may be regulated in the biological context, which correlates with known lipid phase behaviour.
Collapse
Affiliation(s)
- N de Lange
- Physical Chemistry and Soft Matter, Wageningen University & Research Center, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - J M Kleijn
- Physical Chemistry and Soft Matter, Wageningen University & Research Center, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - F A M Leermakers
- Physical Chemistry and Soft Matter, Wageningen University & Research Center, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
7
|
Arthritogenic Alphavirus Capsid Protein. Life (Basel) 2021; 11:life11030230. [PMID: 33799673 PMCID: PMC7999773 DOI: 10.3390/life11030230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/03/2023] Open
Abstract
In the past two decades Old World and arthritogenic alphavirus have been responsible for epidemics of polyarthritis, causing high morbidity and becoming a major public health concern. The multifunctional arthritogenic alphavirus capsid protein is crucial for viral infection. Capsid protein has roles in genome encapsulation, budding and virion assembly. Its role in multiple infection processes makes capsid protein an attractive target to exploit in combating alphaviral infection. In this review, we summarize the function of arthritogenic alphavirus capsid protein, and describe studies that have used capsid protein to develop novel arthritogenic alphavirus therapeutic and diagnostic strategies.
Collapse
|
8
|
Nuclear Import of Adeno-Associated Viruses Imaged by High-Speed Single-Molecule Microscopy. Viruses 2021; 13:v13020167. [PMID: 33499411 PMCID: PMC7911914 DOI: 10.3390/v13020167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Understanding the detailed nuclear import kinetics of adeno-associated virus (AAV) through the nuclear pore complex (NPC) is essential for the application of AAV capsids as a nuclear delivery instrument as well as a target for drug development. However, a comprehensive understanding of AAV transport through the sub-micrometer NPCs in live cells calls for new techniques that can conquer the limitations of conventional fluorescence microscopy and electron microscopy. With recent technical advances in single-molecule fluorescence microscopy, we are now able to image the entire nuclear import process of AAV particles and also quantify the transport dynamics of viral particles through the NPCs in live human cells. In this review, we initially evaluate the necessity of single-molecule live-cell microscopy in the study of nuclear import for AAV particles. Then, we detail the application of high-speed single-point edge-excitation sub-diffraction (SPEED) microscopy in tracking the entire process of nuclear import for AAV particles. Finally, we summarize the major findings for AAV nuclear import by using SPEED microscopy.
Collapse
|
9
|
Heterogeneous Nuclear Ribonucleoprotein A1 and Lamin A/C Modulate Nucleocytoplasmic Shuttling of Avian Reovirus p17. J Virol 2019; 93:JVI.00851-19. [PMID: 31375578 DOI: 10.1128/jvi.00851-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/17/2019] [Indexed: 01/15/2023] Open
Abstract
Avian reovirus (ARV) p17 protein continuously shuttles between the nucleus and the cytoplasm via transcription-dependent and chromosome region maintenance 1 (CRM1)-independent mechanisms. Nevertheless, whether cellular proteins modulate nucleocytoplasmic shuttling of p17 remains unknown. This is the first report that heterogeneous nuclear ribonucleoprotein (hnRNP) A1 serves as a carrier protein to modulate nucleocytoplasmic shuttling of p17. Both in vitro and in vivo studies indicated that direct interaction of p17 with hnRNP A1 maps within the amino terminus (amino acids [aa] 19 to 40) of p17 and the Gly-rich region of the C terminus of hnRNP A1. Furthermore, our results reveal that the formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Utilizing sequence and mutagenesis analyses, we have identified nuclear export signal (NES) 19LSLRELAI26 of p17. Mutations of these residues causes a nuclear retention of p17. In this work, we uncovered that the N-terminal 21 amino acids (aa 19 to 40) of p17 that comprise the NES can modulate both p17 and hnRNP A1 interaction and nucleocytoplasmic shuttling of p17. In this work, the interaction site of p17 with lamin A/C was mapped within the amino terminus (aa 41 to 60) of p17 and p17 colocalized with lamin A/C at the nuclear envelope. Knockdown of hnRNP A1 or lamin A/C led to inhibition of nucleocytoplasmic shuttling of p17 and reduced virus yield. Collectively, the results of this study provide mechanistic insights into hnRNP A1 and lamin A/C-modulated nucleocytoplasmic shuttling of the ARV p17 protein.IMPORTANCE Avian reoviruses (ARVs) cause considerable economic losses in the poultry industry. The ARV p17 protein continuously shuttles between the nucleus and the cytoplasm to regulate several cellular signaling pathways and interacts with several cellular proteins to cause translation shutoff, cell cycle arrest, and autophagosome formation, all of which enhance virus replication. To date the mechanisms underlying nucleocytoplasmic shuttling of p17 remain largely unknown. Here we report that hnRNP A1 and lamin A/C serve as carrier and mediator proteins to modulate nucleocytoplasmic shuttling of p17. The formation of p17-hnRNP A1-transportin 1 carrier-cargo complex is required to modulate p17 nuclear import. Furthermore, we have identified an NES-containing nucleocytoplasmic shuttling domain (aa 19 to 40) of p17 that is critical for binding to hnRNP A1 and for nucleocytoplasmic shuttling of p17. This study provides novel insights into how hnRNP A1 and lamin A/C modulate nucleocytoplasmic shuttling of the ARV p17 protein.
Collapse
|
10
|
Ge W, Yue Y, Xiong S. POM121 inhibits the macrophage inflammatory response by impacting NF-κB P65 nuclear accumulation. Exp Cell Res 2019; 377:17-23. [DOI: 10.1016/j.yexcr.2019.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/01/2019] [Accepted: 02/21/2019] [Indexed: 02/08/2023]
|
11
|
Abstract
The nuclear pore complex (NPC) serves as the sole bidirectional gateway of macromolecules in and out of the nucleus. Owing to its size and complexity (∼1,000 protein subunits, ∼110 MDa in humans), the NPC has remained one of the foremost challenges for structure determination. Structural studies have now provided atomic-resolution crystal structures of most nucleoporins. The acquisition of these structures, combined with biochemical reconstitution experiments, cross-linking mass spectrometry, and cryo-electron tomography, has facilitated the determination of the near-atomic overall architecture of the symmetric core of the human, fungal, and algal NPCs. Here, we discuss the insights gained from these new advances and outstanding issues regarding NPC structure and function. The powerful combination of bottom-up and top-down approaches toward determining the structure of the NPC offers a paradigm for uncovering the architectures of other complex biological machines to near-atomic resolution.
Collapse
Affiliation(s)
- Daniel H Lin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - André Hoelz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
12
|
Li Y, Junod SL, Ruba A, Kelich JM, Yang W. Nuclear export of mRNA molecules studied by SPEED microscopy. Methods 2019; 153:46-62. [PMID: 30125665 PMCID: PMC7138453 DOI: 10.1016/j.ymeth.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/19/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
The nuclear exit of messenger RNA (mRNA) molecules through the nuclear pore complex (NPC) is an essential step in the translation process of all proteins. The current limitations of conventional fluorescence and electron microscopy have prevented elucidation of how mRNA exports through the NPCs of live cells. In the recent years, various single-molecule fluorescence (SMF) microscopy techniques have been developed to improve the temporal and spatial resolutions of live-cell imaging allowing a more comprehensive understanding of the dynamics of mRNA export through native NPCs. In this review, we firstly evaluate the necessity of single-molecule live-cell microscopy in the study of mRNA nuclear export. Then, we highlight the application of single-point edge-excitation sub-diffraction (SPEED) microscopy that combines high-speed SMF microscopy and a 2D-to-3D transformation algorithm in the studies of nuclear transport kinetics and route for mRNAs. Finally, we summarize the new features of mRNA nuclear export found with SPEED microscopy as well as the reliability and accuracy of SPEED microscopy in mapping the 3D spatial locations of transport routes adopted by proteins and mRNAs through the NPCs.
Collapse
Affiliation(s)
- Yichen Li
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Samuel L Junod
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Andrew Ruba
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Joseph M Kelich
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Karyopherin Alpha 6 Is Required for Replication of Porcine Reproductive and Respiratory Syndrome Virus and Zika Virus. J Virol 2018; 92:JVI.00072-18. [PMID: 29444946 DOI: 10.1128/jvi.00072-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/09/2018] [Indexed: 12/16/2022] Open
Abstract
Movement of macromolecules between the cytoplasm and the nucleus occurs through the nuclear pore complex (NPC). Karyopherins comprise a family of soluble transport factors facilitating the nucleocytoplasmic translocation of proteins through the NPC. In this study, we found that karyopherin α6 (KPNA6; also known as importin α7) was required for the optimal replication of porcine reproductive and respiratory syndrome virus (PRRSV) and Zika virus (ZIKV), which are positive-sense, single-stranded RNA viruses replicating in the cytoplasm. The KPNA6 protein level in virus-infected cells was much higher than that in mock-infected controls, whereas the KPNA6 transcript remains stable. Viral infection blocked the ubiquitin-proteasomal degradation of KPNA6, which led to an extension of the KPNA6 half-life and the elevation of the KPNA6 level in comparison to mock-infected cells. PRRSV nsp12 protein induced KPNA6 stabilization. KPNA6 silencing was detrimental to the replication of PRRSV, and KPNA6 knockout impaired ZIKV replication. Moreover, KPNA6 knockout blocked the nuclear translocation of PRRSV nsp1β but had a minimal effect on two other PRRSV proteins with nuclear localization. Exogenous restitution of KPNA6 expression in the KPNA6-knockout cells results in restoration of the nuclear translocation of PRRSV nsp1β and the replication of ZIKV. These results indicate that KPNA6 is an important cellular factor for the replication of PRRSV and ZIKV.IMPORTANCE Positive-sense, single-stranded RNA (+ssRNA) viruses replicate in the cytoplasm of infected cells. The roles of transport factors in the nucleocytoplasmic trafficking system for the replication of +ssRNA viruses are not known. In this study, we discovered that PRRSV and ZIKV viruses needed karyopherin α6 (KPNA6), one of the transport factors, to enhance the virus replication. Our data showed that viral infection induced an elevation of the KPNA6 protein level due to an extension of the KPNA6 half-life via viral interference of the ubiquitin-proteasomal degradation of KPNA6. Notably, KPNA6 silencing or knockout dramatically reduced the replication of PRRSV and ZIKV. PRRSV nsp1β depended on KPNA6 to translocate into the nucleus. In addition, exogenous restitution of KPNA6 expression in KPNA6-knockout cells led to the restoration of nsp1β nuclear translocation and ZIKV replication. These results reveal a new aspect in the virus-cell interaction and may facilitate the development of novel antiviral therapeutics.
Collapse
|
14
|
Han KY, Kim KT, Joung JG, Son DS, Kim YJ, Jo A, Jeon HJ, Moon HS, Yoo CE, Chung W, Eum HH, Kim S, Kim HK, Lee JE, Ahn MJ, Lee HO, Park D, Park WY. SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells. Genome Res 2017; 28:75-87. [PMID: 29208629 PMCID: PMC5749184 DOI: 10.1101/gr.223263.117] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Simultaneous sequencing of the genome and transcriptome at the single-cell level is a powerful tool for characterizing genomic and transcriptomic variation and revealing correlative relationships. However, it remains technically challenging to analyze both the genome and transcriptome in the same cell. Here, we report a novel method for simultaneous isolation of genomic DNA and total RNA (SIDR) from single cells, achieving high recovery rates with minimal cross-contamination, as is crucial for accurate description and integration of the single-cell genome and transcriptome. For reliable and efficient separation of genomic DNA and total RNA from single cells, the method uses hypotonic lysis to preserve nuclear lamina integrity and subsequently captures the cell lysate using antibody-conjugated magnetic microbeads. Evaluating the performance of this method using real-time PCR demonstrated that it efficiently recovered genomic DNA and total RNA. Thorough data quality assessments showed that DNA and RNA simultaneously fractionated by the SIDR method were suitable for genome and transcriptome sequencing analysis at the single-cell level. The integration of single-cell genome and transcriptome sequencing by SIDR (SIDR-seq) showed that genetic alterations, such as copy-number and single-nucleotide variations, were more accurately captured by single-cell SIDR-seq compared with conventional single-cell RNA-seq, although copy-number variations positively correlated with the corresponding gene expression levels. These results suggest that SIDR-seq is potentially a powerful tool to reveal genetic heterogeneity and phenotypic information inferred from gene expression patterns at the single-cell level.
Collapse
Affiliation(s)
- Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Kyu-Tae Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Dae-Soon Son
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Areum Jo
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Hyo-Jeong Jeon
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Hui-Sung Moon
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Chang Eun Yoo
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Woosung Chung
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea
| | - Hye Hyeon Eum
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, South Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Seoul 06351, South Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Seoul 06351, South Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea.,Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Donghyun Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| |
Collapse
|
15
|
Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery. Bioorg Med Chem Lett 2017; 27:4781-4785. [PMID: 29017784 DOI: 10.1016/j.bmcl.2017.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/28/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023]
Abstract
The major barriers for intracellular DNA transportation by cationic polymers are their toxicity, poor endosomal escape and inefficient nuclear uptake. Therefore, we designed novel modular peptide-based carriers modified with SV40 nuclear localization signal (NLS). Core peptide consists of arginine, histidine and cysteine residues for DNA condensation, endosomal escape promotion and interpeptide cross-linking, respectively. We investigated three polyplexes with different NLS content (10 mol%, 50 mol% and 90 mol% of SV40 NLS) as vectors for intranuclear DNA delivery. All carriers tested were able to condense DNA, to protect it from DNAase I and were not toxic to the cells. We observed that cell cycle arrest by hydroxyurea did not affect transfection efficacy of NLS-modified carriers which we confirmed using quantitative confocal microscopy analysis. Overall, peptide carrier modified with 90 mol% of SV40 NLS provided efficient transfection and nuclear uptake in non-dividing cells. Thus, incorporation of NLS into arginine-rich cross-linking peptides is an adequate approach to the development of efficient intranuclear gene delivery vehicles.
Collapse
|
16
|
Courjol F, Mouveaux T, Lesage K, Saliou JM, Werkmeister E, Bonabaud M, Rohmer M, Slomianny C, Lafont F, Gissot M. Characterization of a nuclear pore protein sheds light on the roles and composition of the Toxoplasma gondii nuclear pore complex. Cell Mol Life Sci 2017; 74:2107-2125. [PMID: 28138739 PMCID: PMC11107709 DOI: 10.1007/s00018-017-2459-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023]
Abstract
The nuclear pore is a key structure in eukaryotes regulating nuclear-cytoplasmic transport as well as a wide range of cellular processes. Here, we report the characterization of the first Toxoplasma gondii nuclear pore protein, named TgNup302, which appears to be the orthologue of the mammalian Nup98-96 protein. We produced a conditional knock-down mutant that expresses TgNup302 under the control of an inducible tetracycline-regulated promoter. Under ATc treatment, a substantial decrease of TgNup302 protein in inducible knock-down (iKD) parasites was observed, causing a delay in parasite proliferation. Moreover, the nuclear protein TgENO2 was trapped in the cytoplasm of ATc-treated mutants, suggesting that TgNup302 is involved in nuclear transport. Fluorescence in situ hybridization revealed that TgNup302 is essential for 18S RNA export from the nucleus to the cytoplasm, while global mRNA export remains unchanged. Using an affinity tag purification combined with mass spectrometry, we identified additional components of the nuclear pore complex, including proteins potentially interacting with chromatin. Furthermore, reverse immunoprecipitation confirmed their interaction with TgNup302, and structured illuminated microscopy confirmed the NPC localization of some of the TgNup302-interacting proteins. Intriguingly, facilitates chromatin transcription complex (FACT) components were identified, suggesting the existence of an NPC-chromatin interaction in T. gondii. Identification of TgNup302-interacting proteins also provides the first glimpse at the NPC structure in Apicomplexa, suggesting a structural conservation of the NPC components between distant eukaryotes.
Collapse
Affiliation(s)
- Flavie Courjol
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Thomas Mouveaux
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Kevin Lesage
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Jean-Michel Saliou
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Elisabeth Werkmeister
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Maurine Bonabaud
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094, Montpellier Cedex 5, France
| | - Marine Rohmer
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, 141 rue de la cardonille, 34094, Montpellier Cedex 5, France
| | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université Lille Nord de France, Villeneuve d'Ascq, France
| | - Franck Lafont
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, 59000, Lille, France
| | - Mathieu Gissot
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, CIIL-Centre d'Infection et d'Immunité de Lille, 59000, Lille, France.
| |
Collapse
|
17
|
Ma J, Kelich JM, Junod SL, Yang W. Super-resolution mapping of scaffold nucleoporins in the nuclear pore complex. J Cell Sci 2017; 130:1299-1306. [PMID: 28202688 DOI: 10.1242/jcs.193912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 02/09/2017] [Indexed: 01/22/2023] Open
Abstract
The nuclear pore complex (NPC), composed of ∼30 different nucleoporins (Nups), is one of the largest supramolecular structures in eukaryotic cells. Its octagonal ring scaffold perforates the nuclear envelope and features a unique molecular machinery that regulates nucleocytoplasmic transport. However, the precise copy number and the spatial location of each Nup in the native NPC remain obscure due to the inherent difficulty of counting and localizing proteins inside of the sub-micrometer supramolecular complex. Here, we combined super-resolution single-point edge-excitation subdiffraction (SPEED) microscopy and nanobody-specific labeling to reveal the spatial distribution of scaffold Nups within three separate layers in the native NPC with a precision of ∼3 nm. Our data reveal both the radial and axial spatial distributions for Pom121, Nup37 and Nup35 and provide evidence for their copy numbers of 8, 32 and 16, respectively, per NPC. This approach can help pave the path for mapping the entirety of Nups in native NPCs and also other structural components of macromolecular complexes.
Collapse
Affiliation(s)
- Jiong Ma
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA.,Department of Optical Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, PR China
| | - Joseph M Kelich
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Samuel L Junod
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Weidong Yang
- Department of Biology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| |
Collapse
|
18
|
He Q, Zhang Y, Zhang X, Xu D, Dong W, Li S, Wu R. Nucleoporin Nup358 facilitates nuclear import of Methoprene-tolerant (Met) in an importin β- and Hsp83-dependent manner. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:10-18. [PMID: 27979731 DOI: 10.1016/j.ibmb.2016.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/11/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
The bHLH-PAS transcription factor, Methoprene-tolerant (Met)1, functions as a juvenile hormone (JH) receptor and transduces JH signals by directly binding to E-box like motifs in the regulatory regions of JH response genes. Nuclear localization of Met is crucial for its transcriptional activity. Our previous studies have shown that the chaperone protein Hsp83 facilitates JH-induced Met nuclear import in Drosophila melanogaster. However, the exact molecular mechanisms of Met nuclear transport are not fully elucidated. Using DNA affinity chromatography, we have previously detected binding of the nucleoporin Nup358, in the presence of JH, to the JH response region (JHRR) sequences isolated from the Krüppel-homolog 1 (Kr-h1) promoter. Here, we have demonstrated that Nup358 regulates JH-Hsp83-induced Met nuclear localization. RNAi-mediated knockdown of Nup358 expression in Drosophila fat body perturbs Met nuclear transport during the 3 h after initiation of wandering, when the JH titer is high. The accompanying reduced expression of the transport receptor importin β in Nup358 RNAi flies could be one of the reasons accounting for Met mislocalization. Furthermore, a tetratricopeptide repeat (TPR) domain at the N-terminal end of Nup358 interacts with Hsp83 and is indispensable for Met nuclear localization. Overexpression of the TPR domain in Drosophila fat body prevents Met nuclear localization resulting in a decrease in JHRR-driven reporter activity and Kr-h1 expression. These data show that Nup358 facilitates JH-induced Met nuclear transport in a manner dependent on importin β and Hsp83.
Collapse
Affiliation(s)
- Qianyu He
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuanxi Zhang
- Environmental Monitoring Center Station, DaQing Environmental Protection Agency, Daqing 163316, China
| | - Xu Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - DanDan Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Wentao Dong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Sheng Li
- The Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Sciences and School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| |
Collapse
|
19
|
Condello M, De Berardis B, Ammendolia MG, Barone F, Condello G, Degan P, Meschini S. ZnO nanoparticle tracking from uptake to genotoxic damage in human colon carcinoma cells. Toxicol In Vitro 2016; 35:169-79. [DOI: 10.1016/j.tiv.2016.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
|
20
|
Lolodi O, Yamazaki H, Otsuka S, Kumeta M, Yoshimura SH. Dissecting in vivo steady-state dynamics of karyopherin-dependent nuclear transport. Mol Biol Cell 2015; 27:167-76. [PMID: 26538027 PMCID: PMC4694755 DOI: 10.1091/mbc.e15-08-0601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 11/11/2022] Open
Abstract
The steady-state dynamics of karyopherin-dependent nuclear transport in a living cell is examined. The kinetic model established by a number of experimentally obtained parameters reveals how each step of the transport system contributes to maintaining steady-state cargo gradient and fluxes across the nuclear envelope. Karyopherin-dependent molecular transport through the nuclear pore complex is maintained by constant recycling pathways of karyopherins coupled with the Ran-dependent cargo catch-and-release mechanism. Although many studies have revealed the bidirectional dynamics of karyopherins, the entire kinetics of the steady-state dynamics of karyopherin and cargo is still not fully understood. In this study, we used fluorescence recovery after photobleaching and fluorescence loss in photobleaching on live cells to provide convincing in vivo proof that karyopherin-mediated nucleocytoplasmic transport of cargoes is bidirectional. Continuous photobleaching of the cytoplasm of live cells expressing NLS cargoes led to progressive decrease of nuclear fluorescence signals. In addition, experimentally obtained kinetic parameters of karyopherin complexes were used to establish a kinetic model to explain the entire cargo import and export transport cycles facilitated by importin β. The results strongly indicate that constant shuttling of karyopherins, either free or bound to cargo, ensures proper balancing of nucleocytoplasmic distribution of cargoes and establishes effective regulation of cargo dynamics by RanGTP.
Collapse
Affiliation(s)
| | - Hiroya Yamazaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Shotaro Otsuka
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Shige H Yoshimura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Hough LE, Dutta K, Sparks S, Temel DB, Kamal A, Tetenbaum-Novatt J, Rout MP, Cowburn D. The molecular mechanism of nuclear transport revealed by atomic-scale measurements. eLife 2015; 4. [PMID: 26371551 PMCID: PMC4621360 DOI: 10.7554/elife.10027] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/07/2015] [Indexed: 12/29/2022] Open
Abstract
Nuclear pore complexes (NPCs) form a selective filter that allows the rapid passage of transport factors (TFs) and their cargoes across the nuclear envelope, while blocking the passage of other macromolecules. Intrinsically disordered proteins (IDPs) containing phenylalanyl-glycyl (FG)-rich repeats line the pore and interact with TFs. However, the reason that transport can be both fast and specific remains undetermined, through lack of atomic-scale information on the behavior of FGs and their interaction with TFs. We used nuclear magnetic resonance spectroscopy to address these issues. We show that FG repeats are highly dynamic IDPs, stabilized by the cellular environment. Fast transport of TFs is supported because the rapid motion of FG motifs allows them to exchange on and off TFs extremely quickly through transient interactions. Because TFs uniquely carry multiple pockets for FG repeats, only they can form the many frequent interactions needed for specific passage between FG repeats to cross the NPC. DOI:http://dx.doi.org/10.7554/eLife.10027.001 Eukaryotic cells have a nucleus that contains most of the organism's genetic material. Two layers of membrane form an envelope around the nucleus and protect its contents from the rest of the cell's interior. However, this protective barrier must also allow certain proteins and nucleic acids(collectively called ‘cargo’) to move in and out of the nucleus. Cargo molecules can pass through channel-like structures called nuclear pore complexes, which are embedded in the nuclear envelope. However, transport across this barrier is highly selective. While small molecules can pass freely through nuclear pore complexes, larger cargo can only be transported when they are bound to so-called transport factors. The nuclear pore complex is a large structure made up of more than 30 different proteins called nucleoporins. Like all proteins, nucleoporins are built from amino acids. Many nucleoporins contain repeating units of two amino acids, namely phenylalanine (which is often referred to as ‘F’) and glycine (or ‘G’). These ‘FG nucleoporins’ are found on the inside of the nuclear pore complex and interact with transport factors to allow them to transit across the nuclear envelope. Several models have been put forward to explain how FG nucleoporins block the passage of most molecules. But it was unclear from these models how these nucleoporins could do this while simultaneously allowing the selective and fast transport of nuclear transport receptors. There was also a major lack of experimental data that probed the behavior of FG nucleoporins in detail. Hough, Dutta et al. have now used a technique called nuclear magnetic resonance spectroscopy (or NMR for short) to address this issue. NMR can be used to analyze the structure of proteins and how they interact with other molecules. This analysis revealed that FG nucleoporins never adopt an ordered three-dimensional shape, even briefly; instead they remain unfolded or disordered, moving constantly. Nevertheless, and unlike many other unfolded proteins, FG nucleoporins do not aggregate into clumps. This is because they are constantly changing and continuously interacting with other molecules present inside the cell, which prevents them from aggregating. Hough, Dutta et al. also observed that the repeating units in the FG nucleoporins engaged briefly with a large number of sites or pockets present on the transport factors. These FG repeats can bind and then release the transport factors at unusually high speeds, which enables the transport factors to move quickly through the nuclear pore complex. This transit is specific because only transport factors have a high capacity for interacting with the FG repeats. These findings provide an explanation for how the nuclear pore complex achieves fast and selective transport. Further work is needed to see whether certain FG nucleoporins specifically interact with a particular type of transport factor, to provide preferred transport routes through the nuclear pore complex. DOI:http://dx.doi.org/10.7554/eLife.10027.002
Collapse
Affiliation(s)
| | - Kaushik Dutta
- New York Structural Biology Center, New York, United States
| | - Samuel Sparks
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Deniz B Temel
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| | - Alia Kamal
- The Rockefeller University, New York, United States
| | | | | | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
22
|
Delaleau M, Borden KLB. Multiple Export Mechanisms for mRNAs. Cells 2015; 4:452-73. [PMID: 26343730 PMCID: PMC4588045 DOI: 10.3390/cells4030452] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022] Open
Abstract
Nuclear mRNA export plays an important role in gene expression. We describe the mechanisms of mRNA export including the importance of mRNP assembly, docking with the nuclear basket of the nuclear pore complex (NPC), transit through the central channel of the NPC and cytoplasmic release. We describe multiple mechanisms of mRNA export including NXF1 and CRM1 mediated pathways. Selective groups of mRNAs can be preferentially transported in order to respond to cellular stimuli. RNAs can be selected based on the presence of specific cis-acting RNA elements and binding of specific adaptor proteins. The role that dysregulation of this process plays in human disease is also discussed.
Collapse
Affiliation(s)
- Mildred Delaleau
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| | - Katherine L B Borden
- Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
23
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
24
|
Kim NH, Pham NB, Quinn RJ, Shim JS, Cho H, Cho SM, Park SW, Kim JH, Seok SH, Oh JW, Kwon HJ. The Small Molecule R-(-)-β-O-Methylsynephrine Binds to Nucleoporin 153 kDa and Inhibits Angiogenesis. Int J Biol Sci 2015. [PMID: 26221075 PMCID: PMC4515819 DOI: 10.7150/ijbs.10603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
R-(-)-β-O-methylsynephrine (OMe-Syn) is a naturally occurring small molecule that was identified in a previous screen as an inhibitor of angiogenesis. In this study, we conducted two animal model experiments to investigate the in vivo antiangiogenic activity of OMe-Syn. OMe-Syn significantly inhibited angiogenesis in a transgenic zebrafish model as well as in a mouse retinopathy model. To elucidate the underlying mechanisms responsible for the antiangiogenic activity of OMe-Syn, we used phage display cloning to isolate potential OMe-Syn binding proteins from human cDNA libraries and identified nucleoporin 153 kDa (NUP153) as a primary binding partner of OMe-Syn. OMe-Syn competitively inhibited mRNA binding to the RNA-binding domain of NUP153. Furthermore, depletion of NUP153 in human cells or zebrafish embryos led to an inhibition of angiogenesis, in a manner similar to that seen in response to OMe-Syn treatment. These data suggest that OMe-Syn is a promising candidate for the development of a novel antiangiogenic agent and that inhibition of NUP153 is possibly responsible for the antiangiogenic activity of OMe-Syn.
Collapse
Affiliation(s)
- Nam Hee Kim
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Ngoc Bich Pham
- 2. Eskitis Institute, Griffith University, Brisbane QLD 4111, Australia
| | - Ronald J Quinn
- 2. Eskitis Institute, Griffith University, Brisbane QLD 4111, Australia
| | - Joong Sup Shim
- 3. Faculty of Health Sciences, University of Macau, Av. Universidade, Taipa, Macau SAR, China
| | - Hee Cho
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sung Min Cho
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sung Wook Park
- 4. Department of Ophthalmology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jeong Hun Kim
- 4. Department of Ophthalmology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Seung Hyeok Seok
- 5. Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jong-Won Oh
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Ho Jeong Kwon
- 1. Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea ; 6. Department of Internal Medicine, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| |
Collapse
|
25
|
Morelle C, Sterkers Y, Crobu L, MBang-Benet DE, Kuk N, Portalès P, Bastien P, Pagès M, Lachaud L. The nucleoporin Mlp2 is involved in chromosomal distribution during mitosis in trypanosomatids. Nucleic Acids Res 2015; 43:4013-27. [PMID: 25690889 PMCID: PMC4417144 DOI: 10.1093/nar/gkv056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/31/2022] Open
Abstract
Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the 'divergent' eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids.
Collapse
Affiliation(s)
- Christelle Morelle
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France Department of Parasitology-Mycology, University Hospital Centre (CHU), Montpellier F34090, France
| | - Yvon Sterkers
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France Department of Parasitology-Mycology, University Hospital Centre (CHU), Montpellier F34090, France
| | - Lucien Crobu
- CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France
| | - Diane-Ethna MBang-Benet
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France
| | - Nada Kuk
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France
| | - Pierre Portalès
- Department of Immunology, University Hospital Centre (CHU), Montpellier F34090, France
| | - Patrick Bastien
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France Department of Parasitology-Mycology, University Hospital Centre (CHU), Montpellier F34090, France
| | - Michel Pagès
- CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France
| | - Laurence Lachaud
- Laboratory of Parasitology-Mycology, Faculty of Medicine, University Montpellier 1, Montpellier F34090, France CNRS 5290-IRD 224-University Montpellier 1&2 (UMR 'MiVEGEC'), Montpellier F34090, France
| |
Collapse
|
26
|
Hasanzadeh Kafshgari M, Alnakhli M, Delalat B, Apostolou S, Harding FJ, Mäkilä E, Salonen JJ, Kuss BJ, Voelcker NH. Small interfering RNA delivery by polyethylenimine-functionalised porous silicon nanoparticles. Biomater Sci 2015; 3:1555-65. [DOI: 10.1039/c5bm00204d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyethyleneimine-coated mesoporous silicon nanoparticles efficiently deliver siRNA in glioblastoma cells, subsequently reducing the protein expression of a chemotherapy resistance gene by 70% within 72 hours.
Collapse
Affiliation(s)
- M. Hasanzadeh Kafshgari
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide SA 5001
- Australia
| | - M. Alnakhli
- School of Medicine
- Flinders University
- Adelaide
- Australia
| | - B. Delalat
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide SA 5001
- Australia
| | - S. Apostolou
- School of Medicine
- Flinders University
- Adelaide
- Australia
| | - F. J. Harding
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide SA 5001
- Australia
| | - E. Mäkilä
- Department of Physics and Astronomy
- University of Turku
- FI-20014 Turku
- Finland
| | - J. J. Salonen
- Department of Physics and Astronomy
- University of Turku
- FI-20014 Turku
- Finland
| | - B. J. Kuss
- School of Medicine
- Flinders University
- Adelaide
- Australia
| | - N. H. Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
- Mawson Institute
- University of South Australia
- Adelaide SA 5001
- Australia
| |
Collapse
|
27
|
Schnell SJ, Ma J, Yang W. Three-Dimensional Mapping of mRNA Export through the Nuclear Pore Complex. Genes (Basel) 2014; 5:1032-49. [PMID: 25393401 PMCID: PMC4276925 DOI: 10.3390/genes5041032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 11/30/2022] Open
Abstract
The locations of transcription and translation of mRNA in eukaryotic cells are spatially separated by the nuclear envelope (NE). Plenty of nuclear pore complexes (NPCs) embedded in the NE function as the major gateway for the export of transcribed mRNAs from the nucleus to the cytoplasm. Whereas the NPC, perhaps one of the largest protein complexes, provides a relatively large channel for macromolecules to selectively pass through it in inherently three-dimensional (3D) movements, this channel is nonetheless below the diffraction limit of conventional light microscopy. A full understanding of the mRNA export mechanism urgently requires real-time mapping of the 3D dynamics of mRNA in the NPC of live cells with innovative imaging techniques breaking the diffraction limit of conventional light microscopy. Recently, super-resolution fluorescence microscopy and single-particle tracking (SPT) techniques have been applied to the study of nuclear export of mRNA in live cells. In this review, we emphasize the necessity of 3D mapping techniques in the study of mRNA export, briefly summarize the feasibility of current 3D imaging approaches, and highlight the new features of mRNA nuclear export elucidated with a newly developed 3D imaging approach combining SPT-based super-resolution imaging and 2D-to-3D deconvolution algorithms.
Collapse
Affiliation(s)
- Steven J Schnell
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Jiong Ma
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
28
|
Functional and molecular features of the calmodulin-interacting protein IQCG required for haematopoiesis in zebrafish. Nat Commun 2014; 5:3811. [PMID: 24787902 DOI: 10.1038/ncomms4811] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/04/2014] [Indexed: 12/19/2022] Open
Abstract
We previously reported a fusion protein NUP98-IQCG in an acute leukaemia, which functions as an aberrant regulator of transcriptional expression, yet the structure and function of IQCG have not been characterized. Here we use zebrafish to investigate the role of iqcg in haematopoietic development, and find that the numbers of haematopoietic stem cells and multilineage-differentiated cells are reduced in iqcg-deficient embryos. Mechanistically, IQCG binds to calmodulin (CaM) and acts as a molecule upstream of CaM-dependent kinase IV (CaMKIV). Crystal structures of complexes between CaM and IQ domain of IQCG reveal dual CaM-binding footprints in this motif, and provide a structural basis for a higher CaM-IQCG affinity when deprived of calcium. The results collectively allow us to understand IQCG-mediated calcium signalling in haematopoiesis, and propose a model in which IQCG stores CaM at low cytoplasmic calcium concentrations, and releases CaM to activate CaMKIV when calcium level rises.
Collapse
|
29
|
Funasaka T, Raz A, Nangia-Makker P. Nuclear transport of galectin-3 and its therapeutic implications. Semin Cancer Biol 2014; 27:30-8. [PMID: 24657939 DOI: 10.1016/j.semcancer.2014.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/12/2023]
Abstract
Galectin-3, a member of β-galactoside-binding gene family is a multi-functional protein, which regulates pleiotropic biological functions such as cell growth, cell adhesion, cell-cell interactions, apoptosis, angiogenesis and mRNA processing. Its unique structure enables it to interact with a plethora of ligands in a carbohydrate dependent or independent manner. Galectin-3 is mainly a cytosolic protein, but can easily traverse the intracellular and plasma membranes to translocate into the nucleus, mitochondria or get externalized. Depending on the cell type, specific experimental conditions in vitro, cancer type and stage, galectin-3 has been reported to be exclusively cytoplasmic, predominantly nuclear or distributed between the two compartments. In this review we have summarized the dynamics of galectin-3 shuttling between the nucleus and the cytoplasm, the nuclear transport mechanisms of galectin-3, how its specific interactions with the members of β-catenin signaling pathways affect tumor progression, and its implications as a therapeutic target.
Collapse
Affiliation(s)
| | - Avraham Raz
- Department of Oncology, School of Medicine, Wayne State University, United States
| | - Pratima Nangia-Makker
- Department of Internal Medicine, School of Medicine, Wayne State University, United States; John D. Dingell V.A. Medical Center, Detroit, MI 48201, United States.
| |
Collapse
|
30
|
Kunda A, Krishnan NH, Krishnan VV. Mapping the amino acid properties of constituent nucleoporins onto the yeast nuclear pore complex. Bioinformation 2014; 10:94-7. [PMID: 24616561 PMCID: PMC3937582 DOI: 10.6026/97320630010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/04/2014] [Accepted: 01/06/2014] [Indexed: 11/28/2022] Open
Abstract
Visualization of molecular structures aids in the understanding of structural and functional roles of biological macromolecules. Macromolecular transport between the cell nucleus and cytoplasm is facilitated by the nuclear pore complex (NPC). The ring structure of the NPC is large and contains several distinct proteins (nucleoporins) which function as a selective gate for the passage of certain molecules into and out of the nucleus. In this note we demonstrate the utility of a python code that allows direct mapping of the physiochemical properties of the constituent nucleoporins on the scaffold of the yeast NPC׳s cytoplasmic view. We expect this tool to be useful for researchers to visualize the NPC based on their physiochemical properties and how it alters when specific mutations are introduced in one or more of the nucleoporins. The code developed using Python is available freely from the authors.
Collapse
Affiliation(s)
- Ashok Kunda
- Davis Senior High School, 315 West 14th Street, Davis, CA 95616
- Contributed equally
| | - Narayanan H Krishnan
- Davis Senior High School, 315 West 14th Street, Davis, CA 95616
- Contributed equally
| | - VV Krishnan
- Department of Chemistry, California State University, Fresno CA 93740 and
- Department of Medical Pathology and Laboratory Medicine, University of California Davis School of Medicine,Davis, CA 95616
| |
Collapse
|
31
|
Fichtman B, Harel A. Stress and aging at the nuclear gateway. Mech Ageing Dev 2014; 135:24-32. [PMID: 24447784 DOI: 10.1016/j.mad.2014.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/31/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022]
Abstract
The nuclear pore complex (NPC) is a massive molecular machine embedded in the nuclear envelope and controlling traffic into and out of the cell nucleus. Here, we describe some of the outstanding research questions concerning the NPC, its assembly and functions. We also discuss recent findings that link the NPC and its immediate surroundings to the process of cellular aging. Scaffold and barrier nucleoporins are two major types of protein building blocks that make up the NPC. Surprisingly, these two groups of nucleoporins differ dramatically in their turnover rates. Recent work identifies some of the scaffold nucleoporins as the most extremely long-lived proteins in rat brain. Some of the consequences of these findings and new open questions arising from them are discussed. We also consider the evidence for a perturbed permeability barrier in nuclei from old cells and the alteration of nuclear transport pathways under stress conditions. Finally, we describe the connection between premature aging syndromes and the nuclear lamina, a filamentous protein network which underlies the nuclear envelope.
Collapse
Affiliation(s)
- Boris Fichtman
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Amnon Harel
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel.
| |
Collapse
|
32
|
Yarbrough ML, Mata MA, Sakthivel R, Fontoura BMA. Viral subversion of nucleocytoplasmic trafficking. Traffic 2013; 15:127-40. [PMID: 24289861 PMCID: PMC3910510 DOI: 10.1111/tra.12137] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/27/2013] [Accepted: 10/31/2013] [Indexed: 12/22/2022]
Abstract
Trafficking of proteins and RNA into and out of the nucleus occurs through the nuclear pore complex (NPC). Because of its critical function in many cellular processes, the NPC and transport factors are common targets of several viruses that disrupt key constituents of the machinery to facilitate viral replication. Many viruses such as poliovirus and severe acute respiratory syndrome (SARS) virus inhibit protein import into the nucleus, whereas viruses such as influenza A virus target and disrupt host mRNA nuclear export. Current evidence indicates that these viruses may employ such strategies to avert the host immune response. Conversely, many viruses co‐opt nucleocytoplasmic trafficking to facilitate transport of viral RNAs. As viral proteins interact with key regulators of the host nuclear transport machinery, viruses have served as invaluable tools of discovery that led to the identification of novel constituents of nuclear transport pathways. This review explores the importance of nucleocytoplasmic trafficking to viral pathogenesis as these studies revealed new antiviral therapeutic strategies and exposed previously unknown cellular mechanisms. Further understanding of nuclear transport pathways will determine whether such therapeutics will be useful treatments for important human pathogens.
Collapse
Affiliation(s)
- Melanie L Yarbrough
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390-9039, USA
| | | | | | | |
Collapse
|
33
|
Transcription and Maturation of mRNA in Dinoflagellates. Microorganisms 2013; 1:71-99. [PMID: 27694765 PMCID: PMC5029490 DOI: 10.3390/microorganisms1010071] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/10/2013] [Accepted: 10/14/2013] [Indexed: 01/17/2023] Open
Abstract
Dinoflagellates are of great importance to the marine ecosystem, yet scant details of how gene expression is regulated at the transcriptional level are available. Transcription is of interest in the context of the chromatin structure in the dinoflagellates as it shows many differences from more typical eukaryotic cells. Here we canvas recent transcriptome profiles to identify the molecular building blocks available for the construction of the transcriptional machinery and contrast these with those used by other systems. Dinoflagellates display a clear paucity of specific transcription factors, although surprisingly, the rest of the basic transcriptional machinery is not markedly different from what is found in the close relatives to the dinoflagellates.
Collapse
|
34
|
Thomas S, Rai J, John L, Schaefer S, Pützer BM, Herchenröder O. Chikungunya virus capsid protein contains nuclear import and export signals. Virol J 2013; 10:269. [PMID: 23984714 PMCID: PMC3765696 DOI: 10.1186/1743-422x-10-269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an alphavirus of the Togaviridae family. After autoproteolytic cleavage, the CHIKV capsid protein (CP) is involved in RNA binding and assembly of the viral particle. The monomeric CP is approximately 30 kDa in size and is small enough for passive transport through nuclear pores. Some alphaviruses are found to harbor nuclear localization signals (NLS) and transport of these proteins between cellular compartments was shown to be energy dependent. The active nuclear import of cytoplasmic proteins is mediated by karyopherins and their export by exportins. As nuclear and cytoplasmic trafficking may play a role in the life cycle of CHIKV, we have sought to identify nuclear localization and nuclear export signals in CHIKV CP in a virus-free system. METHODS EGFP-fusion proteins of CHIKV CP and mutants thereof were created and used to monitor their intracellular localization. Binding of cellular proteins was confirmed in pull-down assays with purified CP using co-immuoprecipitation. Nuclear localization was demonstrated in a virus-free system using fluorescence microscopy. RESULTS Here we show that CHIKV CP is a nuclear-cytoplasmic shuttling protein with an active NLS that binds to karyopherin α (Karα) for its nuclear translocation. We also found that the Karα4 C-terminal NLS binding site is sufficient for this interaction. We further demonstrate that CHIKV CP interacts directly with the export receptor CRM1 to transport this viral protein out of the nucleus via a nuclear export signal (NES). The CHIKV CP NES was mapped between amino acids 143 and 155 of CP. Deduced from in silico analyses we found that the NES has a mode of binding similar to the snurportin-1 CRM1 complex. CONCLUSIONS We were able to show that in a virus-free system that the CHIKV capsid protein contains both, a NLS and a NES, and that it is actively transported between the cytoplasma and the nucleus. We conclude that CHIKV CP has the ability to shuttle via interaction with karyopherins for its nuclear import and, vice versa, by CRM1-dependent nuclear export.
Collapse
Affiliation(s)
- Saijo Thomas
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Huang C, Jiang JY, Chang SC, Tsay YG, Chen MR, Chang MF. Nuclear export signal-interacting protein forms complexes with lamin A/C-Nups to mediate the CRM1-independent nuclear export of large hepatitis delta antigen. J Virol 2013; 87:1596-604. [PMID: 23175358 PMCID: PMC3554191 DOI: 10.1128/jvi.02357-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/09/2012] [Indexed: 12/18/2022] Open
Abstract
Nuclear export is an important process that not only regulates the functions of cellular factors but also facilitates the assembly of viral nucleoprotein complexes. Chromosome region maintenance 1 (CRM1) that mediates the transport of proteins bearing the classical leucine-rich nuclear export signal (NES) is the best-characterized nuclear export receptor. Recently, several CRM1-independent nuclear export pathways were also identified. The nuclear export of the large form of hepatitis delta antigen (HDAg-L), a nucleocapsid protein of hepatitis delta virus (HDV), which contains a CRM1-independent proline-rich NES, is mediated by the host NES-interacting protein (NESI). The mechanism of the NESI protein in mediating nuclear export is still unknown. In this study, NESI was characterized as a highly glycosylated membrane protein. It interacted and colocalized well in the nuclear envelope with lamin A/C and nucleoporins. Importantly, HDAg-L could be coimmunoprecipitated with lamin A/C and nucleoporins. In addition, binding of the cargo HDAg-L to the C terminus of NESI was detected for the wild-type protein but not for the nuclear export-defective HDAg-L carrying a P205A mutation [HDAg-L(P205A)]. Knockdown of lamin A/C effectively reduced the nuclear export of HDAg-L and the assembly of HDV. These data indicate that by forming complexes with lamin A/C and nucleoporins, NESI facilitates the CRM1-independent nuclear export of HDAg-L.
Collapse
Affiliation(s)
- Cheng Huang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine
- National Research Institute of Chinese Medicine
| | - Jia-Yin Jiang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine
- National Research Institute of Chinese Medicine
| | - Shin C. Chang
- Institute of Microbiology, National Taiwan University College of Medicine
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University School of Life Sciences, Taipei, Taiwan
| | - Mei-Ru Chen
- Institute of Microbiology, National Taiwan University College of Medicine
| | - Ming-Fu Chang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine
| |
Collapse
|
36
|
Nolte V, Pandey RV, Kofler R, Schlötterer C. Genome-wide patterns of natural variation reveal strong selective sweeps and ongoing genomic conflict in Drosophila mauritiana. Genome Res 2013; 23:99-110. [PMID: 23051690 PMCID: PMC3530687 DOI: 10.1101/gr.139873.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/24/2012] [Indexed: 12/25/2022]
Abstract
Although it is well understood that selection shapes the polymorphism pattern in Drosophila, signatures of classic selective sweeps are scarce. Here, we focus on Drosophila mauritiana, an island endemic, which is closely related to Drosophila melanogaster. Based on a new, annotated genome sequence, we characterized the genome-wide polymorphism by sequencing pooled individuals (Pool-seq). We show that the interplay between selection and recombination results in a genome-wide polymorphism pattern characteristic for D. mauritiana. Two large genomic regions (>500 kb) showed the signature of almost complete selective sweeps. We propose that the absence of population structure and limited geographic distribution could explain why such pronounced sweep patterns are restricted to D. mauritiana. Further evidence for strong adaptive evolution was detected for several nucleoporin genes, some of which were not previously identified as genes involved in genomic conflict. Since this adaptive evolution is continuing after the split of D. mauritiana and Drosophila simulans, we conclude that genomic conflict is not restricted to short episodes, but rather an ongoing process in Drosophila.
Collapse
Affiliation(s)
- Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | - Ram Vinay Pandey
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, 1210 Wien, Austria
| | | |
Collapse
|
37
|
Chromatin-bound NLS proteins recruit membrane vesicles and nucleoporins for nuclear envelope assembly via importin-α/β. Cell Res 2012; 22:1562-75. [PMID: 22847741 DOI: 10.1038/cr.2012.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The mechanism for nuclear envelope (NE) assembly is not fully understood. Importin-β and the small GTPase Ran have been implicated in the spatial regulation of NE assembly process. Here we report that chromatin-bound NLS (nuclear localization sequence) proteins provide docking sites for the NE precursor membrane vesicles and nucleoporins via importin-α and -β during NE assembly in Xenopus egg extracts. We show that along with the fast recruitment of the abundant NLS proteins such as nucleoplasmin and histones to the demembranated sperm chromatin in the extracts, importin-α binds the chromatin NLS proteins rapidly. Meanwhile, importin-β binds cytoplasmic NE precursor membrane vesicles and nucleoporins. Through interacting with importin-α on the chromatin NLS proteins, importin-β targets the membrane vesicles and nucleoporins to the chromatin surface. Once encountering Ran-GTP on the chromatin generated by RCC1, importin-β preferentially binds Ran-GTP and releases the membrane vesicles and nucleoporins for NE assembly. NE assembly is disrupted by blocking the interaction between importin-α and NLS proteins with excess soluble NLS proteins or by depletion of importin-β from the extract. Our findings reveal a novel molecular mechanism for NE assembly in Xenopus egg extracts.
Collapse
|
38
|
Wang Z, Li N, Zhao J, White JC, Qu P, Xing B. CuO Nanoparticle Interaction with Human Epithelial Cells: Cellular Uptake, Location, Export, and Genotoxicity. Chem Res Toxicol 2012; 25:1512-21. [DOI: 10.1021/tx3002093] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhenyu Wang
- College of Environmental Science
and Engineering, Ocean University of China, Qingdao 266100, China
| | - Na Li
- College of Environmental Science
and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Department of Plant, Soil and
Insect Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Jason C. White
- Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven,
Connecticut 06511, United States
| | - Pei Qu
- College of Environmental Science
and Engineering, Ocean University of China, Qingdao 266100, China
| | - Baoshan Xing
- Department of Plant, Soil and
Insect Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
39
|
Shaulov L, Harel A. Improved Visualization of Vertebrate Nuclear Pore Complexes by Field Emission Scanning Electron Microscopy. Structure 2012; 20:407-13. [DOI: 10.1016/j.str.2012.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/29/2012] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
|
40
|
Shaulov L, Gruber R, Cohen I, Harel A. A dominant-negative form of POM121 binds chromatin and disrupts the two separate modes of nuclear pore assembly. J Cell Sci 2011; 124:3822-34. [PMID: 22100917 DOI: 10.1242/jcs.086660] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nuclear pore complexes (NPCs) are formed during two separate stages of the metazoan cell cycle. They are assembled into the re-forming nuclear envelope (NE) at the exit from mitosis and into an intact, expanding NE during interphase. Here, we show that a soluble internal fragment of the membrane nucleoporin POM121 has a dominant-negative effect on both modes of assembly in a cell-free reconstitution system. The soluble POM121 fragment binds chromatin at sites that are distinct from ELYS-Nup107-160 'seeding' sites and prevents membrane enclosure and NPC formation. Importin-β negatively regulates chromatin binding by the POM121 fragment through a conserved NLS motif and is also shown to affect the recruitment of the endogenous membrane protein to chromatin in the full assembly system. When an intact NE is present before the addition of the dominant-negative fragment, NPCs are inserted into the NE but membrane expansion is inhibited. This results in densely packed NPCs with no intervening membrane patches, as visualized by scanning electron microscopy. We conclude that POM121 plays an important role in both modes of assembly and links nuclear membrane formation and expansion to nuclear pore biogenesis.
Collapse
Affiliation(s)
- Lihi Shaulov
- Department of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
41
|
Funakoshi T, Clever M, Watanabe A, Imamoto N. Localization of Pom121 to the inner nuclear membrane is required for an early step of interphase nuclear pore complex assembly. Mol Biol Cell 2011; 22:1058-69. [PMID: 21289085 PMCID: PMC3069009 DOI: 10.1091/mbc.e10-07-0641] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pom121 plays key roles in interphase nuclear pore complex (NPC) assembly and possesses a set of NLSs and an inner nuclear membrane (INM) binding region crucial for its NPC targeting. Here we propose that the nuclear migration of Pom121 and its subsequent interaction with the INM are required for interphase NPC assembly by seeding “prepore” to INM. The nuclear pore complex (NPC) is a large protein assembly that mediates molecular trafficking between the cytoplasm and the nucleus. NPCs assemble twice during the cell cycle in metazoans: postmitosis and during interphase. In this study, using small interfering RNA (siRNA) in conjunction with a cell fusion–based NPC assembly assay, we demonstrated that pore membrane protein (Pom)121, a vertebrate-specific integral membrane nucleoporin, is indispensable for an early step in interphase NPC assembly. Functional domain analysis of Pom121 showed that its nuclear localization signals, which bind to importin β via importin α and likely function with RanGTP, play an essential role in targeting Pom121 to the interphase NPC. Furthermore, a region of Pom121 that interacts with the inner nuclear membrane (INM) and lamin B receptor was found to be crucial for its NPC targeting. Based on these findings and on evidence that Pom121 localizes at the INM in the absence of a complete NPC structure, we propose that the nuclear migration of Pom121 and its subsequent interaction with INM proteins are required to initiate interphase NPC assembly. Our data also suggest, for the first time, the importance of the INM as a seeding site for “prepores” during interphase NPC assembly.
Collapse
Affiliation(s)
- Tomoko Funakoshi
- Cellular Dynamics Laboratory, Riken Advanced Science Institute, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
42
|
Depletion of a single nucleoporin, Nup107, induces apoptosis in eukaryotic cells. Mol Cell Biochem 2010; 343:21-5. [PMID: 20490895 DOI: 10.1007/s11010-010-0494-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/07/2010] [Indexed: 01/22/2023]
Abstract
Nuclear pores are large protein complexes that cross the nuclear envelope, which is the double membrane surrounding the eukaryotic cell nucleus. There are about on average 2,000 nuclear pore complexes (NPCs) in the nuclear envelope of a vertebrate cell, but it varies depending on cell type and the stage in the life cycle. The proteins that make up the NPC are known as nucleoporins. In mammalian cells, Nup107 is the homolog of yeast Nup84p nucleoporin. Nup107 contains a leucine zipper motif in its carboxyl-terminal region and numerous kinase consensus sites, but does not contain FG repeats. Previously it was reported that NUP88 and NUP107 are over expressed in many types of cancers including colon, breast, prostrate, etc. In this study, we were interested in investigating the role of NUP107 in grade 4 Astrocytoma, i.e., Glioblastoma multiforme cultured cell line. We transfected human Astrocytoma cells with Nup107-specific siRNA duplexes. The level of mRNA for Nup107 was monitored by RT-PCR, 24, 48, and 72 h after the initial transfection. Nup107 mRNA was significantly diminished by 24 h after transfection and we took that as our incubation time. Next we studied the effect of this inhibition on cell viability. We did a Trypan Blue cell viability assay and it showed increased cell death in NUP107 transfected cells than untreated control. We further tried to analyze the nature of the cell death whether apoptotic or necrotic by doing apoptosis assays like ssDNA ELISA assay, Caspase-3, and Caspase-8 assays. All the assays showed that siRNA transfected cells are undergoing increased apoptosis than control.
Collapse
|
43
|
Colwell LJ, Brenner MP, Ribbeck K. Charge as a selection criterion for translocation through the nuclear pore complex. PLoS Comput Biol 2010; 6:e1000747. [PMID: 20421988 PMCID: PMC2858669 DOI: 10.1371/journal.pcbi.1000747] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 03/18/2010] [Indexed: 01/17/2023] Open
Abstract
Nuclear pore complexes (NPCs) are highly selective filters that control the exchange of material between nucleus and cytoplasm. The principles that govern selective filtering by NPCs are not fully understood. Previous studies find that cellular proteins capable of fast translocation through NPCs (transport receptors) are characterized by a high proportion of hydrophobic surface regions. Our analysis finds that transport receptors and their complexes are also highly negatively charged. Moreover, NPC components that constitute the permeability barrier are positively charged. We estimate that electrostatic interactions between a transport receptor and the NPC result in an energy gain of several kBT, which would enable significantly increased translocation rates of transport receptors relative to other cellular proteins. We suggest that negative charge is an essential criterion for selective passage through the NPC. All proteins that move between the cytoplasm and the nucleus must pass through nuclear pore complexes, large aqueous channels around 40nm in diameter. In some cases the nuclear envelope is perforated with several thousand nuclear pore complexes, while in other cases they are few and far between. Macromolecular transport through nuclear pores is highly regulated; an elaborate system, involving the binding and unbinding of accessory proteins (transport receptors), allows regulation of which proteins can pass through the pores. The basic principles that govern this selective filtering are not fully understood. Some proteins pass through the pore without binding to transport receptors, while others require the binding of multiple transport receptors for efficient translocation. How does the pore select which proteins can pass through, and which cannot? This paper carries out a biophysical analysis of the properties of proteins that can translocate through the nuclear pore. We find that proteins capable of fast translocation are highly negatively charged, whereas proteins that cannot pass through the pore are positively charged. Moreover, proteins that constitute the interior of the pore channel itself are net positively charged. This suggests that electrostatic interactions between translocating proteins and the pore are an essential part of the selective filtering mechanism.
Collapse
Affiliation(s)
- Lucy J. Colwell
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael P. Brenner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (MPB); (KR)
| | - Katharina Ribbeck
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (MPB); (KR)
| |
Collapse
|
44
|
Hetzer MW, Wente SR. Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. Dev Cell 2009; 17:606-16. [PMID: 19922866 DOI: 10.1016/j.devcel.2009.10.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last decade, the nuclear envelope (NE) has emerged as a key component in the organization and function of the nuclear genome. As many as 100 different proteins are thought to specifically localize to this double membrane that separates the cytoplasm and the nucleoplasm of eukaryotic cells. Selective portals through the NE are formed at sites where the inner and outer nuclear membranes are fused, and the coincident assembly of approximately 30 proteins into nuclear pore complexes occurs. These nuclear pore complexes are essential for the control of nucleocytoplasmic exchange. Many of the NE and nuclear pore proteins are thought to play crucial roles in gene regulation and thus are increasingly linked to human diseases.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
45
|
Li F, Yang D, Wang Y, Liu B, Deng Y, Wang L, Shang X, Tong W, Ni B, Wu Y. Identification and modification of an HLA-A*0201-restricted cytotoxic T lymphocyte epitope from Ran antigen. Cancer Immunol Immunother 2009; 58:2039-49. [PMID: 19430788 PMCID: PMC11030261 DOI: 10.1007/s00262-009-0712-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 04/14/2009] [Indexed: 11/25/2022]
Abstract
Ran is considered to be a promising target for tumor-specific immunotherapy because its protein is exclusively expressed in tumor tissues, though its mRNA can be expressed in most normal tissues. In our study, we obtained four candidate wild-type epitopes designated Ran1, Ran2, Ran3, and Ran4, derived from the Ran antigen with the highest predicted affinity with MHC-I, indicated by affinity prediction plots and molecular dynamics simulation. However, in vitro affinity assays of these epitopes showed only a moderate affinity with MHC-I. Thus, we designed altered peptide ligands (APLs) derived from Ran wild-type epitopes with preferred primary and auxiliary HLA-A*0201 molecule anchor residue replacement. Of the eight tested peptides, the 1Y analog had the strongest binding-affinity and lowest-dissociation rate to HLA-A*0201. Additionally, we investigated the CTLs activities induced by Ran wild-type peptides and the APLs in human PBMCs and in HLA-A*0201/K(b) transgenic mice. Ran1 1Y was superior to other APLs and wild-type peptides in eliciting epitope-specific CTL immune responses both in vitro and in vivo. In summary, a wild-type epitope of the tumor-specific antigen Ran, expressed broadly in many tumors, was identified and designated Ran1. An APL of Ran1, Ran1 1Y, was further designed and verified in vitro and in vivo and found to elicit a stronger Ran-specific CTL response, indicating a potential anti-tumor application in the future.
Collapse
Affiliation(s)
- Fan Li
- Department of Immunology, Institute of Immunology, Third Military Medical University, 400038 Chongqing, China
- Department of General Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 400042 Chongqing, China
| | - Di Yang
- Department of Immunology, Institute of Immunology, Third Military Medical University, 400038 Chongqing, China
| | - Yiqin Wang
- Department of Immunology, Institute of Immunology, Third Military Medical University, 400038 Chongqing, China
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, 400037 Chongqing, China
| | - Baohua Liu
- Department of General Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 400042 Chongqing, China
| | - Yijing Deng
- Department of Immunology, Institute of Immunology, Third Military Medical University, 400038 Chongqing, China
- Department of Geriatric Gastroenterology, Chinese PLA General Hospital, 28 FuXing Street, 100853 Beijing, China
| | - Li Wang
- Department of Immunology, Institute of Immunology, Third Military Medical University, 400038 Chongqing, China
| | - Xiaoyun Shang
- Department of Immunology, Institute of Immunology, Third Military Medical University, 400038 Chongqing, China
| | - Weidong Tong
- Department of General Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, 400042 Chongqing, China
| | - Bing Ni
- Department of Immunology, Institute of Immunology, Third Military Medical University, 400038 Chongqing, China
| | - Yuzhang Wu
- Department of Immunology, Institute of Immunology, Third Military Medical University, 400038 Chongqing, China
| |
Collapse
|
46
|
New strategies for nucleic acid delivery to conquer cellular and nuclear membranes. J Control Release 2008; 132:279-88. [DOI: 10.1016/j.jconrel.2008.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/23/2008] [Accepted: 06/30/2008] [Indexed: 12/17/2022]
|
47
|
Liu HL, De Souza CPC, Osmani AH, Osmani SA. The three fungal transmembrane nuclear pore complex proteins of Aspergillus nidulans are dispensable in the presence of an intact An-Nup84-120 complex. Mol Biol Cell 2008; 20:616-30. [PMID: 19019988 DOI: 10.1091/mbc.e08-06-0628] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In Aspergillus nidulans nuclear pore complexes (NPCs) undergo partial mitotic disassembly such that 12 NPC proteins (Nups) form a core structure anchored across the nuclear envelope (NE). To investigate how the NPC core is maintained, we affinity purified the major core An-Nup84-120 complex and identified two new fungal Nups, An-Nup37 and An-ELYS, previously thought to be vertebrate specific. During mitosis the An-Nup84-120 complex locates to the NE and spindle pole bodies but, unlike vertebrate cells, does not concentrate at kinetochores. We find that mutants lacking individual An-Nup84-120 components are sensitive to the membrane destabilizer benzyl alcohol (BA) and high temperature. Although such mutants display no defects in mitotic spindle formation, they undergo mitotic specific disassembly of the NPC core and transient aggregation of the mitotic NE, suggesting the An-Nup84-120 complex might function with membrane. Supporting this, we show cells devoid of all known fungal transmembrane Nups (An-Ndc1, An-Pom152, and An-Pom34) are viable but that An-ndc1 deletion combined with deletion of individual An-Nup84-120 components is either lethal or causes sensitivity to treatments expected to destabilize membrane. Therefore, the An-Nup84-120 complex performs roles, perhaps at the NPC membrane as proposed previously, that become essential without the An-Ndc1 transmembrane Nup.
Collapse
Affiliation(s)
- Hui-Lin Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
48
|
Individual binding pockets of importin-beta for FG-nucleoporins have different binding properties and different sensitivities to RanGTP. Proc Natl Acad Sci U S A 2008; 105:16101-6. [PMID: 18845677 DOI: 10.1073/pnas.0802647105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Importin-beta mediates protein transport across the nuclear envelope through the nuclear pore complex (NPC) by interacting with components of the NPC, called nucleoporins, and a small G protein, Ran. Although there is accumulated knowledge on the specific interaction between importin-beta and the Phe-Gly (FG) motif in the nucleoporins as well as the effect of RanGTP on this interaction, the molecular mechanism by which importin-beta shuttles across the nuclear envelope through the NPC is unknown. In this study, we focused on four binding pockets of importin-beta for the FG motifs and characterized the interaction using a single-molecule force-measurement technique with atomic-force microscopy. The results from a series of importin-beta mutants containing amino acid substitutions within the FG-binding pockets demonstrate that the individual FG-binding pockets have different affinities to FG-Nups (Nup62 and Nup153) and different sensitivities to RanGTP; the binding of RanGTP to the amino-terminal domain of importin-beta induces the conformational change of the entire molecule and reduces the affinity of some of the pockets but not others. These heterogeneous characteristics of the multiple FG-binding pockets may play an important role in the behavior of importin-beta within the NPC. Single-molecule force measurement using the entire molecule of an NPC from a Xenopus oocyte also implies that the reduction of the affinity by RanGTP really occurs at the nucleoplasmic side of the entire NPC.
Collapse
|
49
|
D'Angelo MA, Hetzer MW. Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 2008; 18:456-66. [PMID: 18786826 DOI: 10.1016/j.tcb.2008.07.009] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/21/2008] [Accepted: 07/22/2008] [Indexed: 12/15/2022]
Abstract
Nuclear pore complexes are large aqueous channels that penetrate the nuclear envelope, thereby connecting the nuclear interior with the cytoplasm. Until recently, these macromolecular complexes were viewed as static structures, the only function of which was to control the molecular trafficking between the two compartments. It has now become evident that this simplistic scenario is inaccurate and that nuclear pore complexes are highly dynamic multiprotein assemblies involved in diverse cellular processes ranging from the organization of the cytoskeleton to gene expression. In this review, we discuss the most recent developments in the nuclear-pore-complex field, focusing on the assembly, disassembly, maintenance and function of this macromolecular structure.
Collapse
Affiliation(s)
- Maximiliano A D'Angelo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
50
|
Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Mol Cell 2008; 30:721-31. [PMID: 18570875 DOI: 10.1016/j.molcel.2008.04.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/20/2008] [Accepted: 04/15/2008] [Indexed: 01/16/2023]
Abstract
Nuclear pore complexes (NPCs) are 40-60 MDa protein assemblies embedded in the nuclear envelope of eukaryotic cells. NPCs exclusively mediate all transport between cytoplasm and nucleus. The nucleoporins that build the NPC are arranged in a stable core of module-like subcomplexes with eight-fold rotational symmetry. To gain insight into the intricate assembly of the NPC, we have solved the crystal structure of a protein complex between two nucleoporins, human Nup107 and Nup133. Both proteins form elongated structures that interact tightly via a compact interface in tail-to-tail fashion. Additional experiments using structure-guided mutants show that Nup107 is the critical anchor for Nup133 to the NPC, positioning Nup133 at the periphery of the NPC. The significant topological differences between Nup107 and Nup133 suggest that *-helical nucleoporin domains of the NPC scaffold fall in different classes and fulfill largely nonredundant functions.
Collapse
|